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Abstract 

Wireless networks without infrastructure, as the Ad-hoc or Mesh networks, are nowadays 

being studied by many researchers, because of their enormous potential in different 

environments. In this TFG, we make a study by simulation of the performance and the 

energy consumption of the devices involved on a Mesh in different configurations. As a 

simulator, it is used NS-3, because it is a modern program with open code and modifiable. 

At the beginning, we thought it was well prepared for this purpose but the truth is that 

some resources on the energy module are missing. Also, since it is an open source 

program developed by volunteers and collaborators, in some cases the documentation is 

really poor or inexistent. 

This lecture can be useful and interesting for those who want to start with NS3 

programming or the energy consumption in simulations. After understanding the program 

and its functionalities, it will be exposed how the energy behaves in Ad-hoc networks and 

which problems could they have. 
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Resum 

Les xarxes inalàmbriques sense infraestructura, entre les quals trobem les xarxes Ad-hoc 

i les xarxes tipus Mesh, són protagonistes actualment de nombrosos treballs 

d‟investigació, degut al seu enorme potencial en múltiples entorns. En aquest TFG es 

realitza un estudi mitjançant simulació de les prestacions i el consum d‟energia dels 

dispositius que formin part d‟una Mesh en diverses configuracions. Com a simulador, 

s‟ha usat NS-3, ja que és un programa modern, de codi obert i modificable. En un principi 

vàrem pensar que estaria ben preparat per a aquest propòsit, tot i que la realitat és que 

hi manquen alguns recursos en el bloc del consum d‟energia. A més, al ser un programa 

obert i desenvolupat en gran part per voluntaris i col·laboradors, en alguns casos la 

documentació és molt escassa o nul·la. 

Aquesta lectura pot ser útil i interessant per a aquells que desitgin introduir-se en la 

utilització de NS3, o en el consum d‟energia en simulacions. Després d‟entendre el 

funcionament del programa, s‟exposarà com es comporta l‟energia en les xarxes 

finalment Ad-hoc i quines dificultats poden presentar.  
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Resumen 

Las redes inalámbricas sin infraestructura, entre las que se encuentran las redes Ad-hoc 

y las redes tipo Mesh, son objeto en la actualidad de numerosos trabajos de 

investigación, dado su enorme potencial en múltiples entornos. En éste TFG se realiza 

un estudio mediante simulación de las prestaciones y el consumo de energía de 

dispositivos que formen parte de una Mesh en diversas configuraciones. Como simulador, 

se ha utilizado NS-3, ya que es un programa moderno, de código abierto y modificable. 

En un principio pensamos que estaría bien preparado para éste propósito, aunque la 

realidad es que carece de algunos recursos en el bloque del consumo de energía. 

Además, al ser un programa abierto y desarrollado en gran parte por voluntarios o 

colaboradores, en algunos casos la documentación es muy escasa o nula. 

Ésta lectura puede ser útil e interesante para aquellos que deseen introducirse en la 

utilización de NS3, o en el consumo de energía en simulaciones. Después de entender el 

funcionamiento de dicho programa, se expondrá cómo se comporta la energía en redes 

finalmente Ad-hoc y qué dificultades pueden presentar. 
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1. Introduction 

The mobile communications are clearly a great part of our lives nowadays. The number 

of users is increasing every year and the current infrastructure can be saturated in some 

situations. This work is based on some previous thesis which study the possibility to 

implement a mesh topology to deal with zones with a high density of users. Following this 

line, this project consists on studying the energy consumption on this networks and 

explain their viability. 

We will use an open source program called NS3, explained forward, that will allow us to 

simulate and analyse the behaviour of this type of networks, but first, we will need to 

understand the program functionalities and the programming methods. 

The initial plan was to develop this work in 6 months as the calendar fixed for the 

semester, but as explained in this report, some difficulties appeared that made us decide 

to postpone the deliver to the extraordinary date. All the work finally done can be found at 

the Gantt diagram on Fig.1. 

The energy model in NS3 has a very poor documentation on how to use or configure it, 
so the understanding of this point of the project is what made us delay all the other tasks. 
Besides, the mesh models on NS3 are not supported to be used on the energy 
simulations of the program. 

At this point we had to decide a new perspective for the project. We finally understood the 
energy model, but couldn‟t work with mesh networks. So we decided to use the most 
similar models that we had available: The Ad-hoc networks. This is the reason because 
this networks are more detail explained in this final report. 

This document has a three part structure, the informative part for the networks and 
technologies used, the program functionality explanation and the simulations, and finally 
the results and conclusions. 

The first part of this report, the chapter 2, consist on a state of the art chapter explaining 
the current Infrastructure, Ad-hoc wireless LANs and the Mesh networks to place the 
reader in the context. The next chapter is an introduction to the NS3 programming system 
and the functionality of its simulations. This part can be a very simple but effective tutorial 
on how to use NS3, and allows us to understand the simulations and results exposed on 
the chapter 4. On this chapter, we show how we studied the energy consumption in 
different detailed scenarios, and take conclusions for the project. This conclusions are 
explained on chapter 6, but the 5th one is somewhat apart from the main work. It is a 
budget study on what would be the cost to implement the experiments with real devices 
and real traffic. Finally, there is a Bibliography supporting the information exposed. 
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Fig. 1 Gantt Diagram   
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2. State of the art 

2.1 - Background on Wireless LAN Networks 

2.1.1 - Main features 

A Wireless Local Area Network, or WLAN, is a network that allows to interconnect several 

devices using a wireless distribution method within a limited area. This gives the clients 

the ability to move around the area of coverage and to maintain the connection to the 

network. Modern WLANs are based on IEEE 802.11 standards, and are commonly 

known as the Wi-Fi brand name. The great perk that represents being able to connect to 

the network, usually with outside Internet connectivity, and without wire restrictions, 

makes this type of networks the most commonly used in particular homes or public 

buildings and spaces. 

All devices that connect to a WLAN network, are called stations or STAs, and each are 

classified in 2 types: Access Points (APs), and Basic Stations (STs). APs are not always 

present in all WLANs but are usually wireless routers which forward packets to STs and 

could have interconnection with another network. STs are usually mobile phones or 

laptops which send and receive traffic data from other STs or an outside network. A set of 

STAs which communicate with each other is called a Basic Service Set, or BSS, and 

there are also 2 types of BSSs: The infrastructure BSS, and the independent BSS or ad-

hoc network, which contains no APs and where STs have routing functionalities. A set of 

connected BSSs is called an Extended Service Set, or ESS, and the connection between 

access points in an ESS is called a Distribution System, or DS. [1] 

 

2.1.2 - Infrastructure WLANs 

Most Wi-Fi networks are deployed in infrastructure mode. As described before, in 

infrastructure mode, the BSS contains at least one station acting as AP and forwarding 

traffic data to STs. All STAs communicate with each other through the AP which controls 

the entire flux of traffic, and usually has an outside connection, so the network offers to 

clients an Internet connection.  

On figure 2, an ESS of Infrastructure WLANs is graphically described. 

 

2.1.3 - Ad-hoc WLANs 

Networks in ad-hoc mode, are independent, which means the STs don‟t have the 

supervision of an AP and communicate with each other using routing functionalities, as 

seen in figure 3. This type of networks are self-configuring and dynamic because all STs 

are free to move so the routing capabilities are also adaptive. Ad-hoc networks require 

minimal configuration and are easily extended and quickly formed. This decentralized nature 

makes these networks suitable for a variety of applications. Nevertheless, STs usually have 

high mobility, causing that links are frequently broken and established, and not only are 

dynamically changing, but changing so fast it can be highly challenging to manage. Protocols 

will be required to do so. [2] [3] 
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Fig.2 ESS of Infrastructure WLANs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 BSS of an ad-hoc WLAN 
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2.1.4 - Routing protocols 

There are several types of protocols that can control an ad-hoc WLAN, but in this project 

we are going to work with only one of them, as described below: 

 

2.1.4.1 - Proactive Routing 

These type of protocols maintains a list of destinations and their routes by periodically 

distributing routing tables through the network, and allowing the multi-hop functionality by 

knowing each station the next-hop way to every other node. This type of protocols require 

a huge amount of data to be sent continuously and it grows exponentially with the 

number of nodes in the network. This protocols also have a slow reaction to link or node 

failures and restructuring. 

In particular we will use the Optimized Link State Routing (OLSRv1) [4]. Using this 

protocol, the stations send repeatedly a HELLO frame to every neighbour node. This 

frames contain a list of the neighbours of the source, allowing the receiver to update its 

routing table to reach all two-hop-distance stations. Also periodically, each node 

broadcasts a Topology Control frame that informs about its nearby topology (the one 

obtained through the HELLO frames), and allows all the network nodes to calculate each 

routing entry in the table for all possible destinations. OLSR is a Distance-Vector protocol 

based on calculating the direction and distance to any link in a network. Direction refers 

to the next hop and interface where to forward traffic, and distance is a measure of the 

cost to reach the destination, usually the number of hops. The least cost route between 

two nodes is the path with minimum distance. Each node maintains a vector, or table, of 

minimum distance to every node.  

 

2.1.4.2 - Reactive Routing 

These protocols find a route on demand when a station wants to transmit by flooding the 

network with Route Request packets. This requires also a huge amount of data to be sent 

to the network but only when a station needs to transmit, and this means that there is a 

high latency time in route finding. A reactive protocol can also be used in another way, by 

just sending a packet to every link, and then forwarding it to every each other link except 

for the one it arrived on. This is called a Flooding Routing, it requires no routes to be 

known, but implies that every packet will be nearly broadcasted. 

 

2.1.4.3 - Hybrid Routing 

As the name suggests, it is a combination of the advantages of proactive and reactive 

routing. Hybrid protocols establish some proactive routes initially, and serves the demand 

from the additionally activated nodes through reactive flooding. 
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2.2 - Background on Wireless Mesh Networks 

2.2.1 - Main features 

Wireless Mesh Networks or, as we are forwardly referring to, WMNs, are self-forming 

multi-hop networks able to provide wireless connectivity between mesh clients through 

multiple mesh routers. Usually the mesh routers are fixed devices with more than one 

radio interface, and with an outside connection to provide Internet access to mesh clients. 

On the other hand, mesh clients are usually mobile devices not as powerful as routers, 

which could also provide routing and forwarding capabilities. The main objective of client 

meshing is to dynamically extend the coverage of the mesh backbone. 

WMNs are fast and simple, because of its self-configuring capabilities, which allow the 

extending of the coverage without considerable effort. The nodes on a WMN detect their 

neighbours, node failures, poor channel conditions, and dynamically establish a next-hop 

network connectivity all by themselves. 

All this functionality requires some protocols implemented at least on the link layer, and 

most of the research in mesh networking are based on IEEE 802.11, so we are focusing 

on the standardized IEEE 802.11s mesh networking technology. [5] [6] [7] 

 

2.2.2 - IEEE 802.11s-based WMNs 

The IEEE 802.11s mesh networking is an extension of the IEEE 802.11 that supports 

multi-hop mesh networking. It defines a path selection and forwarding mechanism at the 

link layer instead of the traditional layer 3 routing. There are also included mesh 

discovery, peering management, congestion control, beaconing and synchronization, etc. 

The IEEE 802.11 Mesh architecture consists of 3 types of components, described below 

and on figure 4:  

- The mesh stations or STAs, which include mesh functionalities to allow multi-hop 

communication. They actively participate in the generation of the mesh network 

establishing wireless links between their neighbours, receiving and forwarding 

traffic. 

- The mesh Gate is a logical component that allows mesh networks interconnection, 

and also the integration with other non-mesh WLANs. 

- The mesh Portal another logical component that allows interconnection with other 

non-IEEE 802.11 network technologies. 

 

2.2.3 - Routing protocols and functionalities 

2.2.3.1 - Mesh Discovery 

The mesh discovery consists of a scanning process that provides the mesh profile 

information of the stations that periodically send Beacon frames. This mesh profile 

contains the configuration attributes of a mesh network such as the mesh ID, the path 

selection protocol, the path selection metric, the congestion control mode, the 

synchronization method, and the authentication protocol. All STAs must use the same 

mesh profile and must be synchronized on the functionality they are using. 
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2.2.3.2 - Mesh Peering Management Protocol 

This protocol uses its own frames to open, manage and close links between STA 

neighbours in mesh networks. A peer link is established only if both stations have sent 

Peering Open requests and successfully received each confirm response.  

 

2.2.3.3 - Mesh Path Selection and Forwarding 

The path selection and forwarding mechanism is the main mesh functionality to provide 

multi-hop communications. The path selection protocol used is the Hybrid Wireless Mesh 

Protocol, which combines an on-demand path selection, with a proactive tree building 

mode. 

As the reactive routing on WLANs, in on-demand mode, when a mesh station demands a 

path to another, a Path Request frame is broadcasted and propagated through the 

network. The destination station then responses with a unicast Path Reply frame, 

something similar to the ARP protocol. 

In proactive mode, one station or more are configured as roots and the stations build a 

proactive tree to them. The roots periodically broadcast Path Requests frames, so the 

STAs receiving this frames update their paths to the root, and continue propagating the 

original Path Request frames. With this method, all STAs know at any time the distance 

to the root and the next-hop to it. 

The tree to the root can also be built in another different way. In this mechanism the root 

propagates frames containing path metrics to the root, and if a STA wants to establish a 

path to it, it sends a unicast Path Request frame. Then the root replies with a Path Reply 

to create the path.  
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3. Simulation and project development:  

3.1 - About NS3 

NS3 is a discrete-event network simulator for Internet systems, targeted primarily for 

research and educational use. NS3 is free software, licensed under the GNU GPLv2 

license, and is publicly available on the web page [8] for research, development, and use. 

It is aligned with the simulation needs of modern networking research and allow a deep 

study of nearly all kind of networks using the commonly known C++ language. 

NS3 contains a solid simulation core that adapts to every need of every network use the 

users may want to analyse. The simulation models are sufficiently realistic to allow NS3 

to be used as a real-time network emulator. It also supports a real-time scheduler that 

allow users to emit and receive NS3-generated packets on real network devices, and can 

serve as an interconnection framework between virtual machines. 

NS3 is continuously changing and adapting to new models, networks, and devices 

because the modern technology is also evolving. Every three months, a new stable 

version of NS3 is shipped with new models, and this development is done by a large 

community of users and developers. All the releases and documentation can be found at 

the same web page mentioned before. 

 

3.2 - First simulations and program learning 

The full code of all the scripts used in this project can be found on annexes. 

For the first studio and to get familiar with the program and its functionality, we started 

doing an infrastructure Wifi simulation just as it is described in figure 5. 

 

// Default Network Topology 

// 
//    Wifi 10.1.1.0 
//               AP 
//   *     *     * 
//   |     |     | 
//  n0    n1    n2                                     Fig.5 First scenario 

                                      

                        

We will configure in this network an AP station that will forward packets from one station 

to another (n2 and n1), and the two STs sending a few packets to check the correct 

functionality. This packets will be generated and sent by a UDP application provided by 

the module “ns3/applications-module.h”. 

After a few program configuration details, first of all we want to create the nodes we are 

going to use, and the channel in which we want those packets to be sent: 

 

 

n0 

n1 

n2 
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uint32_t nWifi = 2; 

NodeContainer wifiStaNodes; 

wifiStaNodes.Create (nWifi); 

NodeContainer wifiApNode; 

wifiApNode.Create(1); 

 

This lines will create the three nodes needed using the NodeContainer class provided by 

Ns3 core. 

 

YansWifiChannelHelper channel = YansWifiChannelHelper::Default(); 

YansWifiPhyHelper phy = YansWifiPhyHelper::Default(); 

phy.SetChannel (channel.Create()); 

 

For the first simulations we just want a default Wifi channel. 

The next step is at the node level. We must assign to every node a MAC address, and for 

our simulations, also an IPv4 address and interface. We will give a virtual position to 

every node too: 

 

NqosWifiMacHelper mac = NqosWifiMacHelper::Default(); 

 

NetDeviceContainer staDevices; 

staDevices = wifi.Install (phy, mac, wifiStaNodes); 

NetDeviceContainer apDevices; 

apDevices = sifi.Install (phy, mac, wifiApNode); 

 

We also set a default mac addressing and install it to our created nodes. This operation 

will create a device for each node called staDevices or apDevices if the node were a ST 

or the AP. 

 

MobilityHelper mobility; 

mobility.SetPositionAllocator (“ns3::GridPositionAllocator”,  

       “MinX”, DoubleValue (0.0), 

      “MinY”, DoubleValue (0.0), 

      “DeltaX”, DoubleValue (5.0), 

      “DeltaY”, DoubleValue (0.0), 

       “GridWidth”, UintegerValue (1), 

     “LayoutType”, SstringValue(“RowFirst”)); 

 

mobility.SetMobilityModel (“ns3::ConstantPositionModel”); 

mobility.Install(wifiStaNodes);  

mobility.Install(wifiApNode); 
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We want at first the nodes to be fixed just to make the example as simple as possible, so 

we set the mobility model to a constant position model. In some scenarios we will 

experiment with that configuring a random mobility model. The DeltaX will give an inter-

node distance of 5 meters, and the GridWith, set at 1, indicates the number of rows 

(Because it is set as a RowFirst layout) in the grid. This means that we will only have one 

row with three nodes at distance 5. 

 

Ipv4AddressHelper address; 

address.SetBase (“10.1.1.0”, “255.255.255.0”); 

Ipv4InterfaceContainer wifiInterfaces = address.Assign(staDevices); 

address.Assign(apDevices); 

 

The Ip network address is the 10.1.1.0, and the mask given is just as seen above, the 

255.255.255.0. So the two stations will have the addresses 10.1.1.1 (n0), 10.1.1.2 (n1), 

and 10.1.1.3 (AP). 

Almost everything is configured now, we just need to install the applications working on 

each station which will send or receive packets: 

 

UdpEchoServerHelper echoServer (9); 

ApplicationContainer serverApps = 

echoServer.Install(wifistaNodes.Get(0)); 

serverApps.Start(Seconds (0.0)); 

serverApps.Stop(Seconds (3.0)); 

 

UdpEchoClientHelper echoClient (wifiInterfaces.GetAddress (0), 9); 

echoClient.SetAttribute( “MaxPackets”, UintegerValue (1)); 

echoClient.SetAttribute (“Interval”, TimeValue (Seconds (1.0))); 

echoClient.SetAttribute (“PacketSize”, UintegerValue (1000)); 

 

ApplicationContainer clientApps =  

   echoClient.Install(wifiStaNodes.Get(1)); 

clientApps.Start(Seconds (1.0)); 

clientApps.Stop(Seconds (3.0)); 

 

We are using an echo application over UDP. The server is installed on the node 0 (n0 at 

the figure) and the client on the node 1 (n1). We set a start and stop time of each 

application in seconds, and the server app to be listening at port 9. The client will send 

only 2 packets with 1kByte length and with an interval of 1 second, so at 1.0s of the 

simulation time, the client app will start and instantly send one packet, which will be 

echoed if received successfully by the server. At time 2.0s the client node will send 

another packet, and at 3.0s the two applications will be stopped. To see all of this 

happening we can tell Ns3 to output those packets in a pcap format readable by a 

Protocol Analyser such as Wireshark: 

 

phy.EnablePcap(“wifi_node1”, apDevices.Get (0)); 
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Finally we just need the simulator to run and simulate the script: 

 

Simulator::Run(); 

Simulator::Destroy(); 

return(0); 

 

3.3 – The energy module in NS3 

Working on the previous wifi simple script, we added the energy functionality to 

understand all the parameters and results involved during the simulation. To do so, there 

are a few lines added that were not explained before: 

 

/** Energy Model **/ 

/**********************************************************************/ 

/* energy source */ 

BasicEnergySourceHelper basicSourceHelper; 

// configure energy source 

basicSourceHelper.Set ("BasicEnergySourceInitialEnergyJ", DoubleValue 

(5.0)); 

// install source 

EnergySourceContainer sources = basicSourceHelper.Install 

(wifiStaNodes); 

/* device energy model */ 

WifiRadioEnergyModelHelper radioEnergyHelper; 

// configure radio energy model 

radioEnergyHelper.Set ("IdleCurrentA", DoubleValue (0)); 

radioEnergyHelper.Set ("CcaBusyCurrentA", DoubleValue (0)); 

radioEnergyHelper.Set ("TxCurrentA", DoubleValue (1.0)); 

radioEnergyHelper.Set ("RxCurrentA", DoubleValue (0)); 

radioEnergyHelper.Set ("SwitchingCurrentA", DoubleValue (0)); 

radioEnergyHelper.Set ("SleepCurrentA", DoubleValue (0)); 

DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install 

(staDevices, sources); 

  

/**********************************************************************/ 

 

 

At first we will need to configure the energy model, with all its parameters, and to install it 

on our virtual devices. The class BasicEnergySourceHelper provides us with a single 

Install method which we use on the station nodes (wifiStaNodes) after we set an initial 

energy double value (5.0 in this case). This function returns an EnergySourceContainer 

will all the energy sources installed. 

After that, we have to configure the radio energy model. There are some attributes that 

refer to the current that will consume the energy of the device. After deep research, we 

have not been able to know how the „Idle‟ and „Ccabusy‟ current affect to the energy 
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consumption, so we will just use the „TxCurrentA‟ or „RxCurrentA‟ which mean the 

amperes used to receive and transmit packets. Actually the consumption in transmission 

is much greater than in reception, so we will just set the „TxCurrentA‟ to 1 Ampere as a 

reference value to compare experiments and the other attributes to 0. The 

„SwitchingCurrentA‟ refers to the current consumed when changing between transmitting 

and receiving states, and the „SleepCurrentA‟ is the current when the device is in sleep 

mode or just not receiving or transmitting. At this point is where we had the main 

problems during this project. As it is seen, the WifiRadioEnergyModelHelper class is used 

in this case, and also has an Install method which requires two arguments: a 

NetDeviceContainer with only WifiNetDevices, and the EnergySourceContainer 

mentioned before. It seems logic that only wifi devices can be configured with a 

WifiRadioEnergyModelHelper, and if we take a look to the source code of this Install 

method, on the first lines we can notice it: 

 

 
if (deviceName.compare ("ns3::WifiNetDevice") != 0) 

{ 

  NS_FATAL_ERROR ("NetDevice type is not WifiNetDevice!"); 

} 

 

The purpose of this project was to use the energy model on a mesh network, so we made 

a long search over the NS3 API to find out some way to implement it. But the radio 

energy model can only be configured on wifi devices for the moment and with the NS3 

source code. There was only one way to do it, just to implement ourselves a 

MeshRadioEnergyModel, but we decided that it was out of the project priorities. 

The basic energy sources used, contain a RemainingEnergy trace which informs us that 

some energy has been consumed. So we will want to connect this trace to some 

functions processing the information: 

 

Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource>  

    (sources.Get(1)); 

basicSourcePtr -> TraceConnectWithoutContext(“RemainingEnergy”,  

    MakeCallback(&RemainingEnergy)); 

 

for(uint32_t i=0; i<nWifi; i++) 

{ Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource>  

    (sources.Get(i)); 

  basicSourcePtr -> TraceConnectWithoutContext(“RemainingEnergy”,  

    MakeCallback(&TotalEnergy)); 

} 

 

The first pointer sets the callback to a RemainingEnergy function in the source number 1, 
corresponding to the node n1, or the client in the udp echo-client service installed. 

And the second part sets a callback to a TotalEnergy function in all the sources, so this 
function will compute the total energy consumed in the network by all its devices. 



 

 22 

 
The functions mentioned are set before the main: 
 
 
void RemainingEnergy (double oldValue, double newValue) 
{ std::cout << “At time “ << Simulator::Now().GetSeconds() << “s Current  
        remaining energy = “ << newValue << “J” << std::endl; 
} 
 
void TotalEnergy (double oldValue, double newValue) 
{ total_network_energy += (oldValue – newValue); 
} 
 
 
In the remaining energy function, we just print the new energy remaining value, so we will 
see on the output, every moment that the device consumed energy, and which amount of 
energy actually has consumed. But the total energy just cumulates the energy consumed 
by all the devices and we just need to print this double value at the end of the simulation 
to see the result. 
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4. Results 

4.1 – First scenario: wifi communication results 

After seeing the functionality of NS3 and once the simulation has run, the next step is to 

analyse the first results obtained. We configured a simple wifi network topology with three 

nodes acting as UDP server, UDP client, and an AP. We have activated the UDP logs, to 

trace what is actually happening during this simulation and the result is the following: 

 
Node 0 is at (0, 0) 
Node 1 is at (5, 0) 
AP is at (10, 0) 
At time 1s client sent 1000 bytes to 10.1.1.1 port 9 
At time 1.0099s server received 1000 bytes from 10.1.1.2 port 49153 
At time 1.0099s server sent 1000 bytes to 10.1.1.2 port 49153 
At time 1.0168s client received 1000 bytes from 10.1.1.1 port 9 
 
 
We can see that our configuration has been successful here. The three nodes are located 
in a row and spaced five meters between them, and the client (address 10.1.1.2 in the 
simulation) has sent the packet at 1 second to the server (address 10.1.1.1). As we 
installed the UDP echo application, this packet has been returned to the client and the 
simulation is completed. 

Now that we know everything is working, we can add the energy module and see the 
result: 
 
Node 0 is at (0, 0) 
Node 1 is at (5, 0) 
AP is at (10, 0) 
At time 0.000362016s Current remaining energy = 4.99971 J 
At time 0.000600048s Current remaining energy = 4.99958 J 
At time 1.00611s Current remaining energy = 4.99924 J 
At time 1.00679s Current remaining energy = 4.99911 J 
At time 1.00827s Current remaining energy = 4.99478 J 
At time 1.01336s Current remaining energy = 4.99444 J 
At time 1.01686s Current remaining energy = 4.99431 J 
Total energy consumed in network = 0.011376 J 
 
 
We configured the energy model to consume battery every time some data is being 
transmitted, so this energy traces must correspond to packets sent by the node 0, or the 
server, where we connected the callback. There aren‟t only the single UDP packets sent 
in the network, and this is the reason why there are more consumption tracings. 

We can actually see which are all those packets in figure 6, because we activated the 
Pcap tracing. 
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Fig.6 Pcap tracing on Wifi network 

 

This is all the traffic in the network related to the server MAC address. There are four 
types of packets being transmitted during the entire simulation. The first one sent at time 
0.000528s is an Association Request sent to the AP. The times shown here doesn‟t 
correspond exactly with the traced simulation consumption, but we can see the relation 
between a packet shown in this pcap and its energy tracing. The packets without an 
apparent source are just acknowledgements to received packets. The important packets 
are the coloured ones. The entire simulation can also be seen here. The packets sent 
between the client and the server appear twice, because in an infrastructure WLAN they 
have to be sent to the AP and then forwarded to the actual destination. Taking this into 
account, the picture shows how the client (10.1.1.2) sends one UDP packet to the server 
(10.1.1.1) at time 1.008138s after resolving the ARP (broadcasted packets from other 
nodes doesn‟t pass the filter for a specific MAC address so the ARP request doesn‟t 
appear here). Then the server, as soon as it resolves an ARP request, sends back the 
packet to the origin of the communication. 

 

4.2 – Second scenario: Ad-hoc node saturation 

We know now how the program works and it is the time to start with the main work of the 

project studying now the behaviour of the energy consumption in an ad-hoc WLAN within 

different scenarios. The first one is designed to increase the traffic destined to a single 

node which will be acting as a server, and all the other nodes will be UDP clients. The 

topology will be as shown on figure 7. 

 

 

 

 

 

                                                                                

Server Clients 

Fig. 7 Second scenario 



 

 25 

We will use now, of course, some ad-hoc nodes instead of the devices used previously: 

 
NodeContainer wifiadhocnodes; 
wifiadhocnodes.Create (nAdhoc);  
 
WifiHelper wifi; wifi.SetStandard (WIFI_PHY_STANDARD_80211b); 
YansWifiPhyHelper wifiPhy =  YansWifiPhyHelper::Default ();   
wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO);   
 
// Set it to adhoc mode 
wifiMac.SetType ("ns3::AdhocWifiMac"); 
NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac,  
                                           wifiadhocnodes); 
 
 
The position of the nodes in this case will be also different, according to this: 
 
if(scenario == 1) 
{  MobilityHelper mobility; 
   Ptr<ListPositionAllocator> positionAlloc = 
CreateObject<ListPositionAllocator> (); 
   while(1) 
   { positionAlloc->Add (Vector (0.0, 0.0, 0.0)); 
     if(nAdhoc==2) break; 
     positionAlloc->Add (Vector (0.0, 200.0, 0.0)); 
     if(nAdhoc==3) break; 
     positionAlloc->Add (Vector (0.0, -200.0, 0.0)); 
     if(nAdhoc==4) break; 
     positionAlloc->Add (Vector (0.0, 400.0, 0.0)); 
     if(nAdhoc==5) break; 
     positionAlloc->Add (Vector (0.0, -400.0, 0.0)); 
     if(nAdhoc==6) break; 
     positionAlloc->Add (Vector (0.0, 800.0, 0.0)); 
     if(nAdhoc==7) break; 
     positionAlloc->Add (Vector (0.0, -800.0, 0.0)); 
     break; 
   } 
   positionAlloc->Add (Vector (200.0, 0.0, 0.0)); 
   mobility.SetPositionAllocator (positionAlloc); 
   mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); 
   mobility.Install (wifiadhocnodes); 
} 
 
 
We will do the simulations with two to seven ad-hoc nodes starting from two, placed on 
(0,0,0) and (200,0,0), and adding 2 more nodes to the „y‟ axis as seen in figure 7. 

The energy model is still the same, but now installed to the new nodes. Notice that the 
server node will now be the last of the nodes in the network, as it is the last to be 
assigned, so when we install the UDP application must check it correctly. But before, we 
talked about OLSR protocol on ad-hoc communications, so we will configure it for our 
simulations: 
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// Enable OLSR 
OlsrHelper olsr; 
Ipv4StaticRoutingHelper staticRouting; 
 
Ipv4ListRoutingHelper list; 
list.Add (staticRouting, 0); 
list.Add (olsr, 10); 
 
InternetStackHelper internet; 
internet.SetRoutingHelper (list); 
internet.Install (wifiadhocnodes); 
 

The OLSR protocol will allow nodes to set tables of neighbours and next-hop destinations. 
But we should assure it converges before sending traffic. So the actual simulation will 
start at 30 seconds. We will set a total time to 500 seconds and see the result. 

 

double stoptime = 500; // seconds 
 
UdpServerHelper server (9); 
ApplicationContainer serverApps = server.Install (wifiadhocnodes.Get  
                                                  (nAdhoc-1)); 
serverApps.Start (Seconds (30.0)); 
serverApps.Stop (Seconds (stoptime)); 
 
UdpClientHelper client (i.GetAddress (nAdhoc-1), 9); 
client.SetAttribute ("MaxPackets", UintegerValue (numPackets)); 
client.SetAttribute ("Interval", TimeValue (Seconds (interval))); 
client.SetAttribute ("PacketSize", UintegerValue (packetSize)); 
 
for (uint32_t i = 0; i<nSrc; i++) 
{ ApplicationContainer clientApps = client.Install (wifiadhocnodes.Get  
                                                   (i)); 
   clientApps.Start (Seconds (30.0)); 
   clientApps.Stop (Seconds (stoptime)); 
} 
 

After all the configuration, we connected some traces to check and compare the total 
packets generated, transmitted, received by the server, and also the energy consumption 
in the network. We are using the UDPserver-client application now, without echo, in order 
to keep the server free from responding every single UDP packet received. We have 
configured the simulation to keep every node sending up to 10000 packets between 
intervals of 0.75 to 0.01 seconds. 

To do all the simulations in the ad-hoc scenarios, we implemented a modification to the 
NS3 source code, to include an exponentially distributed packet inter-arrival time, so the 
values provided in the experiments are just the mean value of that time in each test. The 
explanation and demonstration of this point is included in annex [4]. 
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The first stage of this scenario is the simplest possible. Just two nodes acting as client 
and server and sending this 10000 packets. 
 
 
 
                                     
                                          Fig. 8 Second scenario with 2 nodes 

 
The result is not surprising in this case, shown on figure 9 and 10.  

 

Fig.9 Packets analysed with 2 nodes 

 

Fig.10 Energy results with 2 nodes 
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The first chart shows the packets generated, transmitted to physical layer, MAC 
transmitted, and received by the server node. The difference between MAC transmitted 
and transmitted is that when a packet is received at physical layer, it sends the MacTx 
trace, and when its transmission begins, we will capture the PhyTxBegin trace. When a 
packet is transmitted but collides and needs retransmission, the MacTx trace will appear 
once, but the PhyTxBegin will be sent as many times as the packet is being transmitted 
and retransmitted, so we can see if there are too many collisions in the channel. 

The number of packets either generated or transmitted increase exponentially the lower 
the interval is, and when the interval is lower than approximately 0.03 seconds, the client 
is capable of generating the 10000 packets in the 500 seconds of the simulation duration. 
The energy consumed by the client or the sender is fully proportional to the packets 
transmitted. It must be kept in mind that we are considering consumption only when 
transmitting packets. In this case, it is expected that the total network energy consumed 
will be almost the same as the single node energy consumed (the energy consumed by 
the client), because the server has to send only Acknowledgements.  

If we increase the number of client nodes, according to figure 11, we can see that with a 
low interval between packets, the network will start having trouble managing the flooding, 
but the energy remains following the same curve as the transmitted packets, seen on 
figures 12 and 13. 

 

 

 

                

Fig.11 Second scenario with 4 nodes 

 

 

Fig.12 Packets analysed with 4 nodes 
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Fig.13 Energy results with 4 nodes 

 

We can see here what was commented before about the MacTx and Transmitted packets. 
However, what it happening is reversed as expected. The MacTx packets are higher than 
the transmitted packets. At the physical layer, actually arrive the 10000 packets 
generated, but at low intervals, the transmitted packets drop to almost only 7000. The 
reason this is happening is because in this wireless networks, it is used a CSMA/CA 
mechanism, not just collision detection but collision avoidance. This means that all the 
packets are being generated, but before transmitting and colliding, the nodes wait until 
the transmission is possible.  

The energy consumed by the first node is again proportional to the packets transmitted, 
obvious as we are considering consumption when a packet is transmitted, and the total 
energy consumed is similar to the packets received by the server. That is because the 
server receives the packets transmitted by all other nodes, so it is consistent that the two 
measures are related. 

If we increase now the clients up to 6 nodes, the flooding is of course even worse as the 
graphic on figure 14 exposes. 
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Fig.14 Packets analysed with 7 nodes 

The transmitted packets here drop at a higher interval because there are a lot more 
nodes sending traffic and the saturation of the network appear earlier. The energy in this 
case behaves exactly like in the previous simulations, drawing the same curve as the 
transmitted packets and the received by the sender. The collision avoidance prevents the 
nodes in an ad-hoc network to increase exponentially the packets transmitted, and in 
direct consequence, the energy consumed by them. This functionality can prevent a node 
to consume all its battery and disconnect from the network, but in cases of very high 
traffic, a node may seem to have lost connection because of the high number of collisions 
suffered. It may not be able to send any packets if the network is constantly colliding. 

 

4.3 – Third scenario: Constant traffic in increasing network 

On this experiment we are trying to see what happens when the same amount of traffic 

goes through different sizes of networks. So we started simulating a small 4-node 

network sending all traffic to the last node, and increasing the number of nodes 

exponentially to 25. The topology in this case is disposed in a square, placing the nodes 

every 500 meters as figure 15 shows. The interval time between packets on each node 

will also increase from 0.3 seconds in each node (a total of 10 packets / second on the 

network) to 2.4 seconds (see figure 16), taking into account that the last node is only 

acting as a server: 

      

 

            

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Interval (s) 

Packets 

Generated packets Mac tx packets Tx packets Rx packets

Server 

Clients 

Fig.15: 9-node topology sending traffic to last one 



 

 31 

 

Simulation Adhoc nodes Interval Packets/s 

1 4 0,3 3 

2 9 0,8 1,25 

3 16 1,5 0,6667 

4 25 2,4 0,41667 

    
Fig.16 Traffic distribution on third scenario 

 

The entire simulation lasts again 500 seconds, and the results for the generated and 
received packets are shown in figure 17. 

 

 

Fig. 17 Traffic distribution on third scenario 

 

The generated packets obviously is decreasing over the simulations, because the interval 
between packets are configured this way, and we are only considering a single node in 
this parameter. The total received packets, even we are having always a total of 10 
packets/second in the network, is increasing on each simulation. This is because all 
nodes are sending routing OLSR packets to keep contact and if the number of nodes 
increases, even maintaining the total traffic, the packets received also increase.  

To make a deeper study in this scenario we implemented a python script that parses an 
output trace configured on the NS3 code:  
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AsciiTraceHelper ascii; 
wifiPhy.EnableAsciiAll (ascii.CreateFileStream ("wifi-adhoc.tr")); 
wifiPhy.EnablePcap ("wifi-adhoc", devices); 
// Trace routing tables 
Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper>  
    ("wifi-simple-adhoc.routes", std::ios::out); 
olsr.PrintRoutingTableAllEvery (Seconds (2), routingStream); 
Ptr<OutputStreamWrapper> neighborStream = Create<OutputStreamWrapper>  
    ("wifi-adhoc.neighbors", std::ios::out); 
olsr.PrintNeighborCacheAllEvery (Seconds (2), neighborStream);  
 

The python script can be found on annex 3.  

The output file wifi-adhoc.tr will contain the information of every single packet sent 
through the network, which we will use in this case to check the retries done by each 
node. This will let us know the „stability‟ of this exponential node increase. The wifi-
adhoc.neighbors will show the routing tables of the nodes every time they are updated. 
Here we checked that actually not all nodes are sending traffic directly, but are forwarding 
packets through the network. In fact, the maximum distance in which the packets are sent 
directly is approximately 600 meters, and the distance between nodes we configured is 
set intentionally to 500 meters, so every node has only a maximum of 4 neighbours. 

The number of retries is shown in figure 18. 

 

Fig. 18 Retries on third scenario 

We can see that there is a greater number of retries in the first simulations than on the 
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nodes on the network, the number of retries is very high. There are some nodes that are 
only sending traffic, and don‟t have to forward packets because they are not on the 
„shortest path‟ of any other node. That is the reason that some nodes have less retries 
than the average. And vice versa, there are nodes that have to forward more packets and 
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packets than on the last two experiments. The OLSR packets are far smaller than the 
UDP ones, configured to 1kbyte. This is the reason why on the second simulation we 
have greater retries than on the others, which distribute the traffic to more nodes. 

 

4.4 – Last scenario: Mobility implication 

In the last experiment, we are setting the 5x5 topology in which we ended the last 

scenario and will check how the mobility of the nodes affects the traffic and the energy 

consumption. We will set again the last node as server and the others as clients and will 

run the simulation on both cases with static position and random mobility. We have 

reduced the distance between nodes to 250 meters to avoid network splitting: The 

maximum distance between reachable nodes is near 600m, so if we set the inter-distance 

to 500m there is a possibility that a node from the perimeter walks outside the reachable 

area of its neighbours. 

 

 

Fig. 19 Mobility vs fixed position retries 
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the same form as the static plot. But on the random experiment appear more retries 
peaks than on the first one. There are more nodes affected by the forwarding tasks in this 
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having more collisions.  

We checked the position before and after the simulation on figure 20, to see if a higher 
mobility has something to do with the greater retries. 
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Fig. 20 Mobility diagram 

The figure shows only the relative distance travelled between the beginning and the end 
of the simulation. Obviously they didn‟t go through a straight line because the mobility is 
set to random and every update of the position can go to any direction. By calculating the 
module of the vectors printed on the image, we can see the relative distance travelled by 
each node (see figure 21). 

 

 

Fig. 21 Relative distance travelled on mobility scenario 
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The nodes that travelled the most are 2, 6, 12 – 17 and 21. If we compare this information 
with the number of retries in the mobility situation, we can conclude that the relative 
mobility doesn‟t affect directly to the collisions found during the simulation because in this 
case, the node 8 is one of the nodes that has travelled less, but suffered one of the 
greater number of retries, and in the inverse situation, node 21 has travelled a lot, but has 
a low number of retries.  
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5. Budget 

To calculate the total budget for developing this project, at first we must consider the 
salary of a Wireless Engineer. The current mean salary for this type of employees is 
about 23000€ a year. If the duration of this project will be of 6 months, the amount of 
money destined to the first salary will be: 

 

Wireless Engineer (6 months): 11500 €   [9] 

 

We may also need a software engineer to program some application on the mesh 
devices that allows us to send the simulated traffic with a specified packet length, inter-
arrival time, and all the parameters used on this project, and then we should be able to 
analyze the traffic received by all the nodes. This engineer would work for approximately 
3 months while on the other 3, we would be doing the tests. 

 

Software Engineer (3 months): 5750 €    [9] 

 

The next thing we should need is to develop this simulations on real devices and do a full 
study if some investors are interested in our work. 

 

Mesh/Ad-hoc Devices (25 units): 1680 € (~70 € each)   [10] 
PC: ~500€ 

Ethernet cables, USB cables, etc. (total): ~30 €    

Desks and office material (total): ~600€              [11]          

 

Another requirement should be an office in Barcelona to analyze the results and write the 
reports. We would rent a place to work, not an entire office, because we just need a desk 
and the computer, so we would need a total of 9 rent months, 6 for the first engineer and 
3 for the software one. The two engineers will work at the same time but just looking at 
the numbers, we will need a 9 month renting, as the first 3 count double. 

 

Office renting 12 m2 (9 months): 981€ €   [12] 

 

At last, to do the tests with the devices, we will need 25 people using the developed app 
and walking through the streets of Barcelona with the mesh or ad-hoc devices. This will 
require an approximate 3 day compensation to 25 people responding to an offer. This will 
be calculated as the minimum salary in Spain per month, divided by 30 days a month and 
multiplied by days of work. 

 

Volunteer Salary (25 person 3 days): ~2000€   [13] 

 

 

Total approximate budget: 23041 € 

 

 

This is an affordable budget for a medium or big technological company that wants to 
invest on this type of research for future implementations. 
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6. Conclusions and future development:  

This project consisted on study the energy consumption of mesh/ad-hoc communication 

devices in different scenarios. The first conclusion that we hit is that actually NS3 is not 

developed to introduce an energy model to any kind of network, just on Wifi ones. This 

will make an obstacle into a mesh energy research, as it has been to this project. NS3 is 

prepared to adapt own code to the source because it is a collaborative open source 

program, so if in the future this research is wanted to be applied on mesh networks, an 

energy model for mesh devices must be developed.  

Now looking through this work on the ad-hoc networks, we can conclude that the energy 

consumed is just a direct consequence of the number of packets sent and received. If we 

can control this parameter, we can also assume that the energy consumed will be 

controlled. As it has been seen, ad-hoc networks work through a CSMA/CA mechanism 

that does exactly this work, and assure us that the energy will not be totally consumed 

even if we are in a highly flooded network. 

In another scenario, we have seen that the number of the nodes in the network affects 

the traffic, even if we are maintaining the same application packet rate. The routing 

packets sent in this case grow with the number of total nodes in the network, so a bigger 

network, implies a greater flooding. But we have also concluded that the number of 

collisions or retries in each node, is worse in a small network. This happens because if a 

mesh or ad-hoc network increases, the possible routes between a sender and a receiver 

also increases. 

In the last scenario, we added mobility to the nodes, and observed that there are more 

collisions than if the nodes stay fixed. After studying the movement of the nodes in the 

simulation, there seems to be no relation between the number of retries suffered by a 

node, and the distance travelled. The mobility implies worse conditions for 

communication, and this has been reflected in the results.  

To extend this work, some real experiments should be carried out on real devices to give 

full conclusions. We included the total approximate budget to be checked if this kind of 

research is of the interest of the technological companies. We think that any middle or big 

company can afford this research if it is on their technologic interests.  

After this project, it can be easier for someone who is beginning to work with NS3 and 

energy simulation to learn this functionality reading this work rather than searching over 

the Internet as we have been doing. So in the future, if someone has to take forward the 

project, he should learn the NS3 functionality through this Thesis, and then follow the two 

possible steps that have already been explained: Testing the simulations on real devices, 

and/or extend the working to the mesh networks.   
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Appendices 

Annex 1: Wifi script 

#include "ns3/core-module.h" 

#include "ns3/network-module.h" 

#include "ns3/applications-module.h" 

#include "ns3/wifi-module.h" 

#include "ns3/mobility-module.h" 

#include "ns3/internet-module.h" 

#include "ns3/energy-module.h" 

#include "ns3/config-store-module.h" 

#define TOTAL_ENERGY 

#define NODE_ENERGY 

 

// Default Network Topology 

// 

//   Wifi 10.1.1.0 

//               AP 

//     *    *    * 

//     |    |    |   

//    n2   n1   n0  

//                                     

 

#ifdef TOTAL_ENERGY 

  double total_energy = 0.0; 

#endif 

 

using namespace ns3; 

 

/// Trace function for remaining energy at node. 

 

#ifdef NODE_ENERGY 

void 

RemainingEnergy (double oldValue, double newValue) 

{ 

  std::cout << "At time " << Simulator::Now ().GetSeconds () 

                 << "s Current remaining energy = " << newValue << " J" << std::endl;  

} 

#endif 

 

#ifdef TOTAL_ENERGY 

void 

TotalEnergy (double oldValue, double newValue) 

{ 

  total_energy += (oldValue - newValue); 

} 

#endif 

 

int  

main (int argc, char *argv[]) 

{ 

  bool verbose = true; 

  uint32_t nWifi = 2; 

 

  CommandLine cmd; 

  cmd.AddValue ("nWifi", "Number of wifi STA devices", nWifi); 

  cmd.AddValue ("verbose", "Tell echo applications to log if true", verbose); 

 

  if (verbose) 

    { 

      LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO); 

      LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO); 

    } 
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  NodeContainer wifiStaNodes; 

  wifiStaNodes.Create (nWifi); 

  NodeContainer wifiApNode; 

  wifiApNode.Create(1); 

 

  YansWifiChannelHelper channel = YansWifiChannelHelper::Default (); 

  YansWifiPhyHelper phy = YansWifiPhyHelper::Default (); 

  phy.SetChannel (channel.Create ()); 

 

  WifiHelper wifi = WifiHelper::Default (); 

  wifi.SetRemoteStationManager ("ns3::AarfWifiManager"); 

 

  NqosWifiMacHelper mac = NqosWifiMacHelper::Default (); 

 

  Ssid ssid = Ssid ("ns-3-ssid"); 

  mac.SetType ("ns3::StaWifiMac", 

               "Ssid", SsidValue (ssid), 

               "ActiveProbing", BooleanValue (false)); 

 

  NetDeviceContainer staDevices; 

  staDevices = wifi.Install (phy, mac, wifiStaNodes); 

 

  mac.SetType ("ns3::ApWifiMac", 

               "Ssid", SsidValue (ssid)); 

 

  NetDeviceContainer apDevices; 

  apDevices = wifi.Install (phy, mac, wifiApNode); 

 

  MobilityHelper mobility; 

 

  mobility.SetPositionAllocator ("ns3::GridPositionAllocator", 

                                 "MinX", DoubleValue (0.0), 

                                 "MinY", DoubleValue (0.0), 

                                 "DeltaX", DoubleValue (5.0), 

                                 "DeltaY", DoubleValue (10.0), 

                                 "GridWidth", UintegerValue (3), 

                                 "LayoutType", StringValue ("RowFirst")); 

 

  mobility.SetMobilityModel ("ns3::RandomWalk2dMobilityModel", 

                             "Bounds", RectangleValue (Rectangle (-50, 50, -50, 50))); 

 

  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); 

  mobility.Install (wifiApNode); 

  mobility.Install (wifiStaNodes); 

 

  /** Energy Model **/ 

  /***************************************************************************/ 

  /* energy source */ 

  BasicEnergySourceHelper basicSourceHelper; 

  // configure energy source 

  basicSourceHelper.Set ("BasicEnergySourceInitialEnergyJ", DoubleValue (5.0)); 

  // install source 

  EnergySourceContainer sources = basicSourceHelper.Install (wifiStaNodes); 

  /* device energy model */ 

  WifiRadioEnergyModelHelper radioEnergyHelper; 

  // configure radio energy model 

  radioEnergyHelper.Set ("IdleCurrentA", DoubleValue (1.0)); 

  radioEnergyHelper.Set ("CcaBusyCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("TxCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("RxCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("SwitchingCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("SleepCurrentA", DoubleValue (0)); 

  DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install (staDevices, sources); 

  /***************************************************************************/ 
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  InternetStackHelper stack; 

  stack.Install (wifiApNode); 

  stack.Install (wifiStaNodes); 

 

  Ipv4AddressHelper address; 

  address.SetBase ("10.1.1.0", "255.255.255.0"); 

  Ipv4InterfaceContainer wifiInterfaces = address.Assign (staDevices); 

  address.Assign (apDevices); 

 

  UdpEchoServerHelper echoServer (9); 

  ApplicationContainer serverApps = echoServer.Install (wifiStaNodes.Get (0)); 

  serverApps.Start (Seconds (0.0)); 

  serverApps.Stop (Seconds (3.0)); 

 

   

 

  UdpEchoClientHelper echoClient (wifiInterfaces.GetAddress (0), 9); 

  echoClient.SetAttribute ("MaxPackets", UintegerValue (1)); 

  echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0))); 

  echoClient.SetAttribute ("PacketSize", UintegerValue (976)); 

 

  ApplicationContainer clientApps = echoClient.Install (wifiStaNodes.Get (1)); 

  clientApps.Start (Seconds (1.0)); 

  clientApps.Stop (Seconds (3.0)); 

 

  Ipv4GlobalRoutingHelper::PopulateRoutingTables (); 

 

  Simulator::Stop (Seconds (3.0)); 

 

/*phy.EnablePcap ("wifi", apDevices.Get (0)); 

phy.EnablePcap ("wifi", staDevices.Get(0)); 

phy.EnablePcap ("wifi", staDevices.Get(1));*/ 

 

#ifdef NODE_ENERGY 

  Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource> (sources.Get (1)); 

  basicSourcePtr->TraceConnectWithoutContext ("RemainingEnergy", MakeCallback (&RemainingEnergy)); 

#endif 

 

#ifdef TOTAL_ENERGY 

uint32_t i; 

 

  for( i=0 ; i<nWifi ; i++) 

  { 

     

    Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource> (sources.Get (i)); 

    basicSourcePtr->TraceConnectWithoutContext ("RemainingEnergy", MakeCallback(&TotalEnergy)); 

  } 

#endif 

 

  Simulator::Run (); 

  Simulator::Destroy (); 

 

#ifdef TOTAL_ENERGY 

  std::cout <<  "Total energy consumed in network = " << total_energy << " J" << std::endl; 

#endif 

 

  return 0; 

} 
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Annex 2: Wifi ad-hoc script 

#include "ns3/core-module.h" 

#include "ns3/network-module.h" 

#include "ns3/mobility-module.h" 

#include "ns3/config-store-module.h" 

#include "ns3/wifi-module.h" 

#include "ns3/internet-module.h" 

#include "ns3/energy-module.h" 

#include "ns3/applications-module.h" 

#include "ns3/olsr-helper.h" 

#include "ns3/ipv4-static-routing-helper.h" 

#include "ns3/ipv4-list-routing-helper.h" 

 

#include <iostream> 

#include <fstream> 

#include <vector> 

#include <string> 

 

double total_network_energy = 0.0; 

double total_node_energy = 0.0; 

using namespace ns3; 

uint32_t packets_generated = 0; 

uint32_t packets_mac_tx = 0; 

uint32_t packets_transmitted = 0; 

uint32_t packets_received = 0; 

 

NS_LOG_COMPONENT_DEFINE ("WifiSimpleAdhoc"); 

 

void PacketGenerated(std::string context,double intTime,uint32_t packetLength) { 

  //std::cout << Simulator::Now ().GetSeconds () << "  " << "Packet Generated  " << intTime << "  " 

<< packetLength << std::endl; 

  packets_generated++; 

//std::cout << intTime << " " << packetLength << std::endl; 

} 

 

void PacketTransmitted(std::string context,const Ptr<const Packet> p) { 

  //std::cout << Simulator::Now ().GetSeconds () << "\t" << "Packet Transmitted" << std::endl; 

  

   packets_transmitted++; 

} 

 

void PacketReceived(std::string context,const Ptr<const Packet> p) { 

  //std::cout << Simulator::Now ().GetSeconds () << "\t" << "Packet Received" << std::endl; 

  packets_received++; 

} 

 

void PacketDroppedTx(std::string context,const Ptr<const Packet> p) { 

  //std::cout << Simulator::Now ().GetSeconds () << "\t" << "Packet Dropped MacTx" << std::endl; 

} 

 

void PacketDroppedRx(std::string context,const Ptr<const Packet> p) { 

  //std::cout << Simulator::Now ().GetSeconds () << "\t" << "Packet Dropped MacRx" << std::endl; 

} 

 

void PacketMacTx(std::string context,const Ptr<const Packet> p) { 

  //std::cout << Simulator::Now ().GetSeconds () << "\t" << "Packet MacTx" << std::endl; 

  packets_mac_tx++; 

} 

 

void PacketTxDrop(std::string context, const Ptr<const Packet> p){ 

  //std::cout << Simulator::Now().GetSeconds () << "\t" << "Packet Tx Drop" << std::endl; 

} 
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void 

RemainingEnergy (double oldValue, double newValue) 

{ 

  total_node_energy += (oldValue - newValue); 

  //std::cout << "At time " << Simulator::Now ().GetSeconds () << "s Current remaining energy = " 

<< newValue << " J" << std::endl; 

  std::cout << "At time " << Simulator::Now ().GetSeconds () << "s Total energy consumed by sender 

= " << total_node_energy << "J" << std::endl; 

} 

 

void 

TotalEnergy (double oldValue, double newValue) 

{ 

  total_network_energy += (oldValue - newValue); 

} 

 

void 

Position (std::string context, Ptr<const MobilityModel> model) 

{ 

  Vector position = model->GetPosition (); 

  NS_LOG_UNCOND (context << " x = " << position.x << ", y = " << position.y); 

} 

 

void 

CourseChange (std::string context, Ptr<const MobilityModel> model) 

{ 

  Vector position = model->GetPosition (); 

  NS_LOG_UNCOND (context << " x = " << position.x << ", y = " << position.y); 

} 

 

int main (int argc, char *argv[]) 

{ 

  std::string phyMode ("DsssRate11Mbps"); 

  double distance = 250;  // m 

  uint32_t packetSize = 1000; // bytes 

  uint32_t numPackets = 10000; 

  double interval = 1; // seconds 

  uint32_t nAdhoc = 4; // number of nodes 

  uint32_t nSrc = 1; // number of sources sending traffic 

  uint32_t scenario = 2; // index of current scenario 

  bool verbose = false; 

  bool total_energy = true; 

  bool node_energy  = false; 

  bool static_position = true; 

  bool random_mobility = false; 

  bool enable_pcap = false; 

 

  CommandLine cmd; 

 

  cmd.AddValue ("scenario", "changes the scenario of simulation", scenario); 

  cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode); 

  cmd.AddValue ("packetSize", "size of application packet sent", packetSize); 

  cmd.AddValue ("numPackets", "number of packets generated", numPackets); 

  cmd.AddValue ("interval", "interval (seconds) between packets", interval); 

  cmd.AddValue ("nAdhoc", "number of adhoc nodes in the network", nAdhoc); 

  cmd.AddValue ("nSrc", "number of adhoc nodes sending traffic", nSrc); 

  cmd.AddValue ("distance", "distance between nodes", distance); 

  cmd.AddValue ("verbose", "turn on all WifiNetDevice log components", verbose); 

  cmd.AddValue ("total_energy", "enables the energy consumed by network tracing", total_energy); 

  cmd.AddValue ("node_energy" , "enables the energy consumed by one single node tracing", 

node_energy); 

  cmd.AddValue ("static_position", "enables the tracing of static nodes", static_position); 

  cmd.AddValue ("random_mobility", "enables the tracing of random mobility", random_mobility); 

  cmd.AddValue ("enable_pcap", "enables pcap tracing", enable_pcap); 

 

  cmd.Parse (argc, argv); 
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  // Convert to time object 

  Time interPacketInterval = Seconds (interval); 

 

  // disable fragmentation for frames below 2200 bytes 

  Config::SetDefault ("ns3::WifiRemoteStationManager::FragmentationThreshold", StringValue 

("2200")); 

  // turn off RTS/CTS for frames below 2200 bytes 

  Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue ("2200")); 

  // Fix non-unicast data rate to be the same as that of unicast 

  Config::SetDefault ("ns3::WifiRemoteStationManager::NonUnicastMode",  

                      StringValue (phyMode)); 

  // Set the speed of nodes moving randomly through the simulation space 

  Config::SetDefault ("ns3::RandomWalk2dMobilityModel::Speed",  

                      StringValue ("ns3::ConstantRandomVariable[Constant=100.0]")); 

 

 

  NodeContainer wifiadhocnodes; 

  wifiadhocnodes.Create (nAdhoc); 

 

  // The below set of helpers will help us to put together the wifi NICs we want 

  WifiHelper wifi; 

  if (verbose) 

    { 

      LogComponentEnable ("UdpClient", LOG_LEVEL_INFO); 

      //LogComponentEnable ("UdpServer", LOG_LEVEL_INFO); 

      //wifi.EnableLogComponents ();  // Turn on all Wifi logging 

    } 

  wifi.SetStandard (WIFI_PHY_STANDARD_80211b); 

 

  YansWifiPhyHelper wifiPhy =  YansWifiPhyHelper::Default (); 

  // This is one parameter that matters when using FixedRssLossModel 

  // set it to zero; otherwise, gain will be added 

  wifiPhy.Set ("RxGain", DoubleValue (0) );  

  // ns-3 supports RadioTap and Prism tracing extensions for 802.11b 

  wifiPhy.SetPcapDataLinkType (YansWifiPhyHelper::DLT_IEEE802_11_RADIO);  

 

  YansWifiChannelHelper wifiChannel; 

  wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel"); 

  wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel");; 

  wifiPhy.SetChannel (wifiChannel.Create ()); 

 

  // Add a non-QoS upper mac, and disable rate control 

  NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default (); 

  wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", 

                                "DataMode",StringValue (phyMode), 

                                "ControlMode",StringValue (phyMode)); 

  // Set it to adhoc mode 

  wifiMac.SetType ("ns3::AdhocWifiMac"); 

  NetDeviceContainer devices = wifi.Install (wifiPhy, wifiMac, wifiadhocnodes); 

 

if(scenario == 1) 

{  MobilityHelper mobility; 

   Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> (); 

   while(1) 

   { positionAlloc->Add (Vector (0.0, 0.0, 0.0)); 

     if(nAdhoc==2) break; 

     positionAlloc->Add (Vector (0.0, 200.0, 0.0)); 

     if(nAdhoc==3) break; 

     positionAlloc->Add (Vector (0.0, -200.0, 0.0)); 

     if(nAdhoc==4) break; 

     positionAlloc->Add (Vector (0.0, 400.0, 0.0)); 

     if(nAdhoc==5) break; 

     positionAlloc->Add (Vector (0.0, -400.0, 0.0)); 

     if(nAdhoc==6) break; 

     positionAlloc->Add (Vector (0.0, 800.0, 0.0)); 

     if(nAdhoc==7) break; 
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     positionAlloc->Add (Vector (0.0, -800.0, 0.0)); 

     break; 

   } 

   positionAlloc->Add (Vector (200.0, 0.0, 0.0)); 

   mobility.SetPositionAllocator (positionAlloc); 

   mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); 

   mobility.Install (wifiadhocnodes); 

} 

 

 

if(scenario == 2) 

{  MobilityHelper mobility; 

   mobility.SetPositionAllocator ("ns3::GridPositionAllocator", 

  "MinX", DoubleValue (0.0), 

  "MinY", DoubleValue (0.0), 

  "DeltaX", DoubleValue (distance), 

  "DeltaY", DoubleValue (distance), 

  "GridWidth", UintegerValue (5), 

  "LayoutType", StringValue ("ColumnFirst")); 

   mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel"); 

   mobility.Install (wifiadhocnodes); 

} 

 

if(scenario == 3) 

{  MobilityHelper mobility; 

   mobility.SetPositionAllocator ("ns3::GridPositionAllocator", 

  "MinX", DoubleValue (0.0), 

  "MinY", DoubleValue (0.0), 

  "DeltaX", DoubleValue (250), 

  "DeltaY", DoubleValue (250), 

  "GridWidth", UintegerValue (5), 

  "LayoutType", StringValue ("ColumnFirst")); 

  mobility.SetMobilityModel ("ns3::RandomWalk2dMobilityModel", "Bounds", RectangleValue (Rectangle 

(0, 1050, 0, 1050))); 

  mobility.Install (wifiadhocnodes); 

} 

 

  /** Energy Model **/ 

  /***************************************************************************/ 

  /* energy source */ 

  BasicEnergySourceHelper basicSourceHelper; 

  // configure energy source 

  basicSourceHelper.Set ("BasicEnergySourceInitialEnergyJ", DoubleValue (1000.0)); 

  // install source 

  EnergySourceContainer sources = basicSourceHelper.Install (wifiadhocnodes); 

  /* device energy model */ 

  WifiRadioEnergyModelHelper radioEnergyHelper; 

  // configure radio energy model 

  radioEnergyHelper.Set ("IdleCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("CcaBusyCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("TxCurrentA", DoubleValue (1.0)); 

  radioEnergyHelper.Set ("RxCurrentA", DoubleValue (0.0)); 

  radioEnergyHelper.Set ("SwitchingCurrentA", DoubleValue (0)); 

  radioEnergyHelper.Set ("SleepCurrentA", DoubleValue (0)); 

  DeviceEnergyModelContainer deviceModels = radioEnergyHelper.Install (devices, sources); 

  /***************************************************************************/ 

 

  // Enable OLSR 

  OlsrHelper olsr; 

  Ipv4StaticRoutingHelper staticRouting; 

 

  Ipv4ListRoutingHelper list; 

  list.Add (staticRouting, 0); 

  list.Add (olsr, 10); 

 

  InternetStackHelper internet; 
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  internet.SetRoutingHelper (list); // has effect on the next Install () 

  internet.Install (wifiadhocnodes); 

 

  Ipv4AddressHelper ipv4; 

  NS_LOG_INFO ("Assign IP Addresses."); 

  ipv4.SetBase ("10.1.1.0", "255.255.255.0"); 

  Ipv4InterfaceContainer i = ipv4.Assign (devices); 

 

  double stoptime = 500; // seconds 

 

  UdpServerHelper server (9); 

  ApplicationContainer serverApps = server.Install (wifiadhocnodes.Get (nAdhoc-1)); 

  serverApps.Start (Seconds (30.0)); 

  serverApps.Stop (Seconds (stoptime)); 

 

   

 

  UdpClientHelper client (i.GetAddress (nAdhoc-1), 9); 

  client.SetAttribute ("MaxPackets", UintegerValue (numPackets)); 

  client.SetAttribute ("Interval", TimeValue (Seconds (interval))); 

  client.SetAttribute ("PacketSize", UintegerValue (packetSize)); 

 

  for (uint32_t i = 0; i<nSrc; i++) 

  { ApplicationContainer clientApps = client.Install (wifiadhocnodes.Get (i)); 

    clientApps.Start (Seconds (30.0)); 

    clientApps.Stop (Seconds (stoptime)); 

  } 

 

 

if(enable_pcap) 

{      AsciiTraceHelper ascii; 

       wifiPhy.EnableAsciiAll (ascii.CreateFileStream ("wifi-simple-adhoc.tr")); 

       wifiPhy.EnablePcap ("wifi-simple-adhoc", devices); 

       // Trace routing tables 

       Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> ("wifi-adhoc.routes", 

std::ios::out); 

       olsr.PrintRoutingTableAllEvery (Seconds (2), routingStream); 

       Ptr<OutputStreamWrapper> neighborStream = Create<OutputStreamWrapper> ("wifi-

adhoc.neighbors", std::ios::out); 

       olsr.PrintNeighborCacheAllEvery (Seconds (2), neighborStream); 

} 

 

 Simulator::Stop (Seconds (stoptime)); 

 

if(node_energy) 

{  Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource> (sources.Get (0)); 

   basicSourcePtr->TraceConnectWithoutContext ("RemainingEnergy", MakeCallback (&RemainingEnergy)); 

} 

 

if(static_position || random_mobility) 

{ for(uint32_t i=0; i<nAdhoc; i++) 

  { 

      Ptr<Node> node = wifiadhocnodes.Get(i); 

      Ptr<MobilityModel> mob = node->GetObject<MobilityModel> (); 

      Vector pos = mob->GetPosition ();  

      std::cout << "Node " << i << " is at (" << pos.x << ", " << pos.y << ")\n";  

  } 

} 

 

if(total_energy) 

{  uint32_t j; 

   for( j=0 ; j<nAdhoc ; j++) 

   { 

      Ptr<BasicEnergySource> basicSourcePtr = DynamicCast<BasicEnergySource> (sources.Get (j)); 

      basicSourcePtr->TraceConnectWithoutContext ("RemainingEnergy", MakeCallback(&TotalEnergy)); 

   } 
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} 

 

  

Config::Connect("/NodeList/0/ApplicationList/0/$ns3::UdpClient/Generate",MakeCallback(&PacketGenera

ted)); 

  

Config::Connect("/NodeList/0/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyTxBegin",MakeCallback(&PacketT

ransmitted)); 

  std::ostringstream oss; 

  oss << "/NodeList/" << nAdhoc-1 << "/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyRxEnd"; 

  Config::Connect(oss.str(),MakeCallback(&PacketReceived)); 

  

Config::Connect("/NodeList/0/DeviceList/0/$ns3::WifiNetDevice/Mac/MacTx",MakeCallback(&PacketMacTx)

); 

  

Config::Connect("/NodeList/0/DeviceList/0/$ns3::WifiNetDevice/Phy/PhyTxDrop",MakeCallback(&PacketTx

Drop)); 

  //if(static_position == false)  

  //{   

  //Config::Connect ("/NodeList/0/$ns3::MobilityModel/CourseChange", MakeCallback(&CourseChange)); 

  //} 

   

 

  Simulator::Run (); 

  std::cout << "Packets generated: " << packets_generated << std::endl; 

  std::cout << "Packets Mac tx: " << packets_mac_tx << std::endl; 

  std::cout << "Packets transmitted: " << packets_transmitted << std::endl; 

  std::cout << "Packets received: " << packets_received << std::endl; 

if(random_mobility) 

{ for(uint32_t i=0; i<nAdhoc; i++) 

 { 

  Ptr<Node> node = wifiadhocnodes.Get(i); 

  Ptr<MobilityModel> mob = node->GetObject<MobilityModel> (); 

  Vector pos = mob->GetPosition ();  

  std::cout << "Node " << i << " is at (" << pos.x << ", " << pos.y << ")\n";  

 } 

} 

  Simulator::Destroy (); 

if(total_energy) 

{ 

    std::cout << "TOTAL ENERGY CONSUMED BY NETWORK " << total_network_energy << "J" << std::endl; 

} 

  return 0; 

} 
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Annex 3: Output parsing python script 

import re 
import sys 
 
#print 'Number of arguments:', len(sys.argv), 'arguments.' 
#print 'Argument List:', str(sys.argv) 
total_packets_transmitted = [0 for i in range (25)] 
total_packets_received = [0 for i in range (25)] 
total_olsr_packets_transmitted = [0 for i in range (25)] 
total_olsr_packets_received = [0 for i in range (25)] 
total_udp_packets_transmitted = [0 for i in range (25)] 
total_udp_packets_received = [0 for i in range (25)] 
total_other_packets_transmitted = [0 for i in range (25)] 
total_other_packets_received = [0 for i in range (25)] 
total_retries = [0 for i in range (25)] 
 
in_f='wifi-simple-adhoc.tr' 
ou_f='wifi-simple-adhoc-results.txt' 
 
input_file=open(in_f,'r')     
print('Input file: '+in_f) 
 
while True: 
 line=input_file.readline() 
 if not line: break 
 
 start_search = line.find ('/NodeList/') + 10 
 end_search = line.find('/', start_search) 
 node = line[start_search:end_search] 
 #print(node) 
 start_search = line.find ('Retry=') + 6 
 end_search = line.find(',', start_search) 
 retry = line[start_search:end_search] 
 
 if retry == '1': 
  total_retries[int(node)] += 1 
 if (line.startswith('t')): 
  total_packets_transmitted[int(node)] += 1 
  if 'ns3::UdpHeader' in line: 
   if 'ns3::olsr::' in line: 
    total_olsr_packets_transmitted[int(node)] += 1 
   else: 
    total_udp_packets_transmitted[int(node)] += 1 
  else: 
   total_other_packets_transmitted[int(node)] += 1 
 
 else: 
  total_packets_received[int(node)] += 1 
  if 'ns3::UdpHeader' in line: 
   if 'ns3::olsr::' in line: 
    total_olsr_packets_received[int(node)] += 1 
   else: 
    total_udp_packets_received[int(node)] += 1 
  else: 
   total_other_packets_received[int(node)] += 1 
 
 
print('\n'+'---------------------------TRANSMITTED----------------------------------'+'\n') 
print(total_packets_transmitted) 
print(total_udp_packets_transmitted) 
print(total_olsr_packets_transmitted) 
print(total_other_packets_transmitted) 
print('\n'+'----------------------------RECEIVED------------------------------------'+'\n') 
print(total_packets_received) 
print(total_udp_packets_received) 
print(total_olsr_packets_received) 
print(total_other_packets_received) 
print('\n'+'----------------------------RETRIES------------------------------------'+'\n') 
print(total_retries) 
print('\n'+'-----------------------------------------------------------------------'+'\n') 
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Annex 4: Exponential PDF of Interval Time and Length of simulated packets 

To demonstrate the exponential behaviour on the modifications we made to the NS3 

source code, we have printed a list of 10000 packets and its inter-arrival generation times, 

after configuring a mean time of 25 ms and 1000 bytes. Computing with this list on Matlab, 

after a few lines provided below, the result is as expected:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But in the case of the packet length, the deviation from the theoretic exponential is much 

far than the interval simulations: 

 

 

 

 

 

 

 

 

   

The reason why this happens is because we are cutting the packet length simulated to a 

minimum of 10 bytes, and a maximum of 1500. So the result is not a pure exponential 

random variable but a similar one (truncated exponential). 
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Glossary 

 

WLAN: Wireless Local Area Network. 

STA: Station. 

AP: Access Point. 

ST: Basic Station. 

BSS: Basic Service Set. 

ESS: Extended Service Set. 

DS: Distribution System. 

OLSR: Optimized Link State Protocol. 

WMN: Wireless Mesh Network.  

 


