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Abstract: In this article, we propose a hybrid procedure based on bounded dynamic 

programming (BDP) assisted by linear programming to solve the mixed-model sequencing 
problem with workload minimization (MMSP-W) with serial workstations, free interruption of 
the operations and with production mix restrictions. We performed a computational experiment 
with 23 instances related to a case study of the Nissan powertrain plant located in Barcelona. The 
results of our proposal are compared with those obtained by the Gurobi solver and previous 
procedures. 
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1. Introduction 

Product-oriented manufacturing systems are very common in production environments 
related to the automotive sector. In such systems, the manufacturing process of a product 
(engines, stamp forging, body welding, body painting and trim and chassis lines, for example) is 
conceived as a set of consecutive stages or manufacturing processes (due to the product 
orientation) that add value from raw materials to the final product (automobile).  

This production type, which is product-oriented, culminates in flexible manufacturing 
systems composed by cells and modules or workstations arranged in series in assembly lines. In 
this last type of system, in addition to the line balancing problems, we can encounter the batch or 
product-unit sequencing problems, where the units are not completely identical, and their 
manufacture may require different consumption of components and different resource use at each 
manufacturing stage. 

Sometimes, the processing times of these mixed products are very different at each stage. In 
these situations, we encounter sequencing problems for which the scientific basis is found in the 
literature under the name "flow shop" (usually, we encounter the case known as permutation) 
with and without buffers between production stages. In one of the most popular version of the 
problem, known as the permutation flow shop problem (PFSP), the storage capacity between two 
consecutive phases of the process, where the jobs can wait until they can be processed by the 
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following machine, is assumed to be unlimited (an up-to-date review can be found at Ruiz and 
Vazquez-Rodriguez (2010)). Some recent works regarding this problem are Fernandez-Viagas and 
Framinan (2015) and Vanchipura, Sridharan, and Babu (2014), among others.  In contrast, in 
the variant known as blocking flow shop problem (BFSP), the buffer capacities between stages are 
limited and the jobs must wait in the previous stage until sufficient space is released. Recent 
works regarding this variant include Ribas and Companys (2015) and Lin and Ying (2013). 

In other problems, processing times depend on the number of units that constitutes a batch 
of pieces, which is determined by a balance between the setup and holding costs, as is the case in 
line sequencing of parts to stamp car bodies. This group of problems is known as the economic 
lot scheduling problem (ELSP), and one of the pioneering works regarding this problem is 
Elmaghraby Salah (1978). A recent review of the heuristics used to solve the ELSP is Raza and 
Akgunduz (2008). 

Finally, when the processing times of mixed products differ slightly at each stage, we are faced 
with problems similar to those that are known in the literature under the name of mixed product 
sequencing (homogeneous units). In these problems, the objective is to establish a production 
order of the products. Frequently,  this order must be maintained from process to process 
whenever possible at all stages of the manufacturing and supply chain of the production systems 
governed by the Just in Time (JIT, Toyota) and Douki Seisan (DS, Nissan) philosophies. 

Focusing on assembly lines, the order is conditioned by the line characteristics, the 
manufactured products and the most important elements of the production systems to establish 
optimization criteria. Among these elements we state the following: (1) component and product 
stocks, (2) human resources, and (3) special options within the products (e.g., sunroof, long 
body, or reinforced frame) that can generate bottlenecks in the assembly line. 

Considering the stock as a relevant element of the system, a reasonable objective is to establish 
a product sequence that minimizes the stocks levels of products and components. To do this, we 
can either limit or minimize the variation of the production rates, as is the case in the product 
rate variation problem (PRVP), which was introduced by Mil tenburg (1989), or limit or 
minimize the variation of the product components rates, as is done in the problem proposed by 
Monden (1983), which is called the output rate variation problem (ORVP). In both cases, the 
objective is to keep these rates constants over time.  

In contrast, if we consider human resources (HR) as the relevant element of the 
manufacturing system, then a reasonable objective is to minimize the work overloads that can 
appear when the mixed-product units treated by the line require different processing times at each 
stage or, more concretely, at each workstation. To achieve this, we can minimize the total work 
overload or maximize the total work completed, as in the mixed model sequencing problem with 
work-overload minimization (MMSP-W), which was proposed by Yano and Rachamadugu 
(1991). A recent work regarding this problem is Bautista, Alfaro and Batalla (2015). 

Finally, if the bottlenecks generated by special options of some products are the relevant 
element of the manufacturing system, the reasonable objective is to minimize the number of 
subsequences of products with special options (units segments), which can be detrimental to  the 
production line because more work or space (compared with the standard) is required  
consecutively at each workstation. One of these types of problems is the car sequencing problem 
(CSP), which was originally proposed by Parello, Kabat and Wos (1986), in which the constraint 



 
 

 

Solving a Mixed-Model Sequencing Problem with Production Mix Restrict ion by Bounded Dynamic 
Programming  

J. Bautista, R. Alfaro-Pozo, C. Batalla-García, A. Cano 
 

3 

consists of sequencing a set of units with special options while respecting the number of allowed 
options within subsequences. Some works regarding the CSP include Golle, Rothlauf and Boysen 
(2014) and Morin, Gagné and Gravel (2009). Among the variants of the CSP, we can find the 
following: (1) a version that considers the problem as an optimization problem rather than a 
constraint satisfaction problem (Bautista, Pereira, Adenso-Díaz, 2008a) and (2) an extended 
version that incorporates restrictions to allow a minimum number of products with special 
options in a subsequence of products (xCSP: extended CSP (Bautista, Pereira, Adenso-Díaz, 
2008b)).  

Sometimes, as in real environments, the problems are treated as multi-objective problems. 
Several authors have used this perspective. For example, Drexl, Kimms and Matthießen (2006) 
incorporated into the CSP conditions from the level scheduling (which is related to ORV and 
PRV). Additionally, Fattahi and Salehi (2009) incorporated conditions such as the minimization 
of the total utility work and idle costs into the mixed model assembly line (MMAL). Focusing on 
mixed model sequencing, Tsai (1995) incorporated the minimization of the utility work into the 
mixed model sequencing problem (MMSP). There also exist more recent works: for example 
Bautista, Cano and Alfaro (2012a) and Manavizadeh, Tavakoli, Rabbani et al. (2013) proposed 
incorporating conditions from the PRV into the MMSP-W. This objective can be achieved 
through regularizing the work or the work overload using pmr (product mix restrictions), as in 
the case of the MMSP-W-pmr, for example.  

A survey of some of these sequencing problems can be found in Boysen, Fliedner and Scholl 
(2009).  

This paper examines a variant of the MMSP-W, the MMSP-W-pmr. The original problem, 
MMSP-W, is an NP-hard problem (Yano and Rachamadugu, 1991) for which several alternative 
solutions have been proposed. These solutions include exact procedures based on branch-and-
bound (Bolat, 2003), dynamic programming (Yano and Rachamadugu, 1991; Bautista and 
Cano, 2001; Bautista, Cano and Alfaro, 2012b), heuristic procedures based on local search (Yano 
and Bolat, 1989; Bautista and Cano, 2008), greedy algorithms with priority rules (Bautista and 
Cano, 2008; Bolat and Yano, 1992), meta-heuristics (Scholl, Klein and Domschke, 1998) and 
beam search (Erel, Gocgun and Sabuncuoglu, 2007). Several studies have also considered the 
multi-criteria option (Aigbedo and Monden, 1997; Kotani, Ito and Ohno, 2004; Ding, Zhu and 
Sun, 2006; Rahimi-Vahed and Mirzaei, 2007).   

Given the complexity of the problem and the size of the case study related to Nissan 
Barcelona powertrain plant presented in (Bautista and Cano, 2011), our objective is to find a 
computationally competitive procedure to solve the problem. For this paper, we use a hybrid 
procedure based on bounded dynamic programming (BDP) assisted by linear programming. This 
procedure combines features of dynamic programming with features of branch-and-bound 
algorithms. The principles of the BDP have been described by Bautista, Companys and 
Corominas (1996). A complete review of hybrid metaheuristics in combinatorial optimization 
can be found in Blum, Puchinger, Raidl et al. (2011). 

Our proposal contains the following: (1) a model for the problem; (2) to solve this problem, 
procedures based on dynamic programming, which are referred to in this article as BDP-2/1 and 
BDP-2/2 (two versions), that use linear programming to obtain bounds for the problem; (3) a 
mathematical model to obtain the work overload of a given subsequence for use as part of the 
lower bound of the problem; (4) reduction of the search space of the procedure through pseudo-
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dominances; and (5) a computational experiment with real instances from a case study of Nissan 
such that we can compare the results yielded by BDP-2 procedures with those offered by integer 
linear programming.  

This paper is organized as follows: Section 2 presents a model for the MMSP-W with serial 
workstations, unrestricted interruption of the operations and production mix restrictions. Section 
3 presents an illustrative example. Section 4 describes the basic elements and the application of 
the proposed BDP procedure. Section 5 describes the computational experimentwith a case study 
related to the Nissan powertrain plant. Finally, Section 6 presents the conclusions of the study. 

2. Model for the problem 

The MMSP-W consists of sequencing T products, of which di  are of type i i =1,…,| I |( ) . A 
unit of product type i  requires from each processor (e.g., operator or robot) of workstation 
k k =1,…,|K |( )  a processing time, pi,k , assuming the processor works at its normal work pace 
or activity level. The standard time assigned to each processor to work on any product unit is the 
cycle time c . When a cycle ends at workstation k ! K , the processor can work on the product in 
progress for an additional positive time lk ! c , where lk  is the time window. 

When it is not possible to complete all of the work required by the demand plan, work 
overload is generated. The objective of the problem is to maximize the total work performed, 
which is equivalent to minimizing the total work overload generated (see Theorem 1 in Bautista 
and Cano, 2011). 

For the MMSP-W with serial workstations, unrestricted interruption of the operations, 
production mix restrictions (pmr) and work overload minimization, we take as reference the 
M_4U3_pmr model proposed by Bautista et al. (2012a), whose parameters and variables of are 
presented below. 

 
Parameters 

K  Set of workstations k =1,…, K( )  

bk  Number of homogeneous processors at station k  

I  Set of product types i =1,…, I( )  

di  Programmed demand for product type i   

pi,k  Processing time required for a unit of type i  at station k  for each homogeneous 

processor (at its normal activity level) 

T  Total demand; obviously, di = T
i=1

I!  

t  Position index in the sequence t =1,…,T( )  

c  Cycle time, the standard time assigned to workstations to process any product unit 

lk  Time window, the maximum time that each processor at workstation k  is allowed to 
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work on any product unit, where lk ! c > 0  is the maximum time that the work in 

process is held at workstation k  

!di  Ideal rate of production for product type i , !di = di T  i =1,…, I( ) . 

  

Variables 

xi, t  Binary variable equal to 1 if a product unit i i =1,…, I( )  is assigned to the position 

t t =1,…,T( )  of the sequence and to 0 otherwise 

sk, t  Starting instant for the t th  unit of the sequence of products at workstation 

k k =1,…, K( )  

ŝk,t  Positive difference between the start instant and the minimum start instant of the 

t th operation at workstation k ! K . ŝk,t = sk,t ! (t + k! 2)c"# $%
+
 (with x[ ]+ = max{ 0, x} ) 

vk, t  Processing time applied to the t th  unit of the product sequence at station k  for each 

homogeneous processor (at its normal activity level) 

wk, t  Work overload generated for the t th  unit of the product sequence at station k  for each 

homogeneous processor (at its normal activity level); measured in units of time 

! k,t  Processing time required for the t th  unit of the sequence of products at workstation k  

for each homogeneous processor (at its normal activity level) 

Under these conditions, we can define the following mathematical model, M_4U3_pmr: 

Min W = bk wk,tt=1

T!( )k=1

K! " Max V = bk vk,tt=1

T!( )k=1

K!  (1) 

subject to:  

xi, tt=1

T! = di  i =1,…, I  (2) 

xi, t =1
i=1

I!  t =1,…,T  (3) 

vk, t + wk, t = pi,ki=1

I! xi, t  k =1,…, K ; t =1,...,T  (4) 

ŝk, t ! ŝk,t"1 + vk,t"1 " c  k =1,…, K ; t = 2,...,T  (5) 

ŝk, t ! ŝk"1,t + vk"1,t " c  k = 2,…, K ; t =1,...,T  (6) 

ŝk, t + vk,t ! lk  k =1,…, K ; t =1,...,T  (7) 
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ŝk, t ! 0  k =1,…, K ; t =1,...,T  (8) 

vk, t ! 0  k =1,…, K ; t =1,...,T  (9) 

wk, t ! 0  k =1,…, K ; t =1,...,T  (10) 

xi, t ! 0,1{ }  k =1,…, K ; t =1,...,T  (11) 

ŝ1,1 = 0   (12) 

xi,! ! t " !di#$ %&! =1

t'  i =1,…, I ; t =1,...,T  (13) 

xi,! !
! =1

t" t #!di$% &'  i =1,…, I ; t =1,...,T  (14) 

 

In the model, the equivalent objective functions (1) are represented by the total overload 
W( )  and total work performed V( ) . Constraint (2) requires that the programmed demand to be 

satisfied. Constraint (3) indicates that only one product unit can be assigned to each position of 
the sequence. Constraint (4) establishes the relation between the processing times applied to each 
unit at each workstation and the work overload generated by each unit at each workstation. 
Constraints (5)-(8) constitute the set of relative starting instants of the operations at each station 
and the processing times applied to the products for each processor. Constraints (9) and (10) 
indicate that the processing times applied to the products and the generated work overloads, 
respectively, are nonnegative. Constraint (11) requires the assigned variables to be binary. 
Constraint (12) fixes the start of operations. Constraints (13) and (14) are those that incorporate 
the preservation property of the production mix desired in the JIT (Toyota) and Douki Seisan 
(Nissan) philosophies. 

Additionally in this work, we measure the non-regularity of a sequence using the following 
quadratic function: 

! Q(X) = Xi,t " t #!di( )2

i=1

I

$
t=1

T

$   (15) 

where Xi,t = xi,!
! =1

t

!  ! i =1,…, I ; ! t =1,…, T( )  is the cumulative production. 

3. An i l lustrative example 

To illustrate the model formulated above, we present the following example: There are six 
units of product T = 6( ) , of which three are type A, one is type B and two are type C, with a total 
work required V0 =104 . The units are processed at three workstations K = 3( )  with different 

numbers of processors bk( ) ; the processing times for each processor (at its normal activity level) 
for each type of unit i (A, B,  and C) at each workstation k (m1 , m2 , and m3 ) are listed in Table 
1. 
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  A ( dA =3) B ( dB =1) C ( dC =2) bk  

m1  5 4 3 1 

m2  5 4 4 2 

m3  4 3 5 1 

total 19 (V0(A) = 57) 15 (V0(B) = 15) 16 (V0(C) = 32) V0 =104  

Table 1: Number of homogeneous processors (bk ) at each station and processing times (pi,k ) for each processor 
(at its normal activity level) required for each type of unit at each station or module. 

Furthermore, c = 4  (cycle time) and lk = 6  ! k  (length of workstation or time window). 

Fig. 1 shows a Gantt diagram of the optimal solutions offered by models M_4U3 (top) and 
M_4U3_pmr (bottom). The sequence of products that yield the minimum total work overload 
for M_4U3 is C-C-B-A-A-A. The total work performed is V =101, and the work overload, 
which is concentrated between workstations m1  and m2 , is W = 3 (the grey area in Fig.1). The 
non-regularity for M_4U3 is 9.05. The sequence of products that yields the minimum total work 
overload for M_4U3_pmr is C-A-B-A-C-A (the sequence is affected by the production mix 
restrictions). The total work performed is V =101, and the work overload, which is concentrated 
between workstations m1  and m2 , is also W = 3, whereas the non-regularity for M_4U3_pmr is 
2.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fif 1. Gantt chart for the optimum solutions for the example provided by M_4U3 (top) and M_4U3_pmr 
(bottom). 
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4. BDP for the MMSP-W with PMR 

This section presents the basic elements of the BDP procedure applied to the MMSP-W with 
serial workstations, unrestricted interruption of the operations and production mix restrictions 
(here, we use BDP-2). 

4.1 Graph associated with the problem 

Similar to Bautista, Cano and Alfaro (2014) we can build a linked graph without loops or 
direct cycles of T +1 stages. The set of vertices at level t (t = 0,…,T)  is denoted as J t( ) . 
J t, j( ) ( j =1,…, J t( ) )  is a vertex of level t , which is defined by the tuple 

J t, j( ) = t, j( ), !q t, j( ), ! t, j( ),W ! t, j( )( ),LB_R t, j( ), ! Q X ! t, j( )( )( ){ } , where: 

•  !q t, j( ) = q1 t, j( ),q2 t, j( ),…,qI t, j( )( )  is the vector of satisfied demand. 

•  ! t, j( ) = ! 1 t, j( ),! 2 t, j( ),...,! t t, j( )( )  is the partial sequence of t  units of product 
associated with the vertex J t, j( ) . 

•  W ! t, j( )( )  is the partial work overload generated by the sequence ! t, j( )  

•  LB_R t, j( )  is a lower bound on the work overload generated by the unsequenced 
products, di ! qi t, j( )  i =1,…, I( ) . 

•  ! Q X ! t, j( )( )( )  is the non-regularity of production generated by the sequence ! t, j( ) . 

Obviously, to obtain a global bound on the work overload associated with vertex J t, j( ) , we 
can set: LB_W t, j( ) = W ! t, j( )( ) + LB_R t, j( ) . 

The vertex J t, j( )  has the following properties: 

qi t, j( )
i=1

I

! = t   (16) 

t ! !di"# $% & qi t, j( ) & t ! !di'" ($  !i "I  (17) 

At level 0 of the graph, there is only one J 0( )  vertex. Initially, we may consider that at level 
t , J t( )  contains the vertices associated with all of the sub-sequences that can be built with t  
products that satisfy properties (16) and (17). However, it is easy to a priori reduce the cardinality 
of J t( )  by establishing the following definitions of pseudo-dominance:  

•  Definition 1. PSD_1: Given the sequences ! (t, j1)  and ! (t, j2)  associated with the 
vertices J(t, j1)  and J(t, j2) , then ! (t, j1)  pseudo-dominates ! (t, j2)  if: 
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! (t, j1) ! ! (t, j2) !

!q(t, j1) = !q(t, j2)[ ]  "

LB_W(t, j1) # LB_W(t, j2)[ ]  "

$Q X ! t, j1( )( )( ) # $Q X ! t, j2( )( )( )%
&

'
(

)

*

+
+

,

+
+

-

.

+
+

/

+
+

 (18) 

•  Definition 2. PSD_2: Given the sequences ! (t, j1)  and ! (t, j2)  associated with the 
vertices J(t, j1)  and J(t, j2) , then ! (t, j1)  pseudo-dominates ! (t, j2)  if: 

! (t, j1) ! ! (t, j2) !

!q(t, j1) = !q(t, j2)[ ]  " LB_W (t, j1) < LB_W (t, j2)[ ]
#

!q(t, j1),LB_W(t, j1)( ) $ !q(t, j2),LB_W(t, j2)( )%& '(  "

) Q X ! t, j1( )( )( ) * ) Q X ! t, j2( )( )( )%
&

'
(

+

,

-
--

.

-
-
-

/

0

-
--

1

-
-
-

 (19) 

The reduction of J t( )  through the pseudo-dominances defined in (18) or (19) cannot 
guarantee the optimality of the solutions. 

4.2 Bounds for the problema 

Given a vertex of stage t  reached through a partial sequence 
! (t, j ) = ! 1(t, j ),! 2(t, j ),...,! t (t, j ){ } , the overall bound on W  and a partial boun on the 
complement R(t, j )  associated with the sequence or segment ! (t, j )  can be determined 
according to the schema presented in Fig. 2. 

 

Fig 2. Bound scheme for a partial sequence ! (t, j )  at vertex J(t, j ) . 

To obtain the work overloads associated with ! (t, j ) , in each stage of the procedure, we use a 
mathematical model. Given a subsequence ! (t, j ) = ! 1(t, j ),! 2(t, j ),...,! t (t, j ){ }  of products, the 
processing times for each workstation k ! K  of the ! th ! =1,..., t( )  units of the subsequence  
! (t, j )  are ! k," = p#" (t, j ),k  and are foreknown. We can define a mathematical model 
LP_W(! (t, j ))( )  in wich the assignment variables have been removed:  

Min W(! (t, j )) = bk ! wk,"
"=1

t

"#
$%

&
'(k=1

K

"  (20) 
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subject to: 

!k," = p#" (t, j ),k  k =1,..., K ; ! =1,..., t  (21) 

!k," ! wk," " 0  k =1,..., K ; ! =1,..., t  (22) 

ŝk,! ! ŝk,! "1 + " k,! "1 " wk,! "1 " c  k =1,..., K ; ! = 2,..., t  (23) 

ŝk,! ! ŝk"1,! + " k"1,! " wk"1,! " c  k = 2,..., K ; ! =1,..., t  (24) 

ŝk,! + "k,! ! wk,! " lk  k =1,..., K ; ! =1,..., t  (25) 

ŝk,! ! 0  k =1,..., K ; ! =1,..., t  (26) 

wk,! ! 0  k =1,..., K ; ! =1,..., t  (27) 

ŝ1,1 = 0   (28) 

The result of the proposed mathematical model corresponds to W(! (t, j )) . 

To obtain a bound on the work overload associated with the complement R(t, j ) , we use the 
combination of three lower bounds. 

Given a workstation k  and vertex J t, j( ) , the available time to complete the pending 
operations, for each homogeneous processor at its normal activity level, is: 

TDk(t, j ) = (T ! t !1) "c+ lk  k =1,..., K  (29) 

whereas the required time to complete these operations is: 

TPk(t, j ) = pi,k ! di " qi t, j( )( )
i=1

I

#  k =1,..., K  (30) 

Using (29) and (30), we can define a lower bound on the work overload of R(t, j)  as 

LB1(t, j) = bk ! TPk (t, j) " TDk (t, j)[ ]+

k=1

K

#   (31) 

However, if we consider the minimum work overload that a product of type i can generate, 
we have: 

LB2(i) = bk pi,k ! c( )! bK (l K ! c)
k=1

K

"
#

$
%

&

'
(

+

 i =1,..., I  (32) 

Thus, a bound on the work overload of R(t, j )  is the following: 

LB2(t, j ) = di ! qi t, j( )( )"LB2(i)
i=1

I

#   (33) 

A more refined bound on the minimum work overload that a unit of product type i  can 
generate can be obtained using the following mathematical model: 
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LP_LB3(i) : MIN LB3(i) = bk !wk,i
k=1

K

"  (34) 

subject to: 

ŝk,i ! ŝk"1,i + pk"1,i " wk"1,i " c  k = 2,..., K              (35) 

ŝk,i + pk,i ! wk,i " lk  k =1,..., K              (36) 

pk,i ! wk,i " 0  k =1,..., K  (37) 

ŝk,i ! 0  k =1,..., K  (38) 

wk,i ! 0  k =1,..., K  (39) 

ŝ1,i = 0   (40) 

Using the solutions of the previous mathematical model, we can determine the following 
bound on the work overload of ),( jtR : 

LB3(t, j) = di ! qi t, j( )( ) " LB3(i)
i=1

I

#   (41) 

To determine LB_R(t, j ) , we use: 

LB_R(t, j ) = max{ LB1(t, j ),LB2(t, j ),LB3(t, j )}   (42) 

Finally, we can obtain a lower bound on the total work overload associated with vertex 
J t, j( ) : 

),(_)),((),(_ jtRLBjtWjtWLB += !   (43) 

4.3 Properties derived from the production mix restrictions (pmr) 

In this section, we will study the properties of the product sequences that are derived from the 
incorporation of the restrictions to preserve the production mix (pmr) in the MMSP-W. 

First, we must define how to measure the non-regularity of the production ! Q X( )( )  at each 

vertex of the graph associated with the problem. In effect, given a vertex J t, j( ) , associated with a 
sequence ! t, j( ) = ! 1 t, j( ),...,! t t, j( )( ) , let Xi,! " t, j( )( )  i =1,..., I ,! =1,..., t( )  be the number of 
units of product type i sequenced at the first !  positions of the sequence ( )jt,! , that is: 

Xi,! " t, j( )( ) = ! h t, j( ) ! ! t, j( ) : ! h t, j( ) = i{ }( ) " 1# h # !( ){ }   (44) 

Using the previous definition, let us define the non-regularity of the production associated 
with the sequence ! t, j( )  of vertex J t, j( )  as: 
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! Q X ! t, j( )( )( ) = Xi,! " t, j( )( ) " ! #!di( )2

i=1

I

$
! =1

t

$   (45) 

The restrictions to preserve the production mix can be expressed as follows: 

t ! !di"# $%& Xi,t & t ! !di'" ($ i =1,…, I ; t =1,...,T  (46) 

where Xi,t  is a variable that represents the total number of units of product type i  sequenced 
during the first t  production cycles. 

The imposition of these restrictions on the sequences leads to a set of properties which are 
defined in  Bautista, Cano, Alfaro et al. (2013). These properties are the following: 

Theorem 2: If t ! !di"# $%& Xi,t & t ! !di'" ($ ! i " I ;t =1,...,T , then Xi,t ! Xj ,t " t # !di$% &' ! t # !dj%( ')  

! i, j{ } " I ;t =1,...,T . 

Corollary 2: If di ! dj , then Xi,t ! X j,t " 1  ! i, j{ } " I ;t =1,...,T . 

Theorem 3: If t ! !di"# $%& Xi,t & t ! !di'" ($ ! i " I ;t =1,...,T , then the following is satisfied: 

Xi,t ! Xj ,t " t #!di$% &' ! t #!dj($ )& ! i, j{ } " I ;t =1,...,T . 

Corollary 3: If di ! dj , then Xi,t ! Xj ,t " ! 1 ! i, j{ } " I ;t =1,...,T .  

Corollary 4: If di = dj , then Xi,t ! Xj ,t " 1 ! i, j{ } " I ;t =1,...,T .  

In addition, the fulfillment of the pmr restrictions combined with the demand variety, results 
in the following property: 

Theorem 4: If t ! !di"# $%& Xi,t & t ! !di'" ($ ! i " I ;t =1,...,T , given the sequence 

! = ! 1,! 2,...,! T{ } , where ! t = j{ }  with 2 ! t ! T , the following is satisfied:  

If ! i " I : Xi,t > 0( ) # di $ dj( ) % Xi,t $ X j,t  ! t = 2,...,T . 

Proof: If we suppose that ! i " I : Xi,t > 0( ) # di $ dj( )  such that Xi,t > Xj ,t , then 
Xi,t ! Xj ,t " 1. 

In contrast, given ! t = j{ } , the following must be satisfied: Xj ,t = Xj ,t! 1 +1 and Xi,t = Xi,t!1. 
Thus, we can write Xi,t ! Xj ,t = Xi,t! 1 ! Xj ,t! 1 ! 1" 1# Xi,t! 1 ! Xj ,t! 1 " 2 . Furthermore, given that 

Xi,t! 1 ! X j,t! 1 " (t ! 1)#!di$% &' ! (t ! 1)#!dj%( ') " (t ! 1)#!dj$% &' ! (t ! 1)#!dj%( ') , we have 

(t ! 1)" !dj#$ %&! (t ! 1)" !dj$' &( ) Xi,t! 1 ! Xj ,t! 1 ) 2 , which is absurd. Thus, the hypothesis Xi,t > Xj ,t  is 
false and consequently, the following must be fulfilled Xi,t ! X j,t  ! t = 2,...,T  and 
! i " I : Xi,t > 0 , when ! t = j{ } . 
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Corollary 5: If t ! !di"# $%& Xi,t & t ! !di'" ($ ! i " I ;t =1,...,T , given the sequence 

! = ! 1,! 2,...,! T{ } , where ! t = j{ }  with 2 ! t ! T , and if !i "I : Xi,t > Xj ,t # di > dj . 

Evidently, from Theorem 3, di ! dj " Xi,t ! Xj ,t , which negates the hypothesis Xi,t > Xj ,t( ) ; 
therefore, it must be that di > dj . 

4.4 Rules to discard vertices 

At stage t , let Xi ! t ! 1,h( )( )  be the satisfied demand for product type Ii !  associated with 
the sequence ! t ! 1,h( )  of the vertex J(t ! 1,h) . 

Assuming that an extension of the vertex J t ! 1,h( )  is built by adding at stage t  a product 
type j  to the sequence, let J t,h'( )  be the resulting vertex for the partial sequence 
! t,h '( ) = ! t ! 1,h( ) " j{ } . The satisfied demands must fulfill the following: 

Xi ! t,h'( )( ) = Xi ! t !1,h( )( ) "i # j

X j ! t,h'( )( ) = Xj ! t !1,h( )( ) +1 with ! t t,h'( ) = j{ }
 

Under these conditions, the vertex J t,h'( )  can be discarded from the exploring process if any 
one the following rules is satisfied: 

Block 1 (pmr constraints): 

! j " I, If #j : Xj ! t,h'( )( ) < t $!dj%& '()& *( + Xj ! t,h'( )( ) > t $!dj)% *')& *( , Discard J t,h'( )  

Block 2 (Theorems 2 and 3): 

! i " j # I , If $i : Xi ! t,h'( )( ) %Xj ! t,h'( )( ) > t &!di'( )* % t &!dj(+ *,'+ ), -

- Xi ! t,h'( )( ) %Xj ! t,h'( )( ) < t &!di(+ *, % t &!dj'( )*'+ ), . Discard J t,h'( )
 

Block 3 (Corollaries 2, 3 and 4): 

! i " j # I , If di < dj$% &' ( Xi ! t,h'( )( ) ) Xj ! t,h'( )( ) >1$% &'$% &' *

* If di = dj$% &' ( Xi ! t,h'( )( ) ) X j ! t,h'( )( ) >1$% &'
$
%

&
' *

* If di > dj$% &' ( Xj ! t,h'( )( ) ) Xi ! t,h'( )( ) >1$% &'$% &' + Discard J t,h'( )

 

Block 4 (Theorem 4): 

Given the partial sequence ! t,h'( )  associated with vertex J t,h'( ) , with ! t t,h'( ) = j{ }  

! i " I : Xi ! t,h '( )( ) #1;  If dj # di$% &' ( Xj ! t,h'( )( ) < Xi ! t,h'( )( )( )$% &' ) Discard J t,h'( )  
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4.5 The use of BDP 

The BDP procedure combines features of dynamic programming (determination of extreme 
paths in graphs) with features of branch-and-bound algorithms. The principles of BDP have been 
described by Bautista et al. (2014) and the procedure is described below: 

BDP-2 – MMSPW 

Input: T, I , K , di ! i( ), lk, bk(! k), pi,k ! i, ! k( ), c, Z0, H  
Output: list of sequences obtained by BDP 
0 Initialization: t = 0; LBZmin = !  
1 Generate_model(); 
2 While (t < T)  do 
3 t = t +1 
4 Add_constraints(t)  
5 While (list of consolidated vertices in stage t ! 1 not empty) do 
6 Select_vertex(t)  
7 Develop_vertex(t)  
8 Filter_vertices (Z0, H, LBZmin ) 
9 end while 
10 End_stage () 
11 end while 
end BDP - MMSPW 
 

In the procedure, the following functions appear: 

•  Generate_model (): this function generates the initial model LP_W(! (t, j ))  to obtain 
the optimal solution W* (! (t, j ))  for t = 0 . 

•  Add_constraints (t) : this function adds the new constraints associated with the new stage 
(t)  to the existing model. 

•  Select_vertex (t) : this function selects one of the vertices consolidated in stage t ! 1 
following a nondecreasing ordering of the LB_W (t, j)  values. 

•  Develop_vertex (t) : this function develops the vertex selected in the previous function by 
adding a new product unit with pending demand. Vertices that do not satisfy properties 
(16) and (17) are not generated. This is performed by incorporating the rules contained 
in the blocks to discard vertices Block 1 and Block 3 into this phase. 

•  Filter_vertices (Z0, H, LBZmin ): this function chooses, from all the vertices developed in 
the previous function, a maximum number H  of the most promising vertices (according 
to the lowest values of the lower bound LB_W(t, j ) ) and removes those vertices for 
which the lower bound is greater than Z0  (known initial solution) and those that are 
pseudo-dominated, as defined in (18) or (19). 

•  End_stage (): this function consolidates the most promising vertices in stage t  ( H vertices 
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are the maximum number of vertices selected). 

4.6 An example of the graph reduction 

Figure 3 represents the vertex exploration of the graph associated with the problem to solve 
the illustrative example through the BDP procedure described in this paper; here, we do not 
perform the elimination of vertices allowed by the incorporation of the pmr restrictions into the 
MMSP-W. In the example, an initial solution Z0 = 4 and a window width H = 6  have been 
used. 

Figure 4 represents the same exploration when the rules, to discard vertices associated with 
Block-1 and Block-3 to assure the fulfillment of the pmr restrictions, are incorporated to the BDP 
procedure. For this graph, Z0 = 4 and H = 6  have also been used (although H = 3 is sufficient). 

In the figures, we can see the vertices’ elimination states: 

1) Dominated vertex (d) . For the example in figure 3, the representative vertex of the 
partial sequence (B,C), with ! Q(X) = 2.6 , is dominated by (C,B), with ! Q(X) = 2.3 . 
Additionally, in the same figure, we can see that vertex (B,A) is dominated by (A,B). 

2) Removed vertex (r ) . The limitation of the window width to H = 6  contributes to 
selecting the most promising vertices (best value for LB_W ) to be developed at each 
stage t . For example, at stage t = 3  of figure 3, the vertices that correspond to the partial 
sequences (A,A,A), (A,C,C), (C,B,C) and (C,C,B) are removed and only six vertices are 
developed to reach stage t = 4 . 

3) Discarded vertex (Z0 ). The discarded vertices are those for which their development 
cannot finish at solution that is better than the best known solution Z0 . For example, the 
sequence (A,C,B,A,A,C) in figure 4 does not improve the best known solution Z0 = 4 . 

4) Breaker vertex (pmr). This is a vertex for which the sequence does not satisfy the 
restrictions, in our case, the pmr restrictions. For example, in figure 4, the partial 
sequences (A,A), (B,C), (C,B) and (C,C) do not satisfy the pmr restrictions. 
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Fig. 3. Original graph for the example using Z0 = 4 , pseudo-dominance 1 and H = 6 . 

 

 

 

Fig. 4. Graph using the pmr restrictions, Z0 = 4 , pseudo-dominance 1 andH = 6 . 
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5. Case study related to the Nissan powertrain plant 

To analyze the validity of the BDP-2/1 and BDP-2/2 procedures for industrial applications, 
an assembly line from the powertrain plant of Nissan Spanish Industrial Operations (NSIO) in 
Barcelona, Spain, was investigated. These results were compared with those obtained by the 
Gurobi solver (Bautista et al., 2012a). 

We used a line with 21 serially distributed modules or workstations in which nine types of 
engines (p1,..., p9 ), with different characteristics, are assembled: the first three are placed in 4x4 
vehicles, models p4  and p5 are destined for vans, and the last four are placed in commercial 
vehicles (trucks) of medium tonnage. 

The number of elementary tasks for the assembly of one of the engines is approximately 380. 
These tasks were grouped into 140 operations for which the balancing of the line was performed 
based on average processing times for the mix with equal numbers of the nine types of engines. 
The balancing, considering time and space restrictions, resulted in 21 stations, k =1,…,21. More 
details can be found at http://www.nissanchair.com/TSALBP. 

Once the operations were assigned to the stations, the processing times for each type of 
engine at each of the stations, pi,k  (i =1,…,9; k =1,…21) , were calculated. These data are shown 
in Table 4. 

For the experiment, an effective cycle time of c =175s was used. The chosen time window, 
lk =195s ! k , was identical for all workstations. This ensured a safety margin for the cycle time 
of great than 10%. These data indicate that the instances with T = 270  were associated with a 
single workday with an effective time of 13.125 hours distributed over two shifts. 

We considered an identical number of processors at each station bk =1; the processor at each 
station were teams of two workers with identical skills and tools and the required auxiliary 
equipment. 

To study the behavior of the BDP-2 procedures, we assumed different demand plans (see 
Table 5) to analyze the repercussions that variations in the production mix had on the work 
overload of the engine assembly line (see more details in Bautista and Cano, 2011).  

 

 

 

 

 

 

 

 



 
 

 

Solving a Mixed-Model Sequencing Problem with Production Mix Restrict ion by Bounded Dynamic 
Programming  

J. Bautista, R. Alfaro-Pozo, C. Batalla-García, A. Cano 
 

18 

 
i Processing times for products in stations                             

  m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18 m19 m20 m21 

p1 104 103 165 166 111 126 97 100 179 178 161 96 99 147 163 163 173 176 162 164 177 

p2 100 103 156 175 114 121 96 97 174 172 152 106 101 155 152 185 179 167 150 161 161 

p3 97 105 164 172 114 122 96 95 173 172 168 105 102 142 156 183 178 181 152 157 154 

p4 92 107 161 167 115 124 93 106 178 177 167 97 101 154 152 178 169 180 152 159 168 

p5 100 101 148 168 117 127 96 94 178 178 167 101 99 146 153 169 173 172 160 162 172 

p6 94 108 156 167 117 130 89 102 171 177 166 100 101 143 152 173 178 173 151 160 170 

p7 103 106 154 168 115 120 94 103 177 175 172 96 96 154 154 172 174 173 155 162 167 

p8 109 102 164 156 111 121 101 102 171 173 157 104 102 153 156 182 175 168 148 158 149 

p9 101 110 155 173 111 134 92 100 174 175 177 96 99 155 156 171 175 184 167 157 169 

lk 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 

bk 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 4: Processing times, pi,k , for operations on the nine types of engines (p1,..., p9 ) at the 21 stations 

( m1,…,m21 ). 

family 
  Demand plans for 1 day 

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

4x4 p1 30 30 10 40 40 50 20 20 70 10 10 24 37 37 24 30 30 60 10 20 60 20 10 

p2 30 30 10 40 40 50 20 20 70 10 10 23 37 37 23 30 30 60 10 20 60 20 10 

p3 30 30 10 40 40 50 20 20 70 10 10 23 36 36 23 30 30 60 10 20 60 20 10 
                         

van p4 30 45 60 15 60 30 75 30 15 105 15 45 35 45 55 35 55 30 90 15 15 90 30 

p5 30 45 60 15 60 30 75 30 15 105 15 45 35 45 55 35 55 30 90 15 15 90 30 
                         

trucks p6 30 23 30 30 8 15 15 38 8 8 53 28 23 18 23 28 18 8 15 45 15 8 45 

p7 30 23 30 30 8 15 15 38 8 8 53 28 23 18 23 28 18 8 15 45 15 8 45 

p8 30 22 30 30 7 15 15 37 7 7 52 27 22 17 22 27 17 7 15 45 15 7 45 

p9 30 22 30 30 7 15 15 37 7 7 52 27 22 17 22 27 17 7 15 45 15 7 45 

Table 5: NISSAN-9ENG instances and demand plans. 

A computational experiment using the procedures BDP-2/1 and BDP-2/2 was performed. 
The primary results are collected in Tables 6 and 7. 
 

 
Gurobi 

BDP-2/1 BDP-2/2 
 H=1 H=36 H=81 H=126 H=1 H=36 H=81 H=126 

CPU min 149.4 0.1 427.6 717.9 883.0 0.1 369.0 524.1 535.0 
CPU max 7200.0 35.0 526.2 1119.9 1701.1 35.9 509.8 972.2 1134.2 

CPU  6605.1 3.2 484.5 992.9 1465.5 3.2 450.1 772.4 854.8 

Table 6: CPU times for the case study of the Nissan powertrain plant. 

Regarding CPU times (see Table 6), BDP-2/1 and BDP-2/2 using a window width of 
H =126  (the largest used in this experiment) improved the CPU times required compared with 
that required by the Gurobi solver by 4 and 7 times, on average. 

Table 7 presents the best values for W and ! Q(X)  of the 23 instances for the problem 
reached by Gurobi and the BDP-2/1 and BDP-2/2 procedures for the four window widths 
( H =1,36,81and 126). Moreover a relative percentage deviation is used to calculate the gain of 
one procedure over another, that is the RPD1: 
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RPD1 f , !( ) =
f ŜG !( )( ) ! f Ŝ2 !( )( )

f ŜG !( )( )  f ! W, " Q X( ){ } ;! ! "  (47) 

Where ŜG(! )  (optimal for W), is the best solution found for the instance ! ! "  using the 

Gurobi solver and ̂S2(! )  is the best solution found for the instance ! ! "  using the BDP-2 
procedure, for each of its two variants. 

The highlighted results are the following: 

1) Both versions of the BDP-2 improved, on average, the best solutions for W and !Q(X)  
that were obtained compared with obtained using Gurobi. The values for the 
improvements obtained using BDP-2/1 for W and ! Q(X)  were 6.78% and 15.07%, 
respectively. Using BDP-2/2, the improvements were 2.20% and 0.37%, for W and 
! Q(X)  respectively. 

2) When compared with Gurobi, BDP-2/1 improved the value of! Q(X)  for the 23 instances 
and the work overload value (W ) for 16 instances. 

3) BDP-2/1 dominated to BDP-2/2 with respect to the value ! Q(X) . BDP-2/2 obtained 
better values for W than did BDP-2/1 for only 4 of the 23 instances, three of which are 
worse than the solution given by Gurobi. 

Observing the results of this computational experiment, we can conclude that BDP-2/1 is 
more competitive, on average, than the remainder of the procedures. 
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6. Conclusions 

We have proposed a hybrid procedure based on the BDP, the BDP-2 (two versions), for the 
MMSP-W problem that minimizes the total work overload or maximizes the total completed 
work and considers serial workstations, parallel processors, free interruption of the operations and 
restrictions to preserve the production mix in the manufacturing sequence. 

The proposed procedure use global bounds based on linear programming. A mathematical 
program that minimizes the work overload given a subsequence of operations at any instant t  has 
been formulated. In addition, the proposed procedure incorporates pseudo-dominances between 
partial solutions to limit the search space. These pseudo-dominances consider the preservation of 
the production mix in the partial solutions. From both versions of these pseudodominances, 
PSD_1 and PSD_2, we proposed two versions of the BDP-2 procedure (BDP-2/1 and BDP-2/2). 

We performed a computational experiment corresponded to a case study of a Nissan 
powertrain plant in Barcelona. 23 instances corresponding to different demand plans, one 
production day and two shifts were considered. Both BDP-2 procedures were competitive in 
terms of CPU times and in terms of the results for W  and ! Q(X)  compared with Gurobi 
(Bautista et al., 2012a) because we always found an improvement, on average, for these 
indicators. Between BDP-2/1 and BDP-2/2, the first variant performed better that the second and 
found the best solutions in most cases. 
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