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Abstract. In this paper we present and analyze two new algorithms to construct
a smooth diffeomorphism of a domain with prescribed jacobian function. The first
one is free from any restriction on the boundary, while the second one produces a
diffeomorphism that coincides with the identity map on the boundary of the domain.
Both are based on the solution of an initial value problem for the linear heat equation,
and the second also uses solutions of the Stokes system of Fluid Mechanics.
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0. Introduction

Let © C R™ be a bounded domain and f : @ — Rt a function satisfying
infg f >0 and [, f =|Q|. The problem we are dealing with is to construct a
smooth diffeomorphism ® : Q — Q such that

det (D®) (z) = f(z), =€ (1)

This problem arose during the modelling of the construction of the geograph-
ical representations called area-cartograms (see, for example, Dorling [8]). In
this case f should be a piecewise constant function that represents some char-
acteristic quantity, such as the number of inhabitants or the gross domestic
product of each region. Nevertheless, the results of this paper will deal only
with more regular functions. The prescribed jacobian equation (1) has also ap-
plications in several problems of Mathematical Physics, such as the problem of
equilibrium of gases considered in Section A.2.3 of the book of Dacorogna [6].
It can also be used to generate random distributions of particles on a domain
with a given probability density (see Russo [20]).
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For a given f and under reasonable hypotheses, it is quite clear that equation
(1) will have at least one solution, but it is also clear that the solutions will not
be at all unique. This has been one of the main motivations of our work: to
obtain a unique @ in terms of f, 2 and a boundary condition, should there be
one, by means of a definite algorithm or a formula. This algorithm should be
free from arbitrary choices, easy to construct, and produce maps ® which are
as smooth as possible. We trust that the two algorithms we present, based on
the linear heat equation, will represent a nontrivial positive contribution in each
one of these three directions.

A natural way of avoiding the non-uniqueness is to look among all the pos-
sible solutions for the one that minimizes a suitable cost functional. This gives
rise to the Monge-Kantorovich mass transfer problem (see, for example, Brenier
[2]) where equation (1) is considered without any additional boundary condi-
tion. However, using Brenier’s construction, the regularity of ®, and even its
continuity, becomes unclear for nonconvex domains (see Caffarelli [4]), even for
some smooth data.

Another approach to solving equation (1), according to Moser [18], which we
will follow in this paper, can be interpreted as building the diffeomorphism ®
by solving a flow problem in the following way: consider a conservation law of
the type

pe +div (pF) =0, (2)
for 0 < ¢t < T and subject to the initial and final conditions

p(0,z) = f(x) and p(T,z) =1. (3)

This equation describes the time evolution of a density p(t, z) transported by a
velocity field F'(¢, ) from the original density p(0,z) = f(z) to the homogeneous
density p(T, z) = 1. So, if we take x(t) as the solution of the initial value problem

{f'(t) = F(t,z(t)),
z(0) =z,

then, at least formally, it follows that the map ®(z¢) = z(T") satisfies (1). In
this situation, the domain 2 will remain invariant by ® if we ask F (¢, ) also to
be parallel to 9 and, if one wishes ® keeps the points of the boundary of this
domain fixed, it is necessary for F'(t,z) to vanish for all z € 9.

Moser’s construction in [18] corresponds to taking p = ¢t + (1 — t)f and
F=Vu/(t+(1-t)f) with T'=1 (in this case the conservation law (2) becomes
the Poisson equation) when he proved the existence of a ® € C*° that solves (1)
if f is a C* function. Dacorogna and Moser [7] and Riviere and Ye [19] (see also
the references therein) have given extensions of this result in order to obtain the
existence at least of a solution of (1) with keeping the points of the boundary
fixed and having as much regularity as possible for a given f belonging to Holder
or Sobolev spaces. Recently, Burago and Kleiner [3] and McMullen [16] have



found an example of a continuous function f such that there is no Lipschitz
function ® that satisfies (1) in a weak form.

In the framework of the Monge-Kantorovich mass transfer problem, Evans
and Gangbo [9] have used this differential-equations-based approach with F' =
|Vu|P~2Vu where u satisfies — div (|Vu[P=>Vu) = f—1, and then taking p — occ.

Following Moser’s idea, in this paper we present two algorithms to solve
equation (1), the first one without any boundary condition and the second one
imposing that ®(z) = z, for all x € 9N.

To obtain the first algorithm, we take p = u and F = —Vu/u, with F
parallel to the boundary of the domain 2. With this choice, conservation law
(2) is transformed into the heat equation with homogeneous Neumann boundary
conditions. We observe, in this case, that the initial data u(0,z) = f(z) tend
to their spatial average when ¢ — oo, and so, at least formally, for T = oo,
condition (3) is satisfied. In this way, the solution of equation (1) obtained is
easy to construct and, due to the smoothing properties of the heat equation,
will have the expected regularity. Moreover, it has the same isotropy property
as the heat equation. Thus, one can hope that this solution could be a suitable
algorithm with the properties mentioned above.

We remark that this algorithm is not completely new. A variation of it,
which corresponds to the case 2 = R", was used by Russo (see Section 5 of
[20]) to generate distributions of particles in the space according to a given
probability f.

The second algorithm is a variation of the first one, but the points of 92
are kept fixed. In this case, we have to modify the previous F to a new F
so that it vanishes at 09 but keeping divuF = divuF. This can be done
in many ways, for example by using suitable, but arbitrary, cut-off functions,
as in some references above. However, in this paper, we will use the classical
tool of the Stokes system of hydrodynamics which enables us to maintain the
isotropy and to prove the same regularity results as in the previous algorithm.
This modification can be interpreted as simply adding viscosity to the transport
flow.

The rest of this paper is organized as follows. In Section 1 we state Theorem
1 and Theorem 2, which are the main results of the paper. Theorem 1 is con-
cerned with the first algorithm and Theorem 2 with the second. We also present
some pictures as examples of a numerical implementation of these algorithms.
In Section 2 we state and prove a preliminary result, Theorem 3, concerning
existence, uniqueness, and regularity of the solution to certain types of ordinary
differential equations which we use in the proofs of Theorem 1 and Theorem 2.
Finally, Section 3 and Section 4 are devoted to the proofs of each of these two
theorems, respectively.

The authors are grateful to X. Cabré, V.I. Solonnikov and D. Ye for sev-
eral useful references, and to J. Grané and J. Masdemont for their help in the
numerical calculations.



1. Main results

The following two theorems present the two algorithms considered and show that
each one really defines a unique smooth diffeomorphism under our regularity
requirements for the data. We point out that they achieve the optimal regularity,
at least in some Holder spaces, in the sense that, if we take the jacobian function
f to be of class C%®, we obtain a diffeomorphism @ of class C1>*.

Theorem 1 Let Q C R™ be a bounded domain of class C>*,0 < o < 1, and
f:Q = Rt a function belonging to the space C**(Q) for some 0 < a < o,
infg f > 0 and satisfying [, f = |Q|. Let u(t,x) be the solution to the initial
value problem for the linear heat equation with homogeneous Neumann boundary
conditions

u(t,z) = Au(t,x), z€Q, t>0,
w0,2) = f(z), =€,
uy(t,x) =0, z €N, t>0,

where v denotes the outer unit normal vector to the boundary of Q. Then,

a) For all zo € Q, the initial value problem for the ordinary differential equa-
tion

i —Vul(t ()
| z'(t) = 7u(t,m(t)) , t>0, )
i o0 =

has a unique solution x(t) € C'((0,00),Q), and lim;_, x(t) ewists and
belongs to (.

b) The map ® 1 Q — Q defined by ®(z0) = limy—y00 (t) is a diffeomorphism
of Q such that ®, @~ € CH*(0Q), and it satisfies that

det (D®) (z) = f(z), =z €.

Theorem 2 Let Q, f(z) and u(t,x) be as in Theorem 1, and for each t > 0, let
V(t,x) be the solution, in a weak sense, to the following Stokes problem,

AV (t,z) = Vp(t,x), =€ Q,
divV(t,z) =0, x € Q,
V(t,z) = Vu(t,z), x € N
Then,

a) For all xo € Q, the initial value problem for the ordinary differential equa-
tion
t,xz(t)) —V(t,z(t
(1) __Vu(tz(t) = V(¢ x( )), >0,
u(t, z(t)) (5)

lim z(t) = xo,
t—0t () 0



has a unique solution x(t) € C1((0,00),9), and lim;_,, z(t) ezists and
belongs to (.

b) The map ® :Q — Q defined by ®(z0) = limy—,oc 2(t) is a diffeomorphism
of Q such that ®, @~ € CH*(0Q), and it satisfies that

{ det (D®) () = f(x), x €1,
o(z) ==z, x € 0N

We remark that the initial value problems (4) and (5) above are singular in
the sense that the right hand sides —Vu/u or —(Vu — V') /u do not have a limit
as t — 0 for most functions f € C%. Moreover, another difficulty is that we are
interested in the value of the solutions for ¢ = co. Both problems will be solved
in Theorem 3 of Section 2.

Next, in Figure 1 we present two series of pictures with numerical computa-
tions carried out with the algorithms described in Theorem 1 and Theorem 2,
respectively. Here, we take the domain 2 as the unit disc in the plane and the
jacobian function f is defined by

| 14e, if y>0,
f(a:,y)—{ 1—¢, if y<O,

for e = 0.25, 0.5 and 0.75. To represent the action of the transformation maps,
we have depicted, in the first place, the image of a square grid in the original
variables.

Even though this function f does not satisfy the regularity hypotheses of
Theorem 1 and Theorem 2, its clear intuitive meaning renders it suitable. Fur-
thermore, this example suggests that our methods are robust enough to work
in this discontinuous case too.
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2. The singular initial and final value problems.

This section contains a preliminary theorem about the existence, uniqueness
and regularity of solutions to certain types of ordinary differential equations.
This result is not quoted in the most general form, but in a way appropriate to
prove Theorem 1 and Theorem 2. For instance, the existence and uniqueness of
solutions could be proved for functions of class C%! instead of C*0.

Theorem 3 Let Q C R" be a bounded domain of class C*°, and F : (0,00) —
CHO(Q,R™) be a continuous function such that

I (¢, )llero € LH(0,00)
and
F(t,z)-v(z) =0, for all z € 0Q
where v(zx) denotes the outer unit normal to the boundary of Q at . Then,

a) For all o € Q, the initial value problem
z'(t) =F (t,z(t)), t>0,
lim z(t) = xo, 6)

t—0t
has a unique solution T, (t;zo) € C1((0,00),Q). Moreover, tlim Tin(t; o)
—00
exists and belongs to Q.

b) For all xo € Q, the final value problem

z'(t) =F(t,z(t), t>0,
{ lim z(t) = %o, (7)

t—o00
has a unique solution x ¢;(t; T,) € C1((0,00), Q). Moreover, limJr zfi(t; 2oo)
t—0
exists and belongs to Q.
c¢) The maps ®,V : Q — Q defined by
®(zo) = lim 2 (t;20), ¥(2eo) = tl_i>%I+ Tyit; Too),

satisfy ®,¥ € C1°(Q), ¥ =& and
det (D®) (z9) = exp (/ div F' (¢, 2 (85 20)) dt> , for all o € Q. (8)
0

d) Moreover, if for some 0 < a <1 there ezists a constant C' > 0 such that
for all z,y € C° ((0, oo),Q) ,

/Ooo |Do F(s,2(s)) — Do F(s,y(s))| ds < Clle —yllg, (9)

then ®,¥ € C1® (Q). (Here, || - |lo denotes the sup-norm).



Proof: a) First of all, we can construct a bounded linear operator of
extension

£:CY°(Q,R") = CYO(R™,R™), (10)

such that (EF)(z) = F(z) ifz € Qand ||EF ||cromn,rn) < C1 1l e10(@, mmy (see,
for instance, Appendix 2 of Chapter 6 of Gilbarg and Trudinger [12]). So, instead
of the time-dependent vector field F', we consider the extended vector field £F,
which from now on will be denoted by F. We define also p(t) := [|F(t,)||c1.0,
and then p (t) € L'(0, 00).

Let T : C°((0,00), R*) x R® — C°((0, 00), R") be the map

T(2(), ) (1) = mo +/0 F(s, 2(s)) ds. (11)

|uus=§gg{uanexp(—2ﬂfp@wm)}, (12)

equivalent to the usual sup-norm, we can prove that T is well defined and it
satisfies

Using the norm,

IT(@(),20)(8) = T(), 20)(1)] < A%@mwwwwnw
< w—mm%%@mm({(mwmow
< glle—oll (oo (2 [ sras) -1).,

for all ¢ > 0. Therefore,

1
17 (@,20) = Ty, 20y < 5 Il =yl

Then, by the Contraction Mapping Principle, it turns out that, for all zo €
R™, there exists a unique fixed point of T which is the solution z;,(t;z¢) €
C((0,0),R™) of (6).

Moreover, lim;—, o T (z(t), zo) always exists since for 0 < t; < ta,

oo

T ((), z0) (1) — T (x(-), o) (¢2)] §/2||F~'(3:')||Cov0 dSS/ p(s) ds,

t1 tl
and so it can be made as small as one wishes if ¢; is large enough.
In order to finish the proof of paragraph a), it remains to show that if z¢ € Q
then x;, (¢; o) and lim;—, o 2, (¢; o) belong to Q, that is, Q is invariant by (6).
Since F(t,z) is parallel to dQ and Q is a domain of class C*>°, one can prove
that if there exists t; > 0 such that x;,(t1;x0) € O then x;, (t;x0) € 09, for



allt € (t1 —e,t1 +¢). So, on the one hand, if zy € Q, by uniqueness of solutions,
we have that z;,(t;29) € Q. On the other hand, if zo € JQ one can consider
a sequence (zf}) — xo, zf € Q, and then, by the continuity of the fixed point
with respect to parameters, we have also z;, (t;z0) € Q.

b) Certainly, similar arguments can be reproduced to obtain the existence
and uniqueness of the solution z¢;(t; £ ) to the final value problem (7). In this
situation, we have to prove that the transformation S defined by

S(@(), o0) (£) = o0 — / " Fs,a(s))ds,

is a contraction when the space C° ((0,00), R?) is endowed with the following
norm, equivalent to the usual sup-norm,

felly =sup {oolexp (<2 [~ ots)as) }.

¢) Let g : R* — C°((0,00),R") be defined by g(zo) = min(t;z0), where
Zin(t; 2o) is the fixed point of the operator T' defined in (11), for all zp € R".
If we prove that T is C1'° then, by the Uniform Contraction Principle (see
Theorem 2.2 of Chow and Hale [5]), we will obtain that g belongs to C1:* (R"),
and, therefore, the map

®(20) = lim g5(zo)

will also be of class C'? (€2). Obviously, the same will be true for ¥ = &~
So, we start by proving that T is differentiable (in the sense of Fréchet), that
is to say:
|7 (z + h,xo + ho) — T'(x, m0) — DT'(z,20)(h, ho)llo
[|(h; o)l

-0 as |[(h,ho)llo = 0,

where
DT (x(-), 20) (h(-), ho) (t) = ho + / D, (s, 2(s)) h(s) ds,

for all (h, ho) € C°((0,00), R") x R™.
Since F € C1'0 (R*,R"), we have

T (z(-) + h(-),z0 + ho)(t) = T(x(:), z0)(t) — DT (x(-), 0)(h(-), ho)(1)]

</ ( D, F (s, a(s) + Th(s ))—DzF(s,x(s))) h(s)dT) ds

I A

ho)llo / ( ‘D F(s,2(5) + 7h(s)) — D, F(s,(s)| ds> dr.
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Then, taking ¢t; > 0 sufficiently small and ¢t2 > ¢; sufficiently large, in or-
der to decompose in a suitable way the integral from 0 to oo, and using that
|E(t,)||e1o € L'(0,00) and D, F is uniformly continuous in [t;,#s], it is easy
to obtain that 7" is Fréchet differentiable.

Moreover, since we have,

sup  [[(DT'(z +y, w0 +yo) — DT (2, 70)) (h, ho)lly
[[(h,ho)llo <1

o0
= /
0

the same decomposition of the integral can be used to see that DT is C°.

Dy F (s, 2(s) +y(s)) — Do F (s, (s))| ds,

To finish the proof of paragraph c), we must evaluate the jacobian of the
map ®. To do this, let us approximate the previous initial value problem (6) by
the sequence of regular initial value problems:

z,(t) =F(tan(t), 1/n<t<n,
an(l/n) = af,

where 2§ := z;n(1/n; 20), for all n € N and we define ®,, :Q = Q by &,(x) =

zn(n;zy). We leave to the reader to show that @, tends to ® as n — oo in

the C19(Q2)-norm. Obviously, all properties proved for ® before are also true for

®,,. Moreover,
exp (/ div F(t, zn(t; () dt)
1/n

exp ( div F(t, 2 (t; o)) dt) ,

1/n

(13)

det D®,,(z)

(see Corollary 3.1 of Hartman [13]). Then, since ®,, tends to ® as n — oo in
the C1%(Q))-norm, by passing to the limit, we obtain the inequality (8) as was
claimed.

d) Following the notation of paragraph c), we have to prove that gg(zo) =

Tin(t;20) belongs to C1* (Q). From paragraph c), we know that g € C*° (Q)
and

t
Dglﬁ(:no) :/ D, F(s,xin(s;20))Dein(s; xo) ds.

0

Now, let zg, yo be in Q, then

¢
/ (DzF(S,ﬂfin(S; 70)) Do ®in(s;70) — Do F(5,%in(5;90)) Do ®in(s; yo))‘ ds
0

t
S/ |DaF(s, xin(s320)) = Do F'(s, win (53 y0))| | Dain(s; %0)| ds
0

t
+ / D2 F (5, in (53 yo))| | Dain (53 20) — Dain(5: 0)] ds.
0
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As was done in paragraph a) of this proof, multiplying this inequality by
exp (—2 fot p(s)ds), and using (9) and the fact that D x;,(¢;x0) is bounded
in Q, we have

1Dg(0) ~ Dol < C'll7in(()30) = an((), po)lI3
+ 5 Do) — Do)l

where ||-]|" is the equivalent sup-norm defined in (12). The Lipschitz dependence
of the solution of (6) with respect to the initial conditions implies that

1Dgia(z0) — Dgjg(yo)llo < C" llzo — yollg-

So, gjg(wo) belongs to the space Ch* (©2) and, therefore, the same will be true
for ®(zp) = lim;—, g@(xg). Similar arguments can be reproduced to prove that
¥ech(Q). d

3. Transport along the heat equation.

This section is devoted to the proof of Theorem 1 stated in Section 1. With this
aim, we are going to see that the hypotheses of Theorem 3 are satisfied with
F(t,z) = —Vu(t,z)/u(t,z), where u is the solution of the heat equation with
homogeneous Neumann boundary condition and initial value f € C%*(Q).

In order to prove that the C*:°-norm of F(t, -) is integrable in (0, 00) and that
the condition (9) is fullfilled, we will need the second estimate of the following
lemma. The first, which is a prior step of the proof of the second, is stated here
because it will be used later in the proof of Theorem 2.

Lemma 1 Let v be a function of class C>°(Q) where Q is a bounded domain
of class C>® with 0 < 3 < o and 0 < r < R such that r < v(z) < R for all
x € Q. Then, there exists a constant C' > 0, depending on Q, r and R, such
that

i a2

o Y <o(iem-uE), (14)
v CcL.B8

b) ‘@ < O flv = 1]loas. (15)
v CcL.B

We remark that these statements remain true with ||v — a||¢2.s, for any con-
stant @ € R, not necessarily a = 1. But, they will used below only in the case
that a is the spatial average of v that it will turn out to be 1.

Proof: a) Using the following estimate for the C*®-norm of a product of
functions,

J
o1+~ vjllers <C D | Nvillews T llomlleoo | (16)
i=1 m#i
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(see Theorem A.7 of Hérmander [14]) and the fact that v(z) > r > 0 for all
x € ), we have

1 < LW
Vs T T v2 CUB
1 1
< -+0 ||VUHCOB + - IIVvllcoo - :
r co.8
Moreover, since
1 1/v(x) —1/v 1 1
ey R 2l L 2y
Ullco.s r x#y |a:—y| r r
then
1
= < G+ lv—1lers + IVollgoo + VOl [[0 =1l cos)
cLB
< Cs(L+lv—1lers + llv = lero | = Llcos) -

Now, we estimate each term by using the interpolation inequality,

kty

lv=1llces < Caflv - 1||§z”fa lo — 1]go ™, (17)

for k = 0,1 and v = 0,/ (see Theorem A.5 of Hérmander [14]) and we obtain
that

1

;ﬂ %
<y (1 o = 135 o - 1||C0+f3) .
c1.8

Finally, using that v(z) < R, we have the estimate (14).

b) For proving the second inequality, we use first the inequality (16), and
after the estimate (14),

Vo

)

v cL.8
;ﬂ

e (uv flens +[lo = 1lero (1 - 1||C:,%)) |

Then, the estimate (15) follows by using the interpolation inequality (17) and
that v(z) < R. O

Proof of Theorem 1: a) First of all, we will show that F(¢,-) =
—Vu(t,-)/u(t,-) is a continuous map from (0,00) to C1°(Q). Under our reg-
ularity hypotheses for the boundary of €2, the initial value problem for the lin-
ear heat equation with homogeneous Neumann boundary conditions and initial
value u(0,z) = f(z) € C®*(Q2) defines a unique solution u(t,z) continuous in
(t,x) € [0,00) x Q, and the solution curve s u(t,-) is a continuous map from

IN

v

1
C (uwucm; V]l

cL.8

IN
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the open interval (0, 00) into the space C2°(Q). It is even locally Hélder continu-
ous, though the Holder constant can become unbounded as ¢t — 0 (see Belonosov
[1], Solonnikov and Khachatryan [22], and also Mora’s Theorem 2.3 [17]). Fur-
thermore, by the maximum principle it follows that u(t,z) > infg f > 0.

The next step consists in obtaining estimates of ||F' (¢, -)||¢c1.s for 0 < 8 < o'.
For 3 = 0, these estimates will imply that ||F(¢,)||c1.0 € L'(0,00), and for a
suitable choice of 3, they will imply inequality (9) in the proof of paragraph b).

For 0 < t < 1, using the inequalilty (15) of Lemma 1 and the following
crucial estimate for the solution to the heat equation

C
llut, Mle=s < P )y | fllco.e, forall 0 <a <1,

(see Belonosov [1] and Mora [17]) we obtain that

c
1E(, Mlers < Cllult, ) = Lle2r < =gy [1f = Llleo- (18)

In particular, taking 8 = 0 in (18) and since in our case 0 < a < 1, we deduce
that ||F'(t,-)||c1.0 is integrable near ¢ = 0.

Moreover, one of Mora’s results [17] shows that the linear heat equation with
homogeneous Neumann boundary conditions defines an analytic semigroup in
the space C%°(Q). So, for all ¢ > 0, u(t,-) belongs to all the spaces D, v > 0, of
domains of the fractional powers of the infinitesimal generator of the semigroup.
In the same paper, it is shown that these spaces D" are continuously embedded
into C2#(Q) for all v > 1+ (/2 (see Theorem 2.5 of [17]). Hence, there exists
a constant C,, > 0 such that

lu(t, ) = lez.s < Cy lult, ) — 1D (19)

Moreover, since the function u(t,-) — 1 is orthogonal to the constant eigenfunc-
tion of the Laplacian with Neumann boundary conditions (i.e. 1 is the spatial
average of u)

/(u(t,a:) —1)dx = / u(0,2)dr — |Q] = / f(z)dz — Q] =0,
Q Q Q
and then
llut,-) = lezs < Cy flult,) = Ulps < C e Dlu(l,) = U|pv,  (20)

for t > 1 and where 4 is a positive value lower than the second eigenvalue of the
Laplace operator with homogeneous Neumann boundary conditions (the proof
of this inequality can be found in Theorem 1.4.3 of Henry’s book [15], in the
setting of semigroup theory). Then, joining the inequalities (15), (19) and (20)
we obtain that, for 1 <t < oo,

IF(t Mlers < Ce™. (21)
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In particular, taking 8 = 0, we show that ||F'(¢,-)||c1.0 is integrable near t = oo
Therefore, paragraph a) follows from the same paragraph of Theorem 3.

b) In order to prove that the map ® is C*®, we will see that the inequality (9)
is fulfilled. First of all, we observe that (9) with an exponent 8 < « instead of
a is a direct consequence of (18) and (21), since these inequalities would prove
that [|F(t,-)|lc1.e € L'(0,00). But the limit case, 8 = a, is less simple, and we
use for its proof an argument taken from Riviere and Ye [19].

Let us write h = ||z — y||op and let us restrict without loss of the case h < 1.
By using (18) with 8 = 0, (18) for some a < 8 < &', and (21) with g = «, we
have

/OO ID,F (s,2(s)) — Do F (s,y(s))| ds

/ /h / Do F (s,2(s)) = DaF (s,y(s))| ds

/ 2F (s, )era ds + / F (s, llensh® ds + / 1E(s, i h* ds
0

2 1
C ChB —dsp o
< /0 S a/2d5+/h2mds+/l Ce™°h%ds

< C'h%.

IN

Finally, let us calculate [, div F(s, z(s)) ds,

Vu Au  Vu Vu 1 /0u '
i () = S = (G e o)
= 2 D fult,2(0)] = 2 [, 2(1)]

and so,

/tl div E(s, a(s)ds =0 =)

As one sees from (20), u(t,-) — 1 tends uniformly to 0 as ¢ — oco. And we
also know that wu(t,z(t)) — f(xo) as t — 0. So, the limit of this integral
when ¢, — 0 and t2 — oo is In(f(xp)), and therefore using (8), we obtain that
det D(I)(ZE()) = f(ZU()), for all zg € Q. O

4. The viscous modification

In this section we will prove Theorem 2 stated in Section 1. With this aim,
we will see that the hypotheses of Theorem 3 are satisfied with F(t,x) =
— (Vu(t,z) = V(t,x)) /u(t,x), where u is the solution of the heat equation with



15

homogeneous Neumann boundary conditions and initial condition f, and for
each t > 0, V (¢, z) is the weak solution W of the Stokes system

AW (z) =Vp(z), =€,
divW(z) =0, z e, (22)
W(x) =W*(z), z€0Q,

when W*(z) = Vu(t, z)
First of all, we introduce the auxiliar spaces

ckPn) = {W*eckﬁ(ag); W*-u:o},

oQ
Hy () = {pecH'(Q):diveg=0in €, ¢=0at 9Q}.

Then, given W* € C10(9Q), a vector function W € C1:0(Q2) will be called a
weak solution of the Stokes system (22) if divW =01in Q, W = W* at 9 and
fQ VW -V¢ =0, for all ¢ € H&J(Q).

We observe that this definition is not the most general notion of weak solu-
tion, but it will be enough for our purposes.

Next, we present a lemma about the existence and regularity of this class of
solutions.

Lemma 2 Let  C R™ be a bounded domain of class C2 and B such that
0< B<a <1. Forall W* € CLA(09), there exists a unique weak solution W
of the Stokes problem (22) such that W € C*5(Q) and satisfies:

[Wllcoo < C{IW|eoo, (23)
Wllers < CHIWHp1s (24)

Proof: Let us consider first W* € C27(99). In this case, it is known the
existence and uniqueness of a classical solution W € C>#(Q) that it satisfies

IWlieas < o W™ s

for some C3 g > 0 (see Solonnikov [21] and Theorem 7.2 of Galdi [10]). Moreover,
from the maximum modulus principle for the Stokes system, we have also

[Wllcoo < Coo W™ lgoo,

for some Cpo > 0 (see Galdi and Varnhorn [11], or also, the notes for Section
IV.6 of Galdi [10]).

Now, from these two inequalities, and using that C2*(99) is dense in C2:°(0(2),
we have that the solution map of the Stokes system (22)

Top5:C25(0Q) — C*P(Q)
w* - W
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extends to a bounded linear map Tp o : C2°(99Q) — C*°(Q2).

According to Triebel (see Theorem 2.4.2 of [23]), for 0 < # < 1, we consider
C#(Q) as the interpolation space (C°°(),C?5(€))g,00 with 6 = (1+5)/(2+5).
So, the map Ty restricts to a bounded linear map T} 5 : CL5(0Q) — CH5(Q)
such that, if W* € C2#(0Q), then T sW* = T} sW* and

[Wllers < Crp [[Wlgrs- (25)

Note that Triebel [23] works with domains of C*° class, but the same arguments
work in our case since C%°(Q) and C%>#(Q) can be taken as factor spaces of
COO(R™) and C%#(R™), respectively, with a common projection.

Let us consider now W* € CL#(9Q). We want to see that Ty sWW* is a weak
solution of (22). It is known that there exists a sequence (W,*) € C27(9Q) such
that ||[W;]|;1.5 is bounded independently of n and converges to W* in CL7(60)
for each 0 < v < f (see Section 2 of Chapter 7 of Gilbarg and Trudinger
[12]). For our previous arguments, Th W, is bounded in C1#(Q) and has a
subsequence converging in C*°(Q) to some W € C*#(Q). Thus, since Ty sW*
is the classical solution, W is a weak solution of (22). Furthermore, it is easy
to see that it is the only weak solution and, since W = Ty oW* = T} gWW*, this
weak solution satisfies inequalities (24) and (23). O

Proof of Theorem 2: a) First of all, we consider
_ vu’(tv ) - V(tv )
U(t, )

as a map from (0,00) to C1°(Q2). By using Mora’s characterization [17] of the
domains D” of the fractional powers of the generator of the heat semigroup,
as we did in the proof of Theorem 1, we have that Vu(t,-) : (0,00) — C*#(Q2)
is continuous for 0 < f < a'. Moreover, because of inequality (24), V' de-
pends continuously on Vu in the C!'*#-norms. Therefore, similar to the proof of
Theorem 1, we have that F': (0,00) — C"?#(Q,R?) c C*°(Q) is continuous.

Next we will prove that ||F||c1.0 is integrable in (0,00). So, from inequality
(16), the first estimate of Lemma, 1, the maximum principle for u(¢,z), Lemma
2 and the interpolation inequality (17), we have for 0 < 8 < o,

F(t, ) =

V(t,-) ( 1 1 )
C V(t,)||cie— + ||V (E,-)]||co.0
2 s o (el + Ve lens | 5]
148
< o (uw(t, e + [IVult, e (1 Fflu(t, ) - 1||2;‘;))
< Colult,) - Lens

where 0 < r < infg f. Now, taking into account the estimates (18) and (21),
we obtain that

C
1Pl < ooy

|Fllcre < Ce % t>1. (27)

IN

0<t<1, forall 0<3<da, (26)
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So, in particular ||F(t,-)||lc1.0 € L (0, 00).
Finally, the inequality

/ T IDLF(t,2(t)) — D F(ty(1)] dt < C 1z — g3

is proved in the same way as in Theorem 1, but using estimates (26) and (27)
instead of estimates (18) and (21).

b) To compute det(D®)(z), we calculate [;°div F(t,z(t))dt along a solution
z(t) of (5),
Au  Vu Vu-V
_— + —_ .
u u u

div F

I
=
=

/|\
<
<

S
S

N——

|

1 /0u ]
1D D
=~ g wte®)) = -2 (n(ult, 2(2)))

and the rest of the calculation is the same as in the proof of Theorem 1.
Lastly, one also observes that for z € 9 one has ®(z) = z, since F(t,z) =0
for all t > 0. O
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