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Abstract

Inspired by recent work of Meduna on deep pushdown automata, we consider
the computational power of a class of basic program schemes, NPSDSs, based
around assignments, while-loops and non-deterministic guessing but with access
to a deep pushdown stack which, apart from having the usual push and pop
instructions, also has deep-push instructions which allow elements to be pushed
to stack locations deep within the stack. We syntactically define sub-classes of
NPSDSs by restricting the occurrences of pops, pushes and deep-pushes and
capture the complexity classes NP and PSPACE. Furthermore, we show that
all problems accepted by program schemes of NPSDSs are in EXPTIME.

1 Introduction

In automata theory, there is a variety of machine models, both restricting and en-
hancing pushdown automata, such as finite-turn pushdown automata [7, 23] and two-
pushdown automata [13, 14] (the former accept a proper sub-class of the context-free
languages and the latter are as powerful as Turing machines). However, rarely is there
a model based on modifications of pushdown automata capturing a class of languages
lying between the classes of the context-free and the context-sensitive languages. In
an attempt to remedy this situation, Meduna [15] recently introduced deep pushdown
automata and showed that these models coincide with Kasai’s state grammars [11],
and thus give rise to an infinite hierarchy of languages lying between the classes of the
context-free and the context-sensitive languages. Meduna’s deep pushdown automata
pop and push items from and to their stack in the standard way; however, they also
have the facility to insert (but not read) strings at some position within the stack.

Inspired by Meduna’s machine model, we consider in this paper the formulation
of program schemes with access to a deep pushdown stack. Program schemes work
on arbitrary finite structures (rather than just strings) and are more computational
in flavour than are formulae of logics studied in finite model theory and descriptive
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complexity, yet they remain amenable to logical manipulation. The concept of a
program scheme originates from the 1970’s with work of, for example, Constable
and Gries, Friedman, and Hewitt and Paterson [2, 6, 16], and complexity-theoretic
considerations of such program schemes were subsequently studied by, for example,
Harel and Peleg, Jones and Muchnik, and Tiuryn and Urzyczyn [8, 10, 22].

Of relevance to our work here is [1] where it was shown that a basic class of
program schemes, in which there are assignments, while-loops and non-deterministic
guessing, augmented with access to a stack, where these program schemes work on
ordered data, is such that the class of problems accepted is P. This characterization
should be compared with Cook’s result from [3] that a non-deterministic pushdown
automaton can be simulated by a deterministic pushdown automaton, with the class
of languages accepted by such automata being P. Moreover, as with Cook’s scenario,
the above program schemes can be simulated by (deterministic) program schemes in
which guessing is not allowed. (There has also been a consideration of these program
schemes on unordered data in [1, 20].) An interesting aspect of program schemes
with a stack is that there is potentially an unlimited amount of memory available
to a computation (in the form of stack storage) yet (as the results of [1] show) the
problems accepted by such program schemes can all be solved in polynomial-time (on
a Turing machine; in fact, it appears that some problems in P require exponential
time when ‘time’ is defined to be the number of instructions executed by a program
scheme with a stack that solves the problem [20]).

As mentioned above, in this paper it is our intention to consider the computational
power of basic program schemes when augmented with a deep pushdown stack. A
deep pushdown stack is such that the usual pops and pushes are available as well as
an additional instruction which allows elements to be written to locations deep in the
stack but only so that the depth at which such a location lies (from the top of the stack)
is bounded by some polynomial in the size of the input structure; that is, deep-pushes
cannot be to locations too deep within the stack. Note that we only have deep-pushes,
not deep-pops; for if we had both then we would have, essentially, access to a stack the
top (polynomial) portion of which could be used as an array (program schemes with
arrays have been considered in [19, 21]). Our goal is to classify the computational
power of basic program schemes with deep pushdown stacks in comparison with the
standard complexity classes of computational complexity. Such complexity classes
are all defined with regard to ordered data (more specifically, strings of symbols) and
consequently we always assume that our program schemes work on finite structures
augmented with an ordering of the data (this statement will be made explicit in the
subsequent definitions).

Of course, the results of [1] show that any problem in P can be accepted by some
program scheme from our class of program schemes with access to a deep pushdown
stack, which we call NPSDSs. It turns out that we can (syntactically) define sub-
classes of the class of program schemes NPSDSs, obtained by restricting how the
occurrences of pops, pushes and deep-pushes are structured, capturing the complexity
classes NP and PSPACE. Furthermore, we show that all problems accepted by
program schemes of NPSDSs are in EXPTIME.

Let us end this introduction by remarking that there do exist programming lan-
guages with facilities for the manipulation of elements deep within a stack. One such
is the programming language Push [17], specifically defined for use in genetic and evo-
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lutionary computational systems, where the instructions YANK and SHOVE allow
deep access to stack elements, by means of integer indices.

Our basic definitions (relating to logic and program schemes) are given in Section 2
before we consider some simple restrictions of our program schemes in Section 3. We
capture the complexity class NP with a sub-class of our program schemes in Section 4,
and the complexity class PSPACE in Section 5. We show that any problem accepted
by a program scheme of NPSDSs is in EXPTIME in Section 6, before presenting
our conclusions and directions for further research in Section 7.

2 Basic definitions

Throughout, a signature τ is a tuple 〈R1, . . . , Rr, C1, . . . , Cc〉, where each Ri is a
relation symbol, of arity ai, and each Cj is a constant symbol. A finite structure A over
the signature τ , or τ -structure, consists of a universe or domain |A| = {0, 1, . . . , n−1},
for some natural number n ≥ 2, together with a relation Ri of arity ai over |A|, for
every relation symbol Ri of τ , and a constant Cj ∈ |A|, for every constant symbol Cj

of τ (by an abuse of notation, we do not distinguish between constants or relations and
constant or relation symbols). A finite structure A whose domain is {0, 1, . . . , n− 1}
has size n, and we denote the size of A by |A| also (this does not cause confusion). The
set of all finite structures over the signature τ is denoted STRUCT(τ). A problem
over some signature τ consists of a subset of STRUCT(τ) which is closed under
isomorphisms. Throughout, all our structures are finite. We insist that the binary
relation symbol succ and the two constant symbols 0 and max never appear in any
signature. The binary relation succ is only ever interpreted as a successor relation,
that is, as a relation of the form:

{(u0, u1), (u1, u2), . . . , (un−2, un−1) : ui 6= uj , for i 6= j},

on some domain of size n, and 0 (resp. max) is only ever interpreted as the minimal
(resp. maximal) element u0 (resp. un−1) of the successor relation succ.

In [1], a class of program schemes based around the usage of a stack was defined.
A program scheme ρ ∈ NPSSs involves a finite set {x1, x2, . . . , xk} of variables, for
some k ≥ 1, and is over a signature τ . It consists of a finite sequence of instructions
where each instruction is one of the following:

• an assignment instruction of the form xi := y, where i ∈ {1, 2, . . . , k} and
where y is a variable from {x1, x2, . . . , xk}, a constant symbol of τ or one of the
special constant symbols 0 and max (which do not appear in any signature);

• a guess instruction of the form guess xi, where i ∈ {1, 2, . . . , k};

• a while instruction of the form while ϕ do α1; α2; . . .; αq; od, where ϕ is
a quantifier-free formula over τ ∪ 〈succ, 0,max〉 whose free variables are from
{x1, x2, . . . , xk} and where each of α1, α2, . . . , αq is another instruction of one
of the forms given here (note that there may be nested while instructions);

• a push instruction of the form push xi, where i ∈ {1, 2, . . . , k};

• a pop instruction of the form xi := pop, where i ∈ {1, 2, . . . , k};
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• an accept (resp. a reject) instruction accept (resp. reject).

A program scheme ρ ∈ NPSSs over τ takes a τ -structure A as input. The program
scheme ρ computes on A in the obvious way except that:

• the binary relation succ is taken to be any successor relation on |A|, and 0 (resp.
max) is the minimal (resp. maximal) element of this successor relation;

• initially, every variable takes the value 0;

• the pop and push instructions provide access to a stack which is initially empty;

• execution of the instruction guess xi non-deterministically assigns an element
of |A| to the variable xi.

An input τ -structure A, together with a chosen successor relation succ, is accepted
by ρ if there is at least one computation of ρ on input A (and with regard to the
chosen successor relation) leading to an accept instruction (if ever a pop of an empty
stack is attempted in some computation then that computation is deemed rejecting).
However, we only consider program schemes ρ of NPSSs that are successor-invariant,
where successor-invariant means that every input structure is such that it is either
accepted no matter which successor relation is chosen or rejected no matter which
successor relation is chosen. Such successor-invariant program schemes accept classes
of structures closed under isomorphisms, i.e., problems. Henceforth, we assume that
all our program schemes are successor-invariant, and we equate (a class of) program
schemes with the (class of) problems they accept.

Remark 1 In finite model theory, the way a ‘built-in’ successor relation is incorpo-
rated into a logic is exactly as we incorporate our successor relation into our program
schemes. Essentially, having a built-in successor relation means that our data is or-
dered (as is the case for most standard models of computation). In order to work with
unordered data, as one does in database theory, for example, one simply omits the
inclusion of any such built-in successor relation in one’s logic. We insist that our data
is ordered as we are interested in the computational power of our devices in relation
to other resource-bounded models of computation (such as Turing machines, which
work on ordered data). The reader is referred to, for example, [5, 9, 12] for more on
built-in (successor) relations.

Remark 2 In [1], the class of program schemes NPSSs as defined above was actually
called NPSSs(1) and was the first class in an infinite hierarchy of classes of program
schemes, the union of which was called NPSSs. However, it was shown that (in the
presence of a built-in successor relation) this infinite hierarchy collapses to the first
class, NPSSs(1), and that the resulting class of program schemes accepts exactly the
class of polynomial-time solvable problems P; so, we omit the suffix ‘(1)’ for simplicity.
There are also one or two purely cosmetic differences between the program schemes
of NPSSs(1) in [1] and the program schemes of NPSSs in this paper that are of no
relevance whatsoever.

We extend our class of program schemes NPSSs to the class of program schemes
NPSDSs by allowing deep-push instructions:
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• a deep-push instruction is of the form dpush(y,z), where y, the index , is a
tuple of variables from {x1, x2, . . . , xk} and constant symbols from τ ∪ 〈0,max〉
(with repetitions allowed) and where z is a variable from {x1, x2, . . . , xk} or a
constant symbol from τ ∪ 〈0,max〉

(we assume that the variables appearing in our program scheme are x1, x2, . . . , xk).
Suppose that ρ is some program scheme with deep-push instructions and that A

is input to ρ, with associated successor relation succ (and constants 0 and max).
Suppose that dpush(y,z) is a deep-push instruction appearing in ρ, where y is an
m-tuple. The m-tuples of |A|m are ordered lexicographically as

(0, 0, . . . , 0), (0, 0, . . . , u1), (0, 0, . . . , u2), . . . , (max, max, . . . , max),

where 0, u1, u2, . . . ,max is the linear order encoded within the successor relation succ.
Associate these m-tuples with the integers 0, 1, . . . , nm − 1, respectively. Denote the
integer associated with the tuple u as ]u, and denote the tuple of values associated
with the integer i ∈ {0, 1, . . . , nm − 1} as i]. When the instruction dpush(y,z) is
executed, the variables of y each hold a value from |A|; so, ]y ∈ {0, 1, . . . , nm − 1}.
The instruction dpush(y,z) pushes the value of z to the stack location ]y (the offset)
from the top of the stack, with the top of the stack being the location 0 from the top
of the stack, the next location down being the location 1 from the top of the stack and
so on; in particular, the deep-push overwrites the value in the stack location ]y with
the value of z. Thus, the instruction has access to the top nm locations of the stack
for pushing but not for popping . Only pops of the top element of the stack are allowed
(in the usual way). If ever a deep-push attempts to push a value to some location
below the bottom location of the stack then that particular computation is deemed
rejecting. As usual, we only ever work with successor-invariant program schemes of
NPSDSs.

Let us illustrate deep-pushes with an example. However, before we do so, let us
introduce some syntactic sugar. First, we employ the usual if-then-else instructions
directly, as such instructions can easily be constructed using while instructions. Sec-
ond, in describing our program schemes we use a convenient shorthand in relation to
the offsets and indices in deep-push instructions. According to our syntax, the offset
of a deep-push instruction is given via a tuple of variables, the index, with the offset
value calculated according to the successor relation accompanying an input structure.
Rather than include routine ‘house-keeping’ code, we allow ourselves to describe offset
values in an integer-style. For example, suppose that we wished to use an offset of
2n−2 in a deep-push instruction (where n is the size of the input structure). Strictly
speaking, we should use a pair of variables, (x1, x2), and include the following portion
of code:

x1 := 0;
x2 := 0;
guess z;
while ¬succ(x1, z) do

guess z;
od;
x1 := z;
guess z;
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while ¬succ(z,max) do
guess z;

od;
x2 := z;
dpush((x1,x2),y);

However, we abbreviate the above with the instruction:

dpush((2n - 2)],y);

In general, if i is any positive integer then we write i] to denote a tuple of variables (of
the required length) encoding the offset of value i. All of the integer offsets appearing
in our program schemes are such that they can easily be computed with an appropriate
portion of code. Thus, for example, the instruction:

dpush(((n - ]count) + ]y)],y);

is shorthand for a portion of code which builds values for a tuple of 2 variables which
encodes an integer equal to n minus the integer currently encoded by the current value
of the variable count plus the integer encoded by the current value of the variable
y. We also use the above shorthand in assignments, e.g., (count, y) := (](count, y)
+ 1)]. Furthermore, we abuse our notation by writing, for example, count := 2n]
or while ]x < 2n − 1 do, where what we should really write is (count1, count2) :=
2n] and while ](x1, x2) < 2n− 1. (As can be seen, we often use names for variables
different to x1, x2, . . .)

Example 3 Consider the following program scheme ρ of NPSDSs over the signature
τ = 〈E,C,D〉, where E is a binary relation symbol and C and D are constant symbols
(so, an input structure can be considered as a digraph with two specified vertices):

1 guess w; ∗∗ push some 0’s onto the stack ∗∗
2 while w = 0 do
3 push 0;
4 guess w;
5 od;
6 count := 0; ∗∗ count counts the number of guessed ∗∗
7 dpush(count,C); ∗∗ vertices in a path making sure that ∗∗
8 dpush((n + ]C)],max); ∗∗ n are guessed and registered ∗∗
9 while count 6= max do
10 count := (]count + 1)];
11 guess x;
12 dpush(count,x);
13 dpush((n + ]x)],max);
14 od;
15 count := 0; ∗∗ count counts the number of vertices ∗∗
16 x := pop; ∗∗ popped when checking the validity ∗∗
17 while count 6= max do ∗∗ of the guessed path ∗∗
18 count := (]count + 1)];
19 y := pop;
20 if ¬E(x, y) then reject; fi;
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21 x := y;
22 od;
23 if x 6= D then reject; fi;
24 count := 0; ∗∗ count counts the number of vertex ∗∗
25 w := pop; ∗∗ registrations checked so far ∗∗
26 if w 6= max then reject; fi;
27 while count 6= max do
28 count := (]count + 1)];
29 w := pop;
30 if w 6= max then reject; fi;
31 od;
32 accept;

Essentially, on an input digraph of size n, ρ begins by building a stack of 0s, in lines
1-5. In lines 6-14, a path of n vertices is guessed, starting with vertex C, and (using
deep-pushes) these vertices are stored in order in the top n locations in the stack
(with C in the top location, the next vertex in the location with offset 1, and so
on). When a vertex u is guessed, this is registered by deep-pushing max to the stack
location with offset n+]u. After this guessing phase, in lines 15-23 the path is popped
from the stack and checked as to whether it is a valid path (ending in D). If so then
the registrations are then checked, in lines 24-32, to confirm that all vertices appear
once on the path. Hence, an input structure is accepted by ρ if, and only if, C 6= D
and there is a Hamiltonian path from vertex C to vertex D. Note that the program
scheme ρ is successor-invariant.

Let us close this section with a remark. Given our wish to augment basic program
schemes with a deep pushdown stack, we need some mechanism for our program
schemes to access locations within the stack. Working with ordered data and using
the built-in successor relation and tuples of variables for constructing numeric offsets
gives us this mechanism. This naturally gives us the limitation that deep-pushes can
only be ‘polynomially-deep’. An alternative would be to drop the built-in successor
relation and introduce an additional domain of numeric values and have variables of
two sorts. We have chosen to work on ordered data as this is the norm in descriptive
complexity.

3 Sub-classes of program schemes

We begin by showing that restricting the values pushed by push and deep-push in-
structions to 0 and max does not limit the problems accepted by our program schemes;
we call such program schemes boolean program schemes. Let us denote the class of
program schemes where push instructions must be of the form push 0 or push max
and where deep-push instructions must be of the form dpush(y,0) or dpush(y,max)
by NPSDSb

s (with the superscript b reflecting the boolean nature of such program
schemes).

Proposition 4 Any problem accepted by a program scheme of NPSDSs can be ac-
cepted by a program scheme of NPSDSb

s.
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Proof Let ρ be a program scheme of NPSDSs. Essentially, we simulate the stack in
a computation of ρ on some input of size n with a stack in a computation of a new
program scheme ρ′ so that n locations of the new stack correspond to 1 location of
the old stack. The values of the n stack locations of the new stack corresponding to
the 1 stack location of the old stack are such that all are 0 except for one which is
max and the stack location that is max is the ith in the batch of n stack locations
if, and only if, the value of the corresponding old stack location is ui, where ui is
the ith smallest element in the ordering given by the successor relation succ. The
instructions of ρ are adapted accordingly to obtain our program scheme ρ′.

So, for example, push x in ρ is simulated by:

x′ := 0;
while x′ 6= x do

push 0;
x′ := (]x′ + 1)];

od;
push max;
while x′ 6= max do

push 0;
x′ := (]x′ + 1)];

od;

The instruction x := pop in ρ is simulated by:

x′ := 0;
x := pop;
while x 6= max do

x′ := (]x′ + 1)];
x := pop;

od;
x := x′;
while x′ 6= max do

x′ := (]x′ + 1)];
y := pop;

od;

The instruction dpush(y,x) in ρ is simulated by:

y′ := 0;
while y′ 6= x do

dpush((y,y′),0);
y′ := (]y′ + 1)];

od;
dpush((y,y′),max);
while y′ 6= max do

dpush((y,y′),0);
y′ := (]y′ + 1)];

od;
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Note how the length of the index tuple has increased by 1 in our simulation of the
instruction dpush(y,x). All other instructions in ρ remain unaltered. It is clear that
the resulting program scheme ρ′ is as required.

We also restrict the syntax of program schemes of NPSDSs (and NPSDSb
s) by

limiting the usage of pops, pushes and deep-pushes in phases of a program scheme. A
batch of instructions is a well-formed sequence of instructions so that if one of these
instructions is a while-do instruction (resp. if instruction) then the corresponding
while-od instruction (resp. fi instruction) must also appear in the batch. Let ρ be a
program scheme of NPSDSs. If ρ can be written (as a concatenation of instructions)
as a batch of instructions ρ0, followed by a batch of instructions ρ1, and so on,
finally ending with a batch of instructions ρk, then we write ρ = (ρ0, ρ1, . . . , ρk). The
allowed usage of pops, pushes and deep-pushes in any batch of instructions is signalled
as follows:

• if pops are allowed (resp. disallowed) then we signal this with o (resp. o);

• if pushes are allowed (resp. disallowed) then we signal this with u (resp. u);

• if deep-pushes are allowed (resp. disallowed) then we signal this with d (resp.
d).

Thus, if pops and pushes are allowed in some batch of instructions ρi, but not deep-
pushes, then we write ρi ∈ NPSDSs(oud). We adapt our notation to situations where
a program scheme is the concatenation of a sequence of batches of instructions by de-
tailing the allowed usage of pops, pushes and deep-pushes in each batch by a sequence
of parameters. So, for example, if ρ = (ρ0, ρ1, ρ2) where ρ0 ∈ NPSDSs(oud), ρ1 ∈
NPSDSs(oud) and ρ2 ∈ NPSDSs(oud), then we write ρ ∈ NPSDSs(oud, oud, oud).
The above applies equally to program schemes of NPSDSb

s.
Note that the proof of Proposition 4 does not alter the interleaving of pops, pushes

and deep-pushes in the simulating program scheme. So, for example, the problem
accepted by some program scheme of NPSDSs(oud, oud, oud) can be accepted by
some program scheme of NPSDSb

s(oud, oud, oud).

4 Capturing NP

In this section, we define a sub-class of program schemes of NPSDSs that captures
exactly the complexity class NP.

Proposition 5 Every program scheme ρ = (ρ0, ρ1, ρ2) in NPSDSs(oud, oud, oud)
accepts a problem in NP.

Proof Let ρ = (ρ0, ρ1, ρ2) be a program scheme of NPSDSs(oud, oud, oud) over τ .
Thus, ρ0 and ρ2 do not contain deep-pushes, and ρ1 contains neither pushes nor pops.
We begin by deriving a program scheme ρ′ of NPSSs from ρ. Essentially, the program
scheme ρ′ will simulate ρ except that we shall replace the computation of ρ1 with an
‘oracle’ and amend ρ2 accordingly. However, because of subtleties with our simulation
(as we shall detail soon), we also need to amend ρ0 too.
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Let us begin by looking at the structure of a computation of ρ on some input
structure of size n. The program scheme ρ0 builds, using pops and pushes, a stack,
the height of which will, in general, vary until ρ0 terminates. At this point, the
program scheme ρ1 begins computing and goes on to, in general, perform some deep-
pushes, with an offset of at most nk − 1, for some k. Note that the height of the
stack does not change throughout the computation of ρ1. When ρ1 terminates, the
program scheme ρ2 begins computing and, due to pops and pushes, the height of the
stack, in general, varies.

What we intend to do is to ‘remove’ the computation of ρ1 from ρ and replace
it with an ‘oracle’ which supplies both the locations to which deep-pushes are made
and the values pushed, and also the values of the variables of ρ on termination of
ρ1. We will then amend ρ2 so that when a pop is made of an element from the stack
which might have potentially been altered by a deep-push, we consult our oracle to see
whether there was indeed a deep-push to this location. If there was then we take the
popped value as the value pushed, otherwise we leave the popped value as whatever
was popped. We shall return to how we obtain our oracle later.

One can immediately see that we need to amend ρ2 so that we keep track of the nk

stack locations into which deep-pushes might have occurred. However, it may be the
case that ρ2 amends the stack through popping and pushing, and this complicates
matters. The obvious solution is for us to maintain a ‘counter’ which keeps track
of the highest location in the (current) stack within which a deep-push might have
occurred (as an offset from the top of the current stack), and also the offset from this
location covering all stack locations (downwards) within which a deep-push might
have occurred; that is, two offsets detailing the portion of the current stack into
which any deep-pushes have been made. However, any counter can have a maximum
value of nm, for some fixed m, and (potentially) ρ2 might increase the height of the
stack by an exponential (in n) number. Thus, it does not appear that we can use a
counter or counters to keep track of the portion of the stack as described above. The
situation can be visualized as in Fig. 1, where the evolution of the stack during the
execution of ρ2 is depicted, with the shaded portion of the stack corresponding to the
locations within which a deep-push might have occurred. In the right-hand stack, if
we keep a counter telling us how far the top shaded location (in which the value vr

resides) is from the top of the stack then this value could be greater than nm (even
exponential in n).

We get round the above difficulty by changing completely how data is stored on the
stack. First, we rewrite ρ so that every push or pop is replaced by a pair of pushes or
pops, and every deep-push is replaced by a single deep-push. In particular: we replace
the instruction push xi with the two instructions push xi; push 0; we replace the
deep-push instruction dpush(x,y) with the instruction dpush(x′,y), where ]x′ =
2 · ]x + 1; and we replace the instruction x := pop with the two instructions x :=
pop; x := pop. Note that we need to increase the index of deep-pushes to cater
for the increased size of stack. So, it appears that we are wasting stack locations;
however, we will use the stack locations in which (seemingly redundant) 0’s have
been pushed as locations within which markers are held (where a marker is the value
max). Denote this amended version of ρ = (ρ0, ρ1, ρ2) by ρ̃ = (ρ̃0, ρ̃1, ρ̃2).
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Figure 1. The evolution of the stack.

Now let us return to how we amend ρ̃2 so that we can ascertain whether a stack
location is a location within which a deep-push might have occurred. The first thing
our amended version of ρ̃2, call it ρ′2, does is to pop the top element from the stack
and then push onto the stack the value max. This marks the ‘top’ of the portion of
the stack within which a deep-push might have a occurred (that is, with reference to
Fig. 1, the highest shaded location). We also set a counter, call it the tuple of variables
y, so that ]y = 0. This counter will denote the distance of the current marked stack
location from the initial marked stack location; of course, as some of the values in
these ‘shaded’ locations are popped from the stack during an execution of ρ′2, the value
of ]y will increase. So, again with reference to the right-hand stack of Fig. 1, at this
point ]y will be r to denote that r elements of the original ‘shaded’ portion of the stack
have been popped (as can be seen from the diagram, other elements have since been
pushed onto the stack). Note that the value of ]y should be between 0 and 2nk − 2,
and so we never have any difficulties with this counter becoming too large (of course,
if ]y assumes a value greater than 2nk − 2 then this means that we have popped all
values in the original ‘shaded’ locations from the stack into which a deep-push might
have occurred and we can stop worrying about deep-push information).

We also amend ρ′2 so that we replace every pair of pops xi := pop; xi := pop
(recall, all pops come in pairs in ρ̃2, apart from the initial pop added above) with the
following sequence of instructions:

z := pop;
xi := pop; (∗)
if z = max then

if ]y 6= 2nk then
z := pop;
push max;
y := (]y + 2)];

fi;
fi;

It should be clear that ρ′2 keeps track of the current stack locations within which a
deep-push might have occurred (during an execution of ρ̃1).
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Now for our ‘oracle’ containing information as regards the computation of ρ̃1. Let
R (resp. T ) be a relation symbol (not in τ) of arity (resp. one plus) the maximal
index, m′, of any deep-push instruction in ρ̃ (recall that this index is one more than
the maximal index of any deep-push instruction in ρ). In every (new) portion of code
corresponding to a pair of pops, as laid out in the previous paragraph, replace the
pop in line (∗) with the instructions:

xi := pop;
if ]y 6= 2nk then

w := (]y + 1)];
if R(w) then

guess z;
if T (w, z) holds then

xi := z;
else

reject;
fi;

fi;
fi;

The intention is that R and T will detail the deep-push locations and the values
pushed in a specific computation of ρ̃1 via: for every u ∈ |A|m′+1, R(u) holds if, and
only if, a deep-push occurs to the ‘shaded’ location indexed by u, and if there is a
deep-push to location u then T (u, v) holds if, and only if, the final value deep-pushed
to this location is v (note that there may be multiple deep-pushes to some stack
location in a computation).

Now amend the program scheme ρ̃1 so that all deep-push instructions are simply
omitted, and denote this amended program scheme by ρ′1. Note that ρ′1 ∈ NPSSs;
in fact, ρ′1 ∈ NPSs, the sub-class of program schemes with no stack. Let A be any
τ -structure that is accepted by ρ̃ and suppose that the relations RA and TA are
such that they detail exactly the locations where the deep-pushes were made and the
values deep-pushed (during ρ̃1) during a particular accepting execution of ρ̃. Then
(A, RA, TA) is accepted by the program scheme (ρ̃0, ρ

′
1, ρ

′
2).

Let us go further and omit the computation of ρ′1. In more detail, let x denote
the t-tuple of all variables appearing in ρ̃0 and ρ′1, and let c = (c1, c2, . . . , ct) and
d = (d1, d2, . . . , dt) be t-tuples of new and distinct constant symbols. Define ρ′ to be
the following program scheme of NPSSs:

ρ̃0

if x 6= c then
reject;

fi;
x := d;
ρ′2

Let A be any τ -structure that is accepted by ρ̃ and suppose that in a particular
accepting computation: c details the values of the variables of x immediately after
termination of ρ̃0; d details the values of the variables of x immediately after ter-
mination of ρ′1; and the relations RA and TA are such that they detail exactly the
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locations where the deep-pushes were made and values deep-pushed (during ρ̃1) dur-
ing the execution of ρ̃. Then (A, RA, TA, c,d) is accepted by the program scheme
ρ′.

Consider the following algorithm, where the input is a τ -structure A:

guess a successor relation succ;
guess relations RA and TA over |A| and tuples of constants
c and d from |A|;
if (A, RA, TA, c,d) 6|= ρ′ then

reject;
else

simulate ρ′1 on A with the variables starting with the values
given by c and store all stack locations to which a deep-push
was made and the final values deep-pushed using RA

0 and TA
0 ;

if the execution of ρ′1 does not end with the values of the
variables given by d then

reject;
else

if RA
0 6= RA or TA

0 6= TA then
reject;

else
accept;

We clearly have that A |= ρ̃ if, and only if, A is accepted by the above algorithm.
Moreover, the above algorithm is a non-deterministic polynomial-time algorithm, as
ρ′ ∈ NPSSs and ρ′1 ∈ NPSs; hence, the result follows.

Denote by NPSDS+b
s the sub-class of program schemes of NPSDSb

s where any
instruction involving a deep-push must be of the form dpush(y,max); that is, only
the value max can be deep-pushed to a stack location. We can use our program
scheme for the problem HP in Example 3 to show that the class of program schemes
NPSDS+b

s (oud, oud, oud) actually contains NP.

Proposition 6 For every problem Ω in NP, there exists a program scheme of
NPSDS+b

s (oud, oud, oud) accepting Ω.

Proof Recall from [4, 18] that any problem in NP, over the signature τ , say, can
be described by a sentence Φ of the form:

HP[λx,yϕ(x,y)](0,max),

where: x and y are m-tuples of variables, for some m ≥ 1, with all variables distinct; ϕ
is a quantifier-free formula over τ ∪ 〈succ, 0,max〉; and 0 (resp. max) is the constant
symbol 0 (resp. max) repeated m times. A τ -structure A satisfies Φ if, when we
build the digraph ϕ(A) with vertex set |A|m and where there is an edge (u,v) if, and
only if, ϕA(u,v) holds, there is a Hamiltonian path in ϕ(A) from the vertex 0 to the
vertex max (we assume that there is a built-in successor relation).

Given our program scheme ρ in Example 3, we begin by amending ρ so that
it is a program scheme of NPSDS+b

s (oud, oud, oud). This means dealing with the
instructions in lines 7 and 12 where a value different from max might be deep-pushed.
Replace the instruction in line 7 with:

13



z := 0;
while z 6= C do

z := (]z + 1)];
od;
dpush((count,z),max);

and the instruction in line 12 with identical code except that C is replaced by x. Also,
replace the instruction in line 8 with:

dpush((n2 + ]C)],max);

and the instruction in line 13 with identical code except that C is replaced by x.
Replace the instruction in line 16 with:

z := 0;
w := pop;
while w 6= max do

z := (]z + 1)];
w := pop;

od;
x := z;
while z 6= max do

z := (]z + 1)];
w := pop;

od;

and the instruction in line 19 with analogous code. The resulting program scheme ρ′

of NPSDS+b
s (oud, oud, oud) is:

1 guess w;
2 while w = 0 do
3 push 0;
4 guess w;
5 od;
6 count := 0;
7.1 z := 0;
7.2 while z 6= C do
7.3 z := (]z + 1)];
7.4 od;
7.5 dpush((count,z),max);
8.1 dpush((n2 + ]C)],max);
9 while count 6= max do
10 count := (]count + 1)];
11 guess x;
12.1 z := 0;
12.2 while z 6= x do
12.3 z := (]z + 1)];
12.4 od;
12.5 dpush((count,z),max);
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13.1 dpush((n2 + ]x)],max);
14 od;
15 count := 0;
16.1 z := 0;
16.2 w := pop;
16.3 while w 6= max do
16.4 z := (]z + 1)];
16.5 w := pop;
16.6 od;
16.7 x := z;
16.8 while z 6= max do
16.9 z := (]z + 1)];
16.a w := pop;
16.b od;
17 while count 6= max do
18 count := (]count + 1)];
19.1 z := 0;
19.2 w := pop;
19.3 while w 6= max do
19.4 z := (]z + 1)];
19.5 w := pop;
19.6 od;
19.7 y := z;
19.8 while z 6= max do
19.9 z := (]z + 1)];
19.a w := pop;
19.b od;
20 if ¬E(x, y) then reject; fi;
21 x := y;
22 od;
23 if x 6= D then reject; fi;
24 count := 0;
25 w := pop;
26 if w 6= max then reject; fi;
27 while count 6= max do
28 count := (]count + 1)];
29 w := pop;
30 if w 6= max then reject; fi;
31 od;
32 accept;

and ρ′ accepts the same problem as that accepted by ρ.
We now amend ρ′ so that it accepts the problem described by the sentence Φ.

Essentially, all we need to do is to: replace the variables count, z, x and y with the
m-tuples of variables count, z, x and y, respectively (we leave the variable w as it
is); replace the n2 in lines 8.1 and 13.1 with nm+1; replace the constant symbol C
with the m-tuple 0, and the constant symbol D with the m-tuple max; and replace
the test E(x, y) with the test ϕ(x,y) (of course, an instruction such as count := 0

15



becomes count1 := 0; count2 := 0; . . .; countm := 0, and so on). Having done
this, the new program scheme accepts the problem described by Φ and the result
follows.

Propositions 5 and 6 immediately yield the following corollary.

Corollary 7 NPSDS+b
s (oud, oud, oud) = NPSDSs(oud, oud, oud) = NP.

5 Capturing PSPACE

In this section, we define a sub-class of program schemes of NPSDSs capturing the
complexity class PSPACE. However, before we do this let us demonstrate the power
of program schemes of NPSDSs and exhibit a program scheme accepting the comple-
ment of the problem in Example 3.

Example 8 Let τ = 〈E,C,D〉, with E a relation symbol of arity 2 and C and D
constant symbols. The problem co-HP is defined as

{A : A is a τ -structure and there is not a Hamiltonian path in the digraph
with edges given by the relation EA from vertex CA to vertex DA}.

We shall exhibit a program scheme ρ of NPSDSs accepting co-HP.
We outline what the program scheme ρ that accepts co-HP does, in an intuitive

sense, before presenting the actual program scheme in detail. The program scheme
ρ begins by simply non-deterministically building a ‘sufficiently tall’ stack of 0’s (in
actuality, this stack should have height at least 2nn). The top n elements of the stack
(the ‘top batch’) are regarded as the current potential Hamiltonian path of vertices in
the input digraph; initially, of course, this path is 0, 0, . . . , 0. The next n elements of
the stack (the ‘middle batch’) are regarded as work-space that will enable us to verify
that there are no repeated vertices in the current path. The next n elements of the
stack (the ‘lower batch’) will be such that they will contain the lexicographically-next
potential Hamiltonian path.

The top element (of the top batch) is popped from the stack and, using a deep-
push, the name of this vertex, u, say, is registered in location ]u of the middle batch
by writing max (note that the top batch of elements now consists of n− 1 elements).
A check is also made to verify that u is, in fact, the constant C. We iteratively pop
elements from the stack and verify that the current path is indeed a path in our input
digraph, registering these elements, as above, as we proceed. Also, alongside our
checking of the current potential Hamiltonian path, we build the lexicographically-
next path in the lower batch of stack elements. Essentially, as we pop the vertices of
the current path from the top batch of the stack, we look for the location place that
holds an element that is not equal to max but where every location in the top batch
lower than this location place holds an element equal to max; the element in this
location place is to be incremented by 1 and all elements in the top-batch at lower
locations are to be set to 0 to get the lexicographically-next potential Hamiltonian
path. This is done, using deep-pushes, so that the lexicographically-next path appears
in the lower batch. Having popped all the vertices of the current path from the
stack, we verify that the last element popped was D and we use our registrations to
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verify that the path is indeed Hamiltonian. If not then we proceed as above except
that what was the lower batch is now the top batch and we are working with the
lexicographically-next potential Hamiltonian path, as our current path.

The program scheme ρ implementing the above procedure follows.

1 guess x; ∗∗ fill the stack with 0’s ∗∗
2 while x = 0 do
3 push x;
4 guess x;
5 od;
6 done := 0; ∗∗ done = 0 denotes we haven’t finished ∗∗
7 while done = 0 do ∗∗ checking all paths ∗∗
8 done := max;
9 bad path := 0; ∗∗ bad path = 0 means that the path is still ∗∗
10 x := pop; ∗∗ potentially good ∗∗
11 count := 1]; ∗∗ count counts the vertices popped ∗∗
12 dpush(((n - ]count) + ]x)],max); ∗∗ register x in the ∗∗
13 if x 6= max then ∗∗ middle batch ∗∗
14 store := x; ∗∗ remember the last location whose contents ∗∗
15 place := (2n - 1)]; ∗∗ are different from max ∗∗
16 done := 0;
17 fi;
18 if x 6= C then ∗∗ if the first vertex 6= C then the path is bad ∗∗
19 bad path := max;
20 fi;
21 dpush((2n - 1)],x); ∗∗ build the next path in the lower batch ∗∗
22 while ]count < n do ∗∗ iteratively pop the path vertices ∗∗
23 y := pop;
24 count := (]count + 1)];
25 if ¬E(x, y) then ∗∗ check that there is a path-edge from x to y ∗∗
26 bad path := max;
27 fi;
28 dpush(((n - ]count) + ]y)],max); ∗∗ register y ∗∗
29 if y 6= max then
30 store := y; ∗∗ remember the last location whose ∗∗
31 place := (2n - 1)]; ∗∗ contents are different from max ∗∗
32 done := 0;
33 else
34 if done = 0 then
35 place := (]place - 1)];
36 fi;
37 fi;
38 dpush((2n - 1)],y); ∗∗ continue building the next path ∗∗
39 x := y;
40 od;
41 if done = 0 then
42 dpush(place,(]store + 1)]); ∗∗ perform the final stage of ∗∗
43 place := (]place + 1)]; ∗∗ building the next path ∗∗
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44 while ]place < 2n do
45 dpush(place,0);
46 place := (]place + 1)];
47 od;
48 if x 6= D then ∗∗ check that the final vertex ∗∗
49 bad path := max; ∗∗ is D ∗∗
50 fi;
51 count := 0;
52 while ]count < n do ∗∗ check that the path is ∗∗
53 x := pop; ∗∗ indeed Hamiltonian ∗∗
54 if x 6= max then
55 bad path := max;
56 fi;
57 count := (]count + 1)];
58 od;
59 if bad path := 0 then ∗∗ a Hamiltonian path has ∗∗
60 reject; ∗∗ been found so reject ∗∗
61 fi;
62 else
63 accept; ∗∗ we have checked all paths and no ∗∗
64 fi; ∗∗ Hamiltonian path has been found ∗∗
65 od;

Given our intuitive description above, it should be clear that ρ is an implementation of
our algorithm. The only further remark we have is that deep-pushes are parameterized
by an offset from the top of the stack and so this offset needs to be continually
calculated. The offset as regards the registration of vertices found so far (in the
middle batch, as undertaken in lines 12 and 28) is calculated by remembering the
number of vertices currently popped from the top batch (namely the value ]count).
The offset as regards the building of the lexicographically-next path (in the lower
batch, as undertaken in lines 21 and 38) is 2n − 1. The final phase of building
the lexicographically-next path, where a path-location is incremented by 1 and all
subsequent path-locations set at 0, is undertaken in lines 42 and 45.

Having demonstrated the power of program schemes of NPSDSs, we now turn to
capturing the complexity class PSPACE.

Proposition 9 Any polynomial-space Turing machine can be simulated by a pro-
gram scheme of NPSDSs(oud, oud) so that the stack of the program scheme en-
codes the evolution of the work-tape of the Turing machine. Thus, PSPACE ⊆
NPSDSs(oud, oud).

Proof Let M be a Turing machine which uses nk space (we assume that all input
strings are of length at least 2) and which accepts the problem Ω over the signature
τ (any τ -structure is encoded as a string, by assuming some successor relation on the
domain of the structure, and M accepts exactly those strings encoding structures of
Ω). We may assume that M has a one-way work-tape that is infinite to the right,
that the input string initially appears in cells 0, 1, . . . , n − 1 of the work-tape, and
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that the only work-tape symbols are 0, 1 and b (b is the blank symbol; it is always
obvious as to whether we are talking about the symbol 0 of the Turing machine or
the constant symbol 0 of a program scheme). We now describe a program scheme ρ
of NPSDSs(oud, oud) which simulates M and thus accepts Ω.

The program scheme ρ begins by non-deterministically pushing 0’s onto the stack.
Next, the input string corresponding to the input structure A and the given successor
relation succ is pushed onto the stack but in reverse order; that is, reading the stack
from the top element downwards is akin to reading the tape of the Turing machine
M as it stands initially and from left to right. However, rather than push the input
string onto the stack verbatim, we encode this input string as follows: if a bit of the
input string is a 1 then we push two max’s onto the stack followed by a 0; and if a bit
of the input string is a 0 then we push a max then a 0 then a 0 onto the stack. The
only exception is that if the first bit of the input string is 1 then we push three max’s
onto the stack, and if the first bit of the input string is a 0 then we push a max then
a 0 then a max onto the stack. So, for example, if the input string is 10110 then the
top of the stack, from the top location downwards, will read:

max,max,max, 0, 0,max, 0,max, max, 0,max, max, 0, 0,max.

The top 3nk elements of the stack encode the work-tape of M such that for every
i = 0, 1, . . . , nk − 1:

• the location 3i from the top of the stack holds max if, and only if, the tape-head
of M is pointing at cell i of the work-tape;

• the locations 3i+1 and 3i+2 from the top of the stack hold (max, max) (resp.
(0,max), (0, 0)) if cell i of the work-tape holds the symbol 1 (resp. 0, b).

The initial state of M is encoded using a tuple of variables in ρ.
In general, a move of M is simulated within ρ by popping the top 3nk elements

from the stack (which always encode the contents of M ’s work-tape, as above, prior
to the simulation of a move) and, using deep-pushes, copying them to the next 3nk

elements of the stack, except that the move of M is registered in the new encoding of
the work-tape appropriately. Note that the move can easily be simulated (using the
variables of ρ) as the cell at which the tape-head is currently pointing can always be
found (as the stack is being popped) and the move of M can be easily registered in the
new description of the work-tape (no matter whether the tape-head moves left, moves
right or stays stationary). It should be clear that the program scheme ρ accepts the
input structure if, and only if, the corresponding input string (where the successor
relation is taken as succ) is accepted by M .

In fact, more can be said. It should be clear that the proof of Proposition 9 is such
that the program scheme ρ constructed can actually be taken to be a program scheme
of NPSDS+b

s (oud, oud). Thus, we obtain the following strengthening of Proposition 9.

Corollary 10 Any polynomial-space Turing machine can be simulated by a pro-
gram scheme of NPSDS+b

s (oud, oud) so that the stack of the program scheme en-
codes the evolution of the work-tape of the Turing machine. Thus, PSPACE ⊆
NPSDS+b

s (oud, oud).
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Before we proceed, we need some definitions.

Definition 11 Let ρ be a program scheme of NPSDSs and let A be an input structure
to ρ. An ID of ρ on input A is a tuple α consisting of values (from |A|) for the variables
of ρ together with the next instruction to be executed. A configuration of ρ on input
A is an ordered pair, written [α, s], the first component of which, α, is an ID and the
second component of which, s, is a complete description of the stack.

Any computation of ρ on input A can be described as a sequence of configurations,
with each of these configurations having an associated ID. Of course, some IDs and
some configurations might not be achievable in any computation of ρ on input A.

Proposition 12 Every program scheme ρ in NPSDS+b
s (uod, oud) accepts a problem

in PSPACE.

Proof Let ρ = (ρ0, ρ1) ∈ NPSDS+b
s (oud, oud). Suppose that on some input struc-

ture A of size n, ρ1 is such that all deep-pushes occur with index at most k. We
shall simulate the computation of ρ with a Turing machine M . By amending ρ simi-
larly to as was done in the proof of Proposition 5, we may clearly assume that every
computation of ρ0 pushes at least nk elements onto the stack.

Any ID of ρ0 on input A can be stored on M ’s work-tape using O(log(n)) tape-
cells. Moreover, given any two IDs, say IDa and IDb, and an element u ∈ |A|, M can
clearly decide whether there is a computation of ρ0 on input A from the configuration
[IDa, ε], i.e., the ID IDa together with an empty stack, (resp. from the configuration
[IDa, (u)], i.e., the ID IDa together with the stack consisting solely of the element
u) to a configuration whose ID is IDb; this computation can be done by M non-
deterministically using O(log(n)) space.

The computation of M begins with M guessing a sequence:

IDnk , unk−1, IDnk−1, . . . , u1, ID1, u0, ID0

where each IDi is an ID of ρ0 on input A and where each ui ∈ |A|, with M then
verifying that:

• for every i ∈ {1, 2, . . . , nk}, there is a computation of ρ0 on input A from
configuration [IDi, ε] to configuration [IDi−1, (ui−1)];

• for every i ∈ {1, 2, . . . , nk}, the current instruction encoded within IDi is a push
and the element pushed onto the stack is ui−1;

• ID0 is a terminating ID of ρ0; that is, an ID where the next instruction to be
executed is the fist instruction of ρ1.

Note that should this verification succeed, there is a terminating computation of ρ0

on input A starting in configuration IDnk and such that on termination the configu-
ration is (ID0, (unk−1, unk−2, . . . , u1, u0)) (the top of the stack is to the right). The
computation of M always encodes the top nk stack symbols in the simulated compu-
tation of ρ0 on input A and also the IDs from which the stack symbols are pushed,
as is the case above. The ID ID0 is now erased from M ’s work-tape.
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The Turing machine M now simulates the computation of ρ1 starting from the
ID ID0 and where the top nk stack elements are taken as (unk−1, unk−2, . . . , u1, u0).
Whenever the top stack element is popped from the stack, this element and the ID
from which this symbol is pushed are erased from M ’s work-tape and a new ID, ID′,
and a new element, u′, are guessed. The computation of M now verifies that either:

• the ID ID′ is such that the instruction associated with ID′ is a push, and the
symbol to be pushed is u′;

• there exists a computation of ρ0 on input A from the configuration [ID′, ε] to
the configuration [IDnk−1, (u′)],

whence M has the sequence:

ID′, u′, IDnk , u′nk−1, IDnk−1, . . . , u
′
1, ID1

stored on its work-tape; or

• the ID ID′ is the initial ID of ρ0;

• there exists a computation of ρ0 on input A from the configuration [ID′, ε] to
the configuration [IDnk−1, ε],

whence M has the sequence:

ID′, IDnk , u′nk−1, IDnk−1, . . . , u
′
1, ID1

stored on its work-tape. Note that in both of the above cases, we cannot assume that
the u′i’s are the same as the ui’s as deep-pushes in the interim computation of ρ1

might have changed some of the stack elements. In the latter case, when an element
is popped from the stack in the computation of ρ0, the simulation by M no longer
guesses a new ID and a new element but just continues with the simulation until either
an accept instruction or a reject instruction is reached (ensuring that no deep-pushes
are made by ρ1 to locations below the bottom of the stack). In the former case, the
simulation by M simply proceeds as directed above. It is easily seen that M simulates
ρ and that the result follows.

The following corollary is immediate from Corollary 10 and Proposition 12.

Corollary 13 NPSDS+b
s (oud, oud) = NPSDSs(uod, oud) = PSPACE.

6 Within EXPTIME

Hitherto, we have been focussing on specific restrictions of NPSDSs. We now examine
the computational complexity of problems accepted by arbitrary program schemes of
NPSDSs. Our basic technique in the proof of Proposition 16 is inspired by that
used in [1] to show that basic program schemes with an ordinary stack only accept
problems in P, which in turn was inspired by Cook’s construction involving pushdown
automata in [3]. We require some definitions before we present our proof.
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Definition 14 Let ρ be a program scheme of NPSDSs, where all deep-pushes occur
with an index of at most k, and let A be an input structure of size n. An extended
ID (α, s) of ρ on input A is an ID α together with a tuple s of between 0 and nk

elements of |A|. A pair of extended IDs, ((α, s), (β, t)), is called realizable if there is
a computation of ρ on A starting in configuration [α, s] and ending in configuration
[β, t], where |s| = |t| and the stack associated with any interim configuration has
height at least |s|.

Definition 15 Let ((α, s), (β, t)) and ((α′, s′), (β′, t′)) be two pairs of extended IDs.
These pairs yield the pair of extended IDs ((α, s), (β′′, t′′)) if one of the following two
rules can be applied.

(a) The instruction associated with β is a push, and the execution of this instruction
transforms the configuration [β, t] into the configuration:

– [α′, s′], if |t| < nk;

– [α′, (u0, s′)], if |t| = nk (in which case t is a prefix of (u0, s′)).

The instruction associated with β′ is a pop, and the execution of this instruction
transforms the configuration [β′, t′] or [β′, (u0, t′)] (depending upon whether
|t| < nk or |t| = nk, respectively, above) to the configuration [β′′, t′′].

(b) (β, t) = (α′, s′) and either (β′′, t′′) = (β′, t′) or the instruction associated with
β′ is neither a pop nor a push and execution of this instruction transforms the
configuration [β′, t′] to the configuration [β′′, t′′].

We refer to rules (a) and (b) as the yield rules.

We are now in a position to prove the main result of this section.

Proposition 16 Let ρ be some program scheme of NPSDSs and let A be some input
structure. Any pair of realizable extended IDs of ρ on input A can be obtained from
the set Y = {((α, s), (α, s)) : (α, s) is an extended ID of ρ on input A} by iteratively
applying the yield rules.

Proof Let ((α, s), (β, t)) be a realizable pair of extended IDs where the associated
computation χ (of ρ on input A) from configuration [α, s] to configuration [β, t] has
length m. We proceed by induction on m.

Suppose that m = 1. As ((α, s), (β, t)) is realizable, the instruction associated
with α is neither a pop nor a push. Thus, ((α, s), (α, s)) and ((α, s), (α, s)) yield
((α, s), (β, t)) by applying rule (b).

Suppose as our induction hypothesis that whenever the associated computation
of any realizable pair of extended IDs has length less than m, the realizable pair can
be obtained from Y by applying the yield rules. Let the penultimate configuration in
χ be [β′, t′]. There are two cases: when the instruction associated with β′ is neither
a pop nor a push; and when the instruction associated with β′ is a pop (note that it
cannot be a push as ((α, s), (β, t)) is a realizable pair).

In the first case, |t′| = |s| = |t| and ((α, s), (β′, t′)) is a realizable pair (witnessed
by the sub-computation of χ). By the induction hypothesis, ((α, s), (β′, t′)) can be
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obtained from Y by applying the yield rules. An additional application of rule (b)
yields that ((α, s), (β, t)) can be obtained from Y by applying the yield rules.

Suppose that the instruction associated with β′ is a pop. If |t′| = nk + 1 then
define t′0 such that t′ = (u0, t′0), otherwise define t′0 = t′ (recall, stacks are written so
that the head of the stack is to the right of the sequence; thus, u0 is at the bottom of
the stack). Let [γ,w] be the (unique) configuration of χ where: |w| = |t′|; the height
of the stack associated with any configuration of χ coming after [γ,w], apart from
the last, is at least |w|; and the height of the stack associated with the configuration
immediately before [γ,w], namely the configuration [γ′,w′], is |w| − 1 (that is, [γ,w]
is the configuration obtained after executing the push corresponding to the final pop).
If |w| = nk + 1 then define w0 such that w = (u0,w0), otherwise define w0 = w.
In particular, ((γ,w0), (β′, t′0)) is a realizable pair, as is ((α, s), (γ′,w′)), with the
induction hypothesis applying to these pairs. An additional application of rule (a)
now yields that ((α, s), (β, t)) can be obtained from Y by applying the yield rules.
The result follows by induction.

An instance of the path system problem consists of: a set of places P ; an initial
subset of places I ⊆ P ; a subset of terminal places T ⊆ P ; and a ternary relation R.
The relation R encodes a set of rules via: if u, v ∈ P have already been yielded and
R(u, v, w) holds then w becomes yielded. An instance is a yes-instance if we can show
that starting from the set of initial places I as our set of yielded places, iteratively
applying the rules to yield more places results in a terminal place of T eventually
being yielded. The path system problem has long been known to be complete for P,
and can be solved by a trivial algorithm which simply iteratively computes more and
more yielded places.

The complexity class EXPTIME consists of those problems solvable by a deter-
ministic algorithm running in time O(2p(n)), for some polynomial p(n).

Corollary 17 Any problem accepted by a program scheme of NPSDSs is in EXP-
TIME.

Proof Let ρ be some program scheme of NPSDSs. By Proposition 16, the problem
of deciding whether some input structure A, of size n, is accepted by ρ can be reduced
to an instance of the path system problem with an initial set of places {((α, s), (α, s)) :
(α, s) is an extended ID of ρ on input A}. However, this instance has size O(nnm

),
for some constant m. Nevertheless, it is not difficult to see that we can reduce the
problem accepted by the program scheme ρ to the path system problem and then
solve the path system problem so as to obtain an exponential-time algorithm.

7 Conclusions

In this paper, we have initiated the study of a high-level model of computation in
which there is access to a deep pushdown stack, and we have managed to capture the
complexity classes NP and PSPACE by restricting our model whilst showing that
an arbitrary program scheme accepts a problem in EXPTIME. We close with some
directions for further research.

Whilst we have shown that there is a considerable increase in computational power
obtained by replacing stacks with deep pushdown stacks in a basic class of program
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schemes (assuming P 6= PSPACE!), we have as yet been unable to ascertain ex-
actly the computational complexity of the problems accepted by program schemes of
NPSDSs. At the moment, all we know is that PSPACE ⊆ NPSDSs ⊆ EXPTIME.

Looking at Example 8 where we show that the complement of the Hamiltonian
path problem is accepted by a program scheme of NPSDSs, we can see no obvious
restriction of the general class of program schemes so that we capture the complexity
class co-NP (the complement of NP). Note that our program scheme in Exam-
ple 8 is clearly in NPSDSs(oud, oud) yet by Corollary 13, NPSDSs(oud, oud) captures
PSPACE. It would be interesting to capture co-NP, and more generally the classes
of the Polynomial Hierarchy, by restricting the program schemes of NPSDSs.

Let us comment on the height of the stack in different circumstances. As can
be seen from the proof of Proposition 6, any problem in NP can be accepted by a
program scheme of NPSDS+b

s (oud, oud, oud) where the maximum height of the stack
is only ever polynomial in the size of the input structure. From Example 8, the
problem co-HP can be accepted by a program scheme of NPSDSs(oud, oud) so that
the height of the stack is always O(nn+1). From the proof of Proposition 9, the
problem accepted by a Turing machine running in space O(nk) and time O(f(n))
can be accepted by a program scheme of NPSDSs(oud, oud) so that the height of the
stack is always O(nk · f(n)) = O(nk · cnk

), for some c. It would be interesting to try
and relate the height of the stack used in a computation with the complexity of the
problem in hand.

Finally, one might vary the mechanism by which locations within the stack are
accessed. For example, one might have two sorts, a ‘numeric sort’ and an ‘element
sort’, with values from the numeric sort being manipulable and used to access locations
within the stack. This set-up might allow access to locations ‘exponentially deep’
within the stack (should the numeric values be such that exponential numbers can
be created). Also, one might allow deep-pops within the current model; thus, the top
‘polynomial’ portion of the stack can be used as an array. Finally, one might consider
a model where elements (or even sequences of elements) can be inserted within the
stack at some location.
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