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From Galois to Hopf Galois: Theory and Practice

T. Crespo, A. Rio, and M. Vela

ABSTRACT. Hopf Galois theory expands the classical Galois theory by con-
sidering the Galois property in terms of the action of the group algebra k[G]
on K/k and then replacing it by the action of a Hopf algebra. We review
the case of separable extensions where the Hopf Galois property admits a
group-theoretical formulation suitable for counting and classifying, and also to
perform explicit computations and explicit descriptions of all the ingredients
involved in a Hopf Galois structure. At the end we give just a glimpse of how
this theory is used in the context of Galois module theory for wildly ramified
extensions.

1. Introduction

A Galois extension is an algebraic field extension K/k that is normal and
separable. The significance of being a Galois extension is that K/k has a Galois
group G and obeys the fundamental theorem of Galois theory: there is a one-to-
one correspondence between the lattice of its intermediate fields and the lattice of
subgroups of G.

Hopf Galois theory arises as an attempt to expand classical Galois theory to
more general settings. In order to enlarge the category of algebraic objects attached
to field extensions, since we have a fixed base field k, the group G leads to the
group algebra k[G], which is a cocommutative Hopf algebra with comultiplication
A(g) = g®g, counit €(g) = 1 and antipode S(g) = g1, for all g € G. The essential
requirement to proceed is then fulfilled: the lattice of sub-Hopf algebras of k[G] is
in one-to-one correspondence with the lattice of subgroups of G.

Putting this machinery to work, the Galois action of G in K as automorphism
group extends linearly to an action k[G] x K — K which provides a Hopf action
i : k[G] — Endg(K). Then, the condition of being a Galois extension can be
reformulated in the following way:

K/k is Galois <= (1,p): K ®; k[G] — Endi(K) is an isomorphism,

where (1, u)(s ® h)(t) = s - (u(h)(t)). Now, in order to generalize we just have to
replace k[G] by an object of a suitable algebraic category. From now on, we restrict
ourselves to the case of finite extensions.
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The concept of Hopf Galois extension is due to Chase and Sweedler [7]: if K/k is
a finite extension of fields, we say that K/k is a Hopf Galois extension if there exists
a finite cocommutative k—Hopf algebra H and a Hopf action p : H — Endg(K)
such that

(1I,p) : K @, H — Endy(K) is an isomorphism.

That is, K is an H-module and the endomorphisms of K are all obtained from the
homotheties and the Hopf action. From this definition we get dim H = [K : k].
In the Hopf Galois setting the following fundamental theorem holds:

THEOREM 1.1 ([7] Theorem 7.6). Let K/k be a Hopf Galois extension with
algebra H and Hopf action p: H — Endg(K). For a k-sub-Hopf algebra H' of H
we define

K" ={z e K| uh)(z)=e(h) -z for all h € H'},
where € is the counity of H. Then, K™ is a subfield of K, containing k, and

Fu : {H' C H sub-Hopf algebra} — {Fields E|kCFECK}
H — K

is injective and inclusion reversing.

If Fy is also surjective, we say that the fundamental theorem holds in its strong
form. In the classical case, we recover the familiar Galois correspondence theorem
taking into account Proposition Bl below.

The theory of Hopf Galois extensions was first considered to study purely in-
separable field extensions (see [7]). Chase found that the fundamental theorem
of Galois theory in its strong form does not hold for Hopf Galois structures on
purely inseparable extensions of exponent > 1. That led Chase in [8] (and later in
[9]) to develop a fundamental theorem of Galois theory for purely inseparable field
extensions where the Hopf Galois action is by the Hopf algebra H; representing
the truncated automorphism scheme of K/k. But K/k is not a H;-Hopf Galois
extension, because if [K : k] = n, then dimy(H;) = n".

Greither and Pareigis [I7] recovered the notion of Hopf Galois extension to
look at separable extensions. When we deal with separable field extensions, the
technique of Galois descent shows that the property of being Hopf Galois is encoded
in the Galois group of the normal closure. If we assume that K/k is separable and
Hopf Galois, then (K ®, K)/f( is also Hopf Galois, where K is the normal closure
of K/k. To prove this one considers the K —Hopf algebra K @, H. If we denote
G = Gal(f{/k), then the action of H on K is recovered by identifying H and K
with the fixed rings (K ®j H) and (K ®) K)%, where G acts on the left factor
as automorphism group. This leads to the Greither and Pareigis characterization
and classification of Hopf Galois structures on separable field extensions, achieved
by transforming the problem into a group-theoretic problem involving the Galois
group G.

THEOREM 1.2 ([17] Theorem 2.1). Let K/k be a separable extension of degree
n and let K /k be its Galois closure, G = Gal(K /k) and G' = Gal(K /K).

K/k is a Hopf Galois extension if, and only if, there exists a regular subgroup
N of S, normalized by G, where G is identified as a subgroup of S,, via the action
of G on the left cosets G/G'.
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The identification of G as a subgroup of S,, mentioned in the theorem is given
by
A: G- Sym(G/@)
g— (Ag 1 2G' — gzG").
Any enumeration of the left cosets provides an identification of G and A(G) as a
transitive subgroup of the symmetric group S,,.

For a separable extension K/k, say that the fundamental theorem of Galois
theory holds in its strong form for K/k if there exists a Hopf Galois structure on
K /k for which the strong form holds. In [17] a class of non-Galois extensions is
identified for which the strong form also holds. We say that K/k is an almost
classically Galois extension if there exists a regular subgroup N of S,, normalized
by G and contained in G, where G is identified as a subgroup of .S,, as in Theorem

~ THEOREM 1.3 ([17] 4.1). Let K/k be a separable extension of degree n and let
K /k be its Galois closure, G = Gal(K/k) and G' = Gal(K/K).

K/k is almost classically Galois if, and only if, G' has a normal complement
N in G.

In particular, if K/k is Galois, then G’ = 1 and has normal complement N = G.
The following theorem provides a justification for the notion of almost classically
Galois extensions.

THEOREM 1.4 ([I7] 5.2). If K/k is almost classically Galois, then there is a
Hopf algebra H such that K/k is Hopf Galois with algebra H and the main theorem
holds in its strong form, namely there is a bijective correspondence between k-sub-
Hopf algebras of H and k-subfields of K.

In some sense, almost classically Galois extensions are too similar to classical
Galois extension and to get a better understanding of the significance of the Hopf
Galois property we should work with separable extensions being Hopf Galois but
not almost classically Galois. In degree < 7, there are no such extensions, as we shall
show in more detail in sections 2 and 4 below. The smallest example can be found
in degree 8 over the rational field, as we show in [15]. An example of degree 16 was
constructed in [17], where the base field k is a quadratic extension of Q. In [16],
we prove that the class of extensions for which the fundamental theorem of Galois
theory holds in its strong form is larger than the class of almost classically Galois
extensions by constructing a non-almost classically Galois extension for which the
strong form holds.

Helpful for deciding the existence of a Hopf Galois structure on K/k is a refor-
mulation of Theorem [[.2] due to Childs, that reverses the relationship between G
and N: instead of looking for regular subgroups of \S;, normalized by G one should
look for embeddings of G into the holomorph Hol(N) = N x Aut N of a group N
of order n (see [11] Proposition 1). The group Hol(N) has a natural embedding in
Sym(N) ~ S,,. Since Hol(N) is much smaller than S,,, this breaks the problem into
a collection of problems, parametrized by the isomorphism classes of groups of order
n and more suitable to be considered for a systematic computational treatment.

THEOREM 1.5. Let K/k be a separable extension of degree n and let K/k be
its Galois closure, G = Gal(K/k) and G' = Gal(K/K). K/k is a Hopf Galois
extension if, and only if, there exists a group N of order n such that G C Hol(N),
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where G is identified as a subgroup of S, via the action of G on the left cosets
G/G.

As an example of the significance of this reformulation, let us assume that
K/k is a separable extension of degree 6 with Galois group isomorphic to Sy. We
consider Hol(Cg) and Hol(S3). Since the first one has order 12 and the second one
has order 36, we immediately conclude that K/k is not Hopf Galois.

Theorem [[LAlmight be considered as an “algorithmic” procedure to check if the
separable extension K /k is a Hopf Galois extension:

Step 0: Check if G’ has a normal complement N in G. In that case, K/k
is almost classically Galois.

Step 1: Let N run through a system of representatives of isomorphism
classes of groups of order n.

Step 2: Compute Hol(N) C S,,.

Step 3: Check G C Hol(N) C Sym(G/G’) such that G’ C G is the stabilizer
of a point.

In degrees n < 5, Greither and Pareigis showed that all Hopf Galois extensions
are either Galois or almost classically Galois and they completely describe the Hopf
Galois character of K/k according to the Galois group (or the degree) of K /k. The
above algorithmic procedure allowed us to go further and proceed with the small
case n = 6 to see how the Hopf Galois property behaves according to the sixteen
different Galois types [15]. The results for n = 6 are described in Section 4 below.

The search for new (and small) examples of Hopf Galois extensions which are
not almost classically Galois or extensions with small Galois group not being Hopf
Galois extensions led us to the study of intermediate extensions, namely fields F
such that K C F C K. If K /k is Hoptf Galois, since I?/k is Galois, we are dealing
with extensions within Hopf Galois extensions. If the starting extension K/k is not
Hopf Galois, we wonder how far we should go to achieve the Hopf Galois property.
None of these questions makes sense for the classical Galois property and are specific
to the broader context of Hopf Galois property. In all the small degree cases we
studied, we found out that when K /k is already Hopf Galois, all the intermediate
extensions F/k are also Hopf Galois. See Section 5 for a summary of our results for
n = 4,5,6. But in general, this is not always the case, as we prove in [15], where
we characterize the Hopf Galois property for intermediate extensions.

The group-theoretical description of a Hopf Galois extension also provides an
explicit description of the corresponding Hopf algebra: from N we obtain the Hopf
algebra H = K [N]¢ of G-fixed points in the group algebra K [N], where G acts
on K by field automorphisms and on N by conjugation inside S,,. This H is a
K-form of K[N], that is H ® K ~ K[N]. As an example, in subsection we
describe in the above way, namely via descent, a Hopf algebra for the extension
Q(+v/2)/Q. Analogous computations could be done for each of the Hopf Galois
extensions considered in our work, in order to determine the attached Hopf algebra.

We complete this introduction with a review of some concepts involved in the
definition and characterization of Hopf Galois extensions, as well as the explicit
examples we have mentioned before. In the following sections we address small
degree extensions and intermediate extensions.

1.1. Normal Complements. Our first check in a separable field extension
is on the almost classically Galois property, where we should look for a normal
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complement of a certain subgroup. In the case of extensions K/k of degree 4,

there is nothing else to be done: in each case, if K is the normal closure and
G’ = Gal(K/K), then G’ has normal complement N in G = Gal(K/k).

Degree 4
G | Sise | K/k R
Cy 4 | Galois 1,G
Vy 4 | Galois 1,G

Doy 8 almost classically Galois | Cs, Cy
Ay 12 | almost classically Galois | C3,Cy x Cy
Sy 24 | almost classically Galois | S3,Co x Cs

We include here a couple of generic results, just to remark that the family of
Frobenius groups is the best suited for this kind of considerations.

LEMMA 1.6. Let us consider a dihedral group
Do, = (s,r|s* =1, " =1, sr =r"1s)

and a subgroup G’ of order 2. If G’ is not normal, then the cyclic subgroup N = (r)
18 a normal complement of G'.

PROOF. The subgroups of Dy, of order 2 which are not normal are (r¢s), with
0 <i<n-—1,and we have (ris) N (r) =1 for all 4. O

In fact, dihedral groups of order 2n, with n odd, are Frobenius groups with
complement of order 2. A Frobenius group is a transitive permutation group on a
finite set, such that no non-trivial element fixes more than one point and some non-
trivial element fixes a point. The Frobenius complement is the stabilizer of a point.
Elements in no stabilizer together with the identity element form a normal subgroup
called the Frobenius kernel. The Frobenius group is the semidirect product of these
two subgroups.

LEMMA 1.7. Let F be a Frobenius group. If N is the Frobenius kernel and G’
is the Frobenius complement, then N is a normal complement of G’ in F. Hence
if I?/k is a Galois extension with group F' and K is the subfield off{ fized by G,
then K/k is almost classically Galois.

The preceding lemma will be applied in Section 2 to the Frobenius groups of
orders 20, 21, 42, 55 and 110.

In many small degree cases, we have a unique conjugacy class of transitive sub-
groups of S, isomorphic to G. Then we can work in Hol(/N) modulo isomorphism,
which is usually much easier.

PROPOSITION 1.8. Let K/k be a separable extension of degree n and let I?/k be
its Galois closure, G = Gal(K /k), and &' = Gal(K/K). Assume that all transitive
subgroups of S, isomorphic to G are in the same conjugacy class.

Then, K/k is a Hopf Galois extension if and only if there exists a regular
subgroup N of S,, such that Hol(N) has a transitive subgroup Gy isomorphic to G.
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PROOF. Let N be a regular subgroup of S,, such that Hol(/V) has a transitive
subgroup G isomorphic to G. We consider the embedding A : G — S,,. For some
o € 5, we have

MG) = 0G0 C oHol(N)o~! = Hol(cNo ™),
and o No 1! is a regular subgroup of S,,. ]

We list here some examples of holomorphs, many of them used in the small
degree computations. In any case, for reasonably small values of n, we can count
on a software system like Magma to perform explicit computations:

N | C2 Cg C4 CQ X CQ C5 Cﬁ 53
HOI(N) | 02 S3 D2.4 54 F20 D2.6 53 X 53

where Iy denotes the Frobenius group of order 20.

Although the holomorph of a group of order n is smaller than S, it can also
be a rather big group. For example, Hol(Cy x C3 x C5) has order 1344. Since
Aut(Cs x Cy x O) ~ GL(3,2) = SL(3,2), this holomorph has a simple subgroup
of order 168 and it is not solvable. For the easiest group families the sizes of the
holomorphs are easily computed:

o Aut(Cy) ~ C,n), therefore Hol(C),) is solvable and has order np(n);
o Aut(Dq,) ~ Aff(Z/nZ) = {ax + b | ged(a,n) = 1} and has order np(n).

Therefore, Hol(Ds,,) has order 2n%p(n).

In both statements, ¢ denotes the Euler function.

1.2. Hopf algebras via descent. Let us see how in practice from the regular
group N in Greither and Pareigis theorem we recover the Hopf algebra and the Hopf
action appearing in the definition of Hopf Galois structure.

We consider the extension Q(4/2)/Q. If we denote o = ¥/2 and w € Q a
primitive cubic root of unity, then K = Q(«), its normal closure is K = Q(w, @)
and {1, q,a? w,wa,wa?} is a basis for K/Q The Galois group is G ~ S3 =
(r,0) ={1d, 1,0,0%, 70, 70%}, with

7 K=K o: K- K
W’—>UJ2 W= w
o= o= W

The Galois group G’ = Gal(K /K) is the subgroup G’ = (1) ~ Cy. A left transversal
for S = G/G" is x1 = Id, x5 = 0 and x3 = 2. The left action of G on G/G’ gives
A : G <= B = Sym(S) =~ S3. Therefore, A(G’) is the stabilizer of G’ =1d G’ € S.
Using the above numbering for cosets, we obtain A(7) = (2,3) and A(o) = (1,2, 3).

This extension K/Q is almost classically Galois: the subgroup N = (o) is a
normal complement of G’ in G. We identify N, G’ and G with their images in S3
under A\. We consider

K[N] = {uo Id+uy 0 + ug 0? | u; € K}.

and we look for the elements which are fixed under the G-action: action on K as
described above by field automorphisms and action on N by conjugation:

1d = 1d, o =T10T = 0%, 0% = 10°T = 0,
’1d = Id, =000 =0, %?=0d2
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Therefore,

7(up Id +uro + ugo?) = 7(ug) Id +7(u1)o? + 7(uz)o
o(uo Id +u10 + ug0?) = o(ug) Id +0(uy)o + o(us)o?,
if,

and an element of K[N] is fixed by G if, and only if,

T(ug) = ug

T(u1) =us  7(u2) = uy
o(ug) =ug o(ug

)=u1 o(uz) = us.
This gives
up €k and  uy,us € K9 = k(w),
and for u; = a + bw, with a,b € Q, we have us = 7(u;) = a + bw?. Putting all
together, the corresponding Hopf algebra for K/Q is

H = K[N¢ = {uold+(a+bw)o + (a+ bw?)o? | up,a,b € Q}
= (Id,o + 0% wo +w?c?)q.

This algebra is described in [I7] as Q[e, s]/(35% + ¢ — 1, (2¢+ 1)s, (2c + 1)(c — 1)).
The Hopf action p : H — Endg(K) is given by p(h)(xz) = h - z. Explicitly, if
h = hold +hi(o + 02) + ha(wo + w?0?) € H and x = ag + a1a + aza? € K, then

h-x = hox+ hi(o(z) + 0%(x)) + ho(wo(z) + w?o?(z)) =
= ao(ho + 2h1 — hz) + (ll(ho — h1 — h2) o+ GQ(h() — hl + 2h2) a2.

2. Classifying Hopf Galois structures

The group theoretic description of Hopf Galois extensions given by Greither
and Pareigis showed that there exist non-trivial Hopf Galois structures for separable
field extensions and opened the question of counting and classifying Hopf Galois
structures for a given separable field extension.

The fact that K/k is classically Galois, or almost classically Galois, does not
mean that the strong form of the fundamental theorem of Galois theory holds for
all Hopf Galois structures on K/k. The first such example is due to Greither and
Pareigis for K/k any classical Galois extension with non-abelian Galois group G.
In this case, there is another way than A to embed G inside Sym(G):

p: G — Sym(G/G’') = Sym(Q)

with p(o)(t) = 7o~". This is a regular embedding and p(G) is normalized by
A(G). Therefore, if K/k is a non-abelian Galois extension, then A(G) # p(G) and
there are at least two different Hopf Galois structures, corresponding to the regular
subgroups N1 = A(G) and N2 = p(G). In fact, p(G) correspond to the classical
action of G on K and by considering A(G) one gets the following result.

THEOREM 2.1 ([17] Theorem 5.3). Any Galois extension K/k can be endowed
with an H-Galois structure such that there is a canonical bijection between sub-Hopf
algebras of H and normal intermediate fields k C F C K.

In subsection we show that non-unicity of Hopf Galois structures can be
found already in a classical Galois extension K /k with Galois group G = Cy x Ca,
the Klein 4-group. In that example we see that the four different Hopf Galois
structures provide four different images ImJFy inside the lattice of subfields of K /k.
And we only get surjectivity in the classical case. We have already mentioned that
we can have surjectivity for F for non-classical Hopf Galois structures: for example

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



36 T. CRESPO, A. RIO, AND M. VELA

the almost classically Galois extensions. The example in subsection Bl shows that
we can also have different Hopf Galois structures with the same image for F.

2.1. Counting Hopf Galois structures. The equivalent condition to the
Hopf Galois property for separable field extensions given in Theorem gives a
bijection between isomorphism classes of Hopf Galois structures on K /k and regular
subgroups N of S, normalized by G (see [17] Theorem 3.1). The following theorem
makes more precise the relationship between G and N.

THEOREM 2.2 (Byott [I] Proposition 1). Let G be a finite group, G' C G a
subgroup and A : G — Sym(G/G") the homomorphism corresponding to the action
of G on the left cosets G/G'. Let N be a group of order |G : G'] with identity
element en. Then there is a bijection between

N ={a: N < Sym(G/G") such that a(N) is reqular}
and
G ={B:G < Sym(N) such that B(G') is the stabilizer of ey }.
Under this bijection, if « € N corresponds to B € G, then «(N) is normalized by
MG) if and only if B(G) is contained in Hol(N).

To count Hopf Galois structures on a separable extension K/k with normal
closure K, and G = Gal(K/k), G’ = Gal(K/K), we seek regular subgroups of
Sym(G/G’) normalized by A(G). This counting is made more treatable by the
following proposition, which is a corollary of Theorem (see the sentence before
Proposition 1 in [1]).

PROPOSITION 2.3. Let K/k be a separable extension with normal closure K,
and G = Gal(K /k), G' = Gal(K/K). Let S be the set of isomorphism classes of
groups N with |[N| =[G : G']. The number of Hopf Galois structures on K/k is

s(G,G") = Y eG,N)

{N}eS

e(G, N) being the cardinality of the set of equivalence classes of embeddings B of G
into Hol(N) such that B(G') is the stabilizer of e, modulo conjugation by elements
of Aut(N) C Hol(N).

The set S parametrizes the types and e(G, N) is the number of Hopf Galois
structures of type N: Hopf Galois structures on K/k with k—Hopf algebras H such
that K @ H ~ K [N]. Although the structure of the Hopf algebras acting on K/k
depends on the extension, the question of how many Hopf Galois structures there
are on a given K/k depends only on G and G’. And much remains unknown on
this question.

The first case to counsider is G’ = 1, namely the case of classical Galois ex-
tensions, and a natural question is to characterize when the classical structure is
the unique one. As it was mentioned above, all non-abelian Galois extensions are
examples of non-unicity of Hopf Galois structures. We find unicity in a narrow
class of abelian extensions.

PROPOSITION 2.4 (Byott [I] Theorem 1). A Galois extension K/k with Galois
group G has a unique Hopf Galois structure if, and only if, n = |G| is a Burnside
number, that is, (n,p(n)) = 1, where ¢ denotes the Euler function. In particular,
all these extensions are cyclic.
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We also find unicity of Hopf Galois structure in the case of extensions of prime
degree.

PROPOSITION 2.5 (Childs [1T] Theorem 2). If K/k is a separable field extension
of prime degree, then

K/k is Hopf -Galois <= Gal(K/k) is solvable.

Besides, in this case K/k is almost classically Galois and has a unique Hopf Galois
structure.

Therefore, we can completely classify the extensions of small prime degree.

Degree 3. Hol(C3) = S3

Gal(K /k) | Size | K/k | N = 3-Sylow of G
C3 ~ Aj 3 | Galois N=G
Dy3~ 83| 6 |almost classically Galois | G' = (s), N = (r)

Degree 5. Hol(Cs) = Foo

Gal(K /k) | Size | K/k | N = 5-Sylow of G
Cs 5 | Galois N=G
Ds.5 10 | almost classically Galois | G’ = (s), N = (r)
Fy 20 | almost classically Galois | G’ = Frobenius complement
N = Frobenius kernel
Ay 60 | not Hopf Galois
S5 120 | not Hopf Galois

Degree 7. Hol(C7) = Fyo

Gal(K /k) | Size | K/k | N = 7-Sylow of G
Cs 7 Galois N=G
Dy.7 14 | almost classically Galois | G' = (s), N = (r)
Fyq 21 | almost classically Galois | G’ = Frobenius complement

N = Frobenius kernel

Fyo 42 | almost classically Galois | G' = Frobenius complement
N = Frobenius kernel

PSL(2,7) | 168 | not Hopf Galois
Az 2520 | not Hopf Galois
S 5040 | not Hopf Galois
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Degree 11. Hol(C11) = F110
Gal(K/k) | K/k | N = 11-Sylow of G
C11 Galois N=G
Do.1q almost classically Galois | G' = (s), N = (r)

F5s almost classically Galois | G’ = Frobenius complement
N = Frobenius kernel

Fiio almost classically Galois | G’ = Frobenius complement
N = Frobenius kernel

PSL(2,11) | not Hopf Galois
My not Hopf Galois
Aqq not Hopf Galois
S11 not Hopf Galois

When we consider a Hopf Galois extension of degree n, with n a Burnside
number, we know by [I] that the Galois group of its normal closure must be solvable.
But the converse is not true: in degree 15 there are extensions with Galois group
of order 150, which is solvable; but such an extension cannot be Hopf Galois, since
Hol(C15) has order 120.

Back to the case of counting Hopf Galois structures, Kohl realizes a complete
counting for a family of extensions of prime power degree.

THEOREM 2.6 (Kohl [18]). Let p be an odd prime, n a positive integer and k a
field of characteristic 0. Let K = k(a), where XP" —q is the minimal polynomial of
a over k, and let r denote the largest integer between 0 and n such that K contains
a primitive p"th root of unity.

(1) For r < n, there are p" Hopf Galois structures on K/k for which the associ-
ated group N is cyclic of order p™. Of these, exactly p™™(""=") are almost
classically Galois.

(2) Forr = n (i.e. when K/k is a cyclic extension of order p™), there are p
Hopf Galois structures for which N is cyclic of order p™. Of these, exactly one
is almost classically Galois.

n—1

In both cases, these are the only possible Hopf Galois structures on K/k.

For classical Galois extensions, the excluded case p = 2 is treated in [5], where
it is proved that a cyclic Galois extension of degree 2", n > 3, admits 3 -2"~2 Hopf
Galois structures. They are equally distributed among the three possible types: N
can be the cyclic group Can , the dihedral group Dan, or the generalized quaternion
group (o~ and the almost classically Galois structures are of cyclic type. Byott
also proves:

- for a Galois extension of degree p?, there are exactly p distinct Hopf
Galois structures if the Galois group is cyclic and p? if the Galois group
is elementary abelian [1]

- for a Galois extension of degree pq, where p, g are primes and p = 1 mod g,
there are 2¢—1, respectively 2+p(2¢—3), Hopf Galois structures when the
extension is cyclic, respectively non-abelian [3]. For example, this gives 5
distinct Hopf Galois structures for a Galois extension with Galois group
Ss.
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- for a Galois extension whose Galois group is a non-abelian simple group
there are exactly two different Hopf Galois structures [4].

Other cases where the classification has been addressed are Galois extensions
of order 4p, where p is an odd prime [19], Galois extensions with groups G that
are semidirect products of cyclic groups and have trivial centers [13] or Galois
extensions of order mp, where p is prime and m < p [20]. A non-unicity result for
abelian extensions is given in [6], namely that every finite Galois field extension
with abelian group of even order > 4 admits a Hopf Galois structure for which the
associated group N is non-abelian.

2.2. Non-unicity of Hopf Galois structures in a degree 4 abelian ex-
tension. The non-unicity of Hopf Galois structures appears already for Galois
extensions of degree 4. If the Galois group is cyclic, there are 2 distinct structures,
and if the Galois group is elementary abelian there are 4 distinct structures. Let
us show this case in detail.

Let k be a field of characteristic # 2 and K/k a Galois extension with Galois
group G isomorphic to the Klein group:

G~Cy x Cy={(o,7)={1d,0,7,07 =10}

We can write K = k(y/a, vb) with a,b,ab € k* \ k*2. Then, {1, /a, Vb, Vab} is a
k—basis of K and the Galois action is given by

o K— K T: K—K oT : K— K
Va— —a Va—/a Var— —/a
Vb= Vb Vb~ —Vb Vb — —Vb.

If we consider the regular representation A : G — Sym(G) and we take, for example,
the enumeration x; = Id, zo = 0, @3 = 7, 4 = o7, then Ao) = (1,2)(3,4)
and A(7) = (1,3)(2,4) in S4. This identifies G with a regular subgroup of Sy,
the subgroup Vj formed by the identity and the three products of two disjoint
transpositions.

Now, to look for the different Hopf Galois structures of K/k we should look for
regular subgroups N of S4 normalized by V. Taking N = V; we get the classical
Galois structure, which corresponds to the group algebra k[G]. But the three cyclic
subgroups of order 4

Ny ={(1,2,3,4)), Ny =((1,3,2,4)), N3 ={((1,4,2,3))

are also normalized by V. Altogether, these are the 4 different Hopf Galois struc-
tures for K/k. We describe the Hopf algebra corresponding to Ny and the corre-
spondence F of the main theorem in this case.

If we let g1 = (1,2, 3,4), then the Hopf algebra is

Hy = K[N1]9 = {z = agId+a,91 + a2g? + asg} € K[N1] | % = z,Vg € G}.
Since,

g1 = )‘(U)gl)‘(o_l) = (1,2)(3,4)(1,2,3,4)(1,2)(3,4)
g1 = Mg A7) = (1,3)(2,4)(1,2,3,4)(1,3)(2,4) = (1,2,

I
—~
“)—‘
N s

we obtain z € H; if, and only if,
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This gives ag,as € k and a; € k(y/a). Furthermore, if a; = xo + z1v/a, =z; € k,
then a3 = o(a1) = x¢ — x11/a. Therefore, the Hopf algebra is

Hy = K[NM]% = (1, ¢, g1+ 97, Valg1 — g7)).
Since the Hopf action up : Hy — Endg(K) is given by

( Z Cpn) T = Z en(nH1g)) =

neN; neN;
and Idfl(lg) =1d, gl_l(lg) =o1, (¢?)"'(1g) = 7, (¢3)"'(1g) = o, we have the
Hopf action

pr(ag + argr + asg? + asg?)(z) = apx + a107(x) + ap7(x) + azo(x).
Corresponding to the unique subgroup (¢g?) of Nj, the algebra H; has the

unique sub-Hopf algebra, F' = k[(1, ¢?)] = K[(¢9?)], which is 2-dimensional. The
fixed subfield is

KF ={z=u1¢+x1va+xvVb+ax3vab € K | py(h)(z) = e(h)x, Vh € F} =
={z e K| m(g})(zx) =7(z) =2}
:{x€K|$o+$1\/5—I2\/5—x3\/E:x}.

Therefore, 9 = r3 = 0 and = = x + z11/a. Namely, K" = k(\/a).

In this example, the Hopf Galois structure provided by Nj is not classical or
almost classically Galois and the main theorem does not hold in its strong form,
the sub-Hopf algebras only provide a portion of the subfield lattice: the image of
.7:1-[1 is

The remaining portions of the subfield lattice are obtained analogously through N,
and N3. And, of course, the classical structure reflects the whole lattice.

3. The lattice of sub-Hopf algebras and the main theorem

The main theorem concerns sub-Hopf algebras of the Hopf algebra attached to
the Hopf Galois structure under consideration. Since in the separable case all these
algebras are forms of a certain group algebra, the group algebra K [G], we start by
recalling that the sub-Hopf algebras of the group algebra correspond to subgroups
of G.

PropPOSITION 3.1. ([16]) Let k be a field and G a finite group. The sub-Hopf
algebras of k[G] are the group algebras k[T], with T a subgroup of G.

Let us remark that the set of group-like elements of a group algebra k[T is
precisely T and therefore from different subgroups we obtain different subalgebras.
Therefore, with the notation we have been using for separable Hopf Galois exten-
sions, for a subgroup N providing a Hopf Galois structure in K/k,

{N’ subgroup of N} —» {H’ C K[N] sub-Hopf algebra}
N =  K[N]
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is a one-to-one correspondence. If we consider H = K [N]¢, the Hopf algebra
obtained from K[N] via descent, we can define

{N’ subgroup of N} — {H’ C H sub-Hopf algebra}
N = K[NC

where K[N'] = K[N'] n K[N]¢. If N’ is stable under the conjugacy action of
AG) in N, then @ acts in K[N'] and we are considering the fixed points.

The above map is surjective because for a given H' by extension of scalars
we obtain a sub-Hopf algebra of K[N] and via descent we recover H'. We do not
have injectivity in general. For example, in some cases (see the next subsection)
we get K[N']¢ = k = K[{1}]¢ for a non-trivial N’. But if all the subgroups of N
are stable under conjugation by elements of A\(G) (as happened in the examples of
the previous subsection) then we have injectivity. In fact, since N’ and the stable
subgroup ﬂ Mo)N'X(o)~ ! give rise to the same sub-Hopf algebra, we have that

sub-Hopf algebras of H are in bijection with subgroups of IV stable under the action
of A(G) (see [16]). Therefore, the main theorem admits also a group-theoretical
reformulation:

Fn : {Subgroups N’ C N stable under \(G)} — {Fields F' |k C EC K}
N o  KEWN®

is injective and inclusion reversing. For every Hopf Galois structure on K /k we may
define a map F and all of them have image in the same set, the lattice of subfields
of K/k.

3.1. The image of F. In the previous section we have seen that in the case of
biquadratic extensions of Hopf Galois type N ~ Cy; we do not get surjectivity, that
is, the main theorem does not hold in its strong form. In that example, the four
distinct Hopf Galois structures gave rise to different images of the corresponding F.
We have a similar situation when we analyze the five distinct Hopf Galois structures
of a Galois extension with Galois group S3. Since it is non-abelian, we have the
classical structure giving surjective F and another structure of type Ss such that
the image of F is the set of normal intermediate fields, that is k C F C K, with
[F': k] = 2. The remaining three Hopf Galois structures are of cyclic type and the
images of the corresponding F describe each of the cubic subfields (see [16], where
the whole family of dihedral groups Dy, p an odd prime, is treated).

But we can have different Hopf Galois structures giving the same image for
F. For example, if both structures are almost classically Galois then both F are
surjective. This is the case when we take a characteristic zero field k such that
1 =+/—1 ¢ k and we consider a € k with minimal polynomial 2* — a € k. Then,
K = k() /k is a degree 4 separable extension with normal closure K = k(a,1) and
Galois group G isomorphic to the dihedral group Da.q = (s,7[s2 =1, rt =1, sr =
r~1s). We can enumerate the roots of z* — a so that G is identified as a transitive
subgroup of Sy via r = (1,2,3,4) and s = (2,4). The group G’ = Gal(K/K)
is the stabilizer of a point, therefore G’ = (s) (modulo conjugation in G, which
corresponds to rename the roots of the polynomial, or renumbering them). It has
two normal complements in G,

N1 = < > 04 and N2 <7“ ST‘> CQ X CQ,
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so we have two different almost classically Galois structures. Since the main theorem

holds in its strong form, we get two different Hopf algebras H; and Hs such that
Imel = Im]—'HQ:

Hy = {MId+(a+b)r+ Xar? + (a —b)rd | Ao, A2, a,b € k}
= <Id,r+r3a(r—1r3),r2 >

and

Hy = {XMId+Mr?+ (a+ba?)sr+ (a — ba®)rs | Ao, A1,a,b € k) =
< Id,r% sr +1s,20%(sr —r8) >}, .

As for the sub-Hopf algebras, we only have a proper subgroup of Ny, and the fixed
field for the sub-Hopf algebra F} = K[(r?)]¢ is K'' = k(a?). For Ny, we have
three subgroups of order 2, and a priori we can consider three sub-Hopf algebras:

K[(r))%, K[(sr)]® and K[(sr®)].

But only the first one is 2-dimensional, the other two are just k. The first subgroup
is a normal subgroup of G (stable by conjugation), for the other two subgroups the
intersection of their conjugates is trivial.

Again, one may think that almost classically Galois are too similar to classical
Galois extensions and that we have to experiment with Hopf Galois extensions
not almost classically Galois in order to get more information. In [I6] one can see
examples of non-almost classically Galois extensions having surjective F. Therefore,
the main theorem holds in its strong form for a class of extensions wider than the
class of almost classically Galois extensions and the characterization of this class
remains an open problem.

4. Hopf Galois in small degree

In previous sections we have already seen the Hopf Galois classification for
separable field extensions K /k of degree 4 and 5. Let us consider the case [K : k] =
6, where we can see the power of the reformulation in terms of holomorphs given
in Theorem

Since there are only two isomorphism classes of groups of order 6, we just have
to consider Hol(Cg) ~ D¢ and Hol(S3) ~ S3 x S3 ~ Fig : 2. This last notation
follows the naming scheme developed in [14].

None of these holomorphs can have a subgroup of order 24 or bigger than 36,
none of them has a subgroup A4 and Hol(S3) is not isomorphic to the Frobenius
group F36. These facts rule out many possibilities of the list of transitive subgroups
of Sg and the remaining ones correspond to Galois or almost classically Galois
extensions. The following table shows the complete classification and more details
can be found in [15].
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Gal(K /k) | Size | K/k

Cs 6 | Galois

S3 6 Galois

D5 12 | almost classically Galois
Ay 12 | not Hopf Galois

Fig 18 | almost classically Galois
244 24 | not Hopf Galois

S4(6d) 24 | not Hopf Galois

S4(6¢) 24 | not Hopf Galois

Fig:2 36 | almost classically Galois
Fsg 36 | not Hopf Galois

254 48 | not Hopf Galois

As 60 | not Hopf Galois

Fs6:2 72 | not Hopf Galois

S5 120 | not Hopf Galois

Ag 360 | not Hopf Galois

S 720 | not Hopf Galois

5. Intermediate extensions

Now we are interested in intermediate fields K ¢ F € K , since we do not ques-
tion about F'/k being Galois but we can question about the Hopf Galois condition
for F//k. The first interesting case appears already for [K : k| = 4, where we have
non-trivial intermediate fields when Gal(K /k) = Sy. Then, G/ = Gal(K/K) is iso-
morphic to S3 and we can consider a subgroup G” ~ Cj of Gal(K /K) and the fixed
field F = KS". Since Sy has no normal subgroups of order 8, G” has no normal
complement in Sy and F'/k is not almost classically Galois. It is shown in [I5] that
F/k is a Hopf Galois extension of type N = Cy x Cy x Co. F = Q(a,1/229), with a
aroot of X*+ X +1 € Q[X], is an explicit example in the smallest possible degree
of such a non-almost classically Galois Hopf Galois extension.

5.1. Intermediate extensions in small degree. In degree 4 all the exten-
sions are either Galois or almost classically Galois and the only case with non-trivial
intermediate fields is the one considered above. In this case, intermediate fields of
degree 12 are almost classically Galois.

[K:kj=4 kcKcFcK

Gal(K/k) |  K/k  |[F:k] | F/k
Sy Hopf Galois 8 Hopf Galois not
almost classically Galois
12 almost classically Galois
For [K : k] = 5 we have more variety since we have also non-Hopf Galois

extensions with non-trivial intermediate fields. Between a Hopf Galois extension
and its Galois closure we find again a small degree example of Hopf Galois extensions
which are not almost classically Galois. Between a non-Hopf Galois extension and
its Galois closure, it seems that one has to get close to this Galois closure to achieve
the Hopf Galois property.
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[K:kj=5 kcKcFcK
Gal(K /k) K/k [F: K] F/k
Fy Hopf Galois 10 Hopf Galois not
almost classically Galois
As Not Hopf Galois 15,20, 30 Not Hopf Galois

S Not Hopf Galois | 10, 15,20, 30,40 | Not Hopf Galois
60 Almost classically Galois

The range of cases in degree 6 is also detailed in [I5] and we collect it in the
following table.

[K:kl=6 kCcKCFCK

Gal(K /k) K/k [F : k] F/k
Fig:2 Hopf Galois 12 Hopf Galois not
almost classically Galois
18 Almost classically Galois
244 Not Hopf Galois 12 3 almost classically Galois
S4(6¢) | Not Hopf Galois 12 Not Hopf Galois
S4(6d) | Not Hopf Galois 12 3 almost classically Galois
Fsq Not Hopf Galois 12 Not Hopf Galois
18 Hopf Galois not
almost classically Galois
254 Not Hopf Galois 12 Not Hopf Galois
24 3 almost classically Galois

As Not Hopf Galois 12,30 Not Hopf Galois
Fs6:2 Not Hopf Galois 12,24 Not Hopf Galois

18 Hopf Galois not
almost classically Galois

36 3 almost classically Galois
Sy Not Hopf Galois | 12,24, 30,60 | Not Hopf Galois
Ag Not Hopf Galois | 30,36, 60,72 | Not Hopf Galois

90,120,180

S Not Hopf Galois < 360 Not Hopf Galois

360 3 almost classically Galois

5.2. Transitivity of Hopf Galois property. When we started with a non-
Hopf Galois extension K/k and we study chains of subfields between K and the
Galois closure K looking for the smallest Hopf Galois extension of k, we do not
know how to predict when we are going to find it. But when we start with a Hopf
Galois extension, we have a better knowledge of what happens with the intermediate
lattice of subfields of K /K.
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THEOREM 5.1 ([15]). Let K/k be a separable field extension and K [k its Galois
closure. Let F be an intermediate field K C F C K. If K/k is an almost classically
Galois extension and F/K is a Hopf Galois extension, then F/k is also a Hopf
Galois extension.

In all the shown examples, base extensions K/k are almost classically Galois
and the condition F'/K Hopf Galois is fulfilled because of its small degree. But
an almost classically Galois extension K/k of degree 60 can be found with an
intermediate field F' such that F/K has degree 5 and Galois closure with Galois
group As. Therefore the relative extension F/K is not Hopf Galois. On the other
hand, the theorem cannot be extended to the composition of arbitrary separable
field extensions, since from the composition of a quadratic and a cubic extension,
both almost classically Galois, we can obtain a sextic field having normal closure
with Galois group F3g, therefore non-Hopf Galois.

6. Further developments

In [10] Childs introduced the idea that Hopf algebras could fruitfully broaden
the domain of Galois module theory, namely the branch of algebraic number theory
which studies rings of integers of Galois extensions of number fields as modules over
the integral group ring of the Galois group.

If K/k is a Galois extension of algebraic number fields with Galois group G
then K is a k[G]-module and the normal basis theorem states that K is a free
k[G]-module of rank 1. If we consider local fields with valuation rings O and Oy
we can ask if Ok has a normal basis as an Op-free module. Noether’s theorem
states that this is true if and only if K/k is tamely ramified.

In the attempt to address the wildly ramified extensions Leopoldt proposed to
replace the group ring O[G] by a larger order, the associated order

A= {a € k[G] | a(z) € Ok for all x € Ok}

and proved that if K/Q, is abelian then O is a free 2A-module of rank one. But
if one replaces Q, by another base field or considers non-abelian extensions, then
the result is not true.

Childs proves that for wildly ramified extensions, freeness is deduced from A
being a Hopf order of k[G]. With this point of view, one can expand from classical
Galois structure to Hopf Galois structures. If K/k is Hopf Galois with Hopf algebra
H, define the associated order in the same way

Ay ={a € H|a(r) € Ok for all x € Ok}

and the same result holds: if 2 is a Hopf order of H, then Ok is a free A-module
of rank one. In [2] Byott gives examples of wildly ramified Galois extensions for
which Of is not free over 24;(g) but is free over 2y for some Hopf algebra H giving
a non-classical structure. We refer to [12] for a survey on this subject and to the
work of Truman [21] for recent results on this subject.
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