This paper presents the application of a stabilized mixed pressure/velocity finite element formulation to the solution of viscoplastic non-Newtonian flows. Both Bingham and Herschel–Bulkley models are considered.

The detail of the discretization procedure is presented and the Orthogonal Subgrid Scale (OSS) stabilization technique is introduced to allow for the use of equal order interpolations in a consistent way. The matrix form of the problem is given.

A series of examples is presented to assess the accuracy of the method by comparison with the results obtained by other authors. The extrusion in a Bingham fluid and the movement of a moving and rotating cylinder are analyzed in detail. The evolution of the streamlines, the yielded and unyielded regions, the drag and lift forces are presented.

These benchmark examples show the capacity of the mixed OSS formulation to reproduce the behavior of a Bingham and Herschel–Bulkley flows with the required accuracy.
and Engelman [7], Tanner and Milthorpe [88], and Beris [8], among others. Tanner and Milthorpe were the first to propose a double viscosity model, while Beris used a Von Mises yield criterion in the unyielded zone and an ideal Bingham model in the yielded region. In 1987, Papanastasiou [73] proposed a regularization valid both for the unyielded and the yielded regions. Recently, Souza Mendes and Dutra (SMD) [39] presented a modification to the model by Papanastasiou. Among the most commonly used models, Figaard and Nouar [41] prove that Papanastasiou’s model provides a better convergence to the exact solution.

The main reason for regularizing the discontinuity of the exact viscoplastic behavior is to allow its direct implementation in standard numerical solvers.

The movement of isothermal flows is governed by conservation of linear momentum and mass, represented by the Navier–Stokes equations. In the case of non-Newtonian fluids, the constitutive law has a variable viscosity whose behavior is given by the rheological models.

Traditionally viscoplastic flows are calculated using finite elements ([1,70,73,93]) but an attempt to use finite volumes was proposed by Bharti et al. [9], and Tanner and Milthorpe [88] used boundary elements.

In this work, a mixed velocity/pressure finite element formulation for simplicial elements is developed. This means that both velocity and pressure are interpolated piecewise linearly within the finite element mesh. This is a frequent choice in fluid dynamics because of their simplicity. On the one hand, this kind of linear elements, called P1/P1, present a source of instability due to the combination of the interpolation spaces of pressure and velocity [29]. The Ladyzenskaja-Babuška-Brezzi condition is not satisfied for the sub-scale, introducing the Orthogonal Subgrid Scales (OSS) stabilization technique so that its variational stabilizing effect is captured. More precisely, the OSS is that it guarantees minimal numerical dissipation on the discrete solution.

Nowadays the most effective stabilization techniques are based on the concept of sub-scales. These were first introduced by Hughes [49], who proposed an Algebraic Sub-Grid Scale (ASGS) technique for the stabilization of a scalar diffusion–reaction equation. Codina generalized the approach for multi-dimensional systems [30]. The idea is to split the unknown in a part that can be solved by the finite element approximation plus an unresolvable scale (i.e. the sub-scale) that cannot be captured by the finite element discretization. The sub-scale is approximated in a consistent residual fashion so that its variational stabilizing effect is captured. More recently, Codina proposed to use a space orthogonal to the finite element space for the sub-scale, introducing the Orthogonal Subgrid Scale (OSS) stabilization technique ([31,32]). The main advantage of OSS is that it guarantees minimal numerical dissipation on the discrete solution, because it adds nothing to those components of the residual already belonging to the FE subspace. This maximizes accuracy for a given mesh, an issue always important and no less in nonlinear problems.

OSS has been successfully applied to the Stokes problem, to the convection–diffusion–reaction equations and to the Navier–Stokes equations. Nowadays it is used in a wide range of different problems in fluid dynamics ([30,31,34,56–58,76,81]) and solid mechanics ([17–22,27,28]). Castillo and Codina presented a three fields formulation for visco-elastic [16], power law and Carreau-Yasuda [15] fluids comparing ASGS and OSS. In the present work, the OSS stabilization technique is applied to the Navier–Stokes equations to model regularized Bingham and Herschel–Bulkey flows.

The structure of the paper is as follows. First, both the Bingham and the Herschel–Bulkey models are presented. An overview of the regularizations proposed in the literature is given. The governing equations for a non-Newtonian fluid are presented in their strong form. The corresponding discrete model is presented and the stabilization using Orthogonal Subgrid Scales (OSS) is explained in detail. The matrix form of the problem is given. Secondly, the Bingham model is applied to two well known problems: an extrusion process and a cylinder moving in a Bingham fluid confined between two parallel planes. Then, a cylinder moving in an Herschel–Bulkey fluid is modeled in two different scenarios: a cylinder moving with constant velocity and a cylinder moving and rotating around its axis. In all the cases the solution is compared with available results from other authors. Finally, some conclusions on the performance of the proposed formulation are given.

2. Viscoplastic fluids

In the present work, viscoplastic fluids are considered. These are characterized by the existence of a threshold stress, the yield stress (γy), which must be exceeded for the fluid to deform. For lower values of stress the viscoplastic fluids are completely rigid or can show some sort of elasticity. Once the yield stress is reached and exceeded, viscoplastic fluids may exhibit a Newtonian-like behavior with constant viscosity (Bingham plastics fluids) or with rate dependent viscosity (Herschel–Bulkey fluids among others).

Let us introduce, for later use, the equivalent strain rate γ′ and the equivalent deviatoric stress τ in terms of the second invariants of the rate of strain tensor (\(\varepsilon = \nabla \cdot \mathbf{u}\), being \(\nabla \cdot \mathbf{u}\) the symmetric part of the velocity gradient) and of the deviatoric part of the stress tensor (\(\tau = 2\mu \varepsilon (\mathbf{u})\), being \(\mu\) the viscosity), respectively:

\[
\dot{\gamma}' = (2\varepsilon : \varepsilon)^{\frac{1}{2}} \quad \tau = \left(\frac{1}{2} \varepsilon : \varepsilon\right)^{\frac{1}{2}}
\]

2.1. Herschel–Bulckley and Bingham fluids

The Herschel–Bulckley model [46] combines the existence of a yield stress with a power law model for the viscosity

\[
\mu(\dot{\gamma}') = k \dot{\gamma}'^{n-1} + \frac{\tau_y}{\gamma'} \quad \text{if} \quad \tau \geq \tau_y
\]

(2a)

\[
\dot{\gamma}' = 0 \quad \text{if} \quad \tau < \tau_y
\]

(2b)

where k is the consistency parameter and n is the flow index. The yield stress needs to be overcome for the material to flow. When the yield stress is exceeded, the material flows with a nonlinear relation between stress and rate of strain as in a pseudoplastic fluid, if n > 1, or a dilatant one, if n < 1.

The deviatoric stress tensor is therefore

\[
\tau = 2 \left(k \dot{\gamma}'^{n-1} + \frac{\tau_y}{\gamma'} \right) \varepsilon (\mathbf{u}) \quad \text{if} \quad \tau \geq \tau_y
\]

(3a)

\[
\dot{\gamma}' = 0 \quad \text{if} \quad \tau < \tau_y
\]

(3b)

When the rate of deformation tends to zero this ideal rheological model presents a singularity and the viscosity tends to infinity (\(\lim_{\dot{\gamma}' \to 0} \mu(\dot{\gamma}') = \infty\)). This aspect is a serious inconvenience when treating the model numerically ([11]). For this reason, many authors have proposed regularized versions of the Herschel–Bulkey model, such as the double viscosity Tanner and Milthorpe model [88], the widely used Papanastasiou regularized model [73], or the Souza Mendes and Dutra (SMD) model [39]. Tanner and Milthorpe proposed a double viscosity model in function of a critical strain rate to describe the elastic behavior for low strain rates [88]. Papanastasiou [73] introduced an exponential regularization of the viscosity

\[
\mu(\dot{\gamma}') = k \dot{\gamma}'^{n-1} + \frac{\tau_y}{\gamma'} (1 - e^{-m\dot{\gamma}'})
\]

(4)
where m is a regularization parameter. When the rate of strain tends to zero ($\dot{\gamma} \to 0$) the viscosity depends on the flow parameter n: if $n > 1$, the $\lim_{n \to 0} \mu (\dot{\gamma}) = m \tau_r$ and, if $n = 1$, the $\lim_{n \to 0} \mu (\dot{\gamma}) = \mu + m \tau_r$; but if $n < 1$, the $\lim_{n \to 0} \mu (\dot{\gamma}) = \infty$. This means that for pseudoplastic fluids the viscosity is unbounded and a truncation procedure is needed. The regularization proposed by Souza-Mendes-Dutra solves this drawback applying the regularization to all the terms of the viscosity so that $\lim \dot{\gamma}$ for any value of n [39].

When $n = 1$ the Bingham model is recovered, and the consistency index is equal to the plastic viscosity ($\kappa = \mu_0$).

The Bingham model also presents the singularity due to the perfectly rigid behavior below the yield stress. For Bingham ideal models and the regularized ones of Eqs. (4) and (5), respectively. The problem is fully defined with the boundary conditions:

$$\begin{align*}
\mathbf{u}(\mathbf{x}, t) &= \mathbf{u}(\mathbf{x}, t) \quad \text{on} \quad \partial \Omega_\text{D}, \quad t \in [0, T], \\
\mathbf{n} \cdot \mathbf{u}(\mathbf{x}, t) &= t(\mathbf{x}, t) \quad \text{on} \quad \partial \Omega_\text{N}, \quad t \in [0, T],
\end{align*}$$

where $\partial \Omega_\text{D}$ and $\partial \Omega_\text{N}$ are the Dirichlet and the Neumann boundaries, respectively ($\partial \Omega_\text{D} \cap \partial \Omega_\text{N} = \emptyset$, $\partial \Omega_\text{D} \cup \partial \Omega_\text{N} = \partial \Omega$).

Steady-state flows are modeled by dropping the time derivative term in Eq. (6a). Likewise, the convective term can be neglected for low Reynolds numbers, as it is usually the case for viscoplastic fluids.

4. Discrete model

The governing equations (Eqs. (6)) are solved using mixed stabilized linear/linear finite elements for the spatial discretization.

The weak form of the problem is obtained using a Galerkin technique and the nonlinear terms of the momentum equation (i.e. the convective and viscous terms of Eq. (6a)) are linearized using a secant Picard method. The velocity \mathbf{u} needs to belong to the velocity space $\mathbf{V} \subset [\mathbf{H}^1(\Omega)]^d$ of vector functions whose components and their first derivatives are square-integrable and the pressure p belongs to the pressure space $\mathbb{Q} \subset L_2(\Omega)$ of square-integrable functions.

Let $\mathbf{V}_h \subset \mathbf{V}$ be a finite element space to approximate \mathbf{V}, and $\mathbb{Q}_h \subset \mathbb{Q}$ a finite element approximation to \mathbb{Q}. Let $\Omega \subset \mathbb{R}^d$ be the domain in a time interval $[0, T]$, and Ω^e the elemental domain such that $\bigcup \Omega^e = \Omega$, with $e = 1, 2, \ldots, n_{el}$ where n_{el} is the number of elements.

Therefore, the standard Galerkin discrete problem is finding $\mathbf{u}_h \in \mathbf{V}_h$ and $p_h \in \mathbb{Q}_h$ such that

$$\begin{align*}
\int_\Omega [\rho \partial_t \mathbf{u}_h \cdot \mathbf{v}_h + \rho (\mathbf{u}_h \cdot \nabla) \mathbf{u}_h] \cdot \mathbf{v}_h + 2\mu (\dot{\gamma}) \nabla^2 \mathbf{u}_h : \nabla^2 \mathbf{v}_h \\
- p_h \nabla \cdot \mathbf{v}_h - f_h \cdot \mathbf{v}_h]d\Omega = 0 \quad \forall \mathbf{v}_h \in \mathbf{V}_h, \\
\int_\Omega [q_h \nabla \cdot \mathbf{u}_h]d\Omega = 0 \quad \forall q_h \in \mathbb{Q}_h
\end{align*}$$

4.1. Stabilized model

In this work, low-order simplicial elements are used with the same linear interpolation for the velocity and pressure fields. This
implies that the Ladyzenskaja-Babuska-Brezzi condition, also called the inf-sup condition, is not respected and a stabilization technique is needed to overcome the instability of the pressure that may compromise the solution.

The stabilization employed is based on the subgrid scale approach proposed by Hughes ([14,48,50]). This proposes to split the velocity field \(\mathbf{u} \) into a part that can be represented by the finite element mesh \((\mathbf{u}_h) \) and another part that accounts for the unresolvable scale \(\mathbf{u}_s \), that is, for the variation of the velocity that cannot be captured by the finite element mesh. This corresponds to a splitting of the space \(\mathcal{V} \) into the space of the finite elements \((\mathcal{V}_h) \) and the subgrid space \((\mathcal{V}_s) \), so that \(\mathcal{V} = \mathcal{V}_h \oplus \mathcal{V}_s \).

The sub-scale \(\mathbf{u}_s \) is approximated from the residual of the momentum equation and it is evaluated inside each element, assuming the sub-scale to vanish on the boundary of each element. Different approximations of the sub-scale \(\mathbf{u}_s \) define different stabilization techniques.

In the present work, the Orthogonal Sub-grid Scale stabilization technique is used. This method was proposed by Codina ([31–33]) as a modification of the Algebraic Sub-grid Scale (ASGS). In ASGS the sub-scale is taken proportional to the residual \((\mathbf{R}_h = -\rho (\mathbf{u}_h \cdot \nabla \mathbf{u}_h + \nabla \cdot \mathbf{a}_h + \mathbf{f}_h) \) of the momentum equation, so that \(\mathbf{u}_s = -\tau_1 \mathbf{R}_h \) where \(\tau_1 \) is a stabilization parameter. An application of ASGS to non-Newtonian fluid models can be found in [57] and [82]. Contrariwise, in the OSS the sub-scale is taken proportional to the orthogonal projection of the residual onto the finite element space

\[
\mathbf{u}_s = -\tau_1 P_{h}^{\perp} (\mathbf{R}_h) = -\tau_1 (\mathbf{R}_h - P_{h} (\mathbf{R}_h))
\]

(10)

where \(P_{h}^{\perp} (\bullet) \) is the projection on the finite element space and \(P_{h}^{\perp} (\bullet) = \mathbf{K}(\bullet) - P_{h} (\mathbf{K}(\bullet)) \) is the orthogonal projection.

Residual based stabilization techniques such as ASGS and OSS do not introduce any consistency error, as the exact solution annuls the added terms, so that the stabilized model converges to the solution of the problem in continuum framework. Also, if designed properly, the convergence rate is not altered; that is, the subscale terms must be appropriately dependent on the mesh size.

Constructing the subscale in the subspace orthogonal to the finite element subspace has several advantages over the many other possibilities. The main one is that it guarantees minimal numerical dissipation on the discrete solution, because it adds nothing to those components of the residual already belonging to the FE subspace. This maximizes accuracy for a given mesh, an issue always important and no less in nonlinear problems.

Additionally, in transient problems, the term corresponding to the time derivative belongs to the finite element space, and therefore, its orthogonal projection is null. This means that the mass matrix remains unaltered by the stabilization method, maintaining its structure and symmetry.

Moreover, if the residual can be split in two or more terms, e.g. if the stress tensor is split into its volumetric and deviatoric parts or if the residual includes a convective term, then the “cross products” in the stabilization terms can be neglected. This has three advantages: (i) it reduces the computational stencil, (ii) more selective norms can be defined for stability control and (iii) it has proved important in problems involving singular or quasi-singular points both in linear and nonlinear problems.

The part of the residual to be orthogonally projected can be appropriately selected. For instance, in incompressible problems, only the gradient of the pressure needs to be added to ensure control of the pressure, with minimal numerical dissipation. These variants of the OSS, that can be considered to belong to the family of term-by-term stabilization methods, introduce consistency errors, but they are of optimal order and the final convergence rate of the scheme is not altered.

The discretized linearized problem, stabilized with OSS is, find \(\mathbf{u}_h^{n+1} \) and \(p_h^{n+1} \) such that

\[
\int_{\Omega} \left(\frac{\partial}{\partial t} (\mathbf{u}_h^{n+1} - \mathbf{u}_h^n) \cdot \mathbf{v}_h + \rho (\mathbf{u}_h^{n+1} \cdot \nabla \mathbf{u}_h^{n+1}) \cdot \mathbf{v}_h \right) + 2 \mu (\nabla \mathbf{u}_h^{n+1}) : \nabla \mathbf{v}_h - p_h^{n+1} \nabla \cdot \mathbf{v}_h - f_{h,1} \cdot \mathbf{v}_h \right) d\Omega \\
+ \sum_{e} \int_{\Omega_e} \tau_1 \rho (\mathbf{u}_h^{n+1} \cdot \nabla \mathbf{v}_h) \\
\left[(\rho \mathbf{u}_h^{n+1} \cdot \nabla \mathbf{u}_h^{n+1} + \nabla p_h^{n+1} - f_{h,2} - \rho \mathbf{v}_h \cdot \mathbf{v}_h) \right] d\Omega = 0 \forall \mathbf{v}_h \in \mathcal{V}_h
\]

(11a)

\[
\int_{\Omega} \left[q_h \nabla \cdot (\mathbf{u}_h^{n+1}) \right] d\Omega + \sum_{e} \int_{\Omega_e} \tau_1 q_h \\
\left[(\rho \mathbf{u}_h^{n+1} \cdot \nabla \mathbf{u}_h^{n+1} + \nabla p_h^{n+1} - f_{h,2} - \rho \mathbf{v}_h \cdot \mathbf{v}_h) \right] d\Omega \\
= 0 \forall q_h \in Q_h
\]

(11b)

where \(y_h \) is the nodal projection defined as

\[
y_h^{n+1} = P_h (\mathbf{u}_h^{n+1} \cdot \nabla \mathbf{u}_h^{n+1} + \frac{1}{\rho} (\nabla p_h^{n+1} - f_{h,2}))
\]

(12)

In compact notation, the projection of Eq. (12) is the solution of

\[
(y_h^{n+1}, \mathbf{v}_h) = \left(\mathbf{u}_h^{n+1} \cdot \nabla \mathbf{u}_h^{n+1} + \frac{1}{\rho} (\nabla p_h^{n+1} - f_{h,2}), \mathbf{v}_h \right)
\]

(13)

for all \(\mathbf{v}_h \in \mathcal{V}_h \), being \(\mathbf{v}_h \) equal to \(\mathbf{v}_h \) extended with the vectors of continuous functions associated to the boundary nodes.

The stabilization parameter \(\tau_1 \) in Eqs. (11a) and (11b) is defined so to obtain a stable numerical scheme and an optimal velocity of convergence. Consequently, \(\tau_1 \) is calculated for each element as

\[
\tau_1 = \left[c_1 \frac{\mu}{h_e^2} + c_2 \frac{\rho \| \mathbf{u}_h \|}{h_e} \right]^{-1}
\]

(14)

where \(h \) is the characteristic length of the \(e \)-th element and \(\| \mathbf{u}_h \| \) is the norm of velocity in the element. \(c_1 \) and \(c_2 \) are two coefficients that in the present work are chosen as \(c_1 = 4 \) and \(c_2 = 2 \) [32].

5. Matrix form

The solution system (11) is rewritten in matrix form as

\[
M_1 \frac{d}{d\xi} \mathbf{U}^{n+1} + K_1 (\mathbf{U}^{n+1}) \mathbf{U}^{n+1} + G_1 \mathbf{P}^{n+1} + S_1 (\tau_1; \mathbf{U}^{n+1}) \mathbf{U}^{n+1} - S_1 Y^{n+1} \mathbf{Y}^{n+1} = \mathbf{F}^{n+1}
\]

(15a)

\[
D_1 \mathbf{U}^{n+1} + S_2 (\tau_1) \mathbf{P}^{n+1} + S_2 (\mathbf{U}^{n+1}) \mathbf{Y}^{n+1} = 0
\]

(15b)

\[
C (\mathbf{U}^{n+1}) \mathbf{U}^{n+1} + G_2 \mathbf{P}^{n+1} = 0
\]

(15c)

where \(\mathbf{Y} \) and \(\mathbf{P} \) are the vectors of nodal velocities and pressures, respectively, \(\mathbf{Y} \) is the vector of nodal projections and \(\mathbf{F} \) is the vector of nodal forces.

Finally, the matrix operators of Eqs. (15)) are defined as

\[
M_{ij}^{ab} = \left(N^a, \rho N^b \right) \delta_{ij}
\]

(16a)

\[
K (\mathbf{U}^{n+1})_{ij}^{ab} = \left(N^a, \rho \mathbf{U}_h\mathbf{n}^{n+1} \cdot \nabla N^b \right) \delta_{ij} + \left(\nabla N^a, 2 \mu \nabla^2 N^b \right) \delta_{ij}
\]

(16b)

\[
G_{ij}^{ab} = \left(N^a, \partial_t N^b \right)
\]

(16c)

\[
F_i^{0} = \left(N^a, f_i \right)
\]

(16d)
6. Numerical results: Bingham fluids

6.1. Extrusion

6.1.1. Description of the problem

The first example is the extrusion process of a Bingham fluid. Extrusion is widely used in several industrial processes such as metal forming, manufacturing, food production, etc. Real applications are usually in three dimensions; nevertheless, a plane strain 2D analysis provides very useful information on the evolution of the plastic region and gives an estimation of the forces required in the process.

The slip-lines theory was first introduced by Prandtl at the beginning of the XX century [77]. This methodology was originally used in plane strain problems to estimate the stress field and the related velocity field in perfect plastic materials with the von Mises (or Tresca) yield criterion. The approach was generalized by Mandel [62], who introduced other yield criteria and analyzed the plastic region and gives an estimation of the forces required in the process. The slip lines theory is the formulation used in this work with the objective of identifying the yielded and yielded regions, the evolution of the stream lines and of the slip lines. The calculated pressure on the ram is compared with the analytical solution given by Eq. (18).

6.1.2. Model and results

The geometry and boundary conditions used are presented in Fig. 3. A reduction of 2/3 of the cross section is considered. A slip condition is imposed on the wall boundaries CDEF and CD′E′F′, no wall laws are considered. This means that on CD and EF \(u_x = 0 \) while \(u_y \) is left free and on DE \(u_x = 0 \) while \(u_y \) is left free. Symmetry conditions are imposed on AB (\(u_y = 0 \)). An increasing normal stress is imposed on CC′. This represents the ram pressure that increases linearly with time from \(p = 0 \ Pa \) at the initial time (\(t = 0 \ s \)) to \(p = 5000 \ Pa \) at \(t = 1 \ s \). The vertical component of velocity is set to zero on CC′. The pressure is set to zero in point B, and the horizontal velocity is left free in point E.

A 2D plane strain simulation is carried out. Exploiting the symmetry of the problem, only half of the domain is discretized using 2821 nodes 5340 and linear/linear (P1/P1) triangular elements (see Fig. 4).

The material parameters are summarized in Table 1 where the regularization coefficient employed for the Bingham model is also given.

The example is solved as a series of steady-state problems with increasing ram pressure. Two scenarios have been taken into account: with and without the convective term in the momentum equation. Fig. 5 shows the velocity evolution on point P while the pressure on the ram is increased, in comparison with the analytical solution (continuous line). At \(t = 0.69 \ s \) the flow is fully developed and the yielded regions are completely defined. The numerical pressure for yielding is \(P_{num} = 3400 \ Pa \), while the analytical solution is \(P_{an} = 3428 \ Pa \) according to Eq. (18).

If the convection term is included in the momentum equation (black dotted line in Fig. 5), it is necessary to increase the external pressure in order to overcome the inertial effects once the yield stress is achieved. This does not happen when the convective term...
Table 1

Extrusion in a Bingham fluid. Material parameters and regularization coefficient.

<table>
<thead>
<tr>
<th>Material properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic viscosity μ_0</td>
<td>10^{-6} Pa·s</td>
</tr>
<tr>
<td>Density ρ</td>
<td>100 kg/m3</td>
</tr>
<tr>
<td>Yield stress τ_y</td>
<td>1000 Pa</td>
</tr>
<tr>
<td>Regularization</td>
<td></td>
</tr>
<tr>
<td>Regularization coefficient m</td>
<td>1000 s</td>
</tr>
</tbody>
</table>

Fig. 4. Extrusion in a Bingham fluid. Mesh used in the calculation: 2821 nodes and 5340 linear triangular elements.

is neglected (red dotted line in Fig. 5). In this case, once the slip lines have developed, very large velocities are achieved with a very small increment of external pressure.

Fig. 6 presents the streamlines evolution during the extrusion process. An abrupt change in the smoothness of the streamlines is observed when the slip lines appear (Fig. 6(c) and (d)). Fig. 6 also shows the yielded (dark) and unyielded (fair) regions above and below the critical strain rate ($\dot{\gamma}_{\text{crit}} = 0.01688$ s$^{-1}$, correspondent to $\tau = \tau_y$).

The evolution of the velocity field is presented in Fig. 7. It can be observed that while at $t = 0.6$ s almost all the domain is solid and just a very small region has reached the yield threshold, at $t = 0.678$ s the extrusion mechanism and the slip lines are fully developed. These lines coincide with the slip lines of the classical plastic theory [61].

6.2. Flow around a cylinder between two parallel planes

6.2.1. Description of the problem

The flow around a cylinder in a confined Bingham fluid is studied in this second example. The flow around an obstacle was initially studied considering a spherical object. This classical problem in computational fluid dynamics has several practical applications in different engineering fields: from segregation in food industry, to transport of mud in geotechnical engineering or aerosols in environmental engineering, etc. The general problem is the suspension of large particles in a fluid with a yield threshold. The falling or settlement of the particles can only occur if the gravity force exceeds the yield limit ([23,78,86]).

Fig. 5. Extrusion in a Bingham fluid. Pressure–velocity curve in point P (see Fig. 4). Comparison between the analytical solution and the numerical results. (For interpretation of the references to color in this figure text, the reader is referred to the web version of this article).

Fig. 6. Extrusion in a Bingham fluid. Evolution of the streamlines and of the yielded region (dark) for $\tau_y = 1000$ Pa and $\dot{\gamma}_{\text{crit}} = 0.01688$ s$^{-1}$ at $t = 0.6, 0.677, 0.678$ and 0.68 s.
Extrusion in a Bingham fluid. Evolution of the velocity field for $\tau_y = 1000$ Pa and $\dot{\gamma}_{\text{crit}} = 0.01688$ s$^{-1}$ at $t = 0.6$, 0.677, 0.678 and 0.68 s.

The viscoplastic flow around an obstacle has been widely studied both numerically and experimentally ([23,25,44,90]). For the specific case of Bingham plastics, many authors have proposed different solutions for the flow around a sphere subjected to gravity force between two parallel planes or in an infinite domain ([12,60,66,94]). Moreover, Roquet and Sarmito [80] studied the effect of an additional pressure gradient and Slijepčević and Perić [85] studied the movement of a sphere inside a cylinder.

Nowadays, there exists abundant literature on a sphere falling either in a pseudoplastic, viscoplastic or viscoelastic fluid for low Reynolds numbers [24]. Contrariwise, not many authors have treated the movement of a cylinder in a non-Newtonian fluid.

The aim of this example is to define the yielded zones and the hydrodynamic drag force in terms of the geometrical configuration of the parallel planes and the cylinder.

6.2.2. Non-dimensional forces

In this and the following examples a series of non-dimensional quantities will be used to present the results. These quantities are defined here.

Being x the direction of the flow and y its orthogonal direction in the plane (see Fig. 8(a)), the drag force (F_D) and lift force (F_L) acting on the cylinder can be calculated as

$$ F_D = IR \int_0^{2\pi} t_x \, d\theta = 4IR \int_0^{\pi/2} [\sigma_{xx} \cos \theta + \sigma_{xy} \sin \theta] \, d\theta $$

and

$$ F_L = IR \int_0^{2\pi} t_y \, d\theta = 4IR \int_0^{\pi/2} [\sigma_{xy} \cos \theta + \sigma_{yy} \sin \theta] \, d\theta $$

where $R = 1$ m is the radius and $l = 1$ m is the height of the cylinder. The traction vector $\mathbf{t} = (t_x, t_y)$ is defined by the stress components in the xy plane (i.e., $\sigma_{xx}, \sigma_{xy}, \sigma_{yy}$) and of angle θ between the normal to the cylinder and the x axis as $t_x = \sigma_{xx} \cos \theta + \sigma_{xy} \sin \theta$ and $t_y = \sigma_{xy} \cos \theta + \sigma_{yy} \sin \theta$.

The non-dimensional drag and lift coefficients in the specific case of a Bingham fluid are

$$ F_D^* = \frac{F_D}{\mu V l} ; \quad F_L^* = \frac{F_L}{\mu V l} $$

Finally, the last non-dimensional quantity used in the paper is the non-dimensional yield stress τ_y^* associated to the drag force

$$ \tau_y^* = \frac{2\tau_y \pi R^2}{F_D}. $$

6.2.3. Model and results

The cylinder with radius $R = 1$ m is located between two infinite parallel planes. The distance between the planes is $2H$ and the center of the cylinder is at distance H from both of them. The system of reference is attached to the center of the cylinder and it is considered fixed (Fig. 8(a)). The planes are moving with velocity V as well as the lateral sides of the computational domain, located
Table 2
Cylinder in a Bingham fluid. Material parameters and regularization coefficient.

<table>
<thead>
<tr>
<th>Material properties</th>
<th>Plastic viscosity μ_0 (Pa·s)</th>
<th>Yield stress τ_y (Pa)</th>
<th>Bingham number Bn</th>
<th>Regularization coefficient m (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.005, 0.5, 5, 50, 500</td>
<td>0, 0.1, 1, 10, 100, 1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 3
Cylinder in a Bingham fluid. Domains and meshes considered.

<table>
<thead>
<tr>
<th>Case</th>
<th>$H : R$</th>
<th>$L : R$</th>
<th>Nodes</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>2 : 1</td>
<td>12 : 1</td>
<td>783</td>
<td>1401</td>
</tr>
<tr>
<td>M2</td>
<td>4 : 1</td>
<td>24 : 1</td>
<td>3494</td>
<td>6623</td>
</tr>
<tr>
<td>M3</td>
<td>60 : 1</td>
<td>5371</td>
<td>10,245</td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>150 : 1</td>
<td>13513</td>
<td>25,473</td>
<td></td>
</tr>
</tbody>
</table>

sufficiently far from the cylinder. No slip is assumed on the surface of the cylinder and inertial effects are ignored ($Re \approx 0$). The flow has double symmetry, with respect both to the vertical and to the horizontal axes. For this reason, just a quarter of the domain is analyzed (see Fig. 8(b)) [8,75].

Fig. 8(b) shows a schematic description of the boundary conditions used. A no slip condition is applied on line AB, orthogonal velocity and tangential stresses are zero on lines BC and AD. The velocity is fixed on ED and on the upper wall where the vertical component $u_y = 0$ and the horizontal one $u_x = V = 1$ m/s. Pressure is set to zero on C to determine univocally the pressure field. The length of the domain (L in Fig. 8(b)) is sufficiently large to ensure that the flow is completely developed.

The properties of the material are summarized in Table 2. The Bingham number (Bn) in Table 2 is a non-dimensional quantity representing the ratio between the yield and the viscous stresses and it is calculated as $Bn = \tau_y (2R) / \mu_0 V$ where τ_y is the yield stress, H is the radius of the die, μ_0 is the plastic viscosity and V is the velocity of the fluid. A range of yield stresses (and, therefore, of Bingham numbers) is taken into account.

Different relations $H : R$ and $L : R$ have been considered to assess the effect of the domain size on the results. These are summarized in Table 3. In all the cases a more refined mesh is considered close to the cylinder (see Fig. 9).

The results obtained in terms of yielded regions, drag force and stream lines are coherent with those obtained by Mitsoulis [66]. In Fig. 10 the yielded and unyielded regions are shown for different Bingham numbers for two different geometrical ratios $H : R = 4 : 1$ and $H : R = 10 : 1$. Fig. 10(a) and (f) show the streamlines in the Newtonian case (i.e., $Bn = 0$). In the first case, the larger relative dimension of the cylinder leads to a steeper gradient of velocity in the y direction. For Bingham numbers $Bn > 10$, the drag force is independent from $H : R$. The yielded/unyielded regions, the recirculation and stagnation regions appear similarly to what happens in the case of a sphere. It is worth observing that as Bn increases:

- The yielded region around the cylinder decreases
- The unyielded region surrounds the cylinder. This process is more evident in the case $H : R = 10 : 1$, confirming that the wall effect is not negligible in the case $H : R = 4 : 1$.
- The recirculation islands immersed in the yielded region appear and get closer to the cylinder in a symmetric way. They finally adhere to the cylinder for $Bn = 100$.

Fig. 9. Cylinder moving in a Bingham fluid. Unstructured mesh of case M_3 with $H : R = 10$, $L : R = 60$. Fig. 10. Cylinder in a Bingham fluid. Stream lines and yielded (fair) and unyielded (dark) region for different Bingham numbers. On the left $H : R = 4 : 1$, on the right $H : R = 10 : 1$.

(a) Mesh of the whole domain (b) Mesh around the cylinder
The stagnation zone appears at the side of the cylinder.

The stagnation zone get smaller than the recirculation one.

The dimension and shape of the polar caps appearing in the stagnation regions are similar to the results presented in [8] and [9].

There is little information on the drag coefficient of a cylinder moving in a viscoplastic fluid. Roquet and Saramito [80] and Mitsoulis [66] present some studies on this specific problem. In Fig. 11(a) the non-dimensional drag coefficient, Eq. (21), is plotted versus the Bingham number for the different cases analyzed and the results are compared with those of Mitsoulis showing a good agreement. It is worth observing that, as the Bingham number increases, the non-dimensional drag coefficient increases and becomes independent from the relation H/R (for $H/R > 2$). When $Bn \to 0$, the non-dimensional drag reaches the value of the drag of a Newtonian fluid and when $Bn \to \infty$ it tends to $F^*_D = 1.14Bn$. This limit was also identified by Mitsoulis and Huigol [69]. The results obtained in this work are in the range of the limit values obtained by Adachi and Yoshioka [2] with their max and min theorem.

Fig. 11(b) shows that for high values of the non-dimensional yield stress the drag increases. The growth is progressively more steep as it gets to the critical limit of $\tau^*_y = 0.128$ (the red vertical line of Fig. 11(b)). At this value of the yield stress, the drag force balances with the buoyancy force.

7. Numerical results: Herschel–Bulkley fluids

7.1. Flow around a cylinder in an infinite medium

7.1.1. Description of the problem

The problem treated in this section is similar to the one presented in Section 6.2, but now the medium is infinite. The flow follows the Herschel–Bulkley model. This is a complex and seldom studied phenomenon. In the literature there exist some studies on a sphere moving in a tube filled with a Herschel–Bulkley fluid at $Re \approx 0$ ([15], [6]). Some experimental results were provided by Atapattu [4] and, more recently, some experiments were performed on the flow around several spheres at low Re ($Re < 1$) confirming the difficulties on managing very low velocities ([63], [86]). Some authors have studied the movement of cylinders of different sizes inside a tube [68] and the flow around objects with different shapes with Re in the range $10^{-1}–10^{-8}$ [54]. Mitsoulis provided a review of the results obtained for different problems on Bingham and Herschel–Bulkley flows [67] where the flow around a sphere in a viscoplastic medium is mentioned.

The flow around a cylinder in a Herschel–Bulkley pseudoplastic fluid in an infinite domain was studied by De Besses [36]. Tanner [87] presents numerical results for a cylinder moving in a pseudo-plastic fluid (governed by a power law, without yield threshold) in an infinite domain. The problem in a confined domain was studied by Missirlis et al. [65] and [84]. Barthis et al. [9] included also dilatant fluids ($0.6 < n < 2$).

All the works mentioned are based on finite elements, except Bharti et al. [9], where finite volumes were employed, and Tanner and Milthorpe [88], who used boundary elements. Sivakumar [84] compared finite elements and finite volumes results demonstrating the equivalence of both approaches.

The case of non-inertial flow of a Newtonian fluid around a cylinder in an infinite domain has no analytical solution; the reason being related to the shape of the streamlines far away from the cylinder, what is known as the Stoke’s paradox [89].
Table 4
Cylinder in an Herschel–Bulkley fluid. Material parameters and regularization coefficient.

<table>
<thead>
<tr>
<th>Material properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield stress τ_y</td>
<td>1, 10, 100 Pa</td>
</tr>
<tr>
<td>Generalized Bingham number Bn^*</td>
<td>1, 10, 100</td>
</tr>
<tr>
<td>Flow index n</td>
<td>0.25, 0.5, 0.75, 1, 2</td>
</tr>
<tr>
<td>Regularization</td>
<td></td>
</tr>
<tr>
<td>Regularization coefficient m</td>
<td>1000 s</td>
</tr>
</tbody>
</table>

paradox does not present for pseudoplastic fluids ($n \leq 1$) and it is still unclear if it is present or not for dilatant flows ($n > 1$).

In the case of a flow in a finite domain the analytical solution does exist for all values of the flow index n ([26], [88]).

Fig. 13. Cylinder in an Herschel–Bulkley fluid. Unstructured mesh.

The objective of the current work is to study the flow around a cylinder in an infinite Herschel–Bulkley fluid domain. The determination of the drag force, the yielded and unyielded zones, as well as the recirculation and stagnation zones is carried out for different generalized Bingham numbers. The generalized Bingham number for an Herschel–Bulkley fluid is defined as $Bn^* = \frac{\tau_y}{k(H/V)^n}$.

Non inertial $Re \approx 0$ is assumed in all the examples.

7.1.2. Non-dimensional forces
The non-dimensional drag and lift coefficients in the specific case of a Herschel–Bulkley fluid are defined as

\[
F_D^* = \frac{F_D}{\frac{1}{k} (\frac{V}{R})^n} = \frac{F_D}{\frac{k}{R}^n (\frac{H}{V})^n} \quad ; \quad F_L^* = \frac{F_L}{\frac{1}{k} (\frac{V}{R})^n} = \frac{F_L}{\frac{k}{R}^n (\frac{H}{V})^n} \tag{24}
\]

(a) Drag force vs Bn^* (b) Drag coefficient related to the yield stress

Fig. 15. Cylinder in an Herschel–Bulkley fluid. Drag force and Drag coefficient for different flow indexes n.
where k is the consistency index of the fluid, V is the velocity of the cylinder and n is the flow index of the Herschel–Bulkley model.

7.1.3. Model and results

Fig. 12 shows the geometry and boundary conditions used in the current example. The geometry is similar to that considered in Section 6.2, but in this case the semi-width of the domain, L, is taken sufficiently large not to influence the results. The minimum L for this is smaller for Bingham than for Newtonian fluids and yet smaller for Herschel–Bulkley fluids.

The system of reference is fixed to the cylinder; therefore velocity boundary conditions are imposed on the external boundary of the domain (sides CE and ED in Fig. 12). A no slip boundary condition is imposed on the surface of the cylinder. The radius of the cylinder is $R = 0.5$ m and the velocity in the x direction is $V = 1$ m/s. Due to the double symmetry of the problem, just a quarter of the domain is simulated and symmetry conditions are imposed.

The mesh used in the simulation is showed in Fig. 13.

Table 4 summarized the material properties of the model and the coefficients employed. Pseudoplastic ($n \leq 1$) and dilatant Herschel–Bulkley fluids are considered. The particular case of Bingham plastics ($n = 1$) is also taken into account. A regularization coefficient $m = 1000$ s is used in all the simulations.

It can be observed in Fig. 14 that the non-dimensional drag coefficient (F_D^*) grows with the flow index n, independently from the geometrical ratio, for $L : R \geq 50 : 0.5$ (Table 5). This means that it is sufficient to consider a domain with that minimum geometrical ratio to ensure insensitivity of the flow from the artificial domain boundaries. It is evident from the results that the drag coefficient is linearly related to the flow index n for $n \geq 0.5$.

The case of a pseudoplastic Herschel–Bulkley fluid is studied first. Fig. 15(a) and (b) present the non-dimensional drag, F_D^*, and

Fig. 16. Cylinder in an Herschel–Bulkley fluid. Yielded (grey) and unyielded (colored) regions and flow streamlines. Recirculation zones on y axis and stagnation zones (with polar caps) on x axis.

Fig. 17. Cylinder in an Herschel–Bulkley fluid. Dependency of the unyielded regions in terms of the Bingham number and the flow index.

Fig. 18. Cylinder in a dilatant Herschel–Bulkley fluid ($n = 2$). Yielded (grey) and unyielded (colored) regions and flow streamlines. Recirculation region on y axis and stagnation zone (with polar caps) on x axis.
the drag force over the yield stress, $F'_D = F_D/\tau_y$, respectively, versus the generalized Bingham number ($Bn^* = 0.1, 1, 10, 100$), for different flow indexes ($n = 0.25, 0.5, 0.75, 1$). The drag coefficient grows as Bn^* increases (Fig. 15(a)) and the yield stress effect is higher for higher values of Bn^* (Fig. 15(b)).

The differences in the yielded and unyielded regions for different generalized Bingham numbers Bn^* are evident in Fig. 16 where the yielded region is plotted in grey for a $Bn^* = 10$ (Fig. 16(a)) and for a $Bn^* = 100$ (Fig. 16(b)). The increment of the Bn^* induces a shape and volumetric change of the yielded region which reduces significantly especially in the direction of the flow.

The stagnation and recirculation regions in terms of Bn^* and n are shown in Fig. 17. The stagnation regions are very sensitive to the Bn^* while being almost insensitive to the value of the flow index n. In the stagnation region triangular shaped polar caps, similar to those obtained studying the falling of a sphere in [8], can be observed.

The recirculation zone on the y axis increases when Bn^* or n increase. The yielded thin layer between these regions and the cylinder reduces for higher values of Bn^*, and increases with n. The no slip condition on the cylinder does not allow this “boundary layer” to disappear even for very high values of Bn^*. The effect of an alternative slip boundary condition on the cylinder can be found in [36]. While the recirculation regions obtained match very well with those obtained by De Bresse in [36], the polar caps are significantly smaller. This is the consequence of the OSS stabilization technique used, that allows to solve with a high level of detail these critical parts of the domain.

The case of a dilatant Herschel–Bulkley fluid is considered next. The flow index is taken $n = 2$. The magnitude of the velocity field is smaller in the dilatant case than in the pseudoplastic one. As shown in Fig. 18, the yielded region has the shape of two circles intersected along the x axis and it reduces when Bn^* increases much more faster than in the pseudoplastic case.

The polar caps start to be visible for $Bn^* \geq 1$ while the recirculation regions are always present. These are bigger and more separated from the cylinder than in the corresponding pseudoplastic case (Fig. 19).

The drag coefficient in the dilatant case follows a similar dependency with Bn^* and τ_y as in the pseudoplastic case, but its absolute value is much lower (Fig. 20).

The shape of the stagnation and the recirculation regions are in good accordance with those obtained in [8] and [2] also, although in the latter the shape of the zones was more rounded.

7.2. Flow around a moving cylinder rotating around its axis

7.2.1. Description of the problem

The last example simulates a rotating cylinder moving between parallel planes in a Herschel–Bulkley fluid.

The principal objective is to study the yielded and unyielded region, to define the localization pattern of the strain rate and to see the evolution of the stream lines at different velocities of rotation.
7.2.2. Model and results

The geometrical setting is similar to the one described in Section 6.2, but with the cylinder rotating around its axis. The problem is therefore antisymmetric with respect to the vertical axis y (Fig. 21). This implies that only half of the domain needs to be simulated (the shaded area in Fig. 21), provided suitable boundary conditions are imposed on the plane of antisymmetry. The reference system is moving with the cylinder; therefore, on the outer boundary of the domain $u_x = V = 1$ m/s is imposed in the x direction, while $u_y = 0$ m/s. A no slip boundary condition is imposed on the surface of the cylinder.

Table 6 summarizes the properties of the material and the regularization parameter used. The flow index of the Herschel–Bulkley model is $n = 0.25$, which corresponds to a highly pseudoplastic fluid.

The aspect ratio of the computational domain is $H : R = 10 : 1$ and $L : R = 30 : 1$. The unstructured mesh used in the example is shown in Fig. 22(a); it is composed of 9425 nodes and 18,345 linear triangular elements. The average size of the elements on the surface of the cylinder (see Fig. 22(b)) is of 0.01 m, whereas on the vertical line (from B to C and from G to C’ in Fig. 21) the element size varies from 0.01 m to 0.04 m.

Four different velocities of rotation (V_{rot}) have been studied: 0, 0.5, 1.0 and 5 m/s. The symmetry with respect to the x axis observed for $V_{rot} = 0$ m/s (Fig. 23(a)) is lost when the cylinder starts rotating. Under these circumstances only symmetry with respect to
8. Conclusions

In the present work a mixed stabilized finite element formulation for Bingham and Herschel–Bulkley fluids is presented. The implementation of an OSS stabilization technique allows to use equal order interpolation of velocity and pressure (i.e., P1/P1 linear elements), avoiding both the pressure and velocity oscillations and leading to a stable and accurate solution.

On the one hand, being OSS a residual based stabilization technique, no consistency error is introduced. On the other hand, constructing the subscale in the subspace orthogonal to the finite element one leads to a minimization of the numerical dissipation on the discrete solution.

The extrusion process of a Bingham fluid with the section reduced by 2/3 shows a correct definition of the slip lines according to Pradtl’s theory. A cylinder moving between two parallel planes is the second example studied. The comparison with the results obtained by other authors leads to the conclusion that the presented technique reproduces correctly the yielded and unyielded regions, as well as calculates the correct drag for different Bingham numbers and geometrical relations. Pseudoplastic and dilatant cases of Herschel–Bulkley are also used to study a cylinder moving in an infinite domain and a cylinder moving and rotating around its axis. Also in these cases, the polar caps and recirculation regions are correctly reproduced.

Acknowledgments

The research was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competitividad, MINECO) through the project EACY (MAT2013-48624-C2-1-P). The financial support of the ERC Advanced Grant project SAFECON (AdG-267521) of the European Research Council and of the T-MAPP project (FP7 PEOPLE 2013 ITN-C.A.n607453) is also greatly acknowledged.

References

