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Abstract

In (j, k)-games each player chooses amongst j ordered options and there are k possible
outcomes. In this paper, we consider the case where players are assumed to prefer some out-
comes to others, and note that when k£ > 2 the players have an incentive to vote strategically.
In doing so, we combine the theory of cooperative game theory with social choice theory,
especially the theory of single-peaked preferences. We define the concept of a (j, k)-game
with preferences and what it means for it to be manipulable by a player. We also consider
Nash equilibriums with pure strategies for these games and find conditions that guarantee
their existence.

Keywords: Cooperative Games, Insincere Voting, Nash Equilibrium, (j,k)-games,
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1. Introduction

Simple games, in which a set of voters have two possible votes and there are two possible
outputs, have been studied in the voting context since von Neumann and Morgenstern (1944).
More recently in Fishburn (1973), Rubinstein (1980), and Felsenthal and Machover (1997)
these games are extended to allow voters three ordered possible options and two outputs. In
Freixas and Zwicker (2003) this idea is generalized to include many ordered levels of approval
for the voter and many ordered levels of output. Games with multiple levels of input and
output, and in particular how relative power can be determined amongst the players, have
also been studied in Parker (2012) and Pongou et al. (2011). So far, the study of these
games has always assumed that the players are voting in a genuine fashion and accept the
final outcome. However, when the number of outputs is greater than two and a player prefers
one of the middle outcomes, then she may wish to alter her vote from the one that most
closely represents her honest input to another simply to have better chances to reach an
outcome being as close as possible to her most preferred one. Or to put it in a way that is
more charitable to the voter, the game itself fails to provide the voter a vote that accurately
represents her preferences in all cases. In subsection 1.1, we give natural examples of voting
situations in the areas of: law, academics, appropriations, and politics where such situations
arise.

There are of course many results in the field of social choice theory dealing with the
situation where there is an election with three or more candidates where manipulation by
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the voters is possible, of which Arrow (1950) is the most famous, see for example Taylor
and Pacelli (2008). However, this situation is different from the most general cases in social
choice theory since the outcomes are assumed to have a natural ordering and this ordering
is agreed upon by all voters. Thus, although a voter may prefer any outcome as their most
desired outcome, their other preferences must be ordered in a way that is consistent with
the overall ordering. This notion is made rigorous in section 2. In addition, this problem
is distinguished from many social choice situations (e.g., social choice procedures or social
welfare functions) since in our context the input to the voting system is a single vote, which
is not necessarily an element of the set of output alternatives, rather than an ordered list of
output alternatives.

The paper is organized as follows. Some motivating examples are given in the rest of
section 1. Section 2 begins with the formalizations and terminologies of the notions of (j, k)-
games with preferences and that of manipulation for this type of games. Section 3 begins
with a comparison of how the results in Gibbard (1973) would apply if either we allowed
players to have arbitrary preferences or we do not. The section also includes some basic
results on manipulation for (j, k)-games with preferences. In section 4 we will turn our
attention to looking at Nash equilibrium with pure strategies. Our starting point is the
consideration of some subclasses of games with preferences having Nash equilibrium. We
continue by showing the existence of games with preferences with as few as three players
without Nash equilibrium. The central question in section 5 is whether Nash equilibrium
with pure strategies exists for anonymous games with preferences. Although we leave the
general question as an open conjecture, we partially prove it for some particular subcases.
In section 6 we conclude the paper.

1.1. Ezamples

These examples have a common thread: The individual voters have a finite and natu-
rally ordered set of voting options to choose from, and the body as a whole has a finite and
naturally ordered set of outcomes. Thus can easily be modeled as a (j, k)-game from Freixas
and Zwicker (2003). Similar examples have been explored in continuous framework of spa-
tial and directional see Enelow and Hinich (1990) and Rabinowitz and Macdonald (1989)
respectively. But also, these examples have in common that the system is set up under the
assumption that each individual is not motivated by hoping for a particular outcome, but
rather voting in a way that is their best assessment of what the best option is and trusting
the voting system to produce the best outcome. However, if the voter is more interested in
the final outcome than in the honesty of his or her actual vote, then as these examples show,
the voter may not have a vote that will correspond to giving the best chance that his or her
top preference will be the final outcome. Instead, the voter must guess or investigate how
others will vote in order to decide on his or her vote. From these examples we can see many
of the problems from the literature of social choice theory will also occur in the theory of
(7, k)-games.

Example 1 A juror has two choices—convict or acquit—but the outcome of the jury as a
whole has a third option: a hung jury. For purposes of the example, we will suppose there
are 12 jurors and each will vote for either conviction or acquittal and the outcome of the
vote will be the unanimous decision of the jury, with a hung jury (and hence a potential
retrial) if unanimity is not achieved. In reality, this vote might be taken many times in the
process, with time for the jurors to persuade others between votes. We will assume we are
just looking at the last vote. Hence if unanimity fails the jury will be hung.



The system is certainly set up under the assumption that each juror is supposed to give
their honest assessment of the evidence. However, it is certainly plausible that a juror will
prefer a hung jury, believing the proceedings were unfair and hence there should be a retrial.
Although it is the job of the judges and not jury to decide the fairness of the trial, we must
realize that individual motivations are often different from what the system assumes.

In this case, the juror will have to vote based on her assumption of what the other votes
will be. She has no vote available to her that is the “best” in any objective sense.

Example 2 At a certain school each student is given a grade in each class of A, B, C, D
or F. A student graduates if he passes every course (with a D or better) and has a grade
point average of a C average or better. Each of his teachers can then be thought of as voters
deciding if he should graduate. A teacher might think that he deserves a D in her class but
also wants him to graduate. She would like to give him the lowest grade possible without
costing him his graduation.

Example 3 Suppose each member of a budget committee is asked to vote to allocate either
5, 10, 15 or 20 percent of the budget to fund a project. The final allotment will be the
average of the members’ suggestions. Again, if a committee member is more interested in the
outcome of the averaging than her recommendation corresponding to her honest assessment,
then she may wish to adjust her recommendation based on what she anticipates will be the
recommendation of the others. In the cases where her honest assessment is that either 5 or
20 percent of the budget should be spent on the project, then she has no decision to make.
Her best strategy and her honest assessment are identical and she does not have to take
into account how others might vote. Only when she wants a middle value, does she have to
consider strategizing.

A variation of this example would be the case in which the final allotment will be the
median of the members’ suggestions. Again, if a committee member is more interested in
the outcome, she can radicalize her vote to the extreme option, either 5 or 20 percent of the
budget. However, the chance to manipulate, especially if the number of voters is not small,
is here lower than for the mean.

So far in all of the examples the voting has been symmetric amongst all voters, that is,
each player’s vote is treated the same. In such a framework, names need not be attached to
the votes, so these games are called anonymous. The framework of (7, k)-games is certainly
flexible to allow for the voters to have different roles. We can modify the previous example
to allow for asymmetric voting.

Example 4 Suppose in the above example there is a budgetary supervisor who determines
the maximum amount that can be spent on a project. Hence, he also votes 5,10, 15 or 20
percent, but his vote represents the maximum amount that can be spent on the project.
Thus the outcome of the voting will be the smaller of the average of all the non-supervisors’
votes and the vote of the supervisor. We can see that all of the non-supervisors could have
an incentive to vote strategically, but it is not clear the supervisor does.

These examples include the possibility that a player may vote in a way to increase her
chance to get her favorite outcome, and to do so she might have to guess what other voters
are going to do. That is, she may not have a vote that best represents her preferences
independent of the actions of all other players. In the paper we will call such a game
“manipulable”. This term does have a negative connotation and seems to imply that a



player changing her vote based on trying to get her preferred outcome is somehow doing
something unethical. It has been suggested that a better term for this kind of voting would
be either “strategic”, “tactical” (more positive) or “insincere” (more negative) voting and
reserve the term “manipulation” for more untoward activities such as bribing voters or
destroying ballots. We do not mean to imply any moral judgement upon a player using her
best strategy. If the term manipulable is pejorative it is against the game not providing the
player a vote that best represents her preferences.

2. Definitions and Notation

The following two definitions are from Freixas and Zwicker (2003) while adopting some
of the notation from Felsenthal and Machover (1997):

Definition 1 An ordered j-partition of a finite set N of players or voters is a sequence
A = (A1, Ay, ..., A)) of disjoint, possibly empty sets whose union is N. If a € A; we say
that a approves at level ¢ or votes for the ¢th option. If i; < 75 we say those voting at
approval level i; are voting at a higher level of approval than those approving at level is.
We denote the set of all j-partitions of N by j¥. For every ordered j-partition A we define
Ty: N —{1,2,...,5} by Ta(a) =i if a € A;. For two ordered j-partitions A and B, we
write A7C B if T4(a) > Tg(a) for all a € N. We say the ordered j-partitions, A and B agree
outside of player a if Ta(x) = Tg(x) for all z # a.

Notice that X 7CY means that each player in N has a higher or equal level of approval
in Y than they do in X.

Definition 2 A (j, k)-(simple)game consists of a finite set N, a set of voting outcomes
{v1,v9, ..., v} ordered by v; > vy > ... > v;, and a value function V : j& — {vi, v, ..., v}
that is monotonic that is, if for two ordered j-partitions X, Y, if X 7CY then V(X) < V(Y).

We will assume voters have at least two choices to vote for, j > 1, and the collective decision
has at least two choices k > 1 as well.

Definition 3 A (j, k)-game V is:
o cexhaustive if V is itself a surjective function;

e smooth if for all j-partition A with V(A) = vy, for some h > 1 and T4(a) = ¢ for some
i > 1; it yields V(B) = v, or v,_1 if A and B agree outside of @ and Tg(a) =i — 1;

e strongly smooth if whenever A and B are j-partitions that agree outside of a and
Ti(a) =1 and Tg(a) = j then either V(A) = V(B) or V(A) and V(B) are consecutive
outputs.

e anonymous if V(A) = V(m(A)) for all permutation 7 : N — N.

Since we normally include only achievable outcomes in the game, we will assume through-
out the paper that all games are exhaustive. Smoothness is a strong assumption but is natural
in many situations. In fact examples 1, 2, and 3 are all smooth. This condition, however, can
be lost with minor variations. For instance, in example 3 the game is only smooth since the
possible allocation options are equally spaced, if the option 10 is removed or an option of 30
is added the game ceases to be smooth. Strongly smooth games may occur in practice when
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the number of voters is large and all voters play an equivalent or a quite similar role within
the game as it occurs for example in anonymous (7, k)-games. Examples of (3, 3)-games of
this type are simple majority rule and absolute majority rule as defined, e.g., Freixas and
Zwicker (2009), see also Dougherty and Edward (2010) in which abstention or absence is
considered as intermediate input and the outcome may pass, be postponed or defeated.

We define special types of voters of a (7, k)-game:

Definition 4 In a (j, k)-game V, player a is:

o null for the input level i (i < j) if V(A) = V(B) for all A and B that agree outside of
a with Tx(a) =i and Tg(a) =i + 1;

e null if V(A) = V(B) for all A, B that agree outside of q; i.e. if a is null for all input
levels i < 7;

e vp-passer (h < k) at input level ¢ (i < j) if V(A) = vy, for all A with T4(a) = ¢;
e passer if a is v,-passer at some input level for all A < k.
e dictator if a is a passer and the rest of players are null.

Some comments on these definitions are the following:

a null is a voter who is never able to affect the outcome of a division and therefore
does not play an essential role in the (j, k)-game. Observe that any input level is a
universally optimal vote for a null voter. Thus, the presence of null voters in a game
never affects if this is manipulable or not.

e a dictator is the most radical form of being a passer since other voters are null, while
this requirement does not necessarily apply for passers.

e if a game has a passer then j > k. If j = k and the game has a passer then the passer
is also a dictator. If the game is the dictatorship of some player and 7 > k, the dictator
is null for 7 — k input levels.

e two players cannot be a passer for different outputs, thus a game can have at most a
single passer.

We now define a preference function for each player that gives their ranking outcomes
with 1 being the outcome which they most prefer and k being their least favorite outcome.
Each player’s preference must correspond to the ordering of the outcomes in the following
way: if £ > 5 and if the player’s most favorite outcome is vz then she must prefer v, to vy
and vy to vs. However, there is no assumption on whether she will prefer vy to v,.

Definition 5 A preference function for a player a in a (j, k)-game, V| is a bijective function
P, : {vi,va,...,v} = {1,2,...,k} such that if v;, and v;, are such that P,(v;,) < P,(vs,)
and v;, is between v;, and v;, then P,(v;,) < P,(v,). P is said to be a universal preference
function if P(a) (written P,) is a preference function for each a € N. A (j, k)-game with
preferences is a (j, k)-game, V' together with a universal preference function P. It is denoted
Vp or just V when the preference function is clear. For each a € N we let v} = P, !(1) be
a’s most preferred outcome.



This definition implies that preferences of the voters satisfy single-peaked preferences as
it is known in the social choice literature, see for example Black (1948), Sen (1966), Moulin
(1988), and Moulin (1980). The assumption of single peakedness for players is implicit in
the definition of (j, k)-game where the output levels are ordered from the highest level of
approval (v;) to the lowest one (vg), so intermediate levels for the output represent partial
level of support. Is it in that context reasonable to assume that a player who prefers v; to vs,
will prefer vy to v,? Of course this is plausible, but the assumption of single peakedness for
players avoids this counterintuitive way of thinking and in some sense it may be considered
as a rational requisite we assume for the behavior of players.

The fact that only single-peaked preferences are considered distinguishes the problem
from those discussed in Gibbard (1973) and Satterthwaite (1975) as will be seen in more
detail in section 3.1.

Definition 6 In a (j, k)-game with preferences a player a is said to have a universally optimal
vote of level i if whenever ordered j-partitions A and B agree outside of a and Ty(a) = i
then P,(V(A)) < P,(V(B)). The game is said to be manipulable by a if a has no universally
optimal vote.

So if level i is player a’s universally optimal vote in a (j, k)-game then the player can
not improve his satisfaction with the outcome by voting differently from level i. Conversely,
if the game is manipulable by a then no matter how he votes there is always a situation
where he could have improved the outcome from his point of view by voting differently. In
other words, in deciding his vote he could improve his outcome by correctly anticipating how
others will vote.

Definition 7 A (j, k)-game with preferences is said to be manipulable if it is manipulable
by some player.

We can look back at the examples in section 1.1 and see which are manipulable in the
sense of definition 6. We can see right away by proposition 2 that example 2 does not involve
manipulation in the sense that we are defining it, since there are only two possible outcomes.
The reason this example does not work is illuminating. Notice the teacher’s motives for
selecting the student’s grade are partially, but not entirely, outcome-driven. If her grade was
entirely driven by outcomes, then she would simply assign an A if she wished the student to
pass and an F if she wished him to fail. However, her motives are to give a grade that most
reflects the student’s performance in her class while achieving her desired outcome. This
motivation cannot be captured in our model as we only look at manipulability where the
motives are entirely outcome-based. To contrast this, let’s modify the example to one that
is manipulable by definition 6, by providing this example with a third possible outcome.

Example 5 Now suppose that every student has the possibility to graduate with honors
if they receive all A’s and B’s with at most two B’s. Now there are three outcomes for
each student: graduate with honors, graduate without honors, and fail. It certainly seems
reasonable that any teacher’s preferences would align with definition 5 as it would seem
unreasonable that a teacher’s first choice would be that the student graduates with honors,
second preference that the student fails and last preference is that the student graduates
without honors. If a teacher’s first preference is that the student graduates without honors
then they might grade strategically. They would want to give the grade that is high enough
for the student to graduate but not so high that the student graduates with honors. There



would be no grade they could give that would achieve this goal always and would have to
take into account how others vote. Thus this game would be manipulable.

3. Manipulablilty

3.1. Gibbard-like Theorem

In this section, we look at how the results in Gibbard (1973) would apply if we allowed
players to have arbitrary preferences, that is a player can prefer the outcomes in any order.
However, we will see by an example that a Gibbard-like Theorem would not apply if we
assumed that every player has single-peaked preferences as defined in definition 5. First we
define an unrestricted preference function that is also called an agenda.

Definition 8 Let V be a (j, k)-game. P is said to be an unrestricted universal preference
function (or an agenda) if for each a € N , P(a) (written P,) is a bijective function P, :
{v1,v9, ..., } = {1,2,... k}. A (j, k)-game with unrestricted preferences is a (j, k)-game,
V together with a universal unrestricted preference function P. It is written Vp or just V
when P is clear.

The following theorem follows from Gibbard (1973):

Theorem 1 Suppose k > 2 and let V be a (j,k)-game that is exhaustive and does not
contain a passer. Then there exists a universal unrestricted preference function P so that
Vp is manipulable.

PROOF: Suppose to the contrary that for any P, Vp is not manipulable. Define the voting
scheme, v (see Gibbard (1973)) by for each P, v(P) = V(A) where A is the j-partition where
each player votes their optimal vote (or one of their optimal votes) with respect to P. Let vy,
be an outcome and let P be such that every player’s top choice is vy,. It is easy to see that
the result of P must be v,. This is because V is exhaustive so there must be a j-partition
A so that V(A) = v,,. Each player’s optimal vote must then lead to v, since otherwise there
would be a situation (namely all the other players vote as in A) where they had a better
vote. Thus v has at least 2 outcomes and by Gibbard’s theorem there must exist a dictator
(in the voting scheme) call it a.

We now show a is also a passer for V' (but not necessarily a dictator by defininition 4).
Let h < k, and let P be an agenda such that P,(v;) = 1 and P,(v) = k for x # a. Let i
be an optimal vote of a with respect to P, and A be the j-partition where each player votes
their optimal vote with respect to P (thus T4(a) =1i). Then V(A) = v(P) = vy, (since a is
the dictator). Also if B is any other j-partition such that Tg(a) = i, then v(B) = vy, also.
This is because if it wasn’t v;, then all the other players would do better than they did with
A contradicting the fact that their vote in A was their optimal vote. This is a contradiction
and so Vp is manipulable for some P.

A

This result does not hold when only single-peaked preferences as defined in definition 5
are considered. This is seen in this simple example (see also Moulin (1980)).

Example 6 Consider the (3,3)-game, V|, where V(A) = vy if Ay = N and V(A) = vy if
Az = N and V(A) = vy otherwise. Clearly this game does not have a passer if |[N| > 1.



Then each voter a has an optimal vote of h where v} = v,. This is clearly optimal if h = 2
since a is a vg-passer at level 2. If h # 2 then supporting at level h will guarantee her first
choice when it is possible and her second choice otherwise. Notice this would not be an
optimal voting strategy if the player had been allowed to prefer v; first and v3 second, since
if A= ({a},0, N\ {a}), a would be better by decreasing her level of support to 3.

3.2. Games with Preferences

A simple well-known observation that can be drawn from definition 5 is that while a
player’s most desirable outcome can be any outcome, her least desirable outcome must be
one of the extreme choices.

Proposition 1 If P, is a preference function for voter a on a (j, k)-game, then P71(k) €
{vhvk}'

If in addition a player’s most desired outcome is also one of the extreme choices, then her
preferences must be in order or reverse order of the order on the outcomes and this player
has no need to manipulate since she always has a universally optimal vote. This is seen in
the next proposition.

Proposition 2 Consider a (j, k)-game. If a € N is such that vi = vy then P,(v;,) < P,(vs,)
if and only if 11 < 19 and furthermore voter a has a universally optimal vote of level 1.
Similarly, if vi = vy then P,(v;,) < P,(vi,) if and only if iy > iy and voter a has a universally
optimal vote of level k. In either case the game is not manipulable by a.

PROOF: Suppose P,(v1) = 1, if 1 < 43 < i3 < k then v;, is between v* = v; and v;, so
P,(v;,) < Pa(v;,). Next suppose A and B agree outside of a with T4(a) = 1. Then Ty < Tp
pointwise and hence by monotonicity V(B) < V(A) and hence P,(V(A)) < P,(V(B)). A
similar argument holds with P,(v;) = 1.

JAN

Proposition 3 If player a has a universally optimal vote of level i then there exists a j-
partition A with V(A) = v} and Ta(a) = 1.

PROOF: Assume the contrary. As V' is exhaustive there exists a j-partition B with Tg(a) # i
and V(B) = vi. Let A be the j-partition that agrees B outside of a and T4(a) = 1,
as V(A) # v = P;!(1), player a cannot have a universally optimal vote of level i, a

contradiction.
YA

The next corollary is now immediate.

Corollary 1 If V(A) # v} for all j-partition A with Ty(a) =i then player a does not have
a universally optimal vote at level 1.

Recall that passers, and dictators as a particular case, for exhaustive (j, k)-games are
only possible if j > k and if they exist they are unique.

Proposition 4 If a is a v,:-passer at input level i then player a has a universally optimal
vote at level 1.



Proor: Clearly, 1 = P,(v}) = P,(V(A)) < P,(V(B)) for all B that agrees with A outside
of 7.

A

For this we get the following corollary which gives us a converse of theorem 1.

Corollary 2 A (7, k)-game with preferences is not manipulable if it has a dictator.

PRroOF: Every voter other than the dictator is a a null voter, and as was noted earlier, any
input level 4 is a universally optimal vote for them. In addition, the dictator is a v,.-passer,
so has a universally optimal vote.

A

The next result is a simple test for deciding if a given player has a universally optimal
vote.

Proposition 5 Level input ¢ is not a universally optimal vote for a if there exist j-partitions
A and B that agree outside of a with Ty(a) =i and P,(V(B)) < P,(V(A)) and a j-partition
C such that V(C) = v} with Te(a) =i

PrROOF: V(B) is preferable to V(A) for a, thus ¢ is not a universally optimal vote for a.

JAN

The precise technical test for checking if a player has a universally optimal vote follows.

Proposition 6 Player a has a universally optimal vote at input level i if and only if the
following conditions hold:

o V(A) =} for some A with Tx(a) = i,

o for all A" with TA/(a) i and V(A" < v} it yields V(B') = V(A") or V(B') > v} with
P,(V(A") < P,(V(B')) for all B' that agrees A’ outside of i and Tp/(a) < i, and

o for all A" with TAH( ) =1 and V(A") > v it yields V(B") = V(A") or V(B") <wv
with P,(V(A")) < P,(V(B")) for all B"” that agrees A" outside of i and Tpr(a) > i.

The second and third parts of the previous result essentially say that: if a changes her

vote to the immediate higher input level, then v, must be on the right of her ideal point v
and either there is no gain for V' or the gain for V is big enough to reach the left part of
her ideal point where the outcomes are less preferred to the initial one. Analogous comment
follows if a changes her vote to the immediate lower input level.
PROOF: (=) The first part follows from proposition 3. If a has a universally optimal vote
at input level ¢ and only she changes her vote in the partition to another consecutive level
of approval, then the image for V' of the new partition cannot be better than the previous
value, which does not happen if the V' has the same value over the two partitions or the new
value for V' is a worse outcome for a. By monotonicity of V' only vote changes for a in the
consecutive inputs of ¢ need to be considered.

(<) Just observe that V(A’) is at least as preferable as V(B') for a and V(A”) is at least
as preferable as V(B”) for a. Thus a has a universally optimal vote for a. The reasoning for
the second part is analogous.



The next result is a consequence of previous result for smooth (7, k)-games.

Proposition 7 A smooth game with preferences is manipulable for player a if and only if

e there exists an input level i such that Ta(a) =i and V(A) = vl & {vy, v} for some A,
and

o there exists either A" with V(A") < v, Ta/(a) = i that agrees B' outside of A" with
Tp(a) =h <i with V(B') > V(A") being consecutive output values, or
A" with V(A") > v}, Tan(a) = i that agrees B" outside of A" with Tgr(a) = h > i with
V(A") > V(B") being consecutive output values.

PROOF: («=) V(A) = v} ¢ {v1, v} for some A otherwise the game would not be manipulable
for a (proposition 2). In the first case of the second item the condition V(A") < v* combined
with smoothness implies v} > V(B') > V(A’). Thus P,(V(B')) < P,(V(4’)) and therefore
input level 7 is not a universally optimal vote for a. In the second case of the second item
the condition V(A”) > v¥ combined with smoothness implies V(A”) > V(B") > v*. Thus
P,(V(B")) < P,(V(A”)) and therefore input level 7 is not a universally optimal vote for a.

(=) As the game is manipulable for a, v¥ ¢ {v;, v} (Proposition 2). As V is exhaustive
it exists A with V(A) = v}. Let ¢ be any input level such that T4(a) = i. As the game is
manipulable, it exists A’ with Ty/(a) =i and V(A’) # v} (Proposition 4).

Assume first V(A’) < ovf, as the game is smooth and manipulable, input i is not a
universally optimal vote for a, thus it exists B’ with V(B’) > V(A’) being consecutive and
with B’ and A’ agree outside of a for some h = Tp/(a) < i.

The second case, V(A") > v} is analogous.

A

The “or” condition above just expresses that voter a is not null at input levels ¢ — 1 or ¢
over some partition A with Tx(a) =i and V(A) # v}

Let’s consider the simplest case for which manipulability is possible. This means that
the (j, k)-games must have at least three outputs (k = 3, because of proposition 2) and the
minimum possible choices we can select for inputs and number of voters is 2 (j = n = 2).

A careful enumeration and the use of the above propositions for these three parameters
leads to the following conclusion:

1. the number of (2,3)-games with preferences for 2 voters is 80,

2. 52 of these games are not manipulable: 20 of them because the top choice preference
for the two voters is not vy (proposition 2), while the remaining 32 have v, as the top
choice preference for at least one of the voters,

3. the remaining 28 games are manipulable.

4. The general case: existence of a Nash Equilibrium with pure strategies

An interesting aspect of the presence of single peaked preferences for players in a (7, k)-
game with preferences is how it affects the existence of Nash equilibrium with pure strategies
(see Yamamura and Kawasaki (2013) for this observation in a different setting). Throughout
the paper we will use NE to stand for Nash equilibrium with pure strategies. To see this,
consider the very simple case of an anonymous (2, 3)-game with just two voters:
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Example 7 Let V be a (2,3)-game with N = {a,b} and suppose V(N,0) = v,V (D, N) =
vs, V({a}, {b}) = V({b},{a}) = va. Then without the single-peaked requirement, this game
could have no NE if a’s top preference is vy, but b likes that outcome the least. However,
under single peaked preferences, b’s preferences would not be permissible by proposition 1.

In fact as we shall see in this section and the next, (j, k)-games with preferences will
always have an NE if either £k = 3, n = 2 or if j = 2 and the game is anonymous. We will
see that for games with n > 3 it is possible to have no NE’s.

The simplest case to see the existence of an NE is when k = 3.

Theorem 2 Every (j,3)-game has an NE.

ProOOF: Let N; = {a € N : P,(v;) = 1}, so Ni, Ny and N3 form a partition of N. Players
in N; for ¢ € {1,3} can do no better than voting approval level 1 or j respectively so their
votes can be fixed. There are two cases. If there is a j-partition A such that N; C A; and
N3 C A; with V(A) = vy, then this is an NE. This is because players in Ny have their first
choice and the other players never have an incentive to change their votes.

Now suppose no such j-partition exists, then further subdivide Ny into Nj = {a € N :
P,(v1) =2} and NJ = {a € Ny : P,(v3) = 2}. Let A= (NyUNS,0,...,0,N3UNJ). This
is an NE since no voter in N, can achieve their first preferred outcome so they can do no
better than voting as extreme as possible for their second preferred choice.

A

Next we show that in all two-player games, there is an NE. Consider a two-player (j, k)-
game with preferences where the two players are denoted a and b. Let {cp;}1<n<ji<i<j be
the bidimensional matrix where h denotes the input level chosen by voter a and i denotes
the input level chosen by voter b and ¢;,; is the corresponding output.

The monotonicity demanded to V' implies:

Chi > Cpr i whenever h < h' and i <7 (1)

In particular, the greatest output is ¢; 1, while the lowest output is ¢; ;.

For each ¢ = 1,...,j let ¢,; be such that P,(c.;) < Pu(cp;) for all 1 < h < j. So
c.; is the best possible outcome for player @ when player b chooses input level 7. Define
a; in the following way: if v} > c.; then a; = min{h|cy; = c.;} and if v} < c¢,; then
a; = max{h|cp; = c.;}

Lemma 1 Ifi < i then a; > ay.

PROOF: Suppose to the contrary that a; < a,.

First suppose that c,; < v;. Then ¢,y = co,0 < Copir < Capi < V) 80 Py(ca,ir) <
Py(Ca,#) = Pa(cyir). It must be that, cq, i+ = ¢, . But this contradicts the construction of
ay =min{h|cpy = ¢y}

Now suppose that v; < ¢, ;. Then by construction ¢, ; # ¢.; and FP,(cq,) < P, i)
Thus v} > ca, i > Ca,i0 = Cor- By construction of ay, ¢, i < oy and Py(c,, i) < a(cai,i’)-
This implies that ¢, ¢ < Cayi < V) < Capir < Cagie S0 Pal(Cayi) < Pa(Cayir) < P, <
P(cq,,;) which contradicts the fact that P,(ca, i) > P(Ca,,)-
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Thus if a always votes a; in response to b’s vote of 7, then any change in b’s vote will result
in either a not changing his vote or changing his vote in opposite direction as b. Similarly
we can for each h, define b, with b, < b, whenever h < h’. It can now be shown that an

NE (h, i) is achieved if a;, = h and b,, = 1.

Theorem 3 Every two-player (j, k)-game with preferences has an NE.

Proor: We will create a sequence of votes that leads in a finite number of steps to an NE.
Start with <7 = 1 hy = a;,. If by, = 7; then an NE has been achieved. Otherwise b will
change her vote to iy = by, > 71. If a;, = hy then this is an NE, otherwise a will change his
vote to he = a;, < h; which is either an NE or the process continues. Since h,, and i,, are
monotone sequences, this process cannot go on indefinitely and at some point an NE must
be achieved.

A

Notice that not only does every two-player (7, k)-game with preferences have an NE, but
an equilibrium can be achieved by successive unilateral improvements by each player. This
result does not hold in general when n > 3 as the following example demonstrates:

Example 8 A (3,27)-game with 3 voters without an NE.

Voters’ preferences:

P 166>--->12>17>--->27>11>--- > 1.
b 12>11>10>13>--->27>9> ... > 1.
Py: 15>.--->1>16>---> 27.

whenever dots are used it means that the preferences follow the consecutive ordering. The
matrix A with 3% = 27 entries: a;py with 1 <7 <3, 1<h<3and 1< <3, provides the
output for the game for all tripartition. The next three matrices describe the tridimensional
matrix A.

27126 | 16
Qi.h,1 25115 ] 10
24 113 | 5
2312219
aips | 21| 147
201 6 | 4
19 | 17 | 8
Qi p,3 18112 | 3
11 2 |1

To check that, in fact, this game does not have an NE, we are going to list the value of the
game for the best response for each player to the given actions of the two others.

The best response for player 1:

a"171 a'71’2 a.71ﬂ3 a/'72’1 a'1272 a')273 a'7371 a/'7312 a/'73)3

24 20 18 15 14 12 16 9 8
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The best response for player 2:

a1 | @12 | Q1,3 | Q2.1 | 2.2 | A28 | A3.1 | 03,2 | 43,3

16 22 17 10 14 12 13 20 11

The best response for player 3:

alalv' a1727' a/173" a271a' a2727' a2137' a?’)lv' a3727' a/373)'

19 17 9 18 15 10 11 13 o

As there is no number present in the three previous lists we deduce that the game does
not have an NE.

Notice the above example is quite convoluted and it is not easy to see an application of
it in political theory. It does seem possible that large classes of more realistic games may all
contain an NE. In the next section we will determine some special subclasses that have an
NE.

5. Some particular classes with a Nash Equilibrium with pure strategies

We will first show that all anonymous (2, k)-games with preferences must have an NE.
Anonymous (7, k)-games are covered in detail in Freixas and Zwicker (2009).

To do this let V' be an anonymous n player (2, k)-game with preferences. For simplicity
when [ is between 0 and n denote V(1) be the outcome of any 2-partition where [ voters vote
1. (Since V' is anonymous it does not matter which voters vote 1.) It is clear by monotonicity
that V(1) < V(ly) if and only if [; < s.

Proposition 8 FEvery anonymous (2, k)-game with preferences has an NE.

PROOF: Let V be as above. Let [, be such that V(ly) is the lowest outcome that is the
top choice for one of the voters. We will prove by induction on n that V' has an NE whose
outcome is at the level of V(ly) or higher.

Clearly the theorem holds for n = 1 so suppose n > 1.

First suppose that V(ly) = V(n). Thus every player’s top choice is V(n). In this case
every voter voting 1 is an NE whose outcome is at the level of V' (Iy) or higher.

Now suppose that V' (ly) is lower than V'(n). Let a be a voter for which V(ly) is his top
outcome. Let V; be the n — 1 player game where voter a’s vote is fixed at 2. Thus Vj has
the same voters as V minus a, and V;(k) = V(k). Let [y be such that V(I;) is the lowest
level that is the top choice for one of the voters in V;. Since the outcomes of V' and V; are
the same with the possible exception that if V(n) # V(n — 1) then V(n) is not a possible
outcome of Vi, it follows that V(ly) < V(I1). By the inductive hypothesis, there exists a
2-partition A in V; that is an NE at the level of V(I;) or higher. We will call the number of
1 votes in A: . We claim that the 2-partition A’ created from A by adding in @ with a vote
of 2 forms an NE for V. First note that none of the voters of V; will benefit by changing
their vote in A since then they would have benefited in V;. Also a would not do better to
increase his level of support to 1 since a prefers V (ly) to V(I + 1) and V(1) is between V (I)
and V(I + 1) thus by Definition 5 a prefers V(1) to V(I +1) (or the two outcomes could be
the same). Thus V' has an NE whose outcome is at the level of V' (ly) or higher.

A
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Proposition 9 An anonymous (j, k)-game with preferences has an NE if k < ”T*?‘

PrOOF: For an anonymous game one needs to only look at the number of voters at each
J

support level, so if (ny, ne, ..., n;) is such that Z n; = n is a decomposition of n with j parts,
i=1
then it can be uniquely mapped to a single output. Consider the sequence (n,0,...,0,0), (n—

1,0,...,0,1),...,(0,0,...,0,n), if either three in a row or the first two or last two map to
the same output (which must happen if k& < ”TJFS) then the game must have an NE. To see
this suppose that (n4,0,...,0,n;) is the middle of the three (or the first or last in the latter
cases). Then no player can unilaterally change the outcome by changing his or her vote,

thus it is an NE.
YA

Because of the assumption of single peaked preference, if a player has a unilateral incentive
to change his vote it must be in the direction of his top choice. To be clear, if A is a j-
partition such that V(A) > v} then a can only increase the preferability of the outcome
by decreasing his level of support. In general decreasing his level of support (by even one
level) can decrease the preferability of the outcome if it causes the outcome to leapfrog a’s
top choice to a less preferable one. We now consider the case where this doesn’t happen,
i.e. a does no worse by decreasing his level of support by one level. Of course, a completely
analogous situation holds when V(A4) < v?.

Definition 9 In a (j, k)-game with preferences, a player a is said to always have a simple
strategy from above if whenever A is a j-partition such that V(A) > v*, a can do no worse
by decreasing his level of support by one level (if possible). Similarly, a is said to always
have a simple strategy from below if whenever A is a j-partition such that V(A) < v}, a can

do no worse by increasing his level of support by one level.

A player will always have a simple strategy from above in a couple of cases. One, the
game itself does not allow leap-frogging, i.e. the game is smooth. Alternatively, in any game
if the player prefers all the outcomes below her top choice to all the outcomes above her top
choice. In such a situation when V' (A) > v} then she prefers all choices below V(A) to V(A)
and so can do no worse by decreasing her level of support. Notice in the game in Example 8,
voter p; does not always have a simple strategy since V ({p2}, {p1},{p3}) > v;, but he does
worse if he decreases his level of support by one. Similarly, p, does not always have a simple
strategy from below since V({ps}, {p1},{p2}) < v;, but she does worse if she increases her
level of support by one.

The following lemma gives one possible construction of an NE in a game where every
player always has a simple strategy from above. Of course, a similar result holds for games
where every player always has a simple strategy from below.

Lemma 2 LetV be a (j, k)-game with preferences, in which every player always has a simple
strateqy from above. Let A be a j-partition such that for all a € N:

1. if V(A) < v} then either Ta(a) =1 or if A* agrees with A outside of a and Tx-(a) <
Ty(a), then V(A*) > v,
2. if V(A) > v} then Tx(a) = j.

Then A is an NE.

14



PROOF: First suppose Ta(a) # 1 let A* agrees with A outside of @ and Ty« (a) = Ta(a) — 1
then V(A*) > v¥. Since a always has a simple strategy from above a would do no worse than
decrease her level of support in A* by one level and hence has no incentive to increase her
level of support in A. Also if Ta(a) # j then V(A) < v so a has no incentive to decrease
her level of support. Thus A is an NE.

A

Proposition 10 If in a (j, k)-game with preferences all the players always have a simple
strateqy from above or all the players always have a simple strategy from below, then the
game has an NE. In particular, all smooth games have an NE.

Proor: We will show it for games where all the players always have a simple strategy from
above, since an analogous argument holds for simple strategies from below. First, order
the players aq,as,...,a, so that v;il < U;Q whenever i < i5. Start with the j-partition
Apir = (0,...,0,N). If V(A,41) > v; then no player has incentive to increase their level
of support and A, is an NE. Otherwise construct the j-partition A,, which agrees with
A, 41 outside of a,, and T4, (a,) = 1, is the highest level of support that a, can give and still
satisfy the condition: V(A,) < vy . If V(A,) > v; , then A, satisfies the conditions of
lemma 2 and is an NE. Otherwise, continue the construction by allowing a,_; to increase his
level of support up to the highest level ¢/ < j such that the obtained j-partition A,,_;, which
agrees with A, outside of a,_; and T,_, (an—1) = 7, fulfills the condition: V(A,_1) <wv; .
Again if V(A,—;) > v;  then by lemma 2, A,_; is an NE. Otherwise the construction
continues in the same manner. Either the process stops at an NE or A; is constructed so
that V(A4;) < wv; and hence V(A;) < v for all k, 1 <k < n and hence by lemma 2 is an
NE.

A

Suppose that V' is a game in which all players prefer all the outcomes above their top
choice to all the outcomes below their top choice. It is worth noticing that sometimes an
NE can be rather unsatisfactory for n — 1 voters. Assume for example that A and B are
j-partitions that agree outside of a; with T4(a1) = j, Tg(ay) = j — 1 and Tg(z) = 1 for
all x # ay. Players ag, ..., a, feel very unsatisfied, although none of them can unilaterally
change the outcome for the better.

Notice since examples 1, 2, 3, and 5 are all smooth, they must all have an NE.

If we further assume that a game is strongly smooth then we can in fact easily find an
NE as the following proposition shows:

Proposition 11 Strongly smooth (j, k)-games with preferences have an NE in which all
voters vote either 1 or j.

PROOF: Let a € N, for any j-partition C', let C’ and C” be j-partitions that agree with C'
outside of a with a € C] and a € CJ. Then since V' is strongly smooth either V(C) = V/(C")
or V(C) = V(C"). Thus in all situations, a player can change her level of support to either
1 or j without changing the result.

Let V* be the (2, k)-game defined from V as follows, V*(A;, A;) = V(A) for any j-
partition A with A; UA; = N. The strongly smooth condition on V' guarantees that V* will
be smooth and so by proposition 10 it has an NE. The corresponding j-partition is also an
NE in V.
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A notion of equilibrium outcome in other types of voting games with single-peaked pref-
erences has been studied in Ortufio-Ortin (1997) and Yamamura and Kawasaki (2013). Al-
though these models are different from ours, the typical property of NE in those contexts
with single peaked preferences is that voters vote for a radical alternative. However, outside
the class of strongly smooth (j, k)-games there is no a clear evidence that players wish to
radicalize their votes. When there are several possible outcomes depending on a player’s
vote, it could perfectly happen that they prefer some intermediate outcome and therefore
these players would not necessarily want to radicalize their votes.

6. Conclusion and Future Work

This paper looks at the situation where voters have multiple options that are naturally
ordered, and there are more than two ordered outcomes. We look at these situations from
the point of view of the voter, and assume that she has her own preferred outcomes and may
not have a vote that accurately represents her preferences. In fact, if the voter’s top choice
is anything other than one of the extreme choices, it will almost certainly be the case that
she will not have a universally optimal vote.

In section 1.1 we see many diverse situations where this could occur. We define what
it means for a game to be manipulable by a player. This occurs when a voter’s best vote
depends on his belief about what the other voters are going to vote. This can only occur
when the voter’s top choice is not one of the extreme choices. Intuitively, if the voter’s top
choice is a middle choice, then she is very likely to have no universally optimal vote, unless
she either has no power or all the power in the vote. This leads to the well-studied issues
from social choice theory.

Finally, we looked at the existence of an NE in these games. We saw many situations that
guarantee the existence of an NE. For example, an NE must occur when the game is smooth,
when £ = 3 or n = 2 or in anonymous games when j = 2 or k is too small. However, we did
see an example of a game with no NE. Future work would be to extend these conditions. In
particular, we conjecture that all anonymous games must have an NE.
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