
Logic Synthesis of Handshake Components
using Structural Clustering Techniques

Francisco Fernández-Nogueria∗

Universitat Politècnica de Catalunya
Barcelona, Spain

Josep Carmona
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract

A methodology to optimize handshake circuits is pre-
sented. The approach selects clusters of the initial hand-
shake network for which signals representing internal chan-
nels within a cluster are hidden. To guarantee asyn-
chronous implementability on the resulting cluster, stateen-
coding is applied using modern structural techniques. The
theory of Petri nets is used to identify clusters for which
the structural techniques perform successfully. Finally logic
synthesis is employed for each reencoded cluster. The ap-
proach is integrated into the Balsa synthesis flow and may
represent a significant improvement with respect to the lo-
cal optimizations typically applied. Experimental results in
area and performance have been obtained to measure the
optimization on typical Balsa examples.

1. Introduction

Asynchronous circuits represent a robust alternative for
overcoming the problems of current and future technolo-
gies [14]. The nightmares of the synchronous paradigm like
power dissipation, clock distribution, EMI, worst case per-
formance among others are naturally avoided when one gets
rid of the clock [3].

However, asynchronous circuits appear seldom in cur-
rent technologies. The reason for this is simple: a cir-
cuit that lacks a global coordinator is difficult to design
and verify. In the last decades, theories, methodologies
and tools for the design and verification of asynchronous
circuits have appeared, but their scope have been mostly
academic. Moreover, these asynchronous paradigms tradi-
tionally have used as specification language formal mod-
els like automata or Petri Nets [20, 13, 10], which are not
well-suited as front-end for the design of large and complex

∗Supported by the Universitat Politècnica de Catalunya (predoctoral
scholarship UPC for investigation).

systems.
Hardware Description Languages (HDL) offer a simple

way to design circuits. Many nuisances of the design pro-
cess are hidden or automated, and allow the designer to have
a system-level view of the circuit. The complexities of asyn-
chronous circuit design can also be hidden by using an HDL
as a front-end. With this idea in mind, the asynchronous
community has provided some HDLs for the asynchronous
design [4, 11]. Typically those programming environments
transform the program, using a syntax-directed translation
of each primitive, into a netlist of handshake components.
Latterly each handshake component can be synthesized sep-
arately into an asynchronous circuit. Hence the size of the
resulting circuit is linear with respect to the size of the HDL
program. This can limit the use of current asynchronous
HDLs when area and/or performance is a key factor.

Logic synthesis achieves global optimizations that can
improve in orders of magnitude the local (peephole) opti-
mizations applied in asynchronous HDLs [9, 6]. In [8], a
back-end to incorporate logic synthesis into the Balsa sys-
tem was presented. The work showed the tangible improve-
ments that can be obtained by optimizing the netlists of
handshake circuits.

In this paper we provide a Petri net-based back-end to the
Balsa system, offering resynthesis capabilities that include
state encoding and logic synthesis of selected clusters of
handshake components. The approach can be considered
a follow-up of previous work [15, 17, 5, 8, 19], with the
differences listed below:

1. State-based methods are used in [17, 5, 8], thus suf-
fering from the state space explosion problem. Hence
their application is limited to small specifications. In
the work presented in this paper, modern structural
methods for state encoding and synthesis [6, 7] are em-
ployed, allowing large specifications to be handled.

2. Petri nets are used as intermidiate language, whereas
the underlying formalism in [8] for synthesis are burst-
mode machines, that impose limitations on modeling

1

the inherent concurrency of asynchronous systems.

3. A structural clustering approach guides the composi-
tion of handshake components, which are described by
labeled Petri nets, into clusters. Those clusters grow
as far as the induced Petri net composition of the se-
lected components belongs to a class for which struc-
tural methods perform well. Ablind clustering is used
in the Petri net-based approaches [15, 17, 5], often de-
riving unrestricted clusters that synthesis methods can
not handle.

4. No change in the specification language is required:
the designer might benefit from the optimizations pro-
vided in this paper without even knowing that they are
applied. This differs from the approach in [19], where
a data-oriented Balsa language is presented to improve
the performance of Balsa specifications. The approach
presented in this paper is integrated in the Balsa syn-
thesis flow: resynthesized clusters are translated back
to Balsa implementation format.

The organization of the paper is the following: the basic
knowledge required for this paper is presented in Section 2.
Section 3 describes the overall design flow for synthesis and
optimization of Balsa systems. The structural clustering al-
gorithm is described in Section 4 and Section 5 describes
the clustering strategy for a Balsa example. Finally, a set
of experiments on typical Balsa examples is studied in Sec-
tion 6.

2. Basic Theory

A Petri Net (PN) is a 4-tuple,N = (P, T, F, m0), where
P is a finite set ofplaces, T is a finite set oftransitions,
F ⊆ (P ×T)∪ (T ×P) is theflow relationandm0 ∈ N|P |

is the initial marking. Given a nodex ∈ P ∪ T , the set
•x = {y|(y, x) ∈ F} is thepresetof x and the setx• =
{y|(x, y) ∈ F} is thepostsetof x.

A marking assigns to each place a nonnegative integer.
If a marking assigns to placep a nonnegative integerk, we
say thatp is marked withk tokens and we placek dots in
placep. A marking, denoted bym, is a|P |-vector where the
pth component, denoted bym(p), is the number of tokens
in placep.

A marking in aPN is changed according to the following
firing rule: a transitiont is enabled if each input placep of
t is marked; an enabled transition may or may not fire; a
firing of an enabled transitiont removes one token from
each input placep of t, and adds one token to each output
placep of t.

A markingmn is reachable from a markingm0 if there
is a sequence of firingsσ = t1t2 . . . tn that transformsm0

DW

C33C27

C35

2
1

3

5

4

C34 C20

||

C13

C12

1

3

2

C20

||

DW

C33C27

C34

C35

C13

C12
2

1

3

5

4

1

3

2

req

C20
ack

req_35+

ack_35−

req_27+

ack_27+

ack_34+

ack_35+

req_35−

req_34−

req_27−

ack_27−

ack_34−

ack_33−

req_33−

req_35−

ack_35+

ack_33+

req_33+

req_34+ req_20+

ack_20+

req_20−

ack_20−

ack_13+

req_13−

ack_13−

ack_20+

req_20−

ack_20−

req_12−

ack_12−

req_12+

ack_12+

req_20+

req_13+

req_35+

ack_35−

req_27+

ack_27+

ack_34+

ack_35+

req_35−

req_34−

req_27−

ack_27−

ack_34−

ack_33−

req_33−

req_35−

ack_35+

ack_33+

req_33+

ack_20+

ack_20−

req_13+

req_20+req_34+

req_20−

ack_12−

req_12−

ack_12+

req_12+

ack_13+

req_13−

ack_13−

(a) (b) (c)

Figure 1. (Top) HC components and their
connection, (Bottom) STGs and their parallel
composition.

to mn, denoted bym0[σ〉mn. The set of all possible mark-
ings reachable fromm0 is denoted by[m0〉. Thereachabil-
ity graphcan be obtained considering the set of reachable
markings as the set of states and the transitions among these
markings as the transitions between the states.

Four specialPN classes [16] are of interest in this paper.
A PN N is a:

• Marked graph(MG) if ∀p ∈ P : |•p| = |p•| = 1.

• State machine(SM) if ∀t ∈ T : |•t| = |t•| = 1.

• Free-choice(FC) if ∀p1, p2 ∈ P : p•
1
∩ p•

2
6= ∅

⇒ |p•
1
| = |p•

2
| = 1.

• Asymmetric Choice(AC) if ∀p1, p2 ∈ P : p•
1
∩ p•

2
6= ∅

⇒ p•
1
⊆ p•

2
or p•

1
⊇ p•

2
.

Clearly, considering set inclusion as class inclusion, thefol-
lowing holds: MG, SM ⊂ FC⊂ AC.

Given placesp1 andp2, wherep•
1
∩ p•

2
6= ∅, FC is vio-

lated if |p•
1
| 6= 1 or |p•

2
| 6= 1 andAC is violated ifp•

1
* p•

2

andp•
1

+ p•
2
. We will call these violationsFC-violationand

AC-violation. If the class is a parameterC, we will simple
call C-violation.

2.1. Signal Transition Graphs

To model digital circuits, the events of aPN can be inter-
preted as signal changes. ASignal Transition Graph(STG)
is a tripleG = (N, Σ, Λ), whereN = (P, T, F, m0) is a
PN, Σ is a set of signals, partitioned into input, internal and
output signals, andΛ : T → Σ×{+,−}∪ {ǫ} is the label-
ing function which maps rising and falling signal transitions
to transitions in thePN. The symbolǫ can be assigned to
any transition to denote a silent event in the system.

Definition 1 (Parallel Composition) GivenSTGsG1 and
G2, their parallel composition is denoted byG1||G2 =
((P||, T||, F||, m0||), Σ||, Λ||), where:

P|| = P1 × {∗} ∪ {∗} × P2

T|| = {(t1, t2) | t1 ∈ T1, t2 ∈ T2,
Λ1(t1) = Λ2(t2) ∈ Σ1 ∩ Σ2 × {+,−}}

∪{(t1, ∗) | t1 ∈ T1, Λ1(t1) /∈ Σ1 ∩ Σ2 × {+,−}}
∪{(∗, t2) | t2 ∈ T2, Λ2(t2) /∈ Σ1 ∩ Σ2 × {+,−}}

F|| = {((p1, p2), (t1, t2)) | (p1, t1) ∈ F1 or (p2, t2) ∈ F2}
∪{((t1, t2), (p1, p2)) | (t1, p1) ∈ F1 or (t2, p2) ∈ F2}

m0||((p1, p2)) = { m01(p1) if p1 ∈ P1

m02(p2) if p2 ∈ P2

Σ|| = Σ1 ∪ Σ2

Λ||((t1, t2)) = { Λ1(t1) if t1 ∈ T1

Λ2(t2) if t2 ∈ T2

Informally, theSTG representing the parallel composi-
tion represents the joint behavior of the participatingSTGs.
Bottom of figure 1(c) shows the parallel composition of the
STGs in bottom of figures 1(a)-(b). The shared events are
depicted in transitions with grey background.

2.2. STG modeling of Handshake Control Circuits

Handshake Circuits are asynchronous circuits composed
of handshake components (HC) and channels. They are
obtained by a syntax-directed translation from a CSP-like
language like Tangram [4] or Balsa [11]. The handshake
components communicate through channels using a hand-
shake protocol. This protocol can be described with an
STG. In [12], STG characterizations of the more repre-
sentative controlHCs in Balsa were presented, based on the
formal definition from [2]1. An example of such character-
ization can be found in Figure 1(a)-(b): theDecisionWait
andConcurHCs and theSTGs modeling their behavior are
depicted. Along the paper, we will use the notationSTG(x)
to refer to theSTG describing the protocol behavior of the
HC x.

The connection of a pair ofHCs x and y through a
shared channel will be denotedConn(x, y). The protocol

1Some of the components from [12] have been adapted to the improved
versions as described in [18].

State Encoding
Logic Synthesis Logic Synthesis

State Encoding

HCs Cluster 1 HCs Cluster N...

HCs Cluster 1 STG HCs Cluster N STG...

Describe Behavior
Hide Signals

Balsa Specification

Net of HCs

Balsa

Clustering

Gate Implementation

Describe Behavior
Hide Signals Not Clustered HCs

Balsa

Figure 2. New Design Flow

of this connection can also be described as anSTG, and
corresponds to the parallel composition of theSTGs for
x and y: STG(Conn(x, y)) = STG(x) || STG(y). Us-
ing iteratively the composition operator, one can build an
STG representing a cluster ofHCs from a given handshake
circuit. Figure 1(c) shows a possible connection of the
DecisionWait andConcur HCs and theSTG modelling
their connection behavior.

The class of asynchronous circuits that we focus in this
paper is Speed-Independent (SI) circuits, which operate
correctly regardless of the delays on their gates. The condi-
tions for a specification to be correctly implemented under
theSI model are [10]: boundedness, consistency, complete
state coding and persistency.

3. Logic Synthesis of Handshake Components

Given a specification in Balsa, the goal of this work is
to apply state reencoding and logic synthesis to (part of) it
in order to achieve global optimizations that can improve
significantly the quality of the resultingSI circuit. This
optimizations can not be attained when the syntax-directed
translation approach is applied to the initial specification.

Informally the approach proceeds as follows (see Fig-
ure 2): starting from the net ofHCs derived from the Balsa
program, it iteratively selects clusters of components fol-
lowing a criteria. For a given cluster selected, it creates
the correspondingSTG, then it hides all the signals corre-
sponding to internal channels and state signals. If internal
signals are hidden, the resultingSTG may have encoding
conflicts that must be resolved before of applying logic syn-
thesis. Then state encoding and logic synthesis is applied
to this STG. For state encoding and synthesis, structural

methods [7, 6] are used.HCs not included in a cluster (data
HCs and controlHCs not assigned to any cluster), are syn-
thesized by the Balsa synthesis flow.

The use of structural methods for the synthesis enables
the selection of large clusters (i.e. largeSTGs) that will
not be synthesized if state-based methods were used instead,
due to the state-space explosion problem. The possibility of
applying state reencoding and logic synthesis to large clus-
ters ofHCs induces aggressive optimizations in the result-
ing circuits, as has been demonstrated in [8, 6]. However,
provided that structural methods in [7, 6] work with an ap-
proximation of the state space of the system, they can only
guarantee a solution when theSTG is well-structured. The
main theoretical contribution of this work is to describe how
to select clusters in order to deriveSTGs belonging toPN
classes for which structural methods will succeed, and pro-
vide a methodology to automate this selection. The follow-
ing section addresses in detail these issues.

4. Structural Clustering Algorithm

The problem addressed in this section is: given a net of
HCs, and aPN classC, how to derive a (maximal) set of
clusters satisfying that theSTG corresponding to each clus-
ter belongs toC? This section presents a greedy algorithm
for this problem.

As explained in Section 2.2, the clusters are obtained by
connectingHCs that share a channel, and the behavior of
their connection is described by the parallel composition
of the individualSTGs. The class of theSTG induced
by the connection depends on the selected components and
the channel, and it is not necessarily the maximal of the
two initial STG. Let us use the simple example of Fig-
ure 1 to illustrate this: it shows a connection between a
DecisionWait and aConcur. The former (later) is de-
scribed by theSTG from Figure 1(a) ((b)), with its under-
lying PN belonging to theSM (MG) class. Therefore both
HCs can be described with the simplest classes (see the end
of Section 2.1). However, their parallel composition (shown
in Figure 1(c)), “jumps” to theAC class.

In the following subsections,Gi will denote anSTG and
Ci a HC.

4.1. PN Class of the Parallel Composition

In order to know the class of the parallel composition of
two STGs, only a special part of the parallel composition
must be observed:

Definition 2 (Synchronization Area) Given STGs
G1 and G2, their synchronization area is denoted by
Synch(G1, G2) = ((PS , TS, FS , m0S), ΣS , ΛS), where:

a

b

a

c

a e

d a

b

c

a

a

a

a

e

d

(a) (b) (c)

Figure 3. (a) G1, (b) G2, (c) G1||G2

PS = P pre

S ∪ P post

S

P pre

S = {(p1, p2) ∈ P|| | ∃(t1, t2) ∈
•(p1, p2),

Λ||((t1, t2)) ∈ Σ1 ∩ Σ2 × {+,−}}
P post

S = {(p1, p2) ∈ P|| | ∃(t1, t2) ∈ (p1, p2)
•,

Λ||((t1, t2)) ∈ Σ1 ∩ Σ2 × {+,−}}
TS = {(t1, t2) ∈ T|| | ∃(p1, p2) ∈

•(t1, t2), (p1, p2) ∈ P post

S

or ∃(p1, p2) ∈ (t1, t2)
•, (p1, p2) ∈ P pre

S }

FS = {((p1, p2), (t1, t2)) ∈ F|| | (p1, p2) ∈ P post

S , (t1, t2) ∈ TS}
∪{((t1, t2), (p1, p2)) ∈ F|| | (p1, p2) ∈ P pre

S , (t1, t2) ∈ TS}
m0S((p1, p2)) = m0||((p1, p2))
ΣS = {σ ∈ Σ|| | ∃(t1, t2) ∈ TS, Λ||((t1, t2)) ∈ σ × {+,−}}
ΛS((t1, t2)) = Λ||((t1, t2))

Intuitively, the synchronization area contains the flow re-
lation between places with shared transitions in their presets
(postsets) and these presets (postsets). This flow relationis
focused in places with more than one outgoing arc (choice
places), which are the main responsibles for inclusion in
one of thePN classes described in Section 2.1: if a place
p in G1||G2 has a shared transition in its pre-set (post-set),
then p and •p (p•) will be in Synch(G1, G2). The syn-
chronization area of theSTGs depicted in Figure 3(a)-(b)
is described with grey background on the parallel composi-
tion in Figure 3(c). Note that the output arc of the not shared
transitiond is in the synchronization area, but its input arc
is not there. It is due to the existence of a shared transition
a in the preset of the output place ofd, and the inexistence
of a shared transition in the postset of its input place.

When thePN classes ofG1, G2 andSynch(G1, G2) are
known, thePN class ofG1||G2 can be obtained using the
following propositions:

Proposition 1 Inclusion of a parallel composition in aPN
class:

C ∈ {FC, AC}

G1, G2, Synch(G1, G2) ∈ C ⇒ G1||G2 ∈ C

Proof: See appendix A. �

Proposition 2 Exclusion of a parallel composition in aPN
class:

C ∈ {FC, AC}

(G1 /∈ C or G2 /∈ C

or Synch(G1, G2) /∈ C) ⇒ G1||G2 /∈ C

Proof: See appendix A. �

For instance, using the example of Figure 1, the synchro-
nization area shown in solid lines in (c) contains a pair of
places that violate the FC condition, but satisfy the AC prin-
ciple. Applying Proposition 1 withC = AC, theSTG in
(c) is at most in the AC class. Applying Proposition 2 with
C = FC, theSTG in (c) is not in the FC class, and therefore
it is an ACPN.

4.2. PN Class of the Synchronization Area

Propositions 1 and 2 point to thePN class of the syn-
chronization area as the main element to look when the
class of the parallel composition must be found. As it
has been suggested in the example of the previous section,
it is only needed to look at the choice places for realiz-
ing thePN class of the synchronization area. A choice in
Synch(G1, G2) is either originated from a choice inG1 or
G2, or it arises in the parallel composition by a sharing of a
transition. Hence thePN class ofSynch(G1, G2) depend-
ing on the origin of its choices has been studied.

Table 1 summarizes, for several situations of shared tran-
sitions and their presets inG1 andG2, the resulting struc-
ture and its the correspondingPN class inSynch(G1, G2).
The first two columns show ifG1 (G2) has a choice in
the preset of the shared transitions and/or whether it has
more than one copy of the shared transition. Column
Synch(G1, G2) shows the corresponding structure in the
synchronization area, and thePN class for this portion. The
table shows typical situations of sharing when theSTGs
represent handshake components2.

For example, the second row characterizes the following
situation:G2 has a choice in the preset of the shared transi-
tion a, G1 does not have a choice in the preset ofa, andG1

andG2 have only one copy ofa. Then the parallel compo-
sition ofG1 andG2 will contain thePN structure shown in
the third column, which belongs theAC class, and it does
not belong to theFC class.

It is important to realize that using Table 1, one may in-
fer thePN class of the synchronization area without actu-
ally building the parallel composition. This can be done by

2PN stands for the class of general Petri nets.

G1 G2 GS

a a a

FC

a a b a b

AC, FC

a a a a a

AC, FC

a a a b a b a

AC, FC

a a a a a a a a

PN, AC

Table 1. PN class of the Synchronization Area

Sequence
Concur Fork Synch Call

Decision

Optimised Wait

;
...

A

B

||
...

A

B

^
...

A

B

.(s)

B

...
A

>|

B

...
A

DW
...

C

A ...
B

Table 2. N ports HCs

looking individually to all the transition sharing situations
and obtain the more general class that includes all them.

4.3. PN Class of HCs Connection

Table 1, together with the knowledge of thePN classes
of STG(C1) andSTG(C2) are enough for determining a
priori the class ofSTG(Conn(C1, C2)). Depending on the
ports connecting the twoHCs, different outcomes can arise.
The port structure, for some BalsaHCs is shown in Table 2.
For instance theConcur HC has one passive port (A) and
several active ports (B).

Table 3 enumerates thePN class that arises when con-
necting some BalsaHCs on particular ports. In each case,
the HC is described together with a partition on its ports.
Cells filled with− denote forbidden connections. For in-
stance, looking at the row for the SynchHC, it states that
a Synch can be connected through its passive ports to the
active ports of aDecisionWait and the resulting connec-
tion induces aFC PN. However, if the connection is done
instead through the active ports of the Synch and the pas-
sive ports of theDecisionWait, the resulting connection
induces anAC PN.

DecisionWait Call Synch
Sequence

Concur, Fork

C B A B A B A B A

Sequence A FC − − AC, FC − FC − FC −

Concur, Fork B − AC, FC AC, FC − AC, FC − FC −

Synch
A FC − − AC, FC − FC −

B − AC, FC AC, FC − AC, FC −

Call
A AC, FC − − AC, FC −

B − AC, FC PN, AC −

DecisionWait
A AC, FC − −

B AC, FC −

C −

Table 3. PN Subclass of HCs Connection

Let us go back to the example of Figure 1 to illustrate
how Table 3 has been filled, by applying the knowledge
in Table 1. In the figure, a connection between a 3-ports
Concur and a 5-portsDecisionWait is considered. Look-
ing at the shared events (events corresponding to the signals
req 20 and ack 20), all them fall into the two following
situations: 1) eventsreq 20−, ack 20+ andack 20− cor-
respond to the situation described in the first row of Table 1
and therefore induce aFC PN, and 2) eventreq 20+ cor-
responds to the situation described in the second row of Ta-
ble 1, hence inducing aAC PN. Taking the more general
class of the two situations, the cell in Table 3 for the combi-
nation considered containsAC, FC.

4.4. Iterative Clustering Algorithm

In this section we describe an algorithm to iteratively
grow clusters ofHCs under structural conditions. Each
cluster obtained is guaranteed to be in a certainPN class.
To bound the class of theSTG corresponding to each clus-
ter is crucial for the use of structural methods, given the
limitations of such approaches regarding the structure of the
nets. Informally, the algorithm searches forHCs that can be
clustered, using functionclusterand replaces the set ofHCs
assigned to a cluster by the newHC created that represents
the whole cluster which has been optimized. This process is
iterated until no more cluster can be created. Let us describe
informally the main functions involved in the clustering al-
gorithm.

Functionclustersearches controlHCs in theHC graph
that can be initially considered for growing a cluster. Only
controlHCs with correspondingSTG within the PN classC
are considered. When a controlHC satisfying the require-
ments is found, the recursive functionexpandis invoked to
grow the cluster from theHC component.

function cluster(g : graph ; C : integer)
return cl : set of vertexs

for eachv ∈ vertexs(g)

if is control(v)
and PN class(v) ≤ C then

add(cl, v)
expand(cl, C)
return cl

return emptyset()

Function expandadds HCs to a possible cluster (cl)
preserving the PN classC of its STG. It searches for
a control HC (n) which is connected tocl and whose
STG belongs toC. If it finds one, it also checks if
Synch(STG(cl), STG(n)) belongs toC. To do so, it uses
functionsyncharea PN class. If the function returns true,
the preservation ofC is ensured due to Propositions 1 and 2.

function expand(cl : set of vertexs; C : integer)
for eachv ∈ cl

for eachn∈ neighboors(v)
if n /∈ cl
and is control(n)
and PN class(n)≤ C
and syncharea PN class(cl, n)≤ C then

add(cl, n)
expand(cl, C)
return

Function syncharea PN class returns the PN classC
of Synch(STG(cl), STG(n)), where cl is a possible
cluster andn is a HC. The function obtains, for each
HC (nn) connected ton and in cl, the PN class of
Synch(STG(n), STG(nn)) using Table 3.

function syncharea PN class
(cl : set of vertexs; n : vertex)
return C : integer

C := FC
for eachnn∈ neighboors(n)

if nn∈ cl then

C := max(C, connectionPN class(n, nn)
return C

In general, the clusters obtained might not be maximal
with respect to HC count, but we found that this greedy
strategy is fast and effective into finding a good solution
in practice. The approach guides the selection of HCs to be
added to a cluster depending on its restrictions imposed by
Table 3, i.e. the less restrictive HCs are selected first and
afterwards the remaining HCs are added if possible. The
following section illustrates how the algorithm applies the
clustering strategy in a real example.

5. A complete example

A Balsa example is optimized to illustrate how the struc-
tural clustering algorithm works. This example has been
selected due to the contrast between itsFC andAC clus-
tering. Moreover, its recursive specification allows us to
analyze the implementation improvement depending on its
size.

5.1. Example clustering

The specification of aStack with capacity 3 is translated
into HC net using Balsa. Figure 5 shows this net, where
HCs clustered by the algorithm have grey background (light
or dark grey, depending on the class used for the clustering).
In FC mode,HCs with light grey background are added
into cluster, while the dark greyHCs will belong to another
clusters. However, inAC mode,HCs in both light and dark
grey are inserted into only one cluster.

Let us explain the clustering for theFC mode. HCs
without FC violations on its connections areSequences,
Concurs andSynchs (see table 3). Numbers in the nodes
of Figure 5 represent a possible order in which nodes are
visited in FC mode, assuming that theSequence HC la-
beled1 is the first node added to the cluster. The explo-
ration is done by expanding the cluster with nodes that im-
pose less restrictions. For instance, the second node visited,
a DecisionWait, is not added initially because of this (al-
though its connection with node1 is FC, aDecisionWait
is not one of the nodes withoutFC violations on any of
its connections). Later on, when no moreSequences,
Concurs andSynchs can be added to the cluster, the
DecisionWait refereed before is again considered for in-
clusion (order11) but then because of the previous inclusion
of the Concur visited with order4, it can not be added.
A different situation happens with theDecisionWait on
the top of the figure: it is the sixth node visited and is also
ruled out initially, but at the end, when no moreSequences,
Concurs andSynchs can be added, it is inserted into the

FV

>−−>

−> ||

FV

−>

>−−>

−> ||

FV

−>

−>

−>

x

−>

DW

;;

−>

x

*

DW

;

.(s)

x

.(s)

DW

*

*

W^

FC

FC

; 1

2,11

FC

FC

FC

3

4

5

6,12

7

8,10

9

13

Figure 5. Stack Example

cluster because its connection with the already included
nodes does not violate theFC conditions.

If the capacity of theStack grows, theHC set indicated
with discontinuous lines in Figure 5 is repeated, due to its
recursive specification. Then, in theFC mode, a main clus-
ter (ofSequences,Concurs andSynchs) and several satel-
lite clusters (of oneSequence and oneDecisionWait) are
obtained.

5.2. Example results

The Stack example has been implemented and simu-
lated for different capacities (4, 8, 12) and clustering modes
(FC andAC). The area reduction and the performace im-
provement of the optimized clusters are presented in Fig-
ure 4. The Y-axis shows the percentage of reduction (im-

 80

 70

 60

 50

 40

 30

 20

 10

 0
 12 8 4

R
ed

uc
tio

n
(%

)

Capacity

Area

FC clusters
FC system

AC clusters
AC system

 80

 70

 60

 50

 40

 30

 20

 10

 0
 12 8 4

Im
pr

ov
em

en
t (

%
)

Capacity

Performance

FC clusters
FC system

AC clusters
AC system

 5400

 4800

 4200

 3600

 3000

 2400

 1800

 1200

 600

 0
 12 8 4

T
im

e
(s

)

Capacity

Logic Synthesis

FC
AC

Figure 4. Stack Results

provement) and the X-axis the capacity of theStack. The
diverse line styles indicate the usage of theFC orAC mode
and the results for the cluster or the system. The reduc-
tion in area is greater than35% for the clusters and greater
than15% in the system. The performance improvement of
the optimized clusters is nearly20% for theFC mode and
around45% for the AC mode. This improvement for the
system grows with the capacity, but in theAC mode this
tendency is more significant than inFC mode. The time
spent in logic synthesis grows with the capacity, but in the
AC mode this increase is also more accelerated than in the
FC mode.

6. Experimental Results

The theory described in this paper has been implemented
into a back-end tool to support the logic synthesis of clus-
tered handshake components. The tool can be used in dif-
ferent scenarios: a blind use would be to let the tool decide
the clusters, by means of limiting the CPU time allowed for
synthesis. For instance, the synthesis ofFC nets leads to
short CPU times in practice. The tool can also be forced to
cluster a specific Petri net class, as shown in the algorithm
in previous section. This later use is the one used in the ex-
periments. Once a cluster is selected for optimization, the
steps described in Section 3 are performed. We have used
some of the Balsa examples provided with the tool: Arb-
Tree, PopCount, Shifter and Stack.

6.1 Area results

For each example, we present two types of results. First,
we show the area reduction in the clusters, and second we
provide the impact of this improvement with respect to the
overall system. For that purpose we estimate the area of a
cluster by counting the area of its gates. The area of a gate
g can be modeled with the following equation:

area(g) = λa(1 + log(fanin(g))

whereλa represents the area of an inverter. This model
gives an estimation of the complexity of an implementation
depending on the number of gates it contains. The gates
in this model are weighted by their fanin. Figure 6 shows
the results in area. The Y-axis shows the percentage of re-
duction with respect to the clusters without optimization
(continuous boxes) and the overall system3 (discontinuous
lines). X-axis shows the results for each benchmark used.
Notice that for some examples, two results are presented,
one for each Petri net class considered. In general, the sig-
nificance in area reduction within the clusters (up to 40% in
Stack(AC)) implies a significant area reduction within the
system (up to 20% inStack(AC)).

6.2 Performance results

Performance estimation has been done by adapting the
Balsa simulator. As it was done for area results, we present
the improvement in performance within the clusters and the
influence of this improvement with respect to the overall
system. The delay model used for a gateg is equal to
the area model but with a different constant factor. With
this delay model, three simulation times are found for each
example: the elapsed time for the system (1) without op-
timization, (2) with optimized clusters and (3) with zero-
delay clusters. The value(1) − (3) represents the delay of
the clusters without optimization, whereas(2) − (3) is the
delay of the optimized clusters. Figure 6 also shows the re-
sults in performance, where continuous boxes represent the
performance improvement for the clusters and discontinu-
ous lines represent the consequence of this improvement in
the overall system.

The results on performance are not as uniform as in area.
Excluding the first two examples (ArbTree and PopCount),
the remaining examples can be optimized, but in general
this improvement has a limited impact in the overall sys-
tem, due to Amdahl’s law [1]. For instance, for the Shifter
example, the maximal improvement that could be achieved

3The area estimation provided by Balsa has been adapted to themodel
of this paper, in order to measure the area of non-clustered components.

 70

 60

 50

 40

 30

 20

 10

 0

-10
Stack (AC)Stack (FC)Shifter (AC)PopCount (FC)ArbTree (FC)

R
ed

uc
tio

n
(%

)

Example (PN class)

Area

clusters
system

 70

 60

 50

 40

 30

 20

 10

 0

-10
Stack (AC)Stack (FC)Shifter (AC)PopCount (FC)ArbTree (FC)

Im
pr

ov
em

en
t (

%
)

Example (PN class)

Performance

clusters
system

Figure 6. Balsa Examples Results

(the one obtained by using the zero-delay cluster) is less
than5%.

For the examples where the delay was degraded or main-
tained in the clusters (notice that also due to Amdahl’s law
this degradation was not transferred to the system), the sig-
nal insertion method could not find an appropriate way to
insert state signals in a way that performance could be im-
proved. See below for an explanation on this.

6.3 Discussion

The experimental results, specially in performance,
could be improved by extending the theory presented in this
paper into several dimensions: first, the set ofHC consid-
ered for clustering (the ones in Table 2) can be extended
to allow the clustering of moreHCs. Second, complex
HCs representing program modules has not been consid-
ered and its optimization could lead to significant improve-
ments. This happens in the ArbTree example, where the
potentially clusterizableHCs represent only a portion of
the overall system. Third, the concurrent signal insertions
to optimize performance in [7] may have an area penalty
that induces significant delay overhead in some of the gates.
This delays sometimes can not be compensated with the in-
crease of the concurrency obtained.

7. Conclusions

A clustering technique to optimize the synthesis of HDL
specifications has been presented in this paper. By us-
ing knowledge on the components of theHC network, the
search can be guided to derive clusters for which the logic
synthesis methods can be safely applied in practice. The un-
derlying formalism used to represent a cluster is Petri nets,
and the growing of a cluster can be controlled by using Petri
net structural conditions. The approach has been imple-
mented and integrated into the Balsa synthesis flow, and the
preliminary experimental results obtained show significant
improvements in area and, if the extensions suggested in
this paper are incorporated, promising performance gains.

References

[1] G. M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. pages 79–81,
2000.

[2] A. Bardsley. Implementing Balsa Handshake Circuits.
PhD thesis, Department of Computer Science, University of
Manchester, 2000.

[3] C. H. K. v. Berkel, M. B. Josephs, and S. M. Nowick. Scan-
ning the technology: Applications of asynchronous circuits.
Proceedings of the IEEE, 87(2):223–233, Feb. 1999.

[4] K. v. Berkel, J. Kessels, M. Roncken, R. Saeijs, and
F. Schalij. The VLSI-programming language Tangram and
its translation into handshake circuits. InProc. European
Conference on Design Automation (EDAC), pages 384–389,
1991.

[5] I. Blunno and L. Lavagno. Automated synthesis of micro-
pipelines from behavioral Verilog HDL. InProc. Interna-
tional Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 84–92. IEEE Computer Society
Press, Apr. 2000.

[6] J. Carmona, J. M. Colom, J. Cortadella, and F. Garcı́a-
Vallés. Synthesis of asynchronous controllers using integer
linear programming.IEEE Transactions on Computer-Aided
Design, 25(9):1637–1651, Sept. 2006.

[7] J. Carmona and J. Cortadella. State encoding of large asyn-
chronous controllers. InProc. ACM/IEEE Design Automa-
tion Conference, pages 939–944, July 2006.

[8] T. Chelcea, A. Bardsley, D. Edwards, and S. M. Nowick.
A burst-mode oriented back-end for the Balsa synthesis
system. InProc. Design, Automation and Test in Europe
(DATE), pages 330–337, Mar. 2002.

[9] T. Chelcea and S. M. Nowick. Resynthesis and peephole
transformations for the optimization of large-scale asyn-
chronous systems. InProc. ACM/IEEE Design Automation
Conference, June 2002.

[10] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Logic Synthesis of Asynchronous Con-
trollers and Interfaces. Springer-Verlag, 2002.

[11] D. Edwards and A. Bardsley. Balsa: An asynchronous hard-
ware synthesis language.The Computer Journal, 45(1):12–
18, 2002.

[12] F. Fernández. Logic synthesis of handshake components
using clustering techniques. Master’s thesis, Universitat
Politècnica de Catalunya, June 2007.

[13] R. M. Fuhrer and S. M. Nowick.Sequential Optimization of
Asynchronous and Synchronous Finite-State Machines: Al-
gorithms and Tools. Kluwer Academic Publishers, 2001.

[14] International technology roadmap for semiconductors: De-
sign.
www.itrs.net/Links/2005ITRS/Design2005.pdf, 2005.

[15] T. Kolks, S. Vercauteren, and B. Lin. Control resynthesis for
control-dominated asynchronous designs. InProc. Interna-
tional Symposium on Advanced Research in Asynchronous
Circuits and Systems, Mar. 1996.

[16] T. Murata. Petri Nets: Properties, analysis and applications.
Proceedings of the IEEE, pages 541–580, Apr. 1989.

[17] M. A. Peña and J. Cortadella. Combining process algebras
and Petri nets for the specification and synthesis of asyn-
chronous circuits. InProc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, Mar. 1996.

[18] L. A. Plana, S. Taylor, and D. Edwards. Attacking control
overhead to improve synthesised asynchronous circuit per-
formance. InICCD, pages 703–710. IEEE Computer Soci-
ety, 2005.

[19] S. Taylor. Data-Driven Handshake Circuit Synthesis. PhD
thesis, Dept. of Computer Science, University of Manch-
ester, 2007.

[20] C. Ykman-Couvreur, B. Lin, and H. de Man. Assassin: A
synthesis system for asynchronous control circuits. Techni-
cal report, IMEC, Sept. 1994. User and Tutorial manual.

A. Enclosure Properties of
Parallel Composition

In order to demonstrate the enclosure properties of the
parallel composition, special parts of it will be used:

Definition 3 (Area Not Synchronized) Given STGs G1

and G2, the area not synchonized ofG1 when it is
composed whithG2 is denoted byNotSynch(G1) =
((PNS1, TNS1, FNS1, m0NS1), ΣNS1, ΛNS1), where:

PNS1 = P pre

NS1
∪ P post

NS1

P pre

NS1
= {(p1, p2) ∈ P|| | p1 ∈ P1,∀(t1, t2) ∈

•(p1, p2),
Λ||((t1, t2)) /∈ Σ1 ∩ Σ2 × {+,−}}

P post

NS1
= {(p1, p2) ∈ P|| | p1 ∈ P1,∀(t1, t2) ∈ (p1, p2)

•,
Λ||((t1, t2)) /∈ Σ1 ∩ Σ2 × {+,−}}

TNS1 = {(t1, t2) ∈ T|| | ∃(p1, p2) ∈
•(t1, t2), (p1, p2) ∈ P post

NS1

or ∃(p1, p2) ∈ (t1, t2)
•, (p1, p2) ∈ P pre

NS1
}

FNS1 = {((p1, p2), (t1, t2)) ∈ F|| | (p1, p2) ∈ P post

NS1
,

(t1, t2) ∈ TNS1}
∪{((t1, t2), (p1, p2)) ∈ F|| | (p1, p2) ∈ P pre

NS1
,

(t1, t2) ∈ TNS1}
m0NS1((p1, p2)) = m0||((p1, p2))
ΣNS1 = {σ ∈ Σ|| | ∃(t1, t2) ∈ TNS1, Λ||((t1, t2)) ∈ σ × {+,−}}
ΛNS1((t1, t2)) = Λ||((t1, t2))

Intuitively, NotSynch(G1) contains the flow relation
between its places without shared transitions in their pre-
sets (postsets) and these presets (postsets).

Proposition 3 Parallel composition areas:

G1||G2 = NotSynch(G1)

∪Synch(G1, G2)

∪NotSynch(G2),

where the operator∪ amongSTGs denotes the union of
their sets.

Proof: It follows from the definitions of parallel composi-
tion (1), synchronization area (2), area not synchronized (3)
and union ofSTGs. �

Intuitively, P|| is partitioned intoP pre
NS1

, P pre
S andP pre

NS2

(P post
NS1

, P post
S andP post

NS2
) according to the existence of a

shared transition in their presets (postsets). Given(p1, p2),
if (p1, p2) ∈ P pre

A ((p1, p2) ∈ P post
A), where A ∈

{NS1, S, NS2}, then•(p1, p2) ⊆ TA ((p1, p2)
• ⊆ TA)

and•(p1, p2)× {(p1, p2)} ⊆ FA ({(p1, p2)} × (p1, p2)
• ⊆

FA). Therefore,F|| is partitioned intoFNS1, FS andFNS2.

Proof of Proposition 1: Suppose G1, G2 and
Synch(G1, G2) are in C and G1||G2 is not in C.
Using Proposition 3,NotSynch(G1) ∪ Synch(G1, G2) ∪
NotSynch(G2) is not inC. Thus, there exists(p1, p2) and
(p′

1
, p′

2
) in P post

NS1
∪ P post

S ∪ P post
NS2

such that they violateC.
Given (p′′

1
, p′′

2
), if (p′′

1
, p′′

2
) ∈ P post

NSi , where1 ≤ i ≤ 2,
then for each(t′′

1
, t′′

2
) ∈ TNSi : ((p′′

1
, p′′

2
), (t′′

1
, t′′

2
)) ∈ FNSi

implies(p′′i , t′′i) ∈ Fi. If (p′′
1
, p′′

2
) ∈ P post

S andp′′i ∈ Pi then
for each(t′′

1
, t′′

2
) ∈ TS : ((p′′

1
, p′′

2
), (t′′

1
, t′′

2
)) ∈ FS implies

(p′′i , t′′i) ∈ Fi.
If (p1, p2), (p

′
1
, p′

2
) ∈ P post

NS1
, since their flow relations

are preserved, then there existsp1, p
′
1
∈ P1 such that they

violateC, a contradiction. It is similar if(p1, p2), (p
′
1
, p′

2
) ∈

P post
S or (p1, p2), (p

′
1
, p′

2
) ∈ P post

NS2
.

If (p1, p2) ∈ P post
NS1

and(p′
1
, p′

2
) ∈ P post

S , as(p1, p2)
• ∩

(p′
1
, p′

2
)• 6= ∅, thenp′

1
∈ P1. Since their flow relations

are also preserved, there existsp1, p
′
1
∈ P1 such that they

violateC, a contradiction. It is similar if(p1, p2) ∈ P post
NS2

and(p′
1
, p′

2
) ∈ P post

S .
If (p1, p2) ∈ P post

NS1
and(p′

1
, p′

2
) ∈ P post

NS2
, as(p1, p2)

•

and (p′
1
, p′

2
)• do not contain any shared transition, then

(p1, p2)
• ∩ (p′

1
, p′

2
)• = ∅, a contradiction.

Proof of Proposition 2: Suppose G1, G2 or
Synch(G1, G2) is not in C and G1||G2 is in C. Us-
ing proposition 3,NotSynch(G1) ∪ Synch(G1, G2) ∪
NotSynch(G2) is in C. Thus, there is not(p1, p2) and
(p′

1
, p′

2
) in G∪ such that(p1, p2) and(p′

1
, p′

2
) violateC.

The parallel composition only performs the Cartesian
product of shared transitions. Therefore, if there is not
(p1, p2) and (p′

1
, p′

2
) violating C in NotSynch(G1) ∪

Synch(G1, G2) (Synch(G1, G2) ∪ NotSynch(G2)) then
there is not(p1, p2) and(p′

1
, p′

2
) violatingC in G1 (G2).

