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1. Introduction

Productoriented manufacturing systems are gemymon in production environments
related to the automotive sector. In such systems, the manufacturing process of a produc
(engines, stamp forging, body welding, body painting and trim and chassis lines, for example) i
conceived as a set of consecutagess or manufacturing processes (due to the product
orientation) that add value from raw materials to the final product (automobile).

This production type, which is produaciented, culminates in flexible manufacturing
systems composky cells and modes or workstatioresranged in series assembly lines. In
this last type of systemaiditionto the line balancing problems, we can encounter the batch or
productunit sequencing problemahere theunits are not completely identical, and their
manuécture may require differ@ensumption of components and different resoures eeh
manufacturing stage

Sometimes, the processing times of these mixed products are very different at each stage.
these situations, we encounter sequencing probtemtsch the scientific basis is found in the
literature under the name "flow shop" (usually, we encounter the case known as permutation)
with and without buffers between production stages. In one of the most popular version of the
problem, known as therpautation flow shop problerRESI, the storage capacity between two
consecutive phases of the process, where the jobs can wait until they can be processed by
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following machine, is assumed to be unlimited (do-dgte review can be foundRatiz and
VazqueRodriguez (201D)Somerecent worgregarding this probleareFernande¥iagas and
Framinan (2015) and Vanchipura, Sridharan, and Babu (2014), among latlcergrastin
thevariant known as blocking flow shop probBRS, the buffer capdies between stages are
limited and the jobs must wait in the previous stage until sufficient space is released. Recer
works regarding this variant incliRileas and Companys (20a58gLin and Ying2013)

In other problems, processing times depenldeonumber of units that constitutes a batch
of pieces, which is determined by a balance between the setup and holding costs, as is the cas:
line sequencing of parts to stamp car bodies. This group of problems is known as the economi
lot scheduling pradm ELSPH, and one of the pioneering works regarding this problem is
Elmaghraby Salah (1978) recent review of the heuristics used to sol## 8##s Raza and
Akgunduz (2008).

Finally, when the processing times of mixed products differ slightlystag@acwe are faced
with problems similar to those that are known in the literature under the name of mixed product
sequencing (homogeneous units). In these problems, the objective is to establish a productio
order of the products. Frequently, thiseorohust be maintained from process to process
whenever possible at all stages of the manufacturing and supply chain of the production systen
governed by the Just in TindéT( Toyota) and DouKseisan¥S Nissan) philosophies.

Focusing on assembly linds order is conditioned by the line characteristics, the
manufactured products and the most important elements of the production systems to establist
optimization criteria. Among these elementstatethe following: (1) component and product
stocks, (R human resources, and (3) special options within the praglggctsufroof, long
body, or reinforced frame) that can generate bottlenecks in the assembly line.

Considering the stock as a relevant element of the system, a reasonable objectiighis to estab
a product sequence that minimizes the stocks levels of products and components. To do this, w
can either limit or minimize the variation of the production rates, as is the case in the product
rate variation problemPRVP, which was introduced bMiltenburg (1989) or limit or
minimize the variation of the product components rates, as is done in the problem proposed by
Monden (1983)which is called the output rate variation prob@RV@. In both cases, the
objective is to keep these rates constartime.

In contrast, if we consider human resourt#® @s the relevant element of the
manufacturing system, then a reasonable objective is to minimize the work overloads that ca
appear when the mixpdoduct units treated by the line require @iffieprocessing times at each
stage or, more concretely, at each workstation. To achieve this, we can minimize the total worl
overload or maximize the total work completed, as in the mixed model sequencing problem with
work-overload minimizationMMSRW), which was proposed Byano and Rachamadugu
(1991) A recent work regarding this probierBautista, Alfaro and Batalla (2015)

Finally, if the bottlenecks generated by special options of some products are the relevan
element of the manufacturing systdma, reasonable objective is to minimize the number of
subsequences of products with special options (units segments), which can be detrimental to tt
production line because more work or space (compared with the standard) is required
consecutively at easbrkstation. One of these types of problems is the car sequencing problem
(CSB, which was originally proposedPayello, Kabat and Wos (1986)which the constraint
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consists of sequencing a set of units with special options while respecting tio¢ alloneer

options within subsequenc&sme works regarding ®8Pinclude Golle, Rothlauf and Boysen
(2014) and Morin, Gagné and Graf2909) Among the variants of tSRE we can find the
following: (1) a version that considers the problem as an optimization problem rather than a
constraint satisfaction probldBautista, Pereira, Adeiidiaz, 2008arnd (2) an extended
version thatincorporatesrestrictions to allow a minimum number of products with special
options in a subsequence of produdBSP extendedCSP (Bautista, Pereira, Adeiidiaz,

2008b).

Sometimes, as in real environments, the problems are treateddagestivé wblems.
Several authors have used this perspective. For eReemplé&imms and Matthiel3en (2006)
incorporated into th€SPconditions from the level scheduling (which is relat&Rtband
PRV. Additionally Fattahi and Salehi (2008@xorporatedondtions such as the minimization
of the total utility work and idle costs into the mixed model assem{§MiAk)( Focusing on
mixed model sequencifigai (1995)ncorporatedhe minimization of the utility work into the
mixed model sequencing probletM(SH. There also exist more recent works: for example
Bautista, Cano and Alfaro (2@landManavizadeh, Tavakoli, Rabbani e(28l13)proposed
incorporating conditions from tHeRVinto the MMSRW. This objective can be achieved
through regularizing theork or the work overload using pmr (product mix restrictions), as in
the case of tidMSRPW-pmr, for example.

A survey of some of these sequencing problems can be Bays#m Fliedner and Scholl
(2009).

This paper examines a variant ofMMSRPW, the MMSRW-pmr. The original problem,
MMSRW, is an NPhard problenfYano and Rachamadugu, 190t )which several alternative
solutions have been proposed. These solutions include exact procedures basednoh branch
bound (Bolat, 2003) dynamic programmg (Yano and Rachamadugu, 198hutista and
Cano, 2001Bautista, Cano and Alfaro, 26),2heuristic procedures based on local s¥ach
and Bolat, 1989; Bautista and Caz2@)8), greedy algorithms with priority ru{Bsutista and
Cano, 2008Bolat an Yano, 1992)metaheuristic{Scholl, Klein and Domschke, 1928
beam searctErel, Gocgun and Sabuncuoglu, 20@8veral studies have also considered the
multi-criteria optionAigbedo and Monden, 1997; Kotani, Ito and Ohno, 2004; Ding, Zhu and
Sun,2006; RahimVahed and Mirzaei, 2007)

Given the complexity of the problem and the size of the case study related to Nissan
Barcelona powertrain plant presente(Bautista and Cano, 201Dur objective is to find a
computationally competitive proceslto solve the problem. For this paper, we use a hybrid
procedure based on bounded dynamic programBidiy &ssisted by linear programming. This
procedure combines features of dynamic programming with features o&nokaochd
algorithms. The princigé of theBDP have been described Bwutista, Companys and
Corominas (1996)A complete review of hybrid metaheuristics in combinatorial optimization
can be found iBlum, Puchinger, Raidl et al. (2011)

Our proposal contains the following: (1) a modeh&problem; (2) to solve this problem,
procedures based on dynamic programming, which are referred to in thisBibieRsleend
BDP-2/2 (two versions), that use linear programming to obtain bounds for the problem; (3) a
mathematical model to obtdime work overload of a given subsequence for use as part of the
lower bound of the problem; (4) reduction of the search space of the procedure through pseudo
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dominances; and (5) a computational experimenteaiihstances frora case study of Nissan
swch that we can compare the results yieldBDBy procedurewith those offered by integer
linear programming

This paper is organized as follows: Section 2 presents a mod&INtBRW with serial
workstations, unrestricted interruption of the djpp&saand production mix restrictions. Section
3 presents an illustrative example. Section 4 describes the basic elements and the application
the propose8DP procedure. Section 5 describes the computational experimentwith a case study
related to the Nisan powertrain plant. Finally, Section 6 presents the conclusions of the study.

2. Model for the problem

The MMSRW consists of sequencifigroducts, of whicld, are of typé (i =1...,[1]). A

unit of product ype i requires from each processog.(operator or robot) of workstation
k (k =1...,]K |) a processing timg, , , assuming the processor works at its normal work pace

or activity level. The standard time assigo each processor to work on any product tiné is
cycle timec. When a cycle ends at workstalidnK , the processor can work on the product in
progress for an additional positive tiiec, wherel, is the time window.

When it is not possible to complete all of the work required by the demand plan, work
overload is generated. The objective of the problem is to maximize the total work performed,
which is equivalent to minimizing tla¢al work overloadenerated (see Theorem Bautista
and Cano, 20)1

For the MMSPW with serial workstations, unrestricted interruption of the operations,
production mix restrictiongrq) and work overload minimization, we take as reference the
M_4U3 pmrmodel proposed autista et al. (201Ravhosgparameters and variables of are
presented below.

Parameters

K Set of workstatior{k =1,...,|K|)
b, Number of homogeneous processors at skation
! Set of product typds=1,...,]1|)

d, Programmed demand for product type
P Processing time required for a unit of typat stationk for each homogene

processor (at its normal activity level)
T  Total demand; obviously, L':‘ldi =T
t Position index in the sequefftel,...,T)

C Cycle time, the standard time assigned to workstations to process any produc

I, Time window, the maximum time that each processor at worksétasoallowed 1



Solving a MixedModel Sequencing Problem with ProduntMix Restriction by Bounded Dynar
Programmin
J. Bautista, R. Alfaf®ozoC. BatallaGarcia, A. Car

work on any prodaaunit, wherel, ! ¢>0 is the maximum time that the worl

process is held at workstation

d  Ideal rate of production for product typed =d /T (i=1...,|1]).

Variables

X.  Binary variable equal to 1 if a product unifi =1...,|1|) is assigned to the posi
t (t=1..,T) of the sequence and to O otherwise

S.: Starting instant for the™ unit of the sequence of products at works
k (k=1...[K|)

S. Positive difference between the start instant and the minimum start insta
t" operation at workstatidn! K. §, =[ s, —(t+k-2)c] (with [x]" =max{0,x})

Vi:  Processing time applied to tffe unit of the product sequence at statiofor eac
homogeneous processor (atatsal activity level)

W,  Work overload generated for tfeunit of the product sequence at stakofor eac

homogeneous @eessor (at its normal activity lewedasured in units of time
Processing time required for tReunit of the sequence of products at woikistét

for each homogeneous processor (at its normal activity level)

Under these conditions, we can define the following mathematicaMndti, pmr

min w=1 (o) Lw) v Max V=1 Kbl v, (1)
subject to
l %, =d =1, )
1" x, =1 t=1..,T 3)
Vo T W, =1 Llllpl,k)ﬁ,t k=1..|K[t=2..T (4)
So! Se1tVier " C k=1..,|K[t=2..T (5)
S VS FVe ' C k=2..|K[t=1..T (6)
Sce Vi ! 1, k=1..|K[t=2..T 7
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§.!'0 k=1..|K[;t=1..T (8)
Vi ! 0 k=1..|K[t=2..T 9)
W, 10 k=1..|K[t=2..T (10)
{01 k=1..|Klt=1..T (11)
§,=0 (12)
' jﬂxu | §"di°é i=1..,]1t=1...T (13)
"1 g i=1..,)1;t=1..T (14)

In the model, the equivalent objective functions (1) are represented by the total overload
(W) and total work perfared (V) Constraint (2) requires that the programmed demand to be

satisfied. Constraint (3) indicates that only one product unit can be assigned to each position o
the sequence. Constraint (4) establishes the relation betweengbtiagtones applied to each

unit at each workstation and the work overload generated by each unit at each workstation.
Constraints (5§8) constitute the set of relative starting instants of the operations at each station
and the processing times appl@dhe products for each processor. Constraints (9) and (10)
indicate that the processing times applied to the products and the generated work overloads
respectively, are nonnegative. Constraint (11) requires the assigned variables to be binar
Constraint(12) fixes the start of operations. Constraints (13) and (14) are those that incorporate
the preservation property of the production mix desired HTilf€oyota) andDouki Seisan
(Nissan) philosophies.

Additionally in this work, we measure the-remularity of a sequence using the following
quadratic function:

T | . 5 \
,(0)=$ $ (X, " ) (15;
t=1 =1
whereX, =1 x, (! i=1,...,

/=1

I T|) is the cumulative production.

ht=1,...,

3. An illustrative example

To illustrate the model formulated above, we present th@ngliexample: There are six
units of produc(T = 6) , of which three are typeone is typ8 and two are typ€, with a total

work requiredv, =104 . The units are processed at three workstihdnsB) with different
numbers of processd@); the processing times for each processor (at its normal activity level)

for each type of unit A(B, andC) at each workstatidn(m,, m,, andm,) are listed in Table
1.
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A(d,=3) B (dj =1) C(d.=2) b,
m 5 4 3 1
m, 5 4 4 2
m, 4 3 5 1

total 19 (V,(A) =57) 15 (V,(B) = 15) 16 (V,(C) =32) V, =104

Table 1: Number of homogeneous processoysi( each station and processing timg9 (or each processor
(at its normal activity level) required for each type of unit at each station or module.

Furthermorec =4 (cycle time) ant|, =6 ! k (length of workstation or time window).

Fig. 1 Bows a Gantt diagram of the optimal solutions offered by mbdilS (top) and
M_4U3_pmr(bottom). The sequence of products that yield the minimum total work overload
for M_4U3 is C-C-B-A-A-A. The total work performed M =101, and the wrk overload,
which is concentrated between workstatigrand m,, is W =3 (the grey area in Fig.1). The
nontregularity foM_4U3is 9.05. The sequence of products that yields the minimumdrdkal
overload forM_4U3_pmris C-A-B-A-C-A (the sequence is affected by the production mix
restrictions). The total work performe® is 101, and the work overload, which is concentrated
between workstatiomg and m,, is alsoN =3, whereas the nargularity foM_4U3_pmris
2.05.
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4. BDP for the MMSPW with PMR

This sectiompresents the basic elements oBDReprocedure applied to tMMSRW with
serial workstations, unrestricted interruption of the operations and production mix restrictions
(here, we udgDP-2).

4.1 Graph associated with the problem

Similar toBautista,Canoand Alfaro(2014) we can build a linked graph without loops or
direct cycles of +1 stages. The set of vertices at kev@=0,...,T) is denoted ad (t)

J(tj) (j=1...p(t)) is a vertex oflevel t, which is defined by the tuple
3t i) ={(ti) alt i),/ (L)W ( (61).LB_RE ). ! o(X(#(t1)))} . where:

- q(tj) :(oﬂ(t, i) (t ) gt j)) is the vector of satisfied demand.

o 1(ti)=("(ti)! 1(t i) (t])) is the partial sequence ofunits of product
associatedith the vertexi(t, j) .

«  W(/ (1)) is the partial work overload generated by the sedugride

. LB_R(t,j) is a lower bound on the work overload generated by the unsequenced
products,d ! g (t,j) (i=1...[1]).

! Q(X(!(t, j))) is the norregularity of production generated by the sequinge.

Obviously, to obtain a global bound on the work overload associated with(ug)tewe
can setLB_W(t, j) =W(/ (1)) + LB_R(tj).

The vertexJ(t, j) has the following properties:

)=t (16)

itldgeaq(tj)aitidg vt (17)

At level O of the graph, there is only d(@) vertex. Irtially, we may consider that at level
t, J(t) contains the vertices associated with all of treeguéences that can be built vtith

products that satisfy properties (16) and (17). Howeigezagy to a priori reduce the cardinality
of J(t) by establishing the following definitions of pselodtinance:

» Definition 1. PSD_1 Given the sequenceégt, j,) and ! (t,j,) associated with the
verticesJ(t, j,) and J(t,},), then! (t, j,) pseudedominated (t, j,) if:
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(4t 1) =4 1,)] ”
[LB_W(t, j)#LB_W(,j,)] " . (18)

- (X[ @) #So(X( 1)

» Definition 2. PSD_2 Given the sequenceégt, j,) and ! (t,j,) associad with the
vertices)(t, j,) and J(t, },), then! (t, j,) pseudedominated (t, j,) if:

+ +

AONINIAAY

+ A+

~+ +

* [q(t =4t )] " [LB_W(t j)<LB_W(t i)] !
#
#A(t, i), LB_W(t, },)) $ (4(t, 1), LB_Wt, i) "

$
Ba(X(r (1)) o(X( (112D

The reduction ofJ(t) through the pseudiominances defined {18) or (19) cannot
guarantee the optimality of the solutions.

P! T )! (19]

'_h 1 Ioll

4.2 Bounds for theroblema

Given a vertex of staget reached through a partial sequence
!(t,j)={!l(t,j),!Z(t,j),...,!t(t,j)}, the overall bound oW and a parél boun on the
complementR(t,j) associated with the sequence or segmgnt) can be determined
according to the schema presented in Fig. 2.

0 ¢ T
U UY) R e R(t, J) = g
W) LB R(tj)—
S — LB W j) ;

Fig 2. Bound scheme for a partial sequéftcg) at vertexJ(t, ).

To obtain the work overloads associated/with), in each stage of the procedure, we use a
mathematical model. Given a subsequeficp ={/,(t, ),/ ,(t, )., I,(t, j)} of products, the
processing times for each workstakiork of the /" (! :1,...,t) units of the subsequence
I'(t,j) ae ! .=p,.)x and are foreknow We can define a mathematical model
(LP_W( (t,}))) in wich the assignment idiles have been removed:

Min  W(x(t j))—":(‘# o, & (20)
’ k—l%pk.rﬂ. k’T( !
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subject to
Lo = P K=1...[K[; F =1t (21)
P! W, "0 k=1..[K[;f=1..t (22)
&, ! St M W C k=1..|K[;/=2..,t (23)
S Sers T "en, "Wy, " C k=2,..,[K[;/ =1...t (24)
S+t w, "l k=1..,|K[; F =1...t (25)
S, !0 k=1..[K[;f=1..t (26)
w, ! 0 k=1..,|K[; F =1...t (27)
$,=0 (28)

The result of the proposed mathematical model correspd¥Ms(t, j)) .

To obtain a bound on the work overload associated with the comgRémgntwe use the
combination of three lower bounds.

Given a workstatiork and vertexJ(t,j), the avadlble time to complete the pending
operationsfor each homogeneous processor at its normal activity level,

TD,(t,j) = (T —t=1)-c+l, k=1..,[K| (29)

whereas the required time to complete these operations is

Il
TR ) =# F)I,k!(di " q (t,J)) k=1..,[K]| (30)

i=1

Using (29) and (30), we can define a lower bound on the work oveR@&agl) ads

K|

LB, j) = # b, \[TP.(6.1)" TD, (0 )] (31)

However, if we consider the minimum work overload that a product ot&ypgenerate,
we have

K|

LB2(j) = Zbk(p.,k—c)—qK(lK—c)} i=1.1] (32)

Thus, a bound on theorkoverload oR(t, ) is the following:

i
LB2(t, j) =# (d ! q(tj))"LB2() (33)

i=1

A more refined bound on the minimwmork overload that a unit of product typecan
generate carelmbtained using the following mathematical model:

10
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K|

LP_LB3(i): MIN LB3(i)=" b !w, (34)
k=1
subject to

Sei ! Sy tPpy "t Wen € k=2,..,[K| (35)
St P! W, "1, k=1..,[K| (36)
P! W, "0 k=1..,|K| (37)
§,!0 k=1..,|K| (38)
w, 10 k=1..,|K| (39)
§,=0 (40)

Using the solutions of the previous mathematical model, we can determine the following
bound on thevorkoverload oR(t, j):

Il
LB3(t, j) = #(d; 1 a:(t.]))"LB3() (41,

i=1
To determineLB_R(t, j), we use
LB_R(t, j) = max{ LB, j), LB(t, j), LB3(, })} (42)
Finally, we can obtain a lower bound on the total work overload associated with vertex
J(t,]):
LB _W(t,j)=W( (t ))+LB_R()) (43)

4.3 Properties derived from the production mix restrictipms)(

In this section, we will study the properties of the product sequences that are derived from the
incorporation of the restrictions to preserve the productiopmjxr{ theMMSRW.

First, wemust define how to measure the-regularity of the productio(ri Q(X)) at each
vertex of the graph associated with the problem. In effect, given Ja(w)teassociated with a
sequence (t,})=(/ ,(t.}).! (t.])), let X, (* (t.§)) (i=1...]1/ =1...t) be the number of
units of product typesequenced at the firstpositions of the sequen/c@, j), that is:

X, (7 (00) =)t 20 (1 (1) =) (ena )] (aa)

Using the pevious definition, let us define the negularity of the production associated
with the sequence(t, j) of vertexJ(t, j) as

11
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o (X (! (t,j))):é (%, (" (t0)" 1 #) (45)

I1=1 i=1

[y

The restrictions to preserve the production mix can be exasdetiets:
M HR X, &itld g Lo lt=1.,T (46)

whereX, is a variable that represents the total number of units of producségpenced
during the first production gcles.

The imposition othese restrictions on the sequeleadsto a set of propertieghich are
defined inBautista, Cano, Alfaro et al. (2013). Tipespertiesre the following:

Theorem2: If jt!d§&X; &it!d g 1" I;t=1...T, then X, 1 X, " §ted &l jted,;
i i} ht=1.,T.

Corollary2: If d. ! d;, thenX; ! X; "1 ! {i,j}" I;t=1..T.

Theorem3: If ;ﬁ!éi%&xi,t&:'”dié 1i" 1;t=1..,T, then the following is satisfied:
Xie b X" %#ﬁi&! gﬁﬂjé !{i, J} 1;t=1..T.

Corollary3: If d;! d;, thenX, ! X, " 11! {i,j}" I;t=1..T.
Corollary4: If d =d,, then|X, ! X [" 11 {i,j}" I;it=1..T.

In addition, he fulfillment othe pmrrestrictions combined with the demand vanesylts
in the following property:

Theorem 4: If j!d§&X, &utldg !i"1;t=1..T, given the sequence

! ={1,1 .1}, where! ={j} with 2! t! T, the following is satisfied:
£ 1P 1:(X, >0)#(d, $d,)% X, $ X, ! t=2,...T.

Proof: If we suppose thati" | :(Xi,t >O)#(di $dj) such that X, > X, then
X! X " 1.

In contrast, giverd, ={j}, the following rast be satisfie;, = X, +1 and X, = X, ;.
Thus, we can writeX, ! X; =X, ! X, ! 1" 1# X, ! X, " 2. Furthermore, given that
Xina! Xjor" St ) & ! 1)#dj')" ! DH, & ! 1)#61.'), we have
g D"d g Kt Dd, £) Xu1! Xju1) 2, which is absurd. Thus, the hypothégis> X, is
false and consequently, the following must be fulfigd X;, !t=2.., T and
Li"1:X,>0,when!/ ={j}.
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Corollary 5: If jtldg&X, &itldg !i"1;t=1..T, given the sequence
! ={l,!,..0}, where / ={j} with 2¥tIT, and if Jiel:X, >X =d>d.
Evidently, from Theorem 33! d;" X! X,,, which negates the hypothe(é'ﬂﬁt >Xj't);
therefore, it must be thet>d,;.

4.4 Rules to discard vertices

At staget, let X (! (t! ],h)) be the satisfied demand for product fypé associated with
the sequence(t! 1h) of the vertexi(t! 1,h).
Assuming that an extensiorited vertexJ (t! J,h) is built by adding at stagea product

type | to the sequence, Ie](t h') be the resulting vertex for the partial sequence
I(th)=7(t! 1h)" {j} . The satisfied demands must fulfill the following:

X, (4 (th) =% (! (t-1h)) Vi j
X,/ (L)) =X (4 (t-2h)+1  with 1 (th)={j}

Under these conditions, the verﬂeﬁx h') can be discarded from the exploring process if any

one the following rules is satisfied:

Block 1 pmr constraints):
L R (1 (L) < B9 (kX (7 (Eh) > Y ¥, Discard J(t )
Block 2 (Theoren®and3):
Lt AL IE S (1 (6h) 96 (7 (6h) > (tad ) e & *) -
=X (7 (em)) omx (7 (th) <G8t *ogted }) . Discard J(t,h)
Block 3 (Corollariez 3 and4):
i SE <d &0 &K (! (th))) X (! (th))> 188
*If 3gd =d & HX (4 (L)) X, (7 (&) > 188
*1f $ga > d & & (1(th)) X (! (th))>18&+ Discard J(t.h)
Block 4 (Theorer):

Given the partial sequentft, h') associated with vertét, h'), with 7 (t,h') ={ j}

i X ( (6h) %3 0f $g # & (X (4 (1h)) <X (7 (th)))&) Discard 3(t, h)
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4.5 The use of BDP

The BDP procedureeombines features of dynamic programming (determination of extreme
paths in graphs) with features of braamakbound algorithms. The principlesB@P hawe been
described bBautista et al2014 and he procedure is described below

BDP-2 - MMSPW

Input: T, 1|, [K], d. (! i), I, B k), py (1, 1K), ¢ Z, H
Output:list of sequences obtainedBBP

0 |Initialization:t =0; LBZ;, =

1 Generate_model();

2 While(t<T) do

3 t=t+1

4 Add_constraints)

5 While(list of consolidated vertices in stdgenot empty do
6

7

8

9

Select_verté)
Develop_vertdx)
Filter_vertices4,, H, LBZ,)
end while
10 End_stage ()
11 end while
end BDP - MMSPW

In the procedure, the following functions appear:

* Generate_model (): this function generates the initial mBdaN(/ (t,j)) to obtain
the optimal solutio®WV (! (t, j)) for t=0.

* Add_constraintét): this function adds the new constraints associated with the new stage
(t) to the existing model.

» Select_vertext): this function selects one of thertices consolidated in stagel
following a nondecreasing ordering ofLltRe W (t, j) values.

» Develop_verteft): this function develops the vertex selected in the previous function by

adding a new pduoct unit with pending demand. Vertices that do not satisfy properties
(16) and (17) are not generated. This is performed by incorporating the rules contained
in the blocks to discard vertices Block 1 and Block 3 into this phase.

» Filter_vertices4,, H, LBZ,,): this function chooses, from all the vertices developed in

the previous function, a maximum numbeiof the most promising vertices (according
to the lowest values of the lower bolBd W(t,j)) and remowethose vertices for

which the lower bound is greater thign(known initial solution) and those that are
pseudedominated, as defined in (18) or (19).

* End_stage (): this function consolidates the most promising vertices iGHtageices

14
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are themaximum number of vertices selected).

4.6 An example of the graph reduction

Figure 3 represents the vertex exploration of the graph associated with the problem to solv
the illustrative example thréuthe BDP procedure described in this paper; here, we do not
perform the elimination of vertices allowed by the incorporationprhthestrictions into the
MMSRW. In the example, an initial solutiafy =4 and a window widtitH =6 have been

used.

Figure 4 represents the same exploration when thé¢ordissard vertices associated with
Blockl1 and Block3 to assure the fulfillment of grrestrictionsare incorporated to tiBDP
procedure. For this graph, =4 and H =6 have also been used (althodgh3 is sufficient).

In the figures, we can see the vertices’ elimination states:

1) Dominated verteXd). For the example in figure 3, the reprgative vertex of the
partial sequenc®,0), with ! ,(X)=2.6, is dominated byG,B), with ! ,(X)=2.3.
Additionally, in the same figure, we can see that BAeis (dominated byA\(B).

2) Removed vertekr). The limitation of the window width téd =6 contributes to
selecting the most promising vertices (best valud f&W ) to be developed at each
staget . For example, at stage 3 of figure 3, the vertices that correspond to the partial
sequence®\A A, (A,C,0O, (C,B,Q and C,C,B are removed and only six vertices are
developed to reach stages .

3) Discarded vertexZ(). The discarded vwmes are those for which their development
cannot finish at solution that is better than the best known sdytiéor example, the
sequenced(C,B,AA,Lin figure 4 does not improve the best known soldtjeré .

4) Breaker vertexpifn). This is a vertex for which the sequence does not satisfy the

restrictions, in our case, tpenr restrictions. For example, in figure 4, the partial
sequences @), (B,0, (C,B and C,O do not satisfy themrrestrictions.

15
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1=4 =5 1=6
(A.CB,AA) (ACBAAQC)
W=3,LB_R=0, }------C----- W=4, LB_R=0,
AgX)=2.1 Ap(X)=2.1
(ACBAC) (A.CBACA)
W=2,LB_R=0, A—— W=3, LB_R=0,
AgX)=1.7 Ag(X)=1.7
B
) B w=0, (LB) R=2, 7 -~ [@acBCcA) (ACBCAA)
Ag=11 | T~ W=1, LB_R=0, |-~ A W=3, LB_R=0,
ApX)=3.1 Ag(X)=3.1
\,
(CACAA) (CACAAB)
W=3, LB_R=0, |-~ B----- W=3, LB_R=0,
Ag(X)=4.4 Ag(X)=4.4
(CACB)
W=1,LB_R=0,
Ag(X)=4

(A,C,B,A,A,C)
R0, W=4, LB 4.%@
Ap)2.1
(A,CBAC)
W=2, LB_R~0,
AgX)=1.7

(A,CBACA)
LB_R=0,

Fig. 4. Graph using thmmrrestrictionsZ, = 4, pseudalominance 1 anld =6.
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5. Case study related to tNéssan powertrain plant

To analyze the validity of tB®P-2/1 andBDP-2/2 procedurefor industrial applications,
an assembly line from the powertrain plant of Nissan Spanish Industrial OpRiBi@)ns (
Barcelona, Spain, was investigated. Theses rgetg compared with those obtained by the
GurobisolverBautista et al., 2012a).

We used a line with 21 serially distributed modules or workstations in which nine types of
engines i, ..., Py ), With different characteristiese assembleithe first three are placed in 4x4
vehicles, modelp, and p,are destined for vans, and the last four are placed in commercial
vehicles (trucks) of medium tonnage.

The number of elementary tasks for the assenanig of the engines is approximately 380.
These tasks were grouped into 140 operations for which the balancing of the line was performe
based on average processing times for the mix with equal numbers of the nine types of engine
The balancing, considagitime and space restrictions, resulted in 21 st&trfs,.,21. More
details can be foundhdtp://www.nissanchair.com/TSALBP

Once the operations were assigned to the stations, the processing times for each type «
engine at each of te@tions,p (i =1...,9,k=1...21), were calculated. These data are shown

in Table 4.

For the experiment, an effective cycle tinee=df/5s was used. The chosen time window,
|, =195s ! k, was identical for all workstations. This ensured a safety margin for the cycle time

of great than 10%. These data indicate that the instanc&s=2#0 were associated with a
single workday with an effective time of 13.125 dairbuted over two shifts.

We considered an identical number of processors at eaclistatiotine processor at each

station were teams of two workers with identical skills and tools and the required auxiliary
equipment.

To study thebehaviorof the BDP-2 procedures, we assumed different demand plans (see
Table 5) to analyze the repercussions that variations in the production mix had on the work
overload of the engine assembly line (see more dB@ilssta and Cano, 2011

17



Solving a MixedModel Sequencing Problem with ProduntMix Restriction by Bounded Dynar
Programmin
J. Bautista, R. Alfaf®ozoC. BatallaGarcia, A. Car

i Processing times for products in stations

m m ms my ms 113 m Mg My Mo M M2 Mz ' Mas Mis M7 Mg Mo Mo 115
pp 104 103 165 166 111 126 97 100 179 178 161 96 99 147 163 163 173 176 162 164 177
P 100 103 156 175 114 121 96 97 174 172 152 106 101 155 152 185 179 167 150 161 161
P 97 105 164 172 114 122 96 95 173 172 168 105 102 142 156 183 178 181 152 157 154
o1 92 107 161 167 115 124 93 106 178 177 167 97 101 154 152 178 169 180 152 159 168
p 100 101 148 168 117 127 96 94 178 178 167 101 99 146 153 169 173 172 160 162 172
Ps 94 108 156 167 117 130 89 102 171 177 166 100 101 143 152 173 178 173 151 160 170
pr 103 106 154 168 115 120 94 103 177 175 172 96 96 154 154 172 174 173 155 162 167
p 109 102 164 156 111 121 101 102 171 173 157 104 102 153 156 182 175 168 148 158 149
p 101 110 155 173 111 134 92 100 174 175 177 96 99 155 156 171 175 184 167 157 169
[ 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195
b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Table 4: Processing timgs, , for operations on the nine types of engipgs.,(p,) at the 21 stations
(m,...,my).
family Demand plans for 1 day
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
4xa4 p 30 30 10 40 40 50 20 20 70 10 10 24 37 37 24 30 30 60 10 20 60 20 10
P 30 30 10 40 40 50 20 20 70 10 10 23 37 37 23 30 30 60 10 20 60 20 10
B 30 30 10 40 40 50 20 20 70 10 10 23 36 36 23 30 30 60 10 20 60 20 10
van m 30 45 60 15 60 30 75 30 15 105 15 45 35 45 55 35 55 30 90 15 15 90 30
p 30 45 60 15 60 30 75 30 15 105 15 45 35 45 55 35 55 30 90 15 15 90 30
trucks p 30 23 30 30 8 15 15 38 8 8 53 28 23 18 23 28 18 8 15 45 15 8 45
pp 30 23 30 30 8 15 15 38 8 8 53 28 23 18 23 28 18 8 15 45 15 8 45
mp 30 22 30 30 7 15 15 37 7 7 52 27 22 17 22 27 17 7 15 45 15 7 45
p 30 22 30 30 7 15 15 37 7 7 52 27 22 17 22 27 17 7 15 45 15 7 45

Table 5: NISAN-9ENG instances and demand plans.

A computational experiment using the proced®Dés2/1 and BDP-2/2 was performed.
The primary results are collected in Tables 6 and 7.

Gurobi BDP-2/1 BDP-2/2
H=1 H=36 H=81 H=126 H=1 H=36 H=81 H=126
CPUmin| 1494 0.1 427.6 717.9 883.0 0.1 369.0 524.1 535.0
CPUmax| 7200.0 35.0 526.2 11199 1701.1 35.9 509.8 972.2 1134.2
CPU 6605.1 3.2 484.5 992.9 1465.5 3.2 450.1 772.4 854.8

Table 6: CPU times for the case study of the Nissan powertrain plant.

Regarding CPU times (see TableBD)P2/1 and BDP-2/2 using a window width of
H =126 (thelargestused in this experiment) improved the CPU times required compared with
thatrequiredoy theGurobisolver by 4 and 7 times, on average.

Tade 7 presents the best valuesMoand ! ,(X) of the 23 instances for the problem

reached byGurobiand theBDP-2/1 and BDP-2/2 procedures for the four window widths
(H =1,36,81land 126)Moreover a relative percentage dewigiased to calculate the gain of
one procedure over another, that isSRBB, :
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(&) 1(80)

RPD,(f,/)=

Fr{w o(X)}srr e (47)

Where Q}(!) (optimal forW), is the best solution found for the instard ! " usingthe

Gurobisolver andéz(!) is the best solution found for the instaride" usingthe BDP-2
procedurgfor each of its two variants.

The highlighted results are the following:

1) Both versios of theBDP-2 improved, on average, the best solutions/ famd ! ,(X)

that were obtained compared with obtained u€ngobi. The values for the
improvements obtained usiBP-2/1 for Wand ! ,(X) wee 6.78% and 15.07%,

respectively. UsinBDP-2/2, the improvements were 2.20% and 0.37%,Wand
I o(X) respectively.

2) When compared witGurobj BDP-2/1improved the value of (X) for the 23 instances

and the work overload valW¥ ) for 16 instances.

3) BDP-2/1 dominated toBDP-2/2 with respect to the value,(X). BDP-2/2 obtained

better values fd than didBDP-2/1 for only 4 of the 23 instarsgs¢hree of which are
worse than the solution given by Gurobi.

Observing the results of this computational experiment, we can concl@dPi®dtis
more competitive, on average, than the remainder of the procedures.
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6. Conclusions

We have proposed a hybrid procedure based @&b#aheBDP-2 (two versions), for the
MMSRW problem that minimizes the total work overload or maximizes the total completed
work and considers serial workstations, parallel processors, free interruptipei@itiins and
restrictions to preserve the production mix in the manufacturing sequence.

The proposed procedure use global bounds based on linear programming. A mathematica
program that minimizes the work overload given a subsequence of operatiorstattahas
been formulated. In addition, the proposed procedure incorporatesdpseindoces between
partial solutions to limit the search space. These joEgnith@nces consider the preservation of
the production mix in theaptial solutions. From both versions of these pseudodominances,
PSD_l1andPSD_2 we proposed two versions ofBBé2 procedureBDP-2/1 andBDP-2/2).

We performed a computational experiment corresponded to a case study of a Nissan
powertrain plant in Beelona. 23 instances corresponding to different demand plans, one
production day and two shifts were considered. EHof2 procedures were competitive in
terms of CPU times and in terms of the result$\foand ! ,(X) compared witiGurobi

(Bautista et al.,, 2012a) because we always found an improvement, on average, for thes
indicators. Betwed3DP-2/1 andBDP-2/2, the first variant performed better that the second and
found the best solutions in most cases.
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