TRABAJO DE FINAL DE GRADO

"MEDICIÓN DE TENSIONES RESIDUALES"

TFG presentado para optar al título de GRADO en INGENIERÍA INDUSTRIAL (MECÁNICA) por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
Índice general

“MEDICIÓN DE TENSIONES RESIDUALES”

TFG presentado para optar al título de GRADO en INGENIERÍA INDUSTRIAL (MECÁNICA) por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE GENERAL

Memoria .. 0
Índice memoria .. 1
Resum .. 3
Resumen ... 3
Abstract ... 4
Agradecimientos ... 5
Índice figuras .. 6
Índice tablas .. 8
Lista de notaciones .. 9

Capítulo 1: Introducción ... 10
1.1. Tensiones residuales ¿Qué son y qué problemas producen? 10
1.2. El alivio de la tensión residual ... 12
 1.2.1. Método térmico ... 12
 1.2.2. Métodos no térmicos ... 12

Capítulo 2: Métodos para medir las tensiones residuales ... 13
2.1. Métodos no destructivos .. 14
 2.1.1. Difracción de rayos X .. 14
 2.1.2. Difracción de neutrones ... 14
 2.1.3. Fotoelasticidad, interferometría Moiré y holografía ... 15
2.2. Métodos destructivos .. 15
 2.2.1. Sachs Boring ... 15
 2.2.2. Separación angular de hendidura ... 17
 2.2.3. Someter a grieta (Crack compliance) ... 17
 2.2.4. Anillos concéntricos ... 17
 2.2.5. Medición de curvatura tras la eliminación de material 18
 2.2.6. Perforación de agujero (Hole-Drilling) ... 18
2.3. Conclusiones .. 18

Capítulo 3: Método de perforación de agujero (Hole-Drilling) ... 20
3.1. Normativa ASTM E 837 .. 21
 3.1.1. Pieza de trabajo o espécimen .. 22
 3.1.2. Cálculo de tensiones residuales .. 23
3.1.3. Preparación de la pieza de trabajo ...24
3.1.4. Galgas extensiométricas ..24
3.1.5. Procedimiento ..25
3.1.6. Precisión ...27

Capítulo 4: Comparación modelo teórico – simulaciones SW28
4.1. Modelo teórico de flexión a 4 puntos ...28
4.2. Simulación en SolidWorks ...34
 4.2.1. Modelo en SolidWorks de flexión a 4 puntos (Tornillos en 3D)......35
 4.2.2. Modelo en SolidWorks de flexión a 4 puntos (Tornillos en 2D)......37
 4.2.3. Modelo en SolidWorks de flexión a 4 puntos (Desplazamientos en
 2D) ...39
4.3. Comparativa modelo teórico – simulaciones SW41
4.4. Modelo real ...42

Capítulo 5: Simulación en Abaqus del proceso de Hole-Drilling45
5.1. Simulación en Abaqus del Hole-Drilling (modelo simple)46
5.2. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1$MPa)57
5.3. Simulación en Abaqus del Hole-Drilling ($\sigma_x = \sigma_y = 1$MPa)63
5.4. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1$MPa; $\sigma_y = -1$MPa)67

Capítulo 6: Conclusiones ..72

Capítulo 7: Bibliografía ...74
7.1. Referències bibliogràfiques ...74
7.2. Bibliografía de Consulta ...74

Anexos a la memoria ..75
Índice anexos ...77

1. Imágenes de Simulación en Abaqus del Hole-Drilling (modelo simple)79
 Tras aplicar desplazamiento: ...80
 Tras quitar E1: ..82
 Tras quitar E2: ..84
 Tras quitar E3: ..86
 Tras quitar E4: ..88
 Finalmente tras quitar E5: ...90
2. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1$MPa)92
3. Simulación en Abaqus del Hole-Drilling ($\sigma_x = \sigma_y = 1$MPa)98
4. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)104

Planos..111
Índice Planos ..113
Ensamblaje ..1/3
Bloque..2/3
Especimen..3/3

Pliego de condiciones ...121

Presupuesto ...125
Índice Presupuesto ...127
Costes directos ..129
Costes indirectos ...129
Costes totales ..130
Memoria

"MEDICIÓN DE TENSIONES RESIDUALES"

TFG presentado para optar al título de GRADO en INGENIERIA INDUSTRIAL (MECÁNICA) por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE MEMORIA

Índice memoria.. 1
Resum... 3
Resumen .. 3
Abstract... 4
Agradecimientos .. 5
Índice figuras ... 6
Índice tablas .. 8
Lista de notaciones .. 9

Capítulo 1: Introducción ... 10
1.1. Tensiones residuales ¿Qué son y qué problemas producen? 10
1.2. El alivio de la tensión residual ... 12
 1.2.1. Método térmico ... 12
 1.2.2. Métodos no térmicos ... 12

Capítulo 2: Métodos para medir las tensiones residuales ... 13
2.1. Métodos no destructivos .. 14
 2.1.1. Difracción de rayos X .. 14
 2.1.2. Difracción de neutrones ... 14
 2.1.3. Fotoelasticidad, interferometría Moiré y holografía ... 15
2.2. Métodos destructivos .. 15
 2.2.1. Sachs Boring ... 15
 2.2.2. Separación angular de hendidura .. 17
 2.2.3. Someter a grieta (Crack compliance) .. 17
 2.2.4. Anillos concéntricos .. 17
 2.2.5. Medición de curvatura tras la eliminación de material 18
 2.2.6. Perforación de agujero (Hole-Drilling) ... 18
2.3. Conclusiones .. 18

Capítulo 3: Método de perforación de agujero (Hole-Drilling) 20
3.1. Normativa ASTM E 837 ... 21
 3.1.1. Pieza de trabajo o espécimen ... 22
 3.1.2. Cálculo de tensiones residuales .. 23
 3.1.3. Preparación de la pieza de trabajo .. 24
 3.1.4. Galgas extensiométricas ... 24
3.1.5. Procedimiento ... 25
3.1.6. Precisión ... 26

Capítulo 4: Comparación modelo teórico – simulaciones SW 28
4.1. Modelo teórico de flexión a 4 puntos 28
4.2. Simulación en SolidWorks .. 34
 4.2.1. Modelo en SolidWorks de flexión a 4 puntos (Tornillos en 3D) 35
 4.2.2. Modelo en SolidWorks de flexión a 4 puntos (Tornillos en 2D) 37
 4.2.3. Modelo en SolidWorks de flexión a 4 puntos (Desplazamientos en 2D) 39
4.3. Comparativa modelo teórico – simulaciones SW 41
4.4. Modelo real ... 42

Capítulo 5: Simulación en Abaqus del proceso de Hole-Drilling 45
5.1. Simulación en Abaqus del Hole-Drilling (modelo simple) 46
5.2. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\,\text{MPa}$) 57
5.3. Simulación en Abaqus del Hole-Drilling ($\sigma_x = \sigma_y = 1\,\text{MPa}$) 63
5.4. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\,\text{MPa}; \sigma_y = -1\,\text{MPa}$) 67

Capítulo 6: Conclusiones ... 72

Capítulo 7: Bibliografía ... 74
7.1. Referències bibliogràfiques ... 74
7.2. Bibliografía de Consulta .. 74

Anexos a la memoria ... 75
RESUM

El present projecte tracta sobre les tensions residuales, les quals son molt a tenir en compte en enginyeria, ja que sovint són una causa de fallada prematura dels components crítics d'estructures, maquines, etc. No obstant, en algunes ocasions es possible beneficiar-se de les tensions residuales, quan aquestes son a compressió.

En aquest treball s’explica les diferents formes de mesurar aquestes tensions. Després, s'ha escollit un dels mètodes més comuns i s'ha estudiat de manera més detallada, el Incremental Hole-Drilling (IHD), en particular el mètode Hole-Drilling.

S’han fet diverses simulacions basades en aquest mètode amb programes que utilitzen el mètode dels elements finits, SolidWorks i Abaqus. Amb aquests programes es tracta d'analitzar i entendre els efectes de les tensions residuales durant el procés de mesura mitjançant el mètode Hole-Drilling.

RESUMEN

El presente proyecto trata sobre las tensiones residuales, las cuales son muy a tener en cuenta en ingeniería, ya que son a menudo una causa de fallo prematuro de los componentes críticos de estructuras, máquinas, etc. No obstante, en algunas ocasiones es posible beneficiarse de las tensiones residuales, cuando estas son a compresión.

En este trabajo se explica las diferentes formas de medir estas tensiones. Luego, se ha escogido uno de los métodos más comunes y se ha estudiado de manera más detallada, el Incremental Hole-Drilling (IHD), en particular el método Hole-Drilling.

Se han hecho varias simulaciones basadas en este método con programas que usan el método de los elementos finitos, SolidWorks y Abaqus. Con estos programas se trata de analizar y entender los efectos de las tensiones residuales durante el proceso de medición mediante el método Hole-Drilling.
ABSTRACT

This project deals with the residual stresses, which are to be taken into account in engineering, as they are often a cause of premature failure of critical components of structures, machines, etc. However, sometimes it is possible to benefit from residual stresses, when these are in compression.

In this work the different ways of measuring these tensions it is explained. Then, we have chosen one of the most common methods and have been studied in more detail, Incremental Hole-Drilling Method (IHD), especially the Hole-Drilling Method.

There have been several simulations based on this method with programs using the finite element method, SolidWorks and Abaqus. With these programs it is to analyze and understand the effects of residual stresses during the measurement process by the Hole-Drilling Method.
AGRADECIMIENTOS

En primer lugar me gustaría dar las gracias al director de este proyecto, Andrés Amador García Granada, por enseñarme tanto sobre tensiones residuales y el método Hole-Drilling, como sobre los programas SolidWorks y Abaqus.

Aunque no sólo él me ha ayudado a llegar hasta aquí, son muchos los profesores a los que debo agradecer su trabajo a lo largo de toda una vida. También es de agradecer todas las horas de estudio junto a maravillosas personas, mis compañeros de clase.

Me gustaría dar las gracias a mis amigos, a los que no he podido dedicar todo el tiempo que quisiera por tenerlo que dedicar a mis estudios.

Por supuesto, quiero dar las gracias a mi familia y a mi pareja por la confianza, apoyo y paciencia que han depositado en mí.

Sin todos ellos, no podría haber llegado hasta aquí. Gracias a todos.
ÍNDICE FIGURAS

Fig. 1 - Ejemplo de katana, con su curvatura provocada por las tensiones residuales ... 11
Fig. 2 - Ilustración del método Sachs Boring .. 16
Fig. 3 - Geometría del agujero y tensiones residuales, (a) tensiones uniformes, (b) tensiones no uniformes .. 22
Fig. 4 - Geometría esquemática de una galga extensiométrica típica de tres elementos, (a) el diseño de una galga (b) detalle de un medidor de deformación ... 23
Fig. 5 - Tipos de distribución de las galgas extensiométricas 24
Fig. 6 - Un aparato típico para el método Hole-Drilling 25
Fig. 7 - Modelo teórico de flexión a 4 puntos .. 29
Fig. 8 - Diagrama de momentos flectores del modelo teórico 29
Fig. 9 - Placa de aluminio sobre la que se realiza el ensayo 32
Fig. 10 - Modelo en SolidWorks (Vista isométrica) 34
Fig. 11 - Alzado ... 35
Fig. 12 - Corte en Alzado ... 35
Fig. 13 - Resultado de tensiones en escala de colores (N/mm2) 36
Fig. 14 - Gráfico de tensión a lo largo del eje x .. 36
Fig. 15 - Modelo de flexión con tornillos en 2D 37
Fig. 16 - Segundo resultado de tensiones en escala de colores (N/mm2) 38
Fig. 17 - Segundo gráfico de tensión a lo largo del eje x, entre apoyos 38
Fig. 18 - Modelo de flexión con desplazamientos en 2D 39
Fig. 19 - Tercer resultado de tensiones en escala de colores (N/mm2) 40
Fig. 20 - Tercer gráfico de tensión a lo largo del eje X, entre apoyos 40
Fig. 21 - Modelo real para la aplicación del método Hole-Drilling 42
Fig. 22 - Vista en plante del modelo real .. 42
Fig. 23 - Vista en alzado del modelo real .. 43
Fig. 24 - Espécimen con las galgas extensiométricas 43
Fig. 25 - Referencia de las galgas extensiométricas usadas 44
Fig. 26 - Datos de las galgas extensiométricas usadas 44
Fig. 27 - Bloque creado mediante fichero de texto para la simulación en *Abaqus*, simulando parte del espécimen del método *Hole-Drilling*..........................47

Fig. 28 - Imagen del bloque en *Abaqus* donde se aprecia la tensión (parte inferior) de un elemento, tras aplicar el estiramiento...47

Fig. 29 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento, 0.6mm (parte inferior) del nodo 10025, tras aplicar el estiramiento48

Fig. 30 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras aplicar el estiramiento49

Fig. 31 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el primer elemento50

Fig. 32 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el primer elemento50

Fig. 33 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el segundo elemento51

Fig. 34 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el segundo elemento51

Fig. 35 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el tercer elemento52

Fig. 36 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el tercer elemento52

Fig. 37 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el cuarto elemento53

Fig. 38 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el cuarto elemento53

Fig. 39 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el quinto y último elemento54

Fig. 40 - Imagen del bloque en *Abaqus* donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el quinto y último elemento54

Fig. 41 - Gráfico de la diferencia de tensión en Y a lo largo del eje Z56

Fig. 42 - Gráfico de la diferencia de tensión en X a lo largo del eje Z56

Fig. 43 - Gráfico de la diferencia de tensión en X e Y a lo largo del eje Z57

Fig. 44 - Malla más precisa y compleja ...58

Fig. 45 - Proceso de perforación con la evolución de las tensiones en escala de colores ($\sigma_x = 1\text{MPa}$)...59

Fig. 46 - Gráfico de los tres diferenciales de *strain* en r = 19mm ($\sigma_x = 1\text{MPa}$)...60

Fig. 47 - Efecto Poisson ...61

Fig. 48 - Gráfico comparativo de los diferenciales de *strain* en el eje X, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}$).................................61

Fig. 49 - Gráfico comparativo de los diferenciales de *strain* en el eje Y, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}$).................................62
Fig. 50 - Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}$)...62

Fig. 51 - Proceso de perforación con la evolución de las tensiones en escala de colores ($\sigma_x = \sigma_y = 1\text{MPa}$)...63

Fig. 52 - Gráfico de los tres diferenciales de strain en $r = 19\text{mm}$ ($\sigma_x = \sigma_y = 1\text{MPa}$)...64

Fig. 53 - Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1\text{MPa}$)...65

Fig. 54 - Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1\text{MPa}$)...65

Fig. 55 - Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1\text{MPa}$)...66

Fig. 56 - Proceso de perforación con la evolución de las tensiones en escala de colores ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)...67

Fig. 57 - Gráfico de los tres diferenciales de strain en $r = 19\text{mm}$ ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)...68

Fig. 58 - Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)...69

Fig. 59 - Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)...69

Fig. 60 - Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)...70

Fig. 61 - Resultados experimentales en bruñido..71

ÍNDICE TABLAS

Tab. 1 - Comparativa de los resultados en los diferentes modelos (Teórico – SW) ..41

Tab. 2 - Deformación en los nodos en cada paso de la simulación (modelo simple)..55

Tab. 3 - Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación (modelo simple)..55

Tab. 4 - Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en $r=19\text{mm}$ ($\sigma_x = 1\text{MPa}$)..60

Tab. 5 - Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en $r=19\text{mm}$ ($\sigma_x = \sigma_y = 1\text{MPa}$)..64

Tab. 6 - Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en $r=19\text{mm}$ ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)..........................68
LISTA DE NOTACIONES

Notación romana

\[a \] Distancia entre apoyos superiores [mm]
\[\bar{a} \] Constante de calibración [mm]
\[b \] Distancia entre apoyos inferiores [mm]
\[\bar{b} \] Constante de calibración [mm]
\[E \] Módulo elástico (MPa)
\[F \] Fuerza en un apoyo [N]
\[I \] Momento de inercia [mm^4]
\[L \] Largo de la placa [mm]
\[M \] Momento de fuerza [N*mm]
\[t \] Grosor de la placa [mm]
\[w \] Ancho de la placa [mm]

Notación griega

\[\varepsilon \] Deformación [-]
\[\Theta \] Ángulo de la medición
\[\sigma \] Tensión normal [MPa]
\[\tau \] Tensión tangencial [MPa]
\[\nu \] Módulo de Poisson [-]
CAPÍTULO 1:
INTRODUCCIÓN

1.1. Tensiones residuales ¿Qué son y qué problemas producen?

Las tensiones residuales son tensiones que permanecen en el interior del material cuando éste no se encuentra sometido a cargas externas. Su origen está en los tratamientos mecánicos y térmicos empleados en los procesos de fabricación o en las cargas aplicadas cuando la pieza o componente se encuentra en servicio. Dichas tensiones pueden provocar cambios dimensionales y distorsiones en las piezas fabricadas que las hagan inservibles para su aplicación.

El mayor problema es que, al contrario de las tensiones externas aplicadas, las tensiones residuales son tensiones difíciles de medir, que los ingenieros no suelen tener en cuenta en el diseño.

La medida de tensiones residuales es por tanto de interés para la industria de fabricación de piezas y componentes críticos en automoción, transporte en general, aeronáutica, industria naval, generación de energía y otras.

La tensión en servicio se basa en la tensión aplicada más la tensión residual. La tensión aplicada es fácil de medir, fuerza aplicada entre área de aplicación. En cambio, la tensión residual, es difícil de medir en general.

Por lo tanto, si la tensión residual es desconocida, la tensión de servicio también. Es importante conocerla en componentes y estructuras de alto riesgo, ya que de pasarlas por alto, pueden provocar rotura por fatiga, fractura frágil y corrosión bajo tensión.
Mientras las tensiones residuales incontroladas son indeseables, algunos diseños se basan en ellas. En particular, materiales frágiles pueden ser endurecidos incluyendo tensión residual de compresión, como en el caso de vidrio templado y hormigón pretensado.

Por lo tanto, la tensión residual puede ser deseable o indeseable. Por ejemplo, el granallado por láser crea profundas tensiones residuales de compresión beneficiosas en componentes metálicos, como las aspas del ventilador del motor de turbina, y se utiliza en vidrio templado para permitir pantallas de cristal grande, delgado, y otros usos. Sin embargo, la tensión residual no deseada en una estructura puede hacer que falle prematuramente.

Las tensiones residuales pueden provocar deformaciones plásticas, o cambios estructurales. Por ejemplo, el calor de la soldadura puede provocar la expansión localizada, que se establece durante la soldadura ya sea por el metal fundido o la colocación de las piezas a soldar. Cuando la soldadura acabada se enfriá, algunas áreas se enfrían y se contraen más que otras, dejando tensiones residuales.

Un material que tiene tensión residual de compresión, ayuda a prevenir la rotura frágil porque la grieta inicial se forma bajo compresión (tracción negativa). Para provocar la rotura frágil por la propagación de grietas, el esfuerzo de tensión externa debe superar la tensión residual de compresión antes de que la punta de la grieta experimente suficiente esfuerzo de tracción para propagarse.

Otro ejemplo, la fabricación de algunas espadas, en particular, la katana (Figura 1) utiliza un gradiente en la formación de martensita para producir particularmente bordes duros. La diferencia de tensión residual entre el borde de corte más duro y la parte posterior más suave de la espada da a esas espadas su curva característica.

Figura 1. Ejemplo de katana, con su curvatura provocada por las tensiones residuales.
1.2. El alivio de la tensión residual

Cuando la tensión residual no deseada está presente en las operaciones de trabajo de los metales, la cantidad de tensión residual puede reducirse utilizando varios métodos. Estos métodos se pueden clasificar en métodos térmicos y mecánicos (o no térmicos). Todos los métodos implican el procesamiento de la pieza para ser liberada de tensiones como un conjunto.

1.2.1. **Método térmico**

El método térmico implica cambiar la temperatura de la pieza entera de manera uniforme, ya sea a través de calentamiento o enfriamiento. Cuando las piezas se calientan para aliviar la tensión, el proceso también puede ser conocido como hornear el alivio de tensión. En cambio, cuando se enfrian para el alivio de tensión es conocido como el alivio de tensión criogénica y es relativamente poco común.

1.2.2. **Métodos no térmicos**

Los métodos mecánicos para aliviar las tensiones de tracción de la superficie indeseables y reemplazarlos con tensiones residuales de compresión beneficiosos, incluyen bruñido, granallado y granallado por láser, por ejemplo. El granallado utiliza típicamente un material de metal o vidrio, en cambio el granallado láser utiliza rayos de luz de alta intensidad para inducir una onda de choque que se propaga profundamente en el material.
CAPÍTULO 2: MÉTODOS PARA MEDIR LAS TENSIONES RESIDUALES

Los métodos de medida de tensiones residuales se pueden clasificar en dos tipos fundamentales, los métodos destructivos y los no destructivos.

Los métodos destructivos se basan en la eliminación de parte del material y la medición de la deformación respecto a antes de esta eliminación, la cual tiene relación con la magnitud de la tensión residual liberada, dañando de esta forma la pieza del ensaño o parte de ella. A diferencia de los métodos no destructivos, donde la pieza usada en la medición, no sufre daño alguno y es posible su posterior utilización.

La selección de la técnica depende de la información requerida y de la naturaleza de la muestra de medición. Los factores incluyen la profundidad de penetración de la medición (superficie o a través de espesor), la escala de longitud a medir (macroscópica o microscópica), la resolución de la información requerida, y también la geometría de la composición y la ubicación de la muestra. Además, algunas de las técnicas tienen que llevarse a cabo en instalaciones especializadas de laboratorio, lo que significa que "in situ" las mediciones no son posibles para todas las técnicas.
2.1. Métodos no destructivos

2.1.1. Difracción de rayos X

El análisis de difracción de rayos X es una técnica no destructiva para la medición de tensión residual cerca de la superficie.

La difracción es un fenómeno característico de las ondas que se basa en la desviación de estas al encontrar un obstáculo o al atravesar una rendija.

Los rayos X son difractados por los electrones que rodean los átomos por ser su longitud de onda del mismo orden de magnitud que el radio atómico. El haz de rayos X emergente tras esta interacción contiene información sobre la posición y tipo de átomos encontrados en su camino.

La tensión residual de la superficie puede ser muy diferente a la que hay en la mitad del espesor de la muestra. La profundidad de penetración se limita a menos de 100 micras en la mayoría de los metales. La técnica se basa en la difracción de rayos X por los planos paralelos de las redes cristalinas (grano) de la muestra. Como resultado, las deformaciones medidas son deformaciones elásticas y las tensiones residuales se calculan utilizando la ley de Hooke. Se requiere un tamaño de grano bien definido, y si se examina a un material de grano grande se obtienen picos muy irregulares. Las muestras también tienen que ser pulidas para obtener una superficie plana a espejo.

Ball y Lowry (1998) llevaron a cabo un estudio más detallado de la expansión en frío en una aleación de aluminio de diferentes espesores, para diferentes posiciones de los agujeros, etc. Ellos compararon las mediciones con modelos analíticos y elástico-plástico FE. Llegaron a la conclusión de que los rayos X no era una técnica viable porque la combinación de grandes tamaños de grano y de texturización crea imprecisiones significativas en la tensión calculada.

2.1.2. Difracción de neutrones

La técnica de difracción de neutrones puede ser pensada como una solución perfecta para la medición de distribuciones de tensiones residuales. Es muy similar a la difracción de rayos X y por lo tanto se puede utilizar como una técnica no destructiva, pero puede penetrar más profundamente en el material. La profundidad de penetración puede ser de varios centímetros, que es suficiente para la mayoría de los espesores de placa utilizados en la industria aeronáutica. El alto costo de la técnica, y la restricción a unas pocas fuentes de neutrones hace que sea difícil de usar.
Medición de Tensiones Residuales

Varios investigadores han utilizado la difracción de neutrones para medir las tensiones residuales. Se las arreglaron para producir gráficos de contorno de las tensiones residuales tangenciales como una función del radio y la posición de espesor a través de la interpolación, utilizando una corrección de las condiciones de contorno. Sin embargo, debido a las dificultades asociadas con la textura y la adquisición de un mallado de tensiones, la medición de los valores absolutos de tensión fue considerada demasiado difícil. Por esta razón, y el pequeño volumen de muestra analizado, se necesitan períodos relativamente largos para medir picos de difracción adecuados.

2.1.3. Fotoelasticidad, interferometría Moiré y holografía

Hay varios métodos basados en la visualización óptica de tensiones en la superficie, con diferentes nombres dependiendo del dispositivo utilizado para visualizar las tensiones.

Fotoelasticidad se ha utilizado para la medición de esfuerzos y deformaciones. Se basa en el uso de luz para dibujar figuras sobre piezas de materiales isótropos, transparentes y continuos, que están siendo sometidos a esfuerzos. Las figuras que se dibujan son semejantes a las mostradas al realizar un análisis de elementos finitos ya que se pueden observar contornos y colores.

Interferometría Moiré se ha utilizado para medir las deformaciones y tensiones residuales en Al 2024. Y una técnica holográfica fue utilizada para la misma aleación de aluminio.

En todos los casos, se proporciona poca información acerca de los valores de las tensiones residuales. Sin embargo, las formas y los gradientes de cerca de la cara de entrada pueden ser información práctica obtenida a partir de estos métodos.

2.2. Métodos destructivos

2.2.1. Sachs Boring

El método Sachs Boring es una técnica se utiliza para medir la tensión residual alrededor de un agujero hecho en frío, por ejemplo, en piezas que ya tienen un agujero como tubos o agujeros para remaches.

Este método fue descrito por Sachs (1927) para medir las tensiones residuales en tubos autofrettaged (auto-deformables).
Sachs Boring es un método destructivo en base a la relajación elástica de tensiones residuales en componentes cilíndricos huecos tales como discos o tubos. Esta relajación se produce cuando se eliminan las capas cilíndricas de material en cualquier radio \(r = d \). Esta eliminación se produce a partir de \(r = a \), donde \(a \) ya sea radio interior o radio exterior.

Figura 2. Ilustración del método Sachs Boring

Han sido desarrolladas diferentes técnicas para eliminar las capas cilíndricas de material, por ejemplo la erosión por chispa con un electrodo como se describe por Hermann y Moffat (1991), y una técnica de corte mecánico como se ha descrito por Stacey (1985). El proceso de perforación por lo general se detiene cuando no hay ningún cambio en las lecturas de deformación, lo que significa que las tensiones residuales se han liberado por completo.

La técnica Sachs Boring se ha utilizado para medir diversos parámetros que intervienen en un agujero expandido en frío. Algunos de estos parámetros se describen a continuación.

Grado de expansión en frío

Las tensiones residuales en las muestras expandidas en frío son una función del grado de expansión en frío. Esto se define como el desplazamiento radial en el borde del agujero en comparación con el radio inicial del agujero.
Proceso de escariado

El proceso de escariado se utiliza después de la expansión en frío del agujero con el fin de eliminar virutas y para proporcionar un diámetro de orificio definido. El efecto del escariado, también se puede medir por aplicación del método Sachs Boring.

Tensiones residuales a través del espesor

Algunas predicciones de las tensiones residuales usando FE muestran una variación en la posición axial (espesor). Sachs Boring se ha utilizado para medir estas variaciones.

2.2.2. Separación angular de hendidura

A continuación se describe un método de corte (destructivo) para medir las tensiones residuales en tubos autofrettaged en las superficies interior y exterior. El método se basa en la medición de la apertura de una hendidura introducida en el tubo. Se ha encontrado una referencia, ha sido la tensión tangencial residual, se midió como una función del grado de expansión, antes y después del tratamiento térmico.

Por desgracia, el tratamiento térmico produce una relajación de las tensiones residuales. Los investigadores llegaron a la conclusión de que la relajación era un efecto importante, dando lugar a diferencias de tensiones residuales entre el 50% y el 100%.

2.2.3. Someter a grieta (Crack compliance)

Otro método de corte se describe a continuación sobre la base de la mecánica de fractura, donde se introduce una grieta en la muestra y las tensiones residuales se calculan a partir de los desplazamientos medidos cerca de la punta de la grieta.

2.2.4. Anillos concéntricos

Este método destructivo se basa en el corte de discos concéntricos con medidores de deformación en la superficie superior. La tensión residual se calcula a partir del cambio de deformación usando condiciones de deformación plana.
El método concéntrico requiere poco tiempo de mecanizado y sólo dos conjuntos de medidas de deformación por disco. Estas ventajas se ven compensadas por la necesidad de muchos medidores de deformación y el peligro de la introducción de deformaciones plásticas durante el corte. Por lo tanto se prefiere el método *Sachs Boring*.

2.2.5. Medición de curvatura tras la eliminación de material

Otra técnica destructiva para medir las tensiones residuales en material de lámina delgada. Las capas finas se eliminan por ataque químico, que inducen una curvatura cada vez mayor de la hoja. La distribución inicial de la tensión residual se deriva a partir de mediciones de la curvatura.

2.2.6. Perforación de agujero (Hole-Drilling)

Otra técnica destructiva similar a *Sachs Boring* es la técnica de la perforación del agujero central, donde unas galgas extensiométricas se unen a la superficie de la muestra antes de la perforación del agujero. Desde el cambio de longitud, deformaciones, se calculan tensiones residuales medidas en la posición de perforación a través del grosor. Se necesita un análisis complejo para relacionar deformaciones y tensiones.

El método se limita a la medición de las tensiones residuales hasta la mitad de la tensión de fluencia si son biaxiales, o hasta un tercio de la tensión de fluencia si son uniaxiales, para garantizar un comportamiento elástico.

2.3. Conclusiones

- *Sachs Boring* es una técnica para la medición de tensiones residuales a través de un promedio de grosor en los componentes de simetría axial. Muchas mediciones se obtienen en la dirección radial, obteniendo una buena precisión para el borde del agujero cerca de tensiones residuales. El método no puede ser utilizado para medir a través del espesor y variaciones angulares.

- Difracción de rayos X es una técnica para la medición de tensiones residuales cerca de la superficie. Las mediciones de rayos X requieren tiempos de medición largos para obtener un mapa completo de las tensiones residuales. Es necesario un tratamiento de superficies antes de las mediciones de difracción.
- Difracción de neutrones proporciona un mapa 3D completo de las tensiones residuales de espesor de hasta unos pocos centímetros. Se trata de una técnica costosa, consume tiempo con instalaciones experimentales limitados. El plano cristalográfico utilizado en la medición afecta a los resultados, y puede provocar una gran dispersión en la medición.

- El método Grieta de cumplimiento mide la distribución radial de la tensión residual en una posición angular. El método requiere el uso de software para resolver las tensiones residuales de coeficientes tabulados, y funciones de forma y material.

- Los métodos ópticos sólo son adecuados para definir la forma de las tensiones residuales.
CAPÍTULO 3: MÉTODO DE PERFORACIÓN DE AGUJERO (HOLE-DRILLING)

El método Hole-Drilling determina tensiones residuales cerca de la superficie de un material. Se trata de fijar unas galgas extensiométricas a la superficie, la perforación de un agujero en el centro de estas, y la medición de las tensiones aliviadas resultantes.

El método de Hole-Drilling puede identificar en el plano tensiones residuales cerca de la superficie de medición del material de trabajo. A menudo es descrito como "semi-destructivo" porque el daño que causa es localizado y con frecuencia no afecta significativamente la utilidad de la pieza. En cambio, la mayoría de los otros métodos mecánicos para la medición de tensiones residuales destruyen sustancialmente la pieza. De todas formas, la perforación del agujero causara algún daño, este método debe aplicarse sólo en aquellos casos en que la pieza de trabajo es prescindible, o donde la introducción de un pequeño agujero poco profundo no afecte significativamente la utilidad de la pieza de trabajo.
3.1. Normativa ASTM E 837

ASTM E 837 (1) es el estándar industrial aceptado para medir la tensión residual por el método Hole-Drilling. Esta norma describe cómo se debe aplicar el método de manera correcta y así, las ecuaciones dadas en la misma sean aplicables. A continuación, se hace un resumen sobre dicha norma.

Para un estado de tensión que no cambia con la profundidad, la siguiente ecuación usa la deformación aliviada para calcular las tensiones:

\[
\varepsilon = \frac{1+v}{E} a \sigma_x + \sigma_y + \frac{1}{E} b \sigma_x - \sigma_y \cos 2\theta + \frac{1}{E} b \tau_{xy} \sin 2\theta \quad (1)
\]

Donde E y v son el módulo de elasticidad del material y el coeficiente de Poisson, respectivamente.

Las tensiones normales son \(\sigma_x \) y \(\sigma_y \), el esfuerzo cortante es \(\tau_{xy} \). La variable \(\theta \) es el ángulo de la medición de la deformación relativa a la dirección X (Figura 3). Los valores de \(a \) y \(b \) son constantes de calibración que indican deformaciones aliviadas. Son funciones de la geometría de las pruebas incluyendo el diámetro del agujero, la profundidad del agujero, la distancia desde el centro del orificio a la medición, y la configuración de la galga extensiométrica. Estas constantes de calibración se obtuvieron a través de análisis de elementos finitos. Esta ecuación tiene tres valores de tensión desconocidos, por lo tanto, al menos se necesitan tres bandas extensiométricas (Figura 4) en diferentes ángulos para resolver las tensiones.

La norma también cubre la medición de tensiones que cambian con la profundidad del material. Para determinar estas tensiones, la tensión se mide para múltiples profundidades del agujero. Las tensiones se calculan para un determinado paso mediante el uso de ecuaciones similares a la ecuación 1 para ese paso y todos los pasos subsiguientes. Estas ecuaciones tienen sus propias constantes de calibración que dependen de la profundidad del agujero y también de la profundidad de las tensiones deseadas.

Hay cuestiones específicas que se describen en la norma. Los lubricantes que son conductores eléctricos pueden afectar a las lecturas de medición de tensión y no deben ser utilizados.
Las deformaciones plásticas pueden surgir en las concentraciones de esfuerzos cerca del agujero perforado y pueden perjudicar la calidad de las mediciones, por lo que las tensiones residuales significativas (definidas en la norma como más del 60% de la tensión de fluencia del material) no son ideales para ser medidas con este método.

El proceso de perforación tiene el potencial de crear tensiones adicionales dentro del material. Por lo tanto, la norma recomienda el uso de taladros de alta velocidad que operan entre 50.000 y 400.000 rpm (revoluciones por minuto) equipados con fresas de metal duro o fresas para evitar tensiones inducidas por mecanizado. Una recomendación adicional es utilizar brocas de composición plana para evitar la ambigüedad acerca de la profundidad de los agujeros.

Los cambios de temperatura resultantes del proceso de perforación se tienen en cuenta ya que también pueden afectar las lecturas de medición de tensión. La norma aconseja realizar la perforación en condiciones de temperatura constantes.

![Figura 3. Geometría del agujero y tensiones residuales, (a) tensiones uniformes, (b) tensiones no uniformes.](image)

3.1.1. Pieza de trabajo o espécimen

Se escoge una superficie uniforme plana lejos de bordes y otras irregularidades dentro de la pieza de trabajo para realizar la prueba. La Figura 3 muestra esquemáticamente las tensiones residuales que actúan en la ubicación en la que se hace el agujero. Estas tensiones se supone que son uniformes dentro de las direcciones en el plano x e y.

La Figura 3 (a) muestra el caso en el que las tensiones residuales en la pieza de trabajo son uniformes en la dirección de la profundidad. En cambio, la Figura 3
(b) muestra el caso en que las tensiones residuales en la pieza de trabajo varían en la dirección de profundidad.

Ambos casos se pueden medir con este método dependiendo del espesor de la pieza de trabajo.

Figura 4. Geometría esquemática de una galga externométrica típica de tres elementos, (a) el diseño de una galga, (b) detalle de un medidor de deformación.

3.1.2. Cálculo de tensiones residuales

Las tensiones residuales originalmente existentes en la ubicación del agujero se evalúan de las tensiones aliviadas utilizando relaciones matemáticas basadas en la teoría de la elasticidad lineal. Las tensiones aliviadas dependen de las tensiones residuales que existían en el material originalmente dentro del agujero.

La norma facilita las ecuaciones necesarias para el cálculo de las tensiones tanto para el caso de tensiones uniformes, como no uniformes.
3.1.3. **Preparación de la pieza de trabajo**

Para una pieza “delgada” el espesor de la pieza no debe exceder 0.4D para unas galgas tipo A o B o 0.48D para el tipo C (Figura 5).

Para una pieza “gruesa” el espesor de la pieza debe ser de al menos 1.2D para unas galgas tipo A o B o 1.44D para el tipo C (Figura 5).

![Tipos de distribución de las galgas extensiométricas.](image)

Figura 5. Tipos de distribución de las galgas extensiométricas.

Es necesaria una superficie plana para la aplicación de las galgas extensiométricas. Por ello, las irregularidades producidas por la abrasión, por ejemplo, deben ser evitadas.

Antes de unir las galgas, se debe preparar la superficie. Se requiere una limpieza a fondo y desengrasado.

3.1.4. **Galgas extensiométricas**

El conjunto de galgas (*rosette*) se comprende por tres simples o pares. El esquema de numeración de las galgas sigue el sentido horario, se ponen en un patrón circular, equidistantes del centro.

Cada galga debe estar orientada en tres direcciones, (1) una dirección de referencia, (2) 45º o 135º a la dirección de referencia, y (3) perpendicular a la dirección de referencia, como se muestra en la Figura 4.

La norma también explica que hay galgas estandarizadas, con diferentes dimensiones.

El tipo A se recomienda para uso general. El tipo B tiene todas las galgas situadas en un lado, es útil donde las mediciones deben hacerse cerca de un obstáculo. Y el tipo C es un patrón especial que es útil gran precisión y alta estabilidad térmica.
3.1.5. Procedimiento

Se requiere un dispositivo que esté equipado para perforar un agujero en la pieza de trabajo de una manera controlada. El dispositivo debe ser capaz de perforar un agujero concéntrico con el círculo que forman las galgas extensiométricas con una tolerancia de ±0.004D. También debe ser capaz de controlar la profundidad del agujero con una tolerancia de ±0.004D.

Figura 6. Un aparato típico para el método Hole-Drilling.

Los materiales más duros implican el uso de fresas de carburo o fresas accionadas por una turbina de aire de alta velocidad o un motor eléctrico que gira a 50.000 hasta 400.000 rpm.

Para materiales muy duros, el mecanizado por chorro abrasivo también puede ser útil. Este método de perforación consiste en dirigir una corriente de alta velocidad de aire que contiene partículas abrasivas finas a través de una pequeña boquilla de diámetro contra la pieza de trabajo. Este método no debe ser utilizado para las mediciones de tensión no uniformes debido a que la geometría del agujero y la profundidad no pueden ser controladas con suficiente precisión.
Si la verificación técnica de perforación muestra tensiones significativas inducidas por el proceso de perforación, o si el material de prueba se sabe que es difícil de mecanizar, puede ser útil lubricar la herramienta de corte con un fluido lubricante adecuado. El fluido utilizado debe ser eléctricamente no conductor. Otros lubricantes eléctricamente conductores no deben utilizarse ya que pueden penetrar en las conexiones eléctricas de las galgas extensiométricas y distorsionar las lecturas de tensión.

El ángulo de la punta de la herramienta de corte no debe exceder 1°, esto evita ambigüedades en la identificación de la profundidad del agujero, asegurando que la profundidad es uniforme dentro del 1% del diámetro de la herramienta.

Toda la perforación debe realizarse bajo condiciones de temperatura constante. Después de cada paso de taladrado, debe haber un tiempo para la estabilización de las fluctuaciones de temperatura causadas por el proceso de perforación.

Para una pieza “delgada”, se debe obtener una lectura inicial de cada galga antes de comenzar la operación de perforación. Luego, se inicia la perforación avanzando lentamente hasta que se corta a través de todo el espesor de la pieza de trabajo. A continuación, se mide la deformación para cada galga. Se mide el diámetro del agujero y se confirma que se encuentra dentro de la tolerancia especificada.

Para una pieza “gruesa”, se debe obtener una lectura inicial de cada galga antes de comenzar la operación de perforación. Luego, se inicia la perforación avanzando lentamente hasta que se roza ligeramente la superficie de la pieza, este punto corresponde a la profundidad de corte “cero”. Se comprueba que las lecturas de deformación no han cambiado significativamente, y se usan las nuevas lecturas como las iniciales. A continuación, se sigue perforando con un avance de 0.05D para las galgas dispuestas tipo A y B, o 0.06D para las galgas tipo C. Se repite hasta un total de 8 pasos iguales, alcanzando una profundidad aproximada de 0.4D para tipo A y B o 0.48D para tipo C. Una vez acabada la perforación, se mide el agujero y se confirma que se encuentra dentro de la tolerancia especificada. También se debe comprobar la concentricidad del agujero.

Para una pieza “gruesa” con tensiones no uniformes, el proceso es el mismo que para una pieza “gruesa” con tensiones uniformes, variando la profundidad de corte en cada paso y el número de pasos. En este caso, la profundidad de corte variará entre 0.025 y 0.10mm dependiendo del tamaño del conjunto de galgas. El número de pasos se eleva a 25.

Una vez finalizado el procedimiento, ya se puede pasar al cálculo de las tensiones residuales mediante las ecuaciones y tablas que también vienen especificadas en la norma.

3.1.6. Precisión
La habilidad y experiencia del operario son probablemente uno de los factores más importantes en la precisión del resultado. Un pequeño desviamiento, décimas de milímetro, respecto al centro de las galgas provoca un error en la lectura de los resultados. Por tanto, es muy importante tener en cuenta la excentricidad una vez hecho el procedimiento.
Este capítulo se centra en uno de los métodos explicados para la medición de tensiones residuales, el método *Hole-drilling*.

El objetivo es diseñar un aparato para provocar tensiones conocidas de manera controlada, que sea posible introducirlo dentro de una fresadora CNC, por tal de aplicar el método *Hole-drilling*.

En primer lugar, se calcula un modelo teórico de flexión a 4 puntos. Luego, se diseña y simula con el *SolidWorks*, software CAD (diseño asistido por computadora) para modelado mecánico en 3D.

Una vez obtenidos todos los resultados, se estudian y comparan.

4.1. Modelo teórico de flexión a 4 puntos

Se ha diseñado un modelo teórico de flexión a 4 puntos donde se puede aplicar tensiones de manera controlada. Con este modelo podemos obtener las tensiones en función de la deformación que se le aplica a la pieza.
En primer lugar se busca el momento flector resultante por tramos en la pieza del modelo, siendo este simétrico, obtenemos:

\[
M(x) = \begin{cases}
 p \frac{(b-a)}{2} & \text{si } x < \frac{a}{2} \\
 p \frac{(b-a)}{2} \frac{(x-b/2)}{(a/2-b/2)} & \text{si } x > \frac{a}{2}
\end{cases}
\]

(2)

(3)

Figura 7. Modelo teórico de flexión a 4 puntos.

Figura 8. Diagrama de momentos flectores del modelo teórico.

A continuación se relacionan los momentos flectores, y por tanto la fuerza aplicada, con la deformación de la placa, usando:
Por lo tanto, cuando \(x < \frac{a}{2} \), se sustituye el momento correspondiente (1) en (3) y se integra dos veces, obteniendo:

\[
\frac{d^2 y_1}{dx^2} = \frac{P_{(b-a)}}{Ei} \frac{2}{2}
\]

(5)

\[
\frac{dy_1}{dx} = \frac{P_{(b-a)}}{Ei} - x + C_1 \]

(6)

\[
y_1 = \frac{P_{(b-a)}}{Ei} \frac{x^2}{2} + C_1 x + C_2 \]

(7)

Por tal de conocer el valor de las constantes resultantes de integrar, \(C_1 \) y \(C_2 \), se usan dos condiciones de contorno, que \(x \) no se mueve en \(y=0 \) (7) y que la primera derivada es 0 en el mismo punto (8):

\[
y_1(0) = 0 \]

(8)

\[
\frac{dy_1}{dx}(0) = 0 \]

(9)

Substituyendo dichas condiciones de contorno, se obtiene que las constantes son:

\[
C_1 = 0 \]

(10)

\[
C_2 = 0 \]

(11)

Finalmente, el desplazamiento en el tramo \(x < \frac{a}{2} \) es:
Medición de Tensiones Residuales

\[y_1 = \frac{F(b-a)x^2}{2EI} = \frac{x^2}{2} \] \hspace{1cm} (12)

Por otro lado, se sigue el mismo procedimiento para el siguiente tramo, \(x > \frac{a}{2} \):

\[\frac{d^2y_2}{dx^2} = \frac{F(b-a)(x-b/2)}{2EI} \] \hspace{1cm} (13)

\[\frac{dy_2}{dx} = -\frac{(x^2-bx)F}{2EI} + C_3 \] \hspace{1cm} (14)

\[y_2 = -\frac{(2Fx^3-3bFx^2-12EIc_3x)}{12EI} + C_4 \] \hspace{1cm} (15)

Condiciones de contorno:

\[y_1(\frac{a}{2}) = y_2(\frac{a}{2}) \] \hspace{1cm} (16)

\[\frac{dy_1}{dx}(\frac{a}{2}) = \frac{dy_2}{dx}(\frac{a}{2}) \] \hspace{1cm} (17)

Substituyendo:

\[\frac{F(b-a)(\frac{a}{2})^2}{2EI} = -\frac{(2F(\frac{a}{2})^3-3bF(\frac{a}{2})^2-12EIc_3(\frac{a}{2})^2)}{12EI} + C_4 \] \hspace{1cm} (18)

\[\frac{F(b-a)(\frac{a}{2})}{2EI} = -\frac{(\frac{a}{2})^2-b(\frac{a}{2})F}{2EI} + C_3 \] \hspace{1cm} (19)

\[C_3 = -\frac{a^2F}{8EI} \] \hspace{1cm} (20)

\[C_4 = \frac{24a^3EI+(-2a^3-3a)F}{48EI} \] \hspace{1cm} (21)
Si se resumen y simplifican los resultados obtenidos:

\[
y = \begin{cases}
\frac{F(b-a)}{2EI} \frac{x^2}{2} & \text{si } x < \frac{a}{2} \\
-\frac{(2x^2-3bx^3/2a^2)Fx}{12EI} + \frac{a^2}{2} - \frac{(2a^3+3a)F}{48EI} & \text{si } x < \frac{a}{2}
\end{cases}
\]

Una vez se han obtenido los resultados generales, se pueden substituir los valores y condiciones con los que se han trabajado en los distintos modelos de este capítulo del trabajo.

De esta forma es posible conocer la fuerza que se está aplicando si imponemos un desplazamiento en los puntos de apoyo.

Desplazamiento en \(x = \frac{a}{2} \rightarrow y(\frac{a}{2}) = -1 \), material: aluminio (\(E = 6,9 \) GPa), \(a = 45, b = 65 \), placa usada (\(w*L*t \)):

![Figura 9](imagen)

Figura 9. Placa de aluminio sobre la que se realiza el ensayo.

Con los datos citados, se puede calcular el momento de inercia que será necesario más adelante:
\[I = \frac{w \cdot t^3}{12} = \frac{50 \cdot 5^3}{12} = 520.83 \text{ mm}^4 \]
(24)

Poniendo los datos y condiciones impuestas en (21), se obtiene:

\[Y^{(a/2)} = \frac{F^{(b-a)}}{EI} \frac{a^2}{8} = -1 \]
(25)

Despejando la fuerza y sustituyendo el resto de valores:

\[F = \frac{16 \cdot (-1) \cdot EI}{a^2 b - a^3} \]
(26)

\[F = \frac{16 \cdot (-1) \cdot 6.9 \cdot 10^4 \text{N/m}^2 \cdot 520.83 \text{ mm}^4}{45^2 \cdot 65 - 45^3 \text{ mm}^3} = -14197.53 \text{ N} \]
(27)

Conociendo el valor de la fuerza que se está aplicando, ya se puede pasar a tensión:

\[\sigma = \frac{M}{I/t/2} = \frac{6 \cdot F \cdot (b-a)/2}{w \cdot t^2} \]
(28)

\[|\sigma| = \frac{6 \cdot (-14197.53) \text{ N} \cdot (65 - 45)/2 \text{ mm}}{50 \cdot 5^2 \text{ mm}^3} = 681.48 \text{ MPa} \]
(29)
4.2. Simulación en SolidWorks

El programa SolidWorks permite modelar piezas y conjuntos, extraer de ellos tanto planos técnicos como otro tipo de información necesaria para la producción y hacer simulaciones varias (método de los elementos finitos), entre otras opciones.

Una vez calculado el modelo teórico, se ha diseñado un modelo semejante en formato SolidWorks. Lo cual nos permite evaluar más datos, poder obtener más información mediante herramientas de cálculo del propio programa y obtener los planos necesarios para mecanizar una pieza que servirá para llevar a la realidad el modelo.

En la Figura 10 se observa el modelo diseñado en SolidWorks, el cual consta de un bloque exterior, con una ranura para introducir el espécimen, en este caso de aluminio, los agujeros roscados donde van los cuatro tornillos normalizados, que hacen de apoyo y son con los que se transmitirán las fuerzas deseadas a la placa o espécimen, y un agujero central a cada lado visto desde la planta, por el que pasa la herramienta necesaria de una fresa CNC.

![Figura 10. Modelo en SolidWorks (Vista isométrica)](image)

En la Figura 11, vista del alzado del modelo, se puede observar la similitud con el modelo teórico de flexión a 4 puntos.
4.2.1. Modelo en SolidWorks de flexión a 4 puntos (Tornillos en 3D)

Usando la herramienta Simulation del programa se ha hecho una simulación, para ello se ha realizado un estudio de flexión con las partes del modelo necesarias, es decir la placa, a la cual se le asigna como material el aluminio, igual que en el modelo teórico, y los cuatro tornillos, que hacen de apoyos.

Luego, para hacer la simulación se debe seguir varios pasos, asignar cargas, sujeciones, restricciones, etc.

En este caso, se ha puesto como geometría fija las superficies superiores de la cabeza de los tornillos de un lado (superior), como geometría de referencia se ha introducido las superficies superiores de la cabeza de los tornillos del otro lado (inferior), haciendo que estos se desplacen 1mm en la dirección de su propio eje, simulando que estamos dando una vuelta completa a estos tornillos de paso igual a 1mm, misma condición que se ha aplicado al modelo teórico. Y por último se ha creado una malla, necesaria para llevar a cabo el método de los elementos finitos.

Una vez el programa realiza el cálculo de la simulación con las condiciones descritas, se obtiene una imagen de la pieza en una escala de colores según la tensión de cada punto (Fig.13).
La Figura 13 es muy ilustrativa, se observan las deformaciones de forma muy exagerada para ver los desplazamientos, pero si realmente se requieren valores más específicos, se puede graficar la tensión a lo largo de una arista, por ejemplo, (Fig.14), lo cual es mucho más concreto y útil de cara a hacer comparaciones con los valores obtenidos en el modelo teórico.

Figura 13. Resultado de tensiones en escala de colores (N/mm²)

Figura 14. Gráfico de tensión a lo largo del eje x
Si se compara este resultado con el teórico, se observa que hay mucha diferencia, en el resultado teórico la tensión es de 681.48MPa, mientras que en esta simulación es de unos 400MPa aproximadamente.

Visto esto, se trata de mejorar el modelo y las condiciones introducidas en la simulación para que se asemeje más al modelo teórico.

4.2.2. Modelo en SolidWorks de flexión a 4 puntos (Tornillos en 2D)

Se ha observado que al menos parte del error o diferencia entre el modelo con tornillos en 3D y el teórico, es precisamente la diferencia de dimensiones, donde el teórico, a diferencia del otro, es en 2D.

Por tanto, se ha modificado el modelo anterior, simplificándolo, pasando este a un nuevo modelo en 2D (Figura 15), tratando de acercarse más al modelo teórico y obtener un resultado más parecido y fiable.

![Figura 15. Modelo de flexión con tornillos en 2D](image)

Nuevamente, se ha realizado un estudio de flexión sobre el espécimen.

En este caso, se han mantenido las condiciones y/o restricciones asignadas, tales como la geometría fija, en las superficies superiores de la cabeza de los tornillos de un lado (superior) y la geometría de referencia, las superficies superiores de la cabeza de los tornillos del otro lado (inferior), haciendo que estos se desplacen 1mm en la dirección de su propio eje.

Por último, se ha creado la malla necesaria y se ha realizado el cálculo, obteniendo los resultados siguientes (Figura 16 y 17).
Figura 16. Segundo resultado de tensiones en escala de colores (N/mm2)

Segundo gráfico de tensión a lo largo del eje x, entre apoyos

σ (teórica) = 681,48 MPa

En estos resultados se observa que la tensión a aumentado, acercándose así al modelo teórico como se esperaba, pero no lo suficiente como para darlos por buenos y fiables.

En la Figura 16 se observa que el contacto entre los tornillos y el espécimen es muy forzado, con las relaciones de posición asignadas, el programa entiende que
la cara plana del extremo del tornillo y el espécimen deben permanecer siempre en contacto total, doblando las diferentes partes de forma errónea, cosa que hace variar los resultados y no es como en el modelo teórico, ni como en la realidad. Aclarar que en la imagen, la deformación está a una escala de 4,5.

Por eso, se hace una nueva modificación al modelo, por tal de mejorararlo más y seguir acercándose al teórico.

4.2.3. Modelo en SolidWorks de flexión a 4 puntos (Desplazamientos en 2D)

Una vez más, se trata de rediseñar los puntos del modelo en SolidWorks que hacen que este se distancie del resultado obtenido mediante el cálculo en el modelo teórico.

Como se ha comentado en el apartado anterior, la unión que el programa entiende entre tornillos y espécimen no es la esperada, por lo que se han eliminado los tornillos, substituyéndolos por desplazamientos que actúan directamente sobre los puntos de apoyo de estos.

Resumiendo, en este tercer modelo se ha trabajado directa y únicamente sobre el espécimen, en formato 2D.

![Figura 18. Modelo de flexión con desplazamientos en 2D](image)

Por lo tanto, en este tercer modelo, se ha hecho una sección del espécimen, respetando las medidas originales, como se observa en la Figura 18. Se ha impuesto un desplazamiento en los dos apoyos superiores de 1mm, como en el resto de modelos, pero esta vez directamente sobre el espécimen, y se han impuesto otras dos geometrías de referencia, por un lado, los apoyos inferiores se han fijado en la dirección vertical (Y), y se ha fijado también un vértice en la dirección horizontal (X).

De nuevo se ha mallado el modelo y el programa ha hecho el cálculo por el método de los elementos finitos.
Figura 19. Tercer resultado de tensiones en escala de colores (N/mm²)

En la Figura 19, con la ayuda de los colores se observa el crecimiento de la tensión entre el primer apoyo inferior hasta el superior, en la dirección horizontal (X), desde 0 hasta los 672MPa, donde se mantiene hasta el siguiente apoyo superior y empieza a disminuir hasta el segundo apoyo inferior donde vuelve a 0.

Figura 20. Tercer gráfico de tensión a lo largo del eje X, entre apoyos

σ (teórica) = 681,48 MPa
En este caso, se observa que los resultados son mucho más buenos, puesto que las diferencias con el modelo teórico son mínimas.

En la Figura 20, se observan unos picos de tensión, esto es debido a la superficie sobre la que se ha impuesto el desplazamiento de 1mm, ya que el programa no permite hacerlo sobre un punto exacto, por lo que se ha optado hacerlo sobre una pequeña superficie circular en el lugar de los apoyos. De todas formas, se da el resultado por satisfactorio.

4.3. Comparativa modelo teórico – simulaciones SW

A continuación, en la Tabla 1 se expone el resumen de los resultados obtenidos en los diferentes modelos, el teórico y los tres diseñados con el programa SolidWorks.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Tensión σ_x (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo teórico</td>
<td>681,48</td>
</tr>
<tr>
<td>SW (Tornillos en 3D)</td>
<td>405,75</td>
</tr>
<tr>
<td>SW (Tornillos en 2D)</td>
<td>426,27</td>
</tr>
<tr>
<td>SW (Desplazamientos en 2D)</td>
<td>672,46</td>
</tr>
</tbody>
</table>

Se observa las diferencias considerables entre el modelo teórico y los dos primeros diseños en SolidWorks.

Sin embargo, también se ve la evolución del diseño, llegando a un resultado bastante satisfactorio en el último diseño, hecho con el programa SolidWorks también, pero mejorando los puntos donde los anteriores diseños se alejaban del resultado esperado, el del modelo teórico.

Con este último modelo, estimado bastante bueno, con un relativamente pequeño margen de error, es posible trabajar y hacer estudios con diferentes situaciones y/o materiales, por ejemplo.
4.4. Modelo real

Mediante los planos realizados con el programa SolidWorks, los cuales se adjuntan en el correspondiente apartado, se ha podido mecanizar y llevar a la realidad el modelo diseñado para hacer ensayos de flexión a 4 puntos.

En la siguiente imagen (Fig. 22) se observa la vista en planta del modelo real.

Figura 22. Vista en planta del modelo real.
A continuación, se observa la vista en alzado del mismo modelo (Fig.23).

![Figura 23. Vista en alzado del modelo real.](image)

Debajo, se añade una foto (Fig. 24) de una placa de aluminio sometida previamente a un proceso de bruñido (*Ball burnishing*), por tal de crear una tensión a compresión en la placa. En la placa de la imagen, ya están instaladas las galgas extensiométricas para aplicar el método *Hole-Drilling* y obtener los gráficos correspondientes. Como se puede ver, las galgas deben protegerse para evitar que las virutas producidas durante el proceso de perforación, puedan hallarse entre las galgas, pudiendo provocar errores en la lectura.

![Figura 24. Espécimen con las galgas extensiométricas.](image)
Por último, se muestra una imagen de la referencia de las galgas extensiométricas usadas en los ensayos reales (Fig. 25).

Figura 25. Referencia de las galgas extensiométricas usadas.

Este modelo de galgas extensiométricas, el RY21, se colocan a un radio de 6.5mm respecto al agujero a perforar, teniendo un grosor de 3mm. Lo cual significa que su centro está a 8mm de radio (Fig. 26).

Figura 26. Datos de las galgas extensiométricas usadas.
CAPÍTULO 5:
SIMULACIÓN EN ABAQUS
DEL PROCESO DE HOLE-DRILLING

Abaqus, es un programa informático de simulación que aplica el método de los elementos finitos, compuesto por diversos software para el análisis de elementos finitos y la ingeniería asistida por ordenador, lanzado originalmente en 1978.

Consta de cinco productos de software principales, Abaqus/CAE ("Complete Abaqus Environment"), que se utiliza para el modelado y análisis de componentes y conjuntos (pre-procesamiento) mecánicos y visualización del resultado del análisis de elementos finitos.

- Abaqus / Standard, un analizador de elementos finitos de propósito general que emplea un esquema de integración implícita (tradicional).
- Abaqus / explícita, un analizador de elementos finitos de propósito especial que emplea un esquema de integración explícita para resolver sistemas altamente no lineales con muchos contactos complejos bajo cargas transitorias.
- Abaqus / CFD (Computational Fluid Dynamics), aplicación de software que proporciona avanzadas capacidades computacionales de dinámica de fluidos con un amplio soporte para pre-procesamiento y post-procesamiento proporcionada en Abaqus / CAE.
- **Abaqus / electromagnético**, una aplicación de software que soluciona los problemas electromagnéticos computacionales avanzados.

Abaqus se utiliza en automoción, aeroespacial, y productos industriales. El producto es muy popular con las instituciones académicas y de investigación, debido a la gran capacidad de modelado de materiales, y la capacidad del programa para su personalización. *Abaqus* también ofrece una buena colección de capacidades físicas, como acoplado acústico-estructural, piezoeléctrico, y las capacidades estructurales de poros, por lo que es atractivo para las simulaciones a nivel de producción en el que múltiples campos necesitan ser acoplados.

Cada análisis completo de elementos finitos se compone de 3 etapas separadas:

- **Pre-procesamiento o de modelado**: Esta etapa implica la creación de un archivo de entrada que contiene el diseño de un ingeniero para un analizador de elementos finitos (*"solver"*).
- **El procesamiento o análisis de elementos finitos**: Esta etapa produce un archivo visual de salida.
- **Post-procesamiento o la generación del informe, imagen, animación, etc. del archivo de salida**: Esta etapa es una etapa de representación visual.

Abaqus / CAE es capaz de hacer el pre-tratamiento, post-procesamiento y el control de la etapa de procesamiento del *solver*. Sin embargo, la primera etapa también se puede hacer por otro software CAD compatible, o incluso un editor de texto. *Abaqus / Standard*, *Abaqus / explícita* o *Abaqus / CFD* son capaces de lograr la etapa de procesamiento.

5.1. Simulación en Abaqus del Hole-Drilling (modelo simple)

Se ha utilizado el programa *Abaqus* para simular el proceso que sufre la pieza durante la medición mediante el método *Hole-Drilling, es decir*, a diferencia del programa *SolidWorks*, *Abaqus* permite someter a la pieza a varios pasos como la perforación en este caso, mostrando la variación de la tensión a lo largo del proceso.

En primer lugar se ha creado un bloque mediante un fichero de texto (Figura 27), este bloque está compuesto por un total de 216 nodos, o sea, 125 elementos. Para tal fin, se debe definir el número de nodos, líneas, nombrar los principales nodos y líneas, escribir la distancia que hay entre ellos, e introducir también las propiedades del material.

Este bloque simula una parte del espécimen con el que se trabaja en el método *Hole-Drilling*, quedando el agujero situado en una esquina de dicho bloque.
Se impone como condición, que las tres caras del bloque que supuestamente están en contacto con el resto del espécimen, no se pueden mover.

Una vez se tiene la pieza descrita, se definen los pasos a seguir para llevar a cabo la simulación.

Figura 27. Bloque creado mediante fichero de texto para la simulación en Abaqus, simulando parte del espécimen del método Hole-Drilling.

En el Paso 1, se estira una de las caras de manera homogénea y perpendicular 1mm, o sea, $\frac{1}{100} = 0.01$.

La tensión debería ser $71000 \times 0.01 = 710$ MPa (módulo elástico * estiramiento).

En *Abaqus* da 713.5 (Figura 28) pues hay largos desplazamientos y strain es $\ln(1+0.01) = 0.09950$ y también cambia el área.

Figura 28. Imagen del bloque en Abaqus donde se aprecia la tensión (parte inferior) de un elemento, tras aplicar el estiramiento.
Puesto que si se estira 1mm una cara del bloque y se mantiene fija la cara opuesta, habiendo 6 nodos a lo largo de una línea y siendo el material homogéneo, la deformación también debería ser homogénea.

Por lo tanto, el desplazamiento a lo largo de los nodos de una línea en el mismo eje que se aplica el estiramiento (eje Y), debería ser 1; 0.8; 0.6; 0.4; 0.2 y 0.

Por ejemplo, el nodo 10025 se debería estirar 0.6mm, como se puede observar en la Figura 29, el desplazamiento es el esperado.

Figura 29. Imagen del bloque en Abaqus donde se aprecia el desplazamiento, 0.6mm (parte inferior) del nodo 10025, tras aplicar el estiramiento.
En cambio, en el eje X, esos valores se deben multiplicar por el coeficiente de Poisson, en este caso 0.28. Por ejemplo, el nodo 10052 debería dar $-0.28 \times 0.6 = -0.168\text{mm}$ considerando largos desplazamientos (Fig. 30).

Figura 30. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras aplicar el estiramiento.

El siguiente paso es empezar a quitar material del bloque, en este caso, los elementos que se han descrito en el programa como E1, E2, E3, E4 y finalmente E5, y seguir observando los desplazamientos en varios nodos para ver cómo afecta la perforación a la pieza.

A continuación, se observan varias imágenes de los pasos en que se va quitando material a modo de ejemplos. Estas imágenes se centran en los nodos 10025 y 10052, los cuales forman parte de las líneas que van a lo largo de los ejes Y y X respectivamente, por las aristas del bloque, hasta el agujero. En los anexos se incluyen todas las imágenes de las cuales se han obtenido los datos necesarios para completar la tabla 2.

En la siguiente imagen (Fig. 31) se observa que ya se ha quitado el primer elemento, lo que corresponde al primer paso de perforación. También se puede apreciar, en la parte inferior de la figura, en pequeño, como el desplazamiento que ha sufrido el nodo 10025, 0.650849mm, es decir, tras este primer paso de perforación, ha aumentado, como se esperaba.
Figura 31. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el primer elemento.

El nodo 10052, el cual forma parte de una línea a lo largo del eje X como se ha descrito anteriormente, también ha variado su valor como se esperaba, - 0.181849mm (Fig. 32).

Figura 32. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el primer elemento.
Tras quitar el segundo elemento, E2, el nodo 10025 ha aumentado su desplazamiento en Y hasta los 0.700274mm (Fig. 33).

Figura 33. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el segundo elemento.

El nodo 10052 también ha variado su desplazamiento, en este caso en X hasta los \(-0.200465\)mm (Fig. 34).

Figura 34. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el segundo elemento.
Después se quita el tercer elemento E3, y observamos que el valor de desplazamiento en el eje Y para el nodo 10025 es 0.720053mm (Fig. 35).

Figura 35. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el tercer elemento.

En este tercer paso de la perforación, el desplazamiento en X del nodo 10052 es de -0.212651mm (Fig. 36).

Figura 36. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el tercer elemento.
Tras quitar E4, el nodo 10025 tiene un desplazamiento en Y de 0.721619mm (Fig. 37).

Figura 37. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el cuarto elemento.

Y el nodo 10052 tiene un desplazamiento en X de -0.219178mm (Fig. 38).

Figura 38. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el cuarto elemento.
Finalmente tras quitar E5, el nodo 10025 tiene un desplazamiento en Y de 0.719964 mm (Fig. 39).

![Figura 39. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el quinto y último elemento.](image1.png)

El nodo 10052 tiene un desplazamiento en X, en el último paso, de -0.223612 mm (Fig. 40).

![Figura 40. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el quinto y último elemento.](image2.png)
Una vez leídos los resultados extraídos de la simulación de Abaqus en los nodos 10025; 10035; 10052 y 10053, se puede hacer una tabla-resumen con las deformaciones en los nodos en cada paso de la simulación (Tabla 2).

Tabla 2. Deformación en los nodos en cada paso de la simulación (modelo simple).

<table>
<thead>
<tr>
<th></th>
<th>Y (mm)</th>
<th></th>
<th>X (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10035</td>
<td>10025</td>
<td>10053</td>
</tr>
<tr>
<td>O</td>
<td>0,4000</td>
<td>0,6000</td>
<td>-0,1127</td>
</tr>
<tr>
<td>E1</td>
<td>0,5280</td>
<td>0,6508</td>
<td>-0,1440</td>
</tr>
<tr>
<td>E2</td>
<td>0,6127</td>
<td>0,7003</td>
<td>-0,1691</td>
</tr>
<tr>
<td>E3</td>
<td>0,6193</td>
<td>0,7201</td>
<td>-0,1814</td>
</tr>
<tr>
<td>E4</td>
<td>0,6229</td>
<td>0,7216</td>
<td>-0,1881</td>
</tr>
<tr>
<td>E5</td>
<td>0,6202</td>
<td>0,7200</td>
<td>-0,1922</td>
</tr>
</tbody>
</table>

Trabajando con los datos anteriores, y usando las ecuaciones siguientes (29 y 30), se obtiene la deformación y el incremento de la deformación en los ejes X e Y para cada paso de la simulación (Tabla 3).

\[\varepsilon_{y_0} = \frac{(\text{desplazamiento}_{10035} - \text{desplazamiento}_{10025})}{\text{distancia entre nodos}} = \frac{(0,4\text{mm}-0,6\text{mm})}{20\text{mm}} = -0,01 \]
(29)

\[\Delta \varepsilon_{y_{E1}} = \varepsilon_{y_1} - \text{deformación inicial} = -0,00614 - (-0,01) = 0,00386 \]
(30)

Tabla 3. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación (modelo simple).

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\varepsilon_{y})</td>
<td>(\Delta \varepsilon_{y})</td>
</tr>
<tr>
<td>O</td>
<td>-0,01</td>
<td>0</td>
</tr>
<tr>
<td>E1</td>
<td>-0,00614</td>
<td>0,00386</td>
</tr>
<tr>
<td>E2</td>
<td>-0,00438</td>
<td>0,00562</td>
</tr>
<tr>
<td>E3</td>
<td>-0,00504</td>
<td>0,00496</td>
</tr>
<tr>
<td>E4</td>
<td>-0,004935</td>
<td>0,005065</td>
</tr>
<tr>
<td>E5</td>
<td>-0,00499</td>
<td>0,00501</td>
</tr>
</tbody>
</table>
Una vez obtenidos los datos numéricos, es posible graficarlos, por tal de tener los resultados de una manera más visual. En la Figura 41 se puede observar la curva que describe el incremento de la deformación en el eje Y a lo largo del eje Z, eje de avance de la perforación.

Figura 41. Gráfico de la diferencia de tensión en Y a lo largo del eje Z.

En la Figura 42 observamos la curva del incremento del desplazamiento en el eje X a lo largo del mismo eje Z.

Figura 42. Gráfico de la diferencia de tensión en X a lo largo del eje Z.
A continuación, se muestran los dos gráficos anteriores juntos (Fig. 43), observando estos en la misma escala. Se puede apreciar que los valores del incremento de la deformación en Y son muy superiores a los del incremento en X. Esto es debido a que el desplazamiento aplicado en el primer paso de la simulación de 1mm, solo se ha asignado al eje Y.

Figura 43. Gráfico de la diferencia de tensión en X e Y a lo largo del eje Z.

Como se puede observar, las curvas no son como se podrían esperar, ya que en el cuarto punto, hay un descenso de la diferencia de tensión, por lo que se ha mejorado el modelo en siguiente apartado.

5.2. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\text{MPa}$)

El caso anterior (modelo simple), como se ha visto, es muy simple, con un mallado muy sencillo, no obstante, sirve para aprender sobre el funcionamiento del programa Abaqus.

En este apartado se ha creado una malla más precisa (Fig. 44), mediante otro proceso más automatizado que tiene como opción el programa Abaqus, que se adapta mejor al caso que se está estudiando. En esta se han utilizado un mayor número de nodos y se ha hecho un mallado especial, con elementos más pequeños sobretodo en la zona donde se quita el material, por tal de parecerse más al trozo de material que simulamos perforar (un cuarto de cilindro).

El resto de condiciones, como caras fijas y propiedades del material son las mismas que en el modelo simple.
Una vez se tiene la pieza mallada, se inicia el proceso de simulación, al igual que en el modelo simple, el primer paso es estirar una de las caras de manera homogénea y perpendicular 1mm, en el eje Y. De esta forma, se aplica una tensión inicial, simulando una tensión residual en la pieza.

Luego, se ha ido quitando elementos, simulando el material perforado, como en el anterior caso, pero esta vez con un total de diez pasos.

A continuación, se muestra un conjunto de figuras (Fig. 45) donde se aprecian los diez pasos de perforación más el inicial, la escala de colores muestra la tensión que se produce al ir perforando el agujero, es decir, la tensión residual aliviada.
Figura 45. Proceso de perforación con la evolución de las tensiones en escala de colores \((\sigma_x = 1\text{MPa})\).

En el conjunto de imágenes (Fig. 45) se observa como a medida que se avanza en la perforación, la tensión aumenta alrededor del agujero simulado. Aunque no se aprecia mucho, cada elemento se deforma poco a poco en cada paso. Estos datos de deformación son los que se extraen y sirven para observar los resultados.
Tabla 4. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=19mm (σx = 1MPa).

<table>
<thead>
<tr>
<th>step</th>
<th>ex</th>
<th>Dex</th>
<th>ey</th>
<th>Dey</th>
<th>ey</th>
<th>Dexy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.76E-06</td>
<td>0.00E+00</td>
<td>-1.43E-06</td>
<td>0.00E+00</td>
<td>5.72E-13</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>2</td>
<td>4.75E-06</td>
<td>-1.25E-08</td>
<td>-1.43E-06</td>
<td>3.08E-09</td>
<td>-1.08E-08</td>
<td>-1.08E-08</td>
</tr>
<tr>
<td>3</td>
<td>4.73E-06</td>
<td>-3.02E-08</td>
<td>-1.42E-06</td>
<td>7.44E-09</td>
<td>-2.51E-08</td>
<td>-2.51E-08</td>
</tr>
<tr>
<td>4</td>
<td>4.71E-06</td>
<td>-4.92E-08</td>
<td>-1.42E-06</td>
<td>1.29E-08</td>
<td>-3.94E-08</td>
<td>-3.94E-08</td>
</tr>
<tr>
<td>5</td>
<td>4.69E-06</td>
<td>-6.77E-08</td>
<td>-1.41E-06</td>
<td>1.89E-08</td>
<td>-5.29E-08</td>
<td>-5.29E-08</td>
</tr>
<tr>
<td>6</td>
<td>4.68E-06</td>
<td>-8.54E-08</td>
<td>-1.40E-06</td>
<td>2.49E-08</td>
<td>-6.51E-08</td>
<td>-6.51E-08</td>
</tr>
<tr>
<td>7</td>
<td>4.66E-06</td>
<td>-1.01E-07</td>
<td>-1.40E-06</td>
<td>3.06E-08</td>
<td>-7.60E-08</td>
<td>-7.60E-08</td>
</tr>
<tr>
<td>8</td>
<td>4.65E-06</td>
<td>-1.15E-07</td>
<td>-1.39E-06</td>
<td>3.59E-08</td>
<td>-8.54E-08</td>
<td>-8.54E-08</td>
</tr>
<tr>
<td>9</td>
<td>4.63E-06</td>
<td>-1.27E-07</td>
<td>-1.39E-06</td>
<td>4.07E-08</td>
<td>-9.33E-08</td>
<td>-9.33E-08</td>
</tr>
<tr>
<td>10</td>
<td>4.63E-06</td>
<td>-1.37E-07</td>
<td>-1.38E-06</td>
<td>4.49E-08</td>
<td>-9.97E-08</td>
<td>-9.97E-08</td>
</tr>
</tbody>
</table>

En la tabla 4 se resume el desplazamiento relativo (strain) de tres elementos situados a r = 19mm aproximadamente del centro del agujero y la diferencia de strain respecto al inicio, justo antes de iniciar la perforación.

Estos tres elementos se sitúan, tal como dicta la norma que deben colocarse las galgas extensiométricas, a 0 (x), 90 (y) y 45 (xy) grados.

Se han comprobado los mismos datos para diferentes radios, los cuales se pueden ver dichos datos y gráficos correspondientes en el anexo.

Figura 46. Gráfico de los tres diferenciales de strain en r = 19mm (σx = 1MPa).

En la Figura 46 se observan los diferenciales de strain para los tres ejes necesarios, el diferencial en Y tiene valores positivos, al contrario que los valores en el eje X. Por tanto, los valores en X son negativos, ya que por el efecto
Poisson (Fig. 47), los elementos que se estiran/comprimen en un eje, en el otro se estrechan/ensanchan. Y los valores del eje XY quedan entre los otros dos como se esperaba.

![Figura 47. Efecto Poisson.](image)

A continuación, se ha hecho una comparativa entre los gráficos obtenidos para los diferentes radios estudiados.

![Figura 48. Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados (σ_x = 1MPa).](image)

En la Figura 48 se ven los diferenciales de strain en X para cuatro radios diferentes desde los 15 hasta los 27mm. Como se puede observar, todos ellos tienen valores negativos y estos van disminuyendo (en valor absoluto) a medida que el radio aumenta. También se aprecia que a menor radio, los valores son considerablemente más elevados.
En el caso de la comparación en el eje Y (Fig. 49) también se observa la relación entre la disminución de los valores, inversamente proporcional al radio en que se toman las mesuras.

Figura 49. Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}$).

Igual que en las otras dos comparativas, en el eje XY también se observa la relación inversa entre los diferenciales de strain respecto al radio en que se miden (Fig. 50).

Figura 50. Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}$).
5.3. Simulación en Abaqus del Hole-Drilling ($\sigma_x = \sigma_y = 1\text{MPa}$)

En este apartado, se ha hecho el mismo análisis que en el anterior, variando el paso 1. Esta vez no solo se ha estirado una de las caras de manera homogénea y perpendicular 1mm, sino que se ha hecho en las dos caras, en el eje X e Y.

![Simulación en Abaqus del Hole-Drilling](image)

Figura 51. Proceso de perforación con la evolución de las tensiones en escala de colores ($\sigma_x = \sigma_y = 1\text{MPa}$).
En el conjunto de imágenes anterior (Fig. 51) se puede apreciar la diferencia en los colores que marcan las tensiones, que en este caso, son simétricas, debido a que ahora la tensión inicial a la que es sometida la pieza, la aplicada en el paso 1, es igual para los dos ejes, X e Y.

Tabla 5. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=19mm (σ_x = σ_y = 1MPa).

<table>
<thead>
<tr>
<th>step</th>
<th>ex</th>
<th>Dex</th>
<th>ey</th>
<th>Dey</th>
<th>exy</th>
<th>Dexy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>4.96E-20</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>2</td>
<td>3.32E-06</td>
<td>-9.97E-09</td>
<td>3.32E-06</td>
<td>-1.05E-08</td>
<td>-2.29E-08</td>
<td>-2.29E-08</td>
</tr>
<tr>
<td>3</td>
<td>3.31E-06</td>
<td>-2.36E-08</td>
<td>3.31E-06</td>
<td>-2.65E-08</td>
<td>-5.37E-08</td>
<td>-5.37E-08</td>
</tr>
<tr>
<td>4</td>
<td>3.30E-06</td>
<td>-3.73E-08</td>
<td>3.29E-06</td>
<td>-4.17E-08</td>
<td>-8.54E-08</td>
<td>-8.54E-08</td>
</tr>
<tr>
<td>5</td>
<td>3.28E-06</td>
<td>-5.03E-08</td>
<td>3.28E-06</td>
<td>-5.70E-08</td>
<td>-1.15E-07</td>
<td>-1.15E-07</td>
</tr>
<tr>
<td>6</td>
<td>3.27E-06</td>
<td>-6.22E-08</td>
<td>3.26E-06</td>
<td>-7.05E-08</td>
<td>-1.43E-07</td>
<td>-1.43E-07</td>
</tr>
<tr>
<td>7</td>
<td>3.26E-06</td>
<td>-7.26E-08</td>
<td>3.25E-06</td>
<td>-8.21E-08</td>
<td>-1.67E-07</td>
<td>-1.67E-07</td>
</tr>
<tr>
<td>8</td>
<td>3.25E-06</td>
<td>-8.12E-08</td>
<td>3.24E-06</td>
<td>-9.18E-08</td>
<td>-1.88E-07</td>
<td>-1.88E-07</td>
</tr>
<tr>
<td>9</td>
<td>3.25E-06</td>
<td>-8.83E-08</td>
<td>3.23E-06</td>
<td>-9.96E-08</td>
<td>-2.05E-07</td>
<td>-2.05E-07</td>
</tr>
</tbody>
</table>

En la Figura 52 de este ensayo se percibe que todos los datos tienen el mismo signo, este es negativo ya que se está sometiendo a la pieza a tracción por ambos ejes. Hay una diferencia en los resultados del eje X respecto a los del eje Y debido a una pequeña diferencia del radio respecto a que se han tomado las medidas, 19.125 y 19.15 respectivamente. Esto refleja la importancia de la excentricidad y la precisión con que debe aplicarse el procedimiento del método Hole-Drilling. Los resultados del eje XY son muy diferentes y no se aproximan a los esperados, queda pendiente tratar de sacar los resultados mediante el circulo de Mohr o girando los ejes de coordenadas en el programa.

Figura 52. Gráfico de los tres diferenciales de strain en r = 19mm (σ_x = σ_y = 1MPa).
Como en el anterior apartado, en esta simulación también se aprecia la diferencia de valores para diferentes radios (Fig. 53, 54 y 55), siendo más elevados (valor absoluto) como más pequeño es el radio en el que se toman las datos.

Figura 53. Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1$MPa).

Para los cuatro radios estudiados se puede observar una diferencia de los valores obtenidos, comparando las figuras 53 y 54, y fijándose en los radios, se aprecian como una pequeña diferencia en los radios, afecta de forma considerable en los resultados obtenidos.

Figura 54. Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1$MPa).
La siguiente figura (Fig. 55) sigue con la misma dinámica que las anteriores, comparando los resultados para diferentes radios, se aprecia la importancia de tomar las medidas de la manera más precisa posible, puesto que afecta de manera significativa a los resultados finales.

Figura 55. Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1\text{MPa}$).
5.4. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)

Por último, se ha hecho una nueva simulación, variando esta vez el sentido en que se aplica la tensión inicial en la pieza en uno de los ejes, el eje Y. Siendo esta del mismo valor pero en sentido contrario, es decir, en el eje X se sigue aplicando tracción, en cambio, en este caso, en el eje Y se aplica una compresión.

![Diagrama de tensión](image)

Figura 56. Proceso de perforación con la evolución de las tensiones en escala de colores ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
En el conjunto de figuras anterior (Fig. 56) se nota la diferencia en las tensiones aplicadas por los colores que aparecen alrededor del agujero. Pero no siendo estos, suficiente esclarecedores, a continuación se adjunta nuevamente los resultados en forma numérica (Tabla 6).

Tabla 6. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=19mm ($\sigma_x = 1$MPa; $\sigma_y = -1$MPa).

<table>
<thead>
<tr>
<th>step</th>
<th>ex</th>
<th>Dex</th>
<th>ey</th>
<th>Dey</th>
<th>exy</th>
<th>Dexy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.19E-06</td>
<td>0.00E+00</td>
<td>-6.19E-06</td>
<td>0.00E+00</td>
<td>1.14E-12</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>2</td>
<td>6.18E-06</td>
<td>-1.50E-08</td>
<td>-6.17E-06</td>
<td>1.67E-08</td>
<td>1.35E-09</td>
<td>1.35E-09</td>
</tr>
<tr>
<td>3</td>
<td>6.15E-06</td>
<td>-3.69E-08</td>
<td>-6.15E-06</td>
<td>4.14E-08</td>
<td>3.47E-09</td>
<td>3.47E-09</td>
</tr>
<tr>
<td>4</td>
<td>6.13E-06</td>
<td>-6.10E-08</td>
<td>-6.12E-06</td>
<td>6.75E-08</td>
<td>6.57E-09</td>
<td>6.56E-09</td>
</tr>
<tr>
<td>5</td>
<td>6.11E-06</td>
<td>-8.51E-08</td>
<td>-6.10E-06</td>
<td>9.48E-08</td>
<td>9.60E-09</td>
<td>9.59E-09</td>
</tr>
<tr>
<td>6</td>
<td>6.08E-06</td>
<td>-1.09E-07</td>
<td>-6.07E-06</td>
<td>1.20E-07</td>
<td>1.23E-08</td>
<td>1.23E-08</td>
</tr>
<tr>
<td>7</td>
<td>6.06E-06</td>
<td>-1.30E-07</td>
<td>-6.05E-06</td>
<td>1.43E-07</td>
<td>1.47E-08</td>
<td>1.47E-08</td>
</tr>
<tr>
<td>8</td>
<td>6.04E-06</td>
<td>-1.49E-07</td>
<td>-6.03E-06</td>
<td>1.64E-07</td>
<td>1.68E-08</td>
<td>1.68E-08</td>
</tr>
<tr>
<td>9</td>
<td>6.02E-06</td>
<td>-1.66E-07</td>
<td>-6.01E-06</td>
<td>1.81E-07</td>
<td>1.84E-08</td>
<td>1.84E-08</td>
</tr>
<tr>
<td>10</td>
<td>6.01E-06</td>
<td>-1.79E-07</td>
<td>-6.00E-06</td>
<td>1.95E-07</td>
<td>1.97E-08</td>
<td>1.97E-08</td>
</tr>
</tbody>
</table>

En esta simulación, viendo los datos y el gráfico siguiente (Fig. 57) se aprecia la simetría inversa de los resultados de los incrementos de la deformación del eje X respecto del eje Y. Lo que hace que en el eje XY los valores sean muy cercanos a 0. No lo son exactamente, nuevamente debido a la excentricidad. No obstante, como se ha comentado, no se está completamente seguro de la validez de los valores en el eje XY.

Figura 57. Gráfico de los tres diferenciales de strain en r = 19mm ($\sigma_x = 1$MPa; $\sigma_y = -1$MPa).
Una vez más, se comparan los resultados en los tres ejes para diferentes radios.

![Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados](image)

Figura 58. Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).

Tanto en el eje X (Fig. 58) como en el eje Y (Fig. 59), en esta simulación, los valores son más elevados debido a la nueva distribución de tensiones iniciales aplicadas.

![Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados](image)

Figura 59. Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Por el contrario, en el eje XY (Fig. 60) los valores son bastante más pequeños en comparación con las otras simulaciones anteriores. En un caso teórico ideal, estos deberían ser 0, pero como se ha comentado la excentricidad del agujero respecto al centro de las supuestas galgas extensiométricas, provoca este error. A la vez, se ve que como más cerca se toman las medidas, más se acusa este efecto.

Figura 60. Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x=1$MPa; $\sigma_y=-1$MPa).
5.5. Comparación con resultados experimentales en bruñido

A continuación se muestran cuatro resultados experimentales de mediciones de tensiones residuales mediante el método *Hole-Drilling* (Fig. 61). En estas mediciones se han usado muestras de aluminio que han sido sometidas a bruñido, por tal de crear en ellas tensiones residuales y luego poder mesurarlas.

En comparación con los resultados obtenidos en las simulaciones hechas en este trabajo, se puede apreciar que son muy similares, en concreto al segundo caso, donde $\sigma_x = \sigma_y = 1\text{MPa}$. A diferencia que en los resultados experimentales las tensiones son a compresión debido al proceso de bruñido.

Se puede observar que los resultados en los ejes X e Y son diferentes para todos los casos. No está claro si esto sucede porque efectivamente son diferentes, o bien a causa de un problema de excentricidad debido a que el agujero este descentrado.

Figura 61. Resultados experimentales en bruñido.
Finalmente, se pueden remarcar varios puntos del trabajo.

En primer lugar, la diferencia entre el modelo teórico de flexión a 4 puntos y las simulaciones hechas con el programa SolidWorks, siempre hay pequeños errores, o más bien dicho factores, que no siempre se pueden tener en cuenta y que desvían los resultados de la teoría. De ahí la importancia de los pequeños detalles que marcan la diferencia entre un resultado aceptable y un error no aceptable. Por ejemplo, simular con tornillos es diferente a la realidad, el contacto entre los tornillos y el espécimen hace que la pieza rote y no de un resultado esperado.

En el apartado de dicha comparación (Capítulo 4), se explica cómo se ha conseguido un modelo en SW satisfactorio, donde este consigue unos resultados muy parecidos al modelo teórico, con el que es posible trabajar y hacer estudios con diferentes situaciones y/o materiales a partir de él.

Respecto a las simulaciones hechas con el programa Abaqus (Capítulo 5), se pueden sacar varias conclusiones como la importancia de la distancia en que se toman las medidas, es decir, donde se colocan las galgas extensiométricas a la hora de aplicar el método de Hole-Drilling, o la elección del modelo de galgas extensiométricas adecuado.

La excentricidad del agujero respecto del centro de las galgas extensiométricas es también otro punto muy a tener en cuenta. Cualquiera de estos puntos provocan cambios sustanciales en la precisión de los resultados.

Por tal de seguir mejorando los resultados de los modelos creados, se propone de cara a trabajos futuros, en el caso de los modelos de flexión a 4 puntos, variar la geometría de los apoyos, sustituyendo los tornillos o puntos de apoyo, por líneas de apoyo, de esta forma, se pretende acercarse más al modelo teórico, manteniendo el modelo de SolidWorks y el real en 3D.
En el caso de las simulaciones en Abaqus, sería también interesante crear una nueva malla de la pieza con elementos más pequeños, sobretodo alrededor del agujero, por tal de poder observar los resultados a una distancia de 8mm respecto al agujero. Esta distancia, es el radio donde se colocan las galgas extensiométricas del modelo RY21, usadas por el equipo del cual forma parte el director de este proyecto.

A nivel personal del autor del trabajo, este se siente muy satisfecho del trabajo realizado para completar este proyecto, sobre todo teniendo en cuenta que al principio de este, no tenía claro que eran las tensiones residuales.
CAPÍTULO 7: BIBLIOGRAFÍA

7.1. Referències bibliogràfiques

7.2. Bibliografía de Consulta

Ajovalasit, A. Safidi, M. Zuccarello, B. Beghini, M. Bertini, L. Santus, C. Valentini, E. Benincasa and A. Bertilli, L. 2010. The hole-drilling strain gauge method for the measurement of uniform or non-uniform residual stresses.

Montay, G. Cherouat, A. and Lu, J. 2006. Incremental hole drilling and X-ray diffraction techniques to the residual stresses determination introduced by shot peening in titanium alloy.

Anexos

“MEDICIÓN DE TENSIONES RESIDUALES”

TFG presentado para optar al título de GRADO en INGENIERÍA INDUSTRIAL (MECÁNICA) por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE ANEXOS

Índice anexos .. 77
1. Imágenes de Simulación en Abaqus del Hole-Drilling (modelo simple) 79
 Tras aplicar desplazamiento: ... 80
 Tras quitar E1: ... 82
 Tras quitar E2: ... 84
 Tras quitar E3: ... 86
 Tras quitar E4: ... 88
 Finalmente tras quitar E5: .. 90
2. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1$MPa)................................. 92
3. Simulación en Abaqus del Hole-Drilling ($\sigma_x = \sigma_y = 1$MPa)................. 98
4. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1$MPa; $\sigma_y = -1$MPa) 104
1. Imágenes de Simulación en Abaqus del Hole-Drilling (modelo simple)

Figura 1. Imagen del bloque en Abaqus donde se aprecia la tensión (parte inferior) de un elemento, tras aplicar el estiramiento.
Tras aplicar desplazamiento:

Figura 2. Imagen del bloque en Abaqus donde se aprecia el desplazamiento, 0.6mm (parte inferior) del nodo 10025, tras aplicar el estiramiento.

Figura 3. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10035, tras aplicar el estiramiento.
Figura 4. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras aplicar el estiramiento.

Figura 5. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10053, tras aplicar el estiramiento.
Tras quitar E1:

Figura 6. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el primer elemento.

Figura 7. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10035, tras quitar el primer elemento.
Figura 8. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el primer elemento.

Figura 9. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10053, tras quitar el primer elemento.
Tras quitar E2:

Figura 10. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el segundo elemento.

Figura 11. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10035, tras quitar el segundo elemento.
Figura 12. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el segundo elemento.

Figura 13. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10053, tras quitar el segundo elemento.
Tras quitar E_3:

Figura 14. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el tercer elemento.

Figura 15. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10035, tras quitar el tercer elemento.
Figura 16. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el tercer elemento.

Figura 17. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10053, tras quitar el tercer elemento.
Tras quitar E4:

Figura 18. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el cuarto elemento.

Figura 19. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10035, tras quitar el cuarto elemento.
Figura 20. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el cuarto elemento.

Figura 21. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10053, tras quitar el cuarto elemento.
Finalmente tras quitar E5:

Figura 22. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10025, tras quitar el quinto y último elemento.

Figura 23. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10035, tras quitar el quinto y último elemento.
Figura 24. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10052, tras quitar el quinto y último elemento.

Figura 25. Imagen del bloque en Abaqus donde se aprecia el desplazamiento (parte inferior) del nodo 10053, tras quitar el quinto y último elemento.
2. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\text{MPa}$)

Tabla 1. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en $r=15\text{mm}$ ($\sigma_x = 1\text{MPa}$).

<table>
<thead>
<tr>
<th>sx=1MPA</th>
<th>$r = 15.015$</th>
<th>$r = 15.035$</th>
<th>$r = 14.84924$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11-EX1 (3660)</td>
<td>E22-EY1 (3760)</td>
<td>E12-EXY1 (3920)</td>
<td></td>
</tr>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>4.76E-06</td>
<td>0.00E+00</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>2</td>
<td>4.73E-06</td>
<td>-2.71E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>3</td>
<td>4.70E-06</td>
<td>-6.42E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>4</td>
<td>4.66E-06</td>
<td>-1.04E-07</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>5</td>
<td>4.62E-06</td>
<td>-1.42E-07</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>6</td>
<td>4.59E-06</td>
<td>-1.75E-07</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>7</td>
<td>4.56E-06</td>
<td>-2.03E-07</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>8</td>
<td>4.54E-06</td>
<td>-2.26E-07</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>9</td>
<td>4.52E-06</td>
<td>-2.42E-07</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>10</td>
<td>4.51E-06</td>
<td>-2.52E-07</td>
<td>-1.43E-06</td>
</tr>
</tbody>
</table>

Figura 26. Gráfico de los tres diferenciales de strain en $r = 15\text{mm}$ ($\sigma_x = 1\text{MPa}$).
Tabla 2. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=19mm ($\sigma_x = 1$MPa).

<table>
<thead>
<tr>
<th>sx=1MPa</th>
<th>r = 19.125</th>
<th>r = 19.15</th>
<th>r = 20.5061</th>
</tr>
</thead>
<tbody>
<tr>
<td>step</td>
<td>ex Dey</td>
<td>ex ey Dey</td>
<td>ex ey Dey</td>
</tr>
<tr>
<td>1</td>
<td>4.76E-06 0.00E+00</td>
<td>-1.43E-06 0.00E+00</td>
<td>5.72E-13 0.00E+00</td>
</tr>
<tr>
<td>2</td>
<td>4.75E-06 -1.25E-08</td>
<td>-1.43E-06 3.08E-09</td>
<td>-1.08E-08 -1.08E-08</td>
</tr>
<tr>
<td>3</td>
<td>4.73E-06 -3.02E-08</td>
<td>-1.42E-06 7.44E-09</td>
<td>-2.51E-08 -2.51E-08</td>
</tr>
<tr>
<td>4</td>
<td>4.71E-06 -4.92E-08</td>
<td>-1.42E-06 1.29E-08</td>
<td>-3.94E-08 -3.94E-08</td>
</tr>
<tr>
<td>5</td>
<td>4.69E-06 -6.77E-08</td>
<td>-1.41E-06 1.89E-08</td>
<td>-5.29E-08 -5.29E-08</td>
</tr>
<tr>
<td>6</td>
<td>4.68E-06 -8.54E-08</td>
<td>-1.40E-06 2.49E-08</td>
<td>-6.51E-08 -6.51E-08</td>
</tr>
<tr>
<td>7</td>
<td>4.66E-06 -1.01E-07</td>
<td>-1.40E-06 3.06E-08</td>
<td>-7.60E-08 -7.60E-08</td>
</tr>
<tr>
<td>8</td>
<td>4.65E-06 -1.15E-07</td>
<td>-1.39E-06 3.59E-08</td>
<td>-8.54E-08 -8.54E-08</td>
</tr>
<tr>
<td>9</td>
<td>4.63E-06 -1.27E-07</td>
<td>-1.39E-06 4.07E-08</td>
<td>-9.33E-08 -9.33E-08</td>
</tr>
<tr>
<td>10</td>
<td>4.63E-06 -1.37E-07</td>
<td>-1.38E-06 4.49E-08</td>
<td>-9.97E-08 -9.97E-08</td>
</tr>
</tbody>
</table>

Figura 27. Gráfico de los tres diferenciales de strain en r = 19mm ($\sigma_x = 1$MPa).
Tabla 3. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=23mm ($\sigma_x=1\text{MPa}$).

<table>
<thead>
<tr>
<th>sx=1MPA</th>
<th>(r = 23.24) E11-EX3 (3220)</th>
<th>(r = 23.26) E22-EY3 (3540)</th>
<th>(r = 26.02153) E12-EXY3 (2360)</th>
</tr>
</thead>
<tbody>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>1</td>
<td>4.76E-06</td>
<td>0.00E+00</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>2</td>
<td>4.75E-06</td>
<td>-6.98E-09</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>3</td>
<td>4.75E-06</td>
<td>-1.67E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>4</td>
<td>4.73E-06</td>
<td>-2.72E-08</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>5</td>
<td>4.72E-06</td>
<td>-3.78E-08</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>6</td>
<td>4.71E-06</td>
<td>-4.79E-08</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>7</td>
<td>4.70E-06</td>
<td>-5.74E-08</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>8</td>
<td>4.70E-06</td>
<td>-6.61E-08</td>
<td>-1.41E-06</td>
</tr>
<tr>
<td>9</td>
<td>4.69E-06</td>
<td>-7.39E-08</td>
<td>-1.41E-06</td>
</tr>
<tr>
<td>10</td>
<td>4.68E-06</td>
<td>-8.07E-08</td>
<td>-1.41E-06</td>
</tr>
</tbody>
</table>

Figura 28. Gráfico de los tres diferenciales de strain en r = 23mm ($\sigma_x=1\text{MPa}$).
Tabla 4. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=27mm ($\sigma_x = 1$MPa).

<table>
<thead>
<tr>
<th>sx=1MPA</th>
<th>$r = 27.36$</th>
<th>$r = 27.37$</th>
<th>$r = 30.82986$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E11-EX4 (2080)</td>
<td>E22-EY4 (2120)</td>
<td>E12-EXY4 (2780)</td>
</tr>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>1</td>
<td>4.76E-06</td>
<td>0.00E+00</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>2</td>
<td>4.76E-06</td>
<td>-4.07E-09</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>3</td>
<td>4.75E-06</td>
<td>-9.76E-09</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>4</td>
<td>4.75E-06</td>
<td>-1.59E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>5</td>
<td>4.74E-06</td>
<td>-2.21E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>6</td>
<td>4.73E-06</td>
<td>-2.82E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>7</td>
<td>4.73E-06</td>
<td>-3.40E-08</td>
<td>-1.43E-06</td>
</tr>
<tr>
<td>8</td>
<td>4.72E-06</td>
<td>-3.94E-08</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>9</td>
<td>4.72E-06</td>
<td>-4.43E-08</td>
<td>-1.42E-06</td>
</tr>
<tr>
<td>10</td>
<td>4.71E-06</td>
<td>-4.88E-08</td>
<td>-1.42E-06</td>
</tr>
</tbody>
</table>

Figura 29. Gráfico de los tres diferenciales de strain en r = 27mm ($\sigma_x = 1$MPa).
Figura 30. Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = 1$MPa).

Figura 31. Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = 1$MPa).
Figura 32. Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = 1$MPa).
3. Simulación en Abaqus del Hole-Drilling ($\sigma_x = \sigma_y = 1\text{MPa}$)

Tabla 5. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en $r=15\text{mm}$ ($\sigma_x = \sigma_y = 1\text{MPa}$).

<table>
<thead>
<tr>
<th>step</th>
<th>EX1 step</th>
<th>ex</th>
<th>Dex</th>
<th>ey</th>
<th>Dey</th>
<th>EXY1 step</th>
<th>exy</th>
<th>Dexy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.015</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>7.24E-20</td>
<td>0.00E+00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15.035</td>
<td>3.31E-06</td>
<td>-1.99E-08</td>
<td>3.33E-06</td>
<td>-1.01E-09</td>
<td>-5.30E-08</td>
<td>-5.30E-08</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14.84924</td>
<td>3.29E-06</td>
<td>-4.65E-08</td>
<td>3.33E-06</td>
<td>-2.01E-09</td>
<td>-1.21E-07</td>
<td>-1.21E-07</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3.26E-06</td>
<td>-7.36E-08</td>
<td>3.33E-06</td>
<td>-2.59E-09</td>
<td>-1.92E-07</td>
<td>-1.92E-07</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3.23E-06</td>
<td>-9.86E-08</td>
<td>3.33E-06</td>
<td>-2.65E-09</td>
<td>-2.56E-07</td>
<td>-2.56E-07</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3.21E-06</td>
<td>-1.19E-07</td>
<td>3.33E-06</td>
<td>-2.14E-09</td>
<td>-3.09E-07</td>
<td>-3.09E-07</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3.20E-06</td>
<td>-1.36E-07</td>
<td>3.33E-06</td>
<td>-1.05E-09</td>
<td>-3.52E-07</td>
<td>-3.52E-07</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3.19E-06</td>
<td>-1.48E-07</td>
<td>3.33E-06</td>
<td>6.40E-10</td>
<td>-3.85E-07</td>
<td>-3.85E-07</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3.18E-06</td>
<td>-1.55E-07</td>
<td>3.34E-06</td>
<td>2.93E-09</td>
<td>-4.09E-07</td>
<td>-4.09E-07</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>3.17E-06</td>
<td>-1.59E-07</td>
<td>3.34E-06</td>
<td>5.83E-09</td>
<td>-4.26E-07</td>
<td>-4.26E-07</td>
<td></td>
</tr>
</tbody>
</table>

Figura 33. Gráfico de los tres diferenciales de strain en $r = 15\text{mm}$ ($\sigma_x = \sigma_y = 1\text{MPa}$).
Tabla 6. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=19mm ($\sigma_x = \sigma_y = 1$MPa).

<table>
<thead>
<tr>
<th>sx=sy=1MPA</th>
<th>r = 19.125</th>
<th>r = 19.15</th>
<th>r = 20.5061</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EX2</td>
<td>EY2</td>
<td>EXY2</td>
</tr>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>1</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>3.33E-06</td>
</tr>
<tr>
<td>2</td>
<td>3.32E-06</td>
<td>-9.97E-09</td>
<td>3.32E-06</td>
</tr>
<tr>
<td>3</td>
<td>3.31E-06</td>
<td>-2.36E-08</td>
<td>3.31E-06</td>
</tr>
<tr>
<td>4</td>
<td>3.30E-06</td>
<td>-3.73E-08</td>
<td>3.29E-06</td>
</tr>
<tr>
<td>5</td>
<td>3.28E-06</td>
<td>-5.03E-08</td>
<td>3.28E-06</td>
</tr>
<tr>
<td>6</td>
<td>3.27E-06</td>
<td>-6.22E-08</td>
<td>3.26E-06</td>
</tr>
<tr>
<td>7</td>
<td>3.26E-06</td>
<td>-7.26E-08</td>
<td>3.25E-06</td>
</tr>
<tr>
<td>8</td>
<td>3.25E-06</td>
<td>-8.12E-08</td>
<td>3.24E-06</td>
</tr>
<tr>
<td>9</td>
<td>3.25E-06</td>
<td>-8.83E-08</td>
<td>3.23E-06</td>
</tr>
</tbody>
</table>

Figura 34. Gráfico de los tres diferenciales de strain en r = 19mm ($\sigma_x = \sigma_y = 1$MPa).
Tabla 7. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=23mm ($\sigma_x = \sigma_y = 1\text{MPa})$.

<table>
<thead>
<tr>
<th>sx=sy=1MPA</th>
<th>ex (EX3)</th>
<th>Dex</th>
<th>ey (EY3)</th>
<th>Dey</th>
<th>exy (EXY3)</th>
<th>Dexy</th>
</tr>
</thead>
<tbody>
<tr>
<td>r = 23.24</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>4.61E-20</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>r = 23.26</td>
<td>3.33E-06</td>
<td>-6.04E-09</td>
<td>3.33E-06</td>
<td>-6.74E-09</td>
<td>-1.34E-08</td>
<td>-1.34E-08</td>
</tr>
<tr>
<td>r = 26.02153</td>
<td>3.32E-06</td>
<td>-1.42E-08</td>
<td>3.32E-06</td>
<td>-1.54E-08</td>
<td>-3.13E-08</td>
<td>-3.13E-08</td>
</tr>
</tbody>
</table>

Figura 35. Gráfico de los tres diferenciales de strain en r = 23mm ($\sigma_x = \sigma_y = 1\text{MPa}$).
Tabla 8. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=27mm (σₓ = σᵧ = 1MPa).

<table>
<thead>
<tr>
<th>sx=sy=1MPA</th>
<th>27.36</th>
<th>27.37</th>
<th>30.82986</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27.36</td>
<td>27.37</td>
<td>EX4</td>
</tr>
<tr>
<td></td>
<td>30.82986</td>
<td>30.82986</td>
<td>EY4</td>
</tr>
<tr>
<td></td>
<td>30.82986</td>
<td>30.82986</td>
<td>EXY4</td>
</tr>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>1</td>
<td>3.33E-06</td>
<td>0.00E+00</td>
<td>3.33E-06</td>
</tr>
<tr>
<td>2</td>
<td>3.33E-06</td>
<td>-4.19E-09</td>
<td>3.33E-06</td>
</tr>
<tr>
<td>3</td>
<td>3.32E-06</td>
<td>-9.76E-09</td>
<td>3.32E-06</td>
</tr>
<tr>
<td>4</td>
<td>3.32E-06</td>
<td>-1.55E-08</td>
<td>3.32E-06</td>
</tr>
<tr>
<td>5</td>
<td>3.31E-06</td>
<td>-2.09E-08</td>
<td>3.31E-06</td>
</tr>
<tr>
<td>6</td>
<td>3.31E-06</td>
<td>-2.60E-08</td>
<td>3.30E-06</td>
</tr>
<tr>
<td>7</td>
<td>3.30E-06</td>
<td>-3.07E-08</td>
<td>3.30E-06</td>
</tr>
<tr>
<td>8</td>
<td>3.30E-06</td>
<td>-3.49E-08</td>
<td>3.30E-06</td>
</tr>
<tr>
<td>9</td>
<td>3.29E-06</td>
<td>-3.86E-08</td>
<td>3.29E-06</td>
</tr>
<tr>
<td>10</td>
<td>3.29E-06</td>
<td>-4.18E-08</td>
<td>3.29E-06</td>
</tr>
</tbody>
</table>

Figura 36. Gráfico de los tres diferenciales de strain en r = 27mm (σₓ = σᵧ = 1MPa).
Figura 37. Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1$MPa).

Figura 38. Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1$MPa).
Figura 39. Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = \sigma_y = 1\text{MPa}$).

Sx=Sy=1MPa, comparation of different r (Dexy), with 0.02mm centre displacement.
4. Simulación en Abaqus del Hole-Drilling ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$)

Tabla 9. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=15mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).

<table>
<thead>
<tr>
<th>sx=1MPa; sy=-1MPa</th>
<th>15.015</th>
<th>15.035</th>
<th>14.84924</th>
</tr>
</thead>
<tbody>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>1</td>
<td>6.19E-06</td>
<td>0.00E+00</td>
<td>-6.19E-06</td>
</tr>
<tr>
<td>2</td>
<td>6.16E-06</td>
<td>-3.44E-08</td>
<td>-6.16E-06</td>
</tr>
<tr>
<td>3</td>
<td>6.11E-06</td>
<td>-8.19E-08</td>
<td>-6.11E-06</td>
</tr>
<tr>
<td>4</td>
<td>6.06E-06</td>
<td>-1.34E-07</td>
<td>-6.05E-06</td>
</tr>
<tr>
<td>5</td>
<td>6.01E-06</td>
<td>-1.85E-07</td>
<td>-6.00E-06</td>
</tr>
<tr>
<td>6</td>
<td>5.96E-06</td>
<td>-2.31E-07</td>
<td>-5.95E-06</td>
</tr>
<tr>
<td>7</td>
<td>5.92E-06</td>
<td>-2.71E-07</td>
<td>-5.91E-06</td>
</tr>
<tr>
<td>8</td>
<td>5.89E-06</td>
<td>-3.03E-07</td>
<td>-5.88E-06</td>
</tr>
<tr>
<td>9</td>
<td>5.86E-06</td>
<td>-3.28E-07</td>
<td>-5.86E-06</td>
</tr>
<tr>
<td>10</td>
<td>5.85E-06</td>
<td>-3.45E-07</td>
<td>-5.84E-06</td>
</tr>
</tbody>
</table>

Figura 40. Gráfico de los tres diferenciales de strain en r = 15mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Tabla 10. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=19mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).

<table>
<thead>
<tr>
<th>step</th>
<th>sx=1MPa;sy=-1MPa</th>
<th>19.125</th>
<th>19.15</th>
<th>20.5061</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ex</td>
<td>EY2</td>
<td>Exy</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6.19E-06</td>
<td>0.00E+00</td>
<td>-6.19E-06</td>
<td>0.00E+00</td>
</tr>
<tr>
<td>2</td>
<td>6.18E-06</td>
<td>-1.50E-08</td>
<td>-6.17E-06</td>
<td>1.67E-08</td>
</tr>
<tr>
<td>3</td>
<td>6.15E-06</td>
<td>-3.69E-08</td>
<td>-6.15E-06</td>
<td>4.14E-08</td>
</tr>
<tr>
<td>4</td>
<td>6.13E-06</td>
<td>-6.10E-08</td>
<td>-6.12E-06</td>
<td>6.75E-08</td>
</tr>
<tr>
<td>5</td>
<td>6.11E-06</td>
<td>-8.51E-08</td>
<td>-6.10E-06</td>
<td>9.48E-08</td>
</tr>
<tr>
<td>6</td>
<td>6.08E-06</td>
<td>-1.09E-07</td>
<td>-6.07E-06</td>
<td>1.20E-07</td>
</tr>
<tr>
<td>7</td>
<td>6.06E-06</td>
<td>-1.30E-07</td>
<td>-6.05E-06</td>
<td>1.43E-07</td>
</tr>
<tr>
<td>8</td>
<td>6.04E-06</td>
<td>-1.49E-07</td>
<td>-6.03E-06</td>
<td>1.64E-07</td>
</tr>
<tr>
<td>9</td>
<td>6.02E-06</td>
<td>-1.66E-07</td>
<td>-6.01E-06</td>
<td>1.81E-07</td>
</tr>
<tr>
<td>10</td>
<td>6.01E-06</td>
<td>-1.79E-07</td>
<td>-6.00E-06</td>
<td>1.95E-07</td>
</tr>
</tbody>
</table>

Figura 41. Gráfico de los tres diferenciales de strain en r = 19mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Tabla 11. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=23mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).

<table>
<thead>
<tr>
<th>sx=1MPA;sy=-1MPa</th>
<th>23.24</th>
<th>23.26</th>
<th>26.02153</th>
</tr>
</thead>
<tbody>
<tr>
<td>step</td>
<td>ex</td>
<td>ey</td>
<td>exy</td>
</tr>
<tr>
<td>1</td>
<td>6.19E-06</td>
<td>-6.19E-06</td>
<td>1.58E-12</td>
</tr>
<tr>
<td>2</td>
<td>6.18E-06</td>
<td>-6.18E-06</td>
<td>3.90E-10</td>
</tr>
<tr>
<td>3</td>
<td>6.17E-06</td>
<td>-6.17E-06</td>
<td>1.04E-09</td>
</tr>
<tr>
<td>4</td>
<td>6.16E-06</td>
<td>-6.16E-06</td>
<td>1.96E-09</td>
</tr>
<tr>
<td>5</td>
<td>6.15E-06</td>
<td>-6.14E-06</td>
<td>2.85E-09</td>
</tr>
<tr>
<td>6</td>
<td>6.13E-06</td>
<td>-6.13E-06</td>
<td>3.68E-09</td>
</tr>
<tr>
<td>7</td>
<td>6.12E-06</td>
<td>-6.12E-06</td>
<td>4.45E-09</td>
</tr>
<tr>
<td>8</td>
<td>6.11E-06</td>
<td>-6.11E-06</td>
<td>5.14E-09</td>
</tr>
<tr>
<td>9</td>
<td>6.10E-06</td>
<td>-6.09E-06</td>
<td>5.74E-09</td>
</tr>
<tr>
<td>10</td>
<td>6.09E-06</td>
<td>-6.08E-06</td>
<td>6.27E-09</td>
</tr>
</tbody>
</table>

Figura 42. Gráfico de los tres diferenciales de strain en $r = 23\text{mm}$ ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Tabla 12. Deformación e incremento de la deformación en los ejes X e Y para cada paso de la simulación en r=27mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).

<table>
<thead>
<tr>
<th>sx=1MPa;sy=-1MPa</th>
<th>27.36</th>
<th>27.37</th>
<th>30.82986</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EX4</td>
<td></td>
<td>EX4</td>
</tr>
<tr>
<td>step</td>
<td>ex</td>
<td>Dex</td>
<td>ey</td>
</tr>
<tr>
<td>1</td>
<td>6.19E-06</td>
<td>0.00E+00</td>
<td>-6.19E-06</td>
</tr>
<tr>
<td>3</td>
<td>6.18E-06</td>
<td>-9.78E-09</td>
<td>-6.18E-06</td>
</tr>
<tr>
<td>4</td>
<td>6.17E-06</td>
<td>-1.64E-08</td>
<td>-6.17E-06</td>
</tr>
<tr>
<td>5</td>
<td>6.17E-06</td>
<td>-2.33E-08</td>
<td>-6.16E-06</td>
</tr>
<tr>
<td>6</td>
<td>6.16E-06</td>
<td>-3.04E-08</td>
<td>-6.16E-06</td>
</tr>
<tr>
<td>7</td>
<td>6.15E-06</td>
<td>-3.73E-08</td>
<td>-6.15E-06</td>
</tr>
<tr>
<td>8</td>
<td>6.15E-06</td>
<td>-4.39E-08</td>
<td>-6.14E-06</td>
</tr>
<tr>
<td>9</td>
<td>6.14E-06</td>
<td>-5.01E-08</td>
<td>-6.14E-06</td>
</tr>
<tr>
<td>10</td>
<td>6.13E-06</td>
<td>-5.59E-08</td>
<td>-6.13E-06</td>
</tr>
</tbody>
</table>

Figura 43. Gráfico de los tres diferenciales de strain en r = 27mm ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Figura 44. Gráfico comparativo de los diferenciales de strain en el eje X, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).

Figura 45. Gráfico comparativo de los diferenciales de strain en el eje Y, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Figura 46. Gráfico comparativo de los diferenciales de strain en el eje XY, en los diferentes radios analizados ($\sigma_x = 1\text{MPa}; \sigma_y = -1\text{MPa}$).
Planos

“MEDICIÓN DE TENSIONES RESIDUALES”

TFG presentado para optar al título de GRADO en INGENIERÍA INDUSTRIAL (MECÁNICA) por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
<table>
<thead>
<tr>
<th>NO.</th>
<th>Nombre</th>
<th>Material</th>
<th>Peso</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bloque_tensiones_residuales</td>
<td>AISI 304</td>
<td>767.44</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Especimen_tensiones_residuales</td>
<td>1060 Alloy</td>
<td>56.70</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>DIN 912 M6 x 20 --- 20C</td>
<td>---</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Broca_1mm</td>
<td>AISI 1020</td>
<td>0.12</td>
<td>1</td>
</tr>
</tbody>
</table>

ATENCIÓN: no deducir cotas por medio de medición directa del plano

Hoja: ensamblaje

Dibujado: Albert Flor de lis Vidal
Revisado: Garcia Granada, A.A.

TFG: Medir tensiones residuales

828.09gr.

Material: (Check Assembly)
Dibujado: Albert Flor de lis Vidal
09/03/2015
Revisado: García Granada, A.A.
13/03/2015

TFG: Medir tensiones residuales

Hoja: Bloque
de fichero: Planos_SLDDRW

Material: AISI 304

Peso: 767.44 gr.

Formato: DIN A4
Escala: 1:2

ATENCIÓN: no deducir cotas por medio de medición directa del plano

HOJA 2 / 3
Dibujado: Albert Flor de lis Vidal
09/03/2015
Revisado: Garcia Granada, A.A.
13/03/2015

TFG: Medir tensiones residuales

Hoja: Especimen
de fichero: Planos.SLDDRW
Material: 2014-T4
Peso: 58.80gr.

Formato: DIN A4
Escala: 1:2

ATENCIÓN: no deducir cotas por medio de medición directa del plano
Pliego de condiciones

“MEDICIÓN DE TENSIONES RESIDUALES”

TFG presentado para optar al título de GRADO en INGENIERÍA INDUSTRIAL (MECÁNICA) por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
PLIEGO DE CONDICIONES

Este trabajo es un proyecto de investigación en el que se estudia cómo medir tensiones residuales.

En él se solicita diseñar un aparato que permita generar tensiones controladas en una pieza o espécimen, de manera que luego se puedan medir las tensiones mediante el método Incremental Hole-Drilling (IHD). Este aparato no puede ser diseñado de cualquier forma, sino que debe poder colocarse dentro de una fresadora con control numérico por computadora (CNC), por tal de poder aplicar el proceso que requiere el método IHD.

Por otra parte, se pide realizar simulaciones mediante programas que usen el método de los elementos finitos. Estas simulaciones tienen que poder compararse con estudios que ya se han llevado a cabo en la realidad.
Presupuesto

“MEDICIÓN DE TENSIONES RESIDUALES”

TFG presentado para optar al título de GRADO en INGENIERÍA INDUSTRIAL (MECÁNICA)
por Albert Flor de Lis Vidal

Barcelona, 09 de Junio de 2015

Tutor proyecto: Andrés Amador García Granada
Departamento de Expresión Gráfica en la Ingeniería (EGE)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE PRESUPUESTO

Índice Presupuesto ... 127
Costes directos .. 129
Costes indirectos .. 130
Costes totales ... 130
A continuación se presenta un cálculo aproximado de los costes que comporta el estudio desarrollado en el presente proyecto.

Costes directos

Estimando el coste por hora de un ingeniero en 30 euros y considerando 700 horas empleadas por el autor del presente proyecto, en la realización de este se tienen:

\[
\text{Coste del ingeniero} = \frac{30€}{h} \cdot 700h = 21000€
\]

Estimando el coste por hora de un Doctor en 60 euros y considerando que ha empleado 200 horas el Doctor del presente proyecto (Director), se tienen:

\[
\text{Coste del doctor} = \frac{60€}{h} \cdot 200h = 12000€
\]

Para fabricar el aparato diseñado que sirve para generar tensiones residuales, se han tenido que comprar los siguientes materiales:

<table>
<thead>
<tr>
<th>Material</th>
<th>Cantidad (unidades)</th>
<th>Precio/unidad (€/u)</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloque de acero</td>
<td>1</td>
<td>30,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Placa de aluminio</td>
<td>1</td>
<td>15,00</td>
<td>15,00</td>
</tr>
<tr>
<td>Galgas extensiométricas (RY21)</td>
<td>1</td>
<td>120,00</td>
<td>120,00</td>
</tr>
<tr>
<td>Tornillos DIN 912 M6 x 20</td>
<td>4</td>
<td>0,10</td>
<td>0,40</td>
</tr>
<tr>
<td>Pegamento</td>
<td>1</td>
<td>5,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Cables</td>
<td>5</td>
<td>0,18</td>
<td>0,90</td>
</tr>
<tr>
<td>TOTAL</td>
<td>171,30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Costes indirectos

Para llevar a cabo este trabajo se han usado programas, los cuales tienen licencias de uso de pago, las que se resumen en:

\[\text{Licencia SolidWorks 2014} = 12000€ \] (3)

\[\text{Licencia Abaqus 6.10 – 1} = 20000€ \] (4)

Costes totales

En base a las estimaciones anteriores, se ha completado la Tabla 1, que muestra los costes totales que comportan el estudio y las licencias de los programas usados.

<table>
<thead>
<tr>
<th>Coste</th>
<th>(€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coste del ingeniero</td>
<td>21000</td>
</tr>
<tr>
<td>Coste del Doctor</td>
<td>12000</td>
</tr>
<tr>
<td>Fabricación aparato</td>
<td>171,30</td>
</tr>
<tr>
<td>Licencia SolidWorks</td>
<td>12000</td>
</tr>
<tr>
<td>Licencia Abaqus</td>
<td>20000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>55171,30</td>
</tr>
</tbody>
</table>

Por tanto, el coste estimado del estudio desarrollado asciende a 55171,30 euros.