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been verified for n = 2 and also the weaker inequality GΛ(K) ≤ ⌊2/λ1(K, Λ)⌋n

was shown. In [5] it was proven that

GΛ(K) < 2n−1
n

∏

i=1

⌊

2

λi(K, Λ)

⌋

.

For more information on bounds on the lattice point enumerator as well as for
references of the presented inequalities we refer to the survey [4] and the book [3].

References

[1] U. Betke and M. Henk. Intrinsic volumes and lattice points of crosspolytopes. Monatsh.
Math., 115(1-2):27–33, 1993.

[2] U. Betke, M. Henk, and J. M. Wills. Successive-minima-type inequalities. Discrete Comput.
Geom., 9(2):165–175, 1993.

[3] P. Erdös, P. M. Gruber, and J. Hammer. Lattice points, Longman Scientific & Technical,

Harlow, Essex/Wiley, New York, 1989.
[4] P. Gritzmann and J. M. Wills. Lattice points. In Handbook of convex geometry, Vol. A, B,

pages 765–797. North-Holland, Amsterdam, 1993.
[5] M. Henk. Successive minima and lattice points. Rend. Circ. Mat. Palermo (2) Suppl., (70,

part I):377–384, 2002.

Basis expansions and roots of Ehrhart polynomials

Julian Pfeifle

(joint work with M. Beck, J. De Loera, M. Develin, and R. P. Stanley)

The Ehrhart polynomial iP of a d-dimensional lattice polytope P ⊂ Rd is
usually written in the power basis of the vector space of polynomials of degree d:

iP (n) =

d
∑

i=0

ci ni .

In this talk, we argued that comparing this representation with the basis expansion

iP (n) =

d
∑

i=0

ai

(

n + d − i

d

)

yields useful information about iP . Note that in the literature sometimes the
notation h∗

i is used instead of ai.

(1) The inequalities ai ≥ 0 (that follow from the fact that iP is the Hilbert
function of a semi-standard graded Cohen-Macaulay algebra) are used to
derive all other known inequalities [1] [2] [3] [6] for the coefficients ci, with
the exception of the inequality cd−1 ≥ 1

2 · (normalized surface area) that
comes from geometry.
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(2) Some of the coefficients in this representation have nice interpretations:

a1 = iP (1) − (d + 1) ,

a2 = iP (2) − (d + 1)iP (1) ,

ad−1 = (−1)d
(

iP (−2) − (d + 1) iP (−1)
)

,

ad = (−1)d iP (−1) = #{inner points} .

(3) Expressing the Ehrhart polynomial in this basis makes it easy to prove
relations such as

(

d

ℓ

)

∆kiP (0) ≤

(

d

k

)

∆ℓiP (0),

where ∆kiP is the k-th difference of iP .

We also present new linear inequalities satisfied by the coefficients of Ehrhart
polynomials and relate them to known inequalities.

Next, we investigated the roots of Ehrhart polynomials:

Theorem.

(a) The complex roots of Ehrhart polynomials of lattice d-polytopes are bounded
in norm for fixed d.

(b) All real roots of Ehrhart polynomials of d-dimensional lattice polytopes lie
in the half-open interval [−d, ⌊d/2⌋). For d = 4, the real roots lie in the
interval [−4, 1).

(c) For any positive real number t, there exists an Ehrhart polynomial of suf-
ficiently large degree with a real root strictly larger than t. In fact, for
every d there is a d-dimensional 0/1-polytope whose Ehrhart polynomial
has a real zero αd such that limd→∞ αd/d = 1/(2πe) = 0.0585 · · · . In
particular, the upper bound in (b) is tight up to a constant.

An experimental investigation of the Ehrhart polynomials of cyclic polytopes
leads to the following conjecture:

Conjecture. Let P = Cd(n) be any cyclic polytope realized with integer vertices on
the standard moment curve t 7→ (t, t2, . . . , td) in Rd. Then the Ehrhart polynomial
of P reads

iP (n) =

d
∑

k=0

volk
(

πk(P )
)

nk,

where vold(·) is the standard d-dimensional volume, volk(·) for k = 0, 1, . . . , d − 1
is the normalized lattice volume, and πk : Rd → Rk is the projection to the first
k coordinates.

Problem. Find an explicit expression for the Todd class of the toric variety
associated to the outer normal fan of P = Cd(n).

This problem has been solved for 0 ≤ d ≤ 3 by using the expressions for the
codimension ≤ 3 parts of the Todd class from [4] and the techniques of [5]. In
particular, the conjecture has been proven for 0 ≤ d ≤ 3.
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On normal polytopes without regular unimodular triangulations

Francisco Santos

A lattice polytope P ⊂ R
d is normal if nP ∩ Z

d = n(P ∩ Z
d) for every n ∈

N. Normal polytopes arise naturally in algebraic geometry and in combinatorial
optimization [8]. Starting with [6], it has been repeatedly observed that normality
of a polytope is closely related to its being covered by unimodular simplices. More
precisely, from [6, 3, 5] one can extract the following sequence of properties, each
of which implies the next one. In all of them, S = P ∩Z. A simplex is unimodular
if its vertices are a basis for the affine lattice Zd. A triangulation is unimodular if
all its simplices are.

(1) All simplices with vertices in S are unimodular. (P is totally unimodular).
(2) P is compressed. (All its pulling triangulations are unimodular).
(3) P has a unimodular regular triangulation.
(4) P has a unimodular triangulation.
(5) P has a unimodular binary cover. This is a property introduced by Firla

and Ziegler [3], whose significance comes from the fact that it is much
easier to check algorithmically than any other of the properties (3) to (8).

(6) P has a unimodular cover. (Every x ∈ P lies in some unimodular simplex).
(7) For every n, every integer point in nP is an integer positive combination

of an affinely independent subset of points of S. (This is called the Free
Hilbert Cover property in [1])

(8) For every n, every integer point in nP is an integer positive combination
of at most d + 1 points of S. (The Integral Carathéodory Property of [3]).

(9) For every n, every integer point in nP is an integer positive combination
of an affinely independent subset of points of S. (P is normal).

It is very easy to find examples that prove 3 6⇒ 2 and 2 6⇒ 1, but not so easy for
any of the other implications. Ohsugi and Hibi [5] found the first normal polytope
without regular unimodular triangulations, which turned out to give 4 6⇒ 3. Then
Bruns and Gubeladze [1] proved 8 ⇔ 7 and found an example for 9 6⇒ 8 [2]. The


