Cartan-Eilenberg Categories and Descent Categories

Pere Pascual Universitat Politècnica de Catalunya

Advanced School on Homotopy Theory and Algebraic Geometry 7-12 September, 2009, Seville

Part I. Cartan-Eilenberg categories.

- F.Guillén, V. Navarro, P.P., A. Roig: *A Cartan-Eilenberg* approach to homotopical algebra. Journal of Pure and Appl. Algebra (2009), in press. (ArXiv 0707.3704)
- GNPR, *Moduli spaces and formal operads*. Duke Math. J. **129** (2005), 292-335.
- GNPR, *Monoidal functors, acyclic models and chain operads.* Canadian J. Math. **60** (2008), 348-378.

Part II. Simplicial descent categories. By Beatriz Rodríguez.

Contents

- 1. Introduction
- 2. Remarks on localization of categories
- 3. Cofibrant objects
- 4. Cartan-Eilnberg categories
- 5. Minimal models: Sullivan categories
- Models of functors
- 7. Cotriples and Cartan-Eilenberg categories

1. Introduction

- ▶ R: commutative ring
- $ightharpoonup C_+(R)$: positive chain complexes of R-modules
- ➤ ~: homotopy equivalence relation between morphisms of complexes
- \triangleright [X, Y]: homotopy classes of morphisms between complexes
- ▶ $\mathbf{C}_+(Proj(R)) \subset \mathbf{C}_+(R)$: subcategory of complexes which are projective in each degree
- ▶ W: quasi-isomorphisms

Theorem (1)

$$\begin{array}{c} w: X \longrightarrow Y \in \mathcal{W} \\ P \in \mathcal{C}_{proj} \end{array} \right\} \Longrightarrow w_* : [P, X] \stackrel{\cong}{\longrightarrow} [P, Y]$$

That is, given f as in the diagram, there exists g, unique up to homotopy, with $wg \sim f$.

Theorem (2)

For any chain complex X there is a projective resolution, that is,

$$\exists \varepsilon : P_X \longrightarrow X \in \mathcal{W}, such that P_X \in Ob \mathbf{C}_+(Proj(R)).$$

Take
$$\mathbf{K}_{+}(R) = \mathbf{C}_{+}(R)/\sim$$
, $\mathbf{D}_{+}(R) = \mathbf{C}_{+}(R)[\mathcal{W}^{-1}]$, etc.

Corollary

The natural functor $\mathbf{K}_+(Proj(R)) \longrightarrow \mathbf{D}_+(R)$, induces an equivalence of categories

$$\mathbf{K}_+(Proj(R)) \cong \mathbf{D}_+(R).$$

Moreover, the composition of the inverse of this equivalence with the inclusion $\mathbf{K}_+(Proj(R)) \longrightarrow \mathbf{K}_+(R)$,

$$\lambda: \mathbf{D}_{+}(R) \longrightarrow \mathbf{K}_{+}(R)$$

is a left adjoint functor of the localization functor $\gamma: \mathbf{K}_{+}(R) \longrightarrow \mathbf{D}_{+}(R)$.

Corollary

Given an additive functor $F: \mathbf{C}_+(R) \longrightarrow \mathcal{D}$, there exists its left derived functor

$$\mathbb{L}F: \mathbf{D}_{+}(R) \longrightarrow \mathcal{D}$$

$$X \mapsto F(\lambda(X))$$

Main features of our approach:

- ▶ The initial data are two classes of morphisms $S \subseteq W$ of C.
- From S, W we define the cofibrant objects, which are "homotopy invariant".
- ► We work out a relative version which allows to include minimal models in our picture.
- ▶ We give an interpretation of derived functors in terms of the cofibrant model of the functor.
- ▶ We include cotriple cohomology in our setting.

1. Remarks on localization of categories.

Data: a category C and a class of morphisms W. The *localization* of C with respect to W is

$$\gamma: \mathcal{C} \longrightarrow \mathcal{C} \left[\mathcal{W}^{-1} \right]$$

such that:

- (i) For all $w \in \mathcal{W}$, $\gamma(w)$ is an isomorphism.
- (ii) For any category $\mathcal D$ and any functor $F:\mathcal C\longrightarrow \mathcal D$ that transforms morphisms $w\in \mathcal W$ into isomorphisms, there exists a unique functor $F':\mathcal C[\mathcal W^{-1}]\longrightarrow \mathcal D$ such that $F'\circ \gamma=F$.

Example

Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a functor and take

$$W = \{f \mid F(f) \text{is an isomorphism}\}.$$

These classes are saturated and satisfy the 3*outof* 2 property.

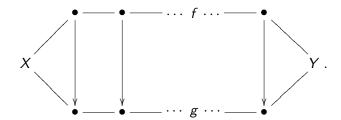
For any class \mathcal{W} , the <u>saturation</u> of \mathcal{W} is the class of morphisms:

$$\overline{\mathcal{W}} = \gamma^{-1}(Iso_{\mathcal{C}[\mathcal{W}^{-1}]}).$$

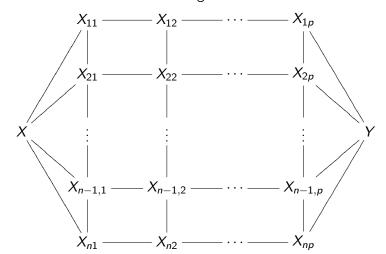
A W-zigzag f from X to Y is a finite sequence of morphisms of C, going in either direction, between X and Y,

$$f: X \longrightarrow \bullet \longrightarrow \bullet \longrightarrow Y$$

where the morphisms going from right to left are in \mathcal{W} . A morphism from a \mathcal{W} -zigzag f to a \mathcal{W} -zigzag g of the same type is a commutative diagram in \mathcal{C} ,



A *hammock* is a commutative diagram H in C



- (i) in each column of arrows, all (horizontal) maps go in the same direction, and any row is a $\mathcal{W}\text{-zigzag}$,
- (ii) in each row of arrows, all (vertical) maps go in the same direction, and they are arbitrary maps in C.

Define a category $C_{\mathcal{W}}$ by:

- ightharpoonup *Ob* $\mathcal{C}_{\mathcal{W}} = \textit{Ob} \ \mathcal{C}$
- ► $Hom_{C_W}(X, Y)$ = equivalence classes of W-zigzags from X to Y defined by hammocks

Theorem (Dwyer-Hirschhorn-Kan-Smith, 2004)

The category $\mathcal{C}_{\mathcal{W}}$, together with the obvious functor $\mathcal{C} \longrightarrow \mathcal{C}_{\mathcal{W}}$, is a solution to the universal problem of the category of fractions $\mathcal{C} \left[\mathcal{W}^{-1} \right]$, i.e.

$$\mathcal{C}_{\mathcal{W}} \cong \mathcal{C}\left[\mathcal{W}^{-1}\right].$$

Application to congruences

Let $\mathcal C$ be a category with a congruence \sim and consider the functor

$$\pi: \mathcal{C} \longrightarrow \mathcal{C}/\sim$$

Say that a morphism $f: X \longrightarrow Y$ in \mathcal{C} is a homotopy equivalence if there is a $g: Y \longrightarrow X$ such that

$$gf \sim 1_X$$
, $fg \sim 1_Y$.

Let $\mathcal S$ be the class of homotopy equivalences and $\delta:\mathcal C\longrightarrow\mathcal C[\mathcal S^{-1}].$

Proposition

Suppose that $f \sim g$ implies $\delta f = \delta g$, then the categories \mathcal{C}/\sim and $\mathcal{C}[\mathcal{S}^{-1}]$ are canonically isomorphic.

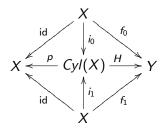
Definition

A *cylinder object over* X is an object Cyl(X) in $\mathcal C$ together with morphisms $i_0, i_1: X \longrightarrow \operatorname{Cyl}(X)$ and $p: Cyl(X) \longrightarrow X$ such that $p \in \mathcal S$ and $p \circ i_0 = \operatorname{id}_X = p \circ i_1$.

Corollary

If \sim is defined by a cylinder object, then $\mathcal{C}/{\sim}=\mathcal{C}[\mathcal{S}^{-1}].$

Proof:



Examples

$$ightharpoonup \mathcal{C} = \mathsf{Top} : \ \mathcal{C} \lor I(X) = X \times I.$$

▶
$$C = \mathbf{C}_*(R)$$
: $Cyl(X) = X \oplus X[-1] \oplus X$ with differential

$$D = \left(\begin{array}{ccc} d & -id & 0 \\ 0 & -d & 0 \\ 0 & id & d \end{array}\right)$$

C a Quillen model category, a cylinder object is given by a factorization

$$X \sqcup X \rightarrowtail \mathit{Cyl}(X) \overset{\sim}{\twoheadrightarrow} X.$$

Relative localization

Definition

Let $(\mathcal{C},\mathcal{E})$ be a category with weak equivalences and \mathcal{M} a full subcategory. The *relative localization of the subcategory* \mathcal{M} of \mathcal{C} with respect to \mathcal{E} is

$$\mathcal{M}[\mathcal{E}^{-1},\mathcal{C}]=$$
 full subcategory of $\mathcal{C}[\mathcal{E}^{-1}]$ generated by $\mathcal{M}.$

Examples

1. Take C = Adgc(k) and S the homotopy equivalences. If M is the class of minimal algebras,

$$\mathcal{M}[\mathcal{S}^{-1}] = \mathcal{M}, \text{ while } \mathcal{M}[\mathcal{S}^{-1}, \mathcal{C}] = \mathcal{M}/\sim.$$

Examples

2. In some examples, $\mathcal{M}[\mathcal{E}^{-1}, \mathcal{C}] = \mathcal{M}[\mathcal{E}^{-1}]$:

Suppose the following conditions on \mathcal{E} :

- Suppose the following conditions on a
- (a) ${\mathcal E}$ has a right calculus of fractions,
- (b) for every morphism $w: X \longrightarrow M$ in $\overline{\mathcal{E}}$, with $M \in Ob \mathcal{M}$, there exists a morphism $N \longrightarrow X$ in $\overline{\mathcal{E}}$, where $N \in Ob \mathcal{M}$,

then, $\bar{i}: \mathcal{M}[\mathcal{E}^{-1}] \cong \mathcal{M}[\mathcal{E}^{-1}, \mathcal{C}].$

3. Cofibrant objects

Data: a category $\mathcal C$ with two classes of morphisms $\mathcal S\subseteq\mathcal W$

- ▶ S are the strong (or global) equivalences; we assume $Iso(C) \subset S$.
- ▶ W are the weak (or local) equivalences.

Examples

1. Given an abelian category A, take

$$\mathcal{C} = \mathbf{C}_*(\mathcal{A}),$$
 $\mathcal{W} = \text{quasi-isomorphisms},$
 $\mathcal{S} = \text{homotopy equivalences}.$

Examples

2. Topological spaces:

$$\mathcal{C} = \mathbf{Top},$$
 $\mathcal{W} = \text{weak homotopy equivalences},$
 $\mathcal{S} = \text{homotopy equivalences}.$

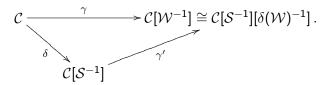
3. Let X be a topological space,

$$\mathcal{C} = \mathbf{Sh}(X, \mathbf{C}_+(\mathbb{Z}))$$
, sheaves of complexes of abelian groups.

$$\mathcal{W} \ = \ \{f: F \longrightarrow G, f_x: F_x \longrightarrow G_x \text{ qis}, \forall x \in X\}.$$

$$\mathcal{S} = \{f: F \longrightarrow G, f(U): F(U) \longrightarrow G(U), \operatorname{qis}, \forall \operatorname{open} U \subseteq X\}.$$

We fix the following notation for the localizing categories and functors



Remark

For homotopy invariant notions we may restrict attention to γ' .

Definition

An object M of C is (S, W)-cofibrant if for any diagram in $C[S^{-1}]$,

$$\delta(X)$$

$$\downarrow^{g} \qquad \qquad \downarrow^{\delta(w)}$$

$$\delta(M) \xrightarrow{f} \delta(Y)$$

with $w \in \mathcal{W}$, there exists a *unique* morphism g of $\mathcal{C}[S^{-1}]$ making the triangle commutative. That is,

$$\mathcal{C}[\mathcal{S}^{-1}](M,X) = \mathcal{C}[\mathcal{S}^{-1}](M,Y).$$

Remarks

- 1. Diagrams are in $C[S^{-1}]$.
- 2. M cofibrant $\Rightarrow C[S^{-1}](M, -)$ is an "exact functor".
- 3. Being cofibrant is "homotopy invariant".

Examples

- 1. Projective modules: $C_+(Proj(R))$ are cofibrant in $C_+(R)$. Remark that there are cofibrant objects not in $C_+(Proj(R))$: any contractible complex is cofibrant.
- 2. $\mathcal{C}=\mathbf{Top}$ and \mathcal{W} the weak homotopy equivalences. Then the CW complexes are cofibrant.

Proposition

M is (S, W)-cofibrant if and only if for any $X \in Ob C$,

$$\mathcal{C}[\mathcal{S}^{-1}](M,X) = \mathcal{C}[\mathcal{W}^{-1}](M,X).$$

Corollary

Let (C, S, W) be a category with strong and weak equivalences and M be a full subcategory of C_{cof} . The functor

$$j: \mathcal{M}[\mathcal{S}^{-1}, \mathcal{C}] \longrightarrow \mathcal{C}[\mathcal{W}^{-1}]$$

is fully faithful.

In particular, the functor j reflects isomorphisms, that is, if $X, Y \in Ob \mathcal{M}$, then

$$f \in \mathcal{W} \Longrightarrow f \in \mathcal{S}$$
.

For $\mathcal{C}=\text{Top}$, the example of topological spaces with homotopy equivalences and weak homotopy equivalences, and $\mathcal{M}=\text{CW}$ this is the classical Whitehead's theorem.

3. Cartan-Eilenberg categories

Definition

(C, S, W) is a *left Cartan-Eilenberg* category if there are sufficiently many cofibrant objects:

$$\forall X \in Ob \ \mathcal{C}, \ \exists M \in Ob \ \mathcal{C}_{cof}, \ f : \delta(M) \longrightarrow \delta(X) \in \overline{\delta(W)}.$$

Theorem

(C, S, W) is a left CE category iff j induces an equivalence of categories

$$j: \mathcal{C}_{cof}[\mathcal{S}^{-1}, \mathcal{C}] \cong \mathcal{C}[\mathcal{W}^{-1}]$$

Examples

- 1. Any catgeory $\mathcal C$ with classes $\mathcal S=\mathcal W$ is a left CE category.
- 2. If \mathcal{A} is an abelian category with sufficiently many projectives and $\mathcal{W} = qis$, there is an equivalence of categories

$$K_+(Proj(A)) \cong D_+(A).$$

3. Every topological space is weakly equivalent to a *CW*-complex, so **Top** is a left CE.

Examples

4. More generally, if $\mathcal C$ is a Quillen model category and $\mathcal W$ is the class of weak equivalences, there is an equivalence of categories

$$\pi \mathcal{C}_{\mathsf{cf}} \cong \mathcal{C}_f[\mathcal{W}^{-1}],$$
 (1)

hence C_f with the weak equivalences and the right/left homtopies is a left CE. E.g.

 $C_*(A)$, Top, PreSh(X, SSets), Adgc(k), . . .

- 5. There are variations on the model axioms proposed by J. Baues, K. Brown, D. Cisinski, R. Thomason, etc. leading to an equivalence as (1) which also give left CE structures.
- 6. There is the dual notion of right CE ...

Corollary (Cofibrant model functor)

Let (C, S, W) be a left CE category. There exist

$$r: \mathcal{C}[\mathcal{S}^{-1}] \longrightarrow \mathcal{C}_{cof}[\mathcal{S}^{-1}, \mathcal{C}], \quad \varepsilon: ir \Rightarrow 1$$

such that:

- (1) $\varepsilon_X : ir(X) \longrightarrow X$ is a cofibrant left model of X.
- (2) $r(\delta(W)) \subset Iso_{\mathcal{C}_{cof}[S^{-1},C]}$ and induces an equivalence of categories

$$\overline{r}: \mathcal{C}[\mathcal{W}^{-1}] \longrightarrow \mathcal{C}_{cof}[\mathcal{S}^{-1}, \mathcal{C}]$$

quasi-inverse to j.

(3) M cofibrant $\Longrightarrow \varepsilon_M : r(M) \longrightarrow M$ is an isomorphism in $\mathcal{C}[\mathcal{S}^{-1}]$.

Consider the composition

$$\lambda: \mathcal{C}[\mathcal{W}^{-1}] \stackrel{\overline{r}}{\longrightarrow} \mathcal{C}_{cof}[\mathcal{S}^{-1}, \mathcal{C}] \stackrel{i}{\longrightarrow} \mathcal{C}[\mathcal{S}^{-1}].$$

One can prove that λ is left adjoint to γ' . More precisely, we have

Proposition (Bousfield localization)

 $(\mathcal{C}, \mathcal{S}, \mathcal{W})$ is a left CE iff the localization $\gamma' : \mathcal{C}[\mathcal{S}^{-1}] \longrightarrow \mathcal{C}[\mathcal{W}^{-1}]$ admits a left adjoint

$$\lambda: \mathcal{C}[\mathcal{W}^{-1}] \longrightarrow \mathcal{C}[\mathcal{S}^{-1}].$$

In such case, $C_{cof}[S^{-1}, C]$ is the essential image of λ .

For a left CE category we have a diagram

$$C[S^{-1}]$$

$$C_{cof}[S^{-1}, C] \xrightarrow{r} C[W^{-1}]$$

- ▶ *i* is the inclusion functor,
- \triangleright i, \overline{r} are inverse equivalences,
- $ightharpoonup r = \overline{r}\gamma'$ is a coreflection, $i \dashv r$
- $\lambda = i\overline{r} : \mathcal{C}[\mathcal{W}^{-1}] \longrightarrow \mathcal{C}[\mathcal{S}^{-1}].$ It follows that $\lambda \dashv \gamma'$.

Theorem

Let $\mathcal M$ be a full subcategory of $\mathcal C$, $w:Y\longrightarrow X\in\mathcal W$ and $M\in Ob\,\mathcal M$. Suppose that

- (i) for any w, M, and any $f \in \mathcal{C}(M,X)$, there exists a morphism $g \in \mathcal{C}[\mathcal{S}^{-1}](M,Y)$ such that $w \circ g = f$ in $\mathcal{C}[\mathcal{S}^{-1}]$;
- (ii) for any w and M, the map

$$w_*: \mathcal{C}[\mathcal{S}^{-1}](M, Y) \longrightarrow \mathcal{C}[\mathcal{S}^{-1}](M, X)$$

is injective; and

(iii) for each object X of C there exists a morphism $\varepsilon : M \longrightarrow X$ in C such that $\varepsilon \in W$ and $M \in Ob \mathcal{M}$:

Then,

- (1) every object in M is cofibrant;
- (2) (C, S, W) is a left Cartan-Eilenberg category; and
- (3) the functor $\mathcal{M}[S^{-1}, \mathcal{C}] \longrightarrow \mathcal{C}[\mathcal{W}^{-1}]$ is an equivalence of categories.

Example (Complexes of exact categories)

An exact category ${\mathcal A}$ is an additive category with a class ${\mathcal E}$ of exact sequences

$$0 \longrightarrow A' \rightarrowtail A \twoheadrightarrow A'' \longrightarrow 0$$

satisfying:

E0 $\forall A \in \mathcal{A}, 1_A$ is an admissible mono and epi.

E1 admissible monos and epis are closed under composition.

E2

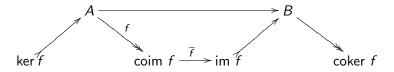
$$A > \longrightarrow B$$
 $A' > \longrightarrow B'$
 $\downarrow PO \qquad and \qquad PB \qquad \downarrow A' > \longrightarrow B'$

Examples

- 1. Any abelian category ${\mathcal A}$ with ${\mathcal E}$ the class of all exact sequences.
- 2. Let be \mathcal{A} an abelian category and $F(\mathcal{A})$ the category of filtered objects. Take \mathcal{E} the sequences which are exact at any stage of the filtration. Then $(F(\mathcal{A}), \mathcal{E})$ is an exact category.

Remark

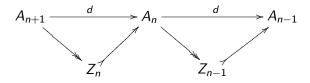
In an abelian category we can decompose a morphism



with \overline{f} an isomorphism. If it is possible to get such a decomposition in an exact category, \overline{f} is not necessarily an isomorphism.

One can do some homological algebra on an exact category (A, \mathcal{E}) :

1. A chain complex A_* is acyclic if the differential factorizes as



with $Z_n \rightarrow A_n \rightarrow Z_{n-1}$ an exact sequence (of \mathcal{E}).

- A morphism w : A → B in an exact category is a quasi-isomorphism if the cone c(w) is an acyclic complex. If A is idempotent complete, then the contractible complexes are acyclic.
- 3. Projective objects are defined with respect to admissible epis.

Theorem

Let $(\mathcal{A}, \mathcal{E})$ be an idempotent complete exact category with enough projective objects. With the usual structure of homotopy equivalences and quasi-isomorphisms, $(\mathbf{C}_+(\mathcal{A}), \mathcal{S}, \mathcal{W})$ is a left CE category.

Example

- ▶ \mathcal{A} an abelian category and $\mathbf{FC}_{+}(\mathcal{A})$ the category of positive filtered chain complexes (X, W) of \mathcal{A} (we assume the filtration $W_p = 0$ for p < 0).
- \triangleright S the class of filtered homotopies
- ▶ W the class of filtered quasi-ismomorphisms (that is, the w with $Gr_n^W w$ are quasi-isomorphism).

Then $(\mathbf{FC}_{+}(\mathcal{A}), \mathcal{S}, \mathcal{W})$ is a left CE category.

The filtered complexes (P, W) such that $Gr_p^W(P)$ is projective in each degree are a sufficient class of cofibrant objects.

Example (A non left CE category: Freyd's example, CN)

- ► 1: class of all ordinals
- $ightharpoonup R = \mathbb{Z}[I]$ polynomial ring "freely generated" by I
- \blacktriangleright A abelian category of *small* R-modules

Freyd (1966) observed that $Ext^1_{\mathcal{A}}(\mathbb{Z},\mathbb{Z}) = \mathbf{D}(\mathcal{A})(\mathbb{Z},\mathbb{Z}[1])$ is a proper class, so the derived category $\mathbf{D}_+(\mathcal{A})$ is not locally small.

As a consequence $\mathbf{C}_+(\mathcal{A})$ with the homotopy equivalences and quasi-isomorphisms is not a left (nor right) CE category.

Example (Another non-example)

- $ightharpoonup \mathbb{P}^1$: projective space over \mathbb{C}
 - lacktriangledown $QCoh(\mathbb{P}^1)$: abelian category of quasicoherent sheaves on \mathbb{P}^1

The category $C_+(Coh(\mathbb{P}^1))$, with the classes of homotopy equivalences and quasi-isomorphisms, is not a left CE category.

Resolvent functors

Let (C, S, W) be a category with strong and weak equivalences.

Definition

A resolvent functor (or cofibrant replacement functor) is a functor $R:\mathcal{C}\longrightarrow\mathcal{C}$ together with a natural transformation $\varepsilon R\Rightarrow 1_{\mathcal{C}}$, such that

- (i) $R(X) \in \mathcal{C}_{cof}$.
- (ii) $\varepsilon_X : R(X) \longrightarrow X$ is in $\overline{\mathcal{W}}$.

Remark

If R is a resolvent functor, then $\overline{\mathcal{W}} = R^{-1}(\overline{\mathcal{S}})$.

Proposition

Let (R, ε) be a left resolvent functor on \mathcal{C} . Then,

- 1. (C, S, W) is a left Cartan-Eilenberg category;
- 2. the canonical functor $\alpha:\mathcal{C}_{cof}[\mathcal{S}^{-1}]\longrightarrow\mathcal{C}[\mathcal{W}^{-1}]$ is an equivalence of categories; and
- 3. an object X of \mathcal{C} is cofibrant if and only if $\varepsilon_X : RX \longrightarrow X$ is an isomorphism in $\mathcal{C}[\mathcal{S}^{-1}]$.

Proposition

Let $\mathcal C$ be a category, $\mathcal S$ a class of morphisms and $R:\mathcal C\longrightarrow \mathcal C$ a functor with an augmentation $\varepsilon:R\Rightarrow 1_{\mathcal C}$. Take $\mathcal W=R^{-1}(\overline{\mathcal S})$. Then,

$$\left. \begin{array}{l} R(\mathcal{S}) \subseteq \mathcal{S} \\ R\varepsilon_{X}, \varepsilon_{R(X)} \in \mathcal{S} \end{array} \right\} \Longrightarrow \left. \begin{array}{l} R \text{ is cofibrant replacement} \\ \text{for } (\mathcal{C}, \mathcal{S}, \mathcal{W}) \end{array} \right.$$

Example

Free *R*-module generated by an *R*-module.

5. Minimal models: Sullivan categories

Definition

Let $(\mathcal{C}, \mathcal{S}, \mathcal{W})$ be a category with strong and weak equivalences. We say that a *cofibrant* object M of \mathcal{C} is *minimal* if if any weak equivalence $w: M \longrightarrow M$ of \mathcal{C} is an isomorphism, that is,

$$End_{\mathcal{C}}(M) \cap \mathcal{W} = Aut_{\mathcal{C}}(M).$$

Examples

- ▶ In an abelian category A with sufficiently many projectives, a complex of projectives with zero differential is minimal.
- ► A discrete topological space is minimal in **Top**.

Remarks

- ► For an object *M*, being minimal is not a homotopy invariant property.
- ► The inclusion functor

$$\mathcal{C}_{min}[\mathcal{S}^{-1}] \longrightarrow \mathcal{C}_{min}[\mathcal{S}^{-1}, \mathcal{C}]$$

is not, generically, an equivalence of categories.

Definition

We say that (C, S, W) is a *left Sullivan category* if there are enough minimal left models.

Example (A trivial one)

Let \mathbf{k} be a field. Then $\mathbf{C}_{+}(\mathbf{k})$, with homotopy equivalences and quasi-isomorphisms, is a Sullivan category.

Example (Sullivan's original example)

- ▶ k a field of characteristic zero
- ► Adgc(k)₁ the category of connected and simply connected commutative differential graded k-algebras
- ▶ S be the class of homotopy equivalences: defined after the path object $Path(A) := A \otimes \mathbf{k}[t, dt]$
- $\blacktriangleright \mathcal{W}$ quasi-isomorphisms
- ► M_S subcategory of Sullivan's minimal algebras

Theorem (Sullivan 1977, Griffiths-Morgan 1981)

 $(Adgc(k)_1, S, W)$ is a left Sullivan category and M_S is the subcategory of minimal objects of $Adgc(k)_1$.

Example (Filtered algebras, Cirici 2009)

- **k** a field of characteristic zero
- ► **FAdgc**(k)₁ category of filtered *dgc* 1-connected algebras.
- ▶ filter the path object Path(A) = A[t, dt] in such a way that t and dt have weight 0
- ▶ S be the class of homotopy equivalences: defined after the filtered path object Path(A)
- $ightharpoonup \mathcal{W}$ quasi-isomorphisms
- $lackbox{}{\cal M}_S$ subcategory of Sullivan's minimal algebras

Theorem

 $(\mathsf{FAdgc}(k)_1, \mathcal{S}, \mathcal{W})$ is a left Sullivan category.

Application to Hodge Theory

Let (A, W) be a filtered $dgc \mathbf{k}$ -algebra.

Recall that the differential $d: A \longrightarrow A$ is strict with respect to W if

$$d(W_pA) = W_pA \cap d(A).$$

Lemma (Deligne)

d is strict with respect to W iff the spectral sequence $E_r^{pq}(W)$ degenerates in the E_1 -term.

Theorem

Let A be a filtered dgc algebra such that d is strict and Λ the filtered minimal model. Then Λ is a minimal model of A in $Adgc(k)_1$.

Corollary

Let X be a (simply connected) compact Kähler manifold, A(X) be the algebra of C^{∞} -differential forms over X, then the Hodge filtration of A(X) passes to the minimal model of A(X).

Corollary (Morgan 1978)

Let X be a compact algebraic variety, $D \subseteq X$ a divisor with normal crossings and $U = X \setminus D$. Let $A_X(logD)$ be the algebra of differential forms with logarithmic singularities along D. The weight filtration of $A_X(logD)$ induces a filtration on its minimal model.

Example (Differential graded operads)

Definition

Let C be a symmetric monoidal category.

An *operad* of C is a sequence of objects $\{P(n)\}_{n\geq 1}$ together with the following data:

- 1. a unit morphism $\eta: \mathbf{1} \longrightarrow P(1)$,
- 2. an action of the symmetric group Σ_n on P(n), $n \ge 1$,
- 3. product morphisms

$$\gamma_{\ell;m_1,\ldots,m_\ell}: P(I)\otimes P(m_1)\otimes\cdots\otimes P(M_\ell)\longrightarrow P(m),$$

for all $\ell, m_i \geq 1$, where $m = m_1 + \cdots + m_\ell$, satisfying certain compatibility conditions.

Examples

1. Dg operads

Let \mathbf{k} be a field and consider $\mathbf{C}_+(\mathbf{k})$ as a symmetric monoidal category with the tensor product $\otimes_{\mathbf{k}}$. An operad of $\mathbf{C}_+(\mathbf{k})$ is called a *dg operad*; denote $\mathbf{Op}(\mathbf{k})$ the category of dg operads. Some examples:

- Com operad : $Com(n) = \mathbf{k}, n \ge 1$
- Ass operad : $Ass(n) = \mathbf{k}[\Sigma_n], n \ge 1$
- Endomorphism operad: given $V \in Ob \ \mathbf{C}_{+}(\mathbf{k})$, the operad of endomorphisms of V, End_{V} , is

$$End_V(n) = \underline{Hom}_{C_+(k)}(V^{\otimes n}, V), n \geq 1$$

Examples

2. Moduli space of curves of genus 0 with ℓ labelled points, $\overline{\mathcal{M}}_0$

$$\mathcal{M}_{0,\ell} \ = \ \text{moduli space of ℓ labeled points on \mathbb{P}^1 , $\ell \geq 3$,}$$

(1)
$$\overline{\mathcal{M}}_{0,\ell} = \text{Grothendieck-Knudsen compactification}$$
 of $\mathcal{M}_{0,\ell}$

Take

$$\overline{\mathcal{M}}_0(1)=*,\quad \overline{\mathcal{M}}_0(\ell)=\overline{\mathcal{M}}_{0,\ell+1}$$

Geometric operations on $\overline{\mathcal{M}}_0$:

- Action of symmetric groups: permutation of labeled points
- Composition: There are algebraic maps

$$\circ_i: \overline{\mathcal{M}}_{0,\ell} \times \overline{\mathcal{M}}_{0,m} \longrightarrow \overline{\mathcal{M}}_{0,\ell+m-2}, \ 0 \leq i \leq \ell,$$

given by

$$(C; x_0, \dots, x_{\ell}) \circ_i (D; y_0, \dots, y_m) = ((C \sqcup D)/x_i \sim y_0; x_0, \dots, x_{i-1}, y_1, \dots, y_m, x_{i+1}, \dots, x_{\ell})$$

k field of characteristic zero

 \mathcal{M} is the subcategory of minimal objects.

- ▶ take the path object $Path(P) = P \otimes \mathbf{k}[t, dt]$ and the induced homotopy relation of operads
- ▶ A quasi-isomorphism is a morphism of operads $w: P \longrightarrow Q$ such that $w(n); P(n) \longrightarrow Q(n)$ is is quasi-isomorphism, $n \ge 1$.
- it is possible adapt Sullivan's defintion of minimal algebra to $\mathbf{Op}(\mathbf{k})$, so there is a class of minimal operads \mathcal{M} .

Theorem (Markl 1996, Guilllén-Navarro-Pascual-Roig 2005) Let $\mathbf{Op_1}(\mathbf{k})$ be the full subcategory of operads P such that $H_*(P(1)) = 0$. Then $(\mathbf{Op_1}(\mathbf{k}), \mathcal{S}, \mathcal{W})$ is a left Sullivan category and

We associate to $\overline{\mathcal{M}}_0$ two dg operads:

- operad of rational singular chains, $S_*(\overline{\mathcal{M}}_0;\mathbb{Q})$
- operad of rational homology $H_*(\overline{\mathcal{M}}_0;\mathbb{Q})$

Definition

A dg operad P is *formal* if P and HP are weakly equivalent.

Theorem (Guillén-Navarro-Pascual-Roig 2005) $S_*(\overline{\mathcal{M}}; \mathbb{Q})$ is a formal dg operad.

Example (Deformation functors)

- $ightharpoonup \mathcal{C}=\mathbf{Art}(\mathbb{C})$ category of local artinian \mathbb{C} -algebras, with residue field \mathbb{C}
- $ightharpoonup \hat{\mathcal{C}}$ category of complete local noetherian \mathbb{C} -algebras, with residue field \mathbb{C}
- ▶ Cat(C, Sets) covariant functors $F : C \longrightarrow Sets$ with $F(\mathbb{C}) = \{*\}$
- ▶ there is a natural functor

$$\hat{\mathcal{C}} \longrightarrow \mathsf{Cat}(\mathcal{C},\mathsf{Sets})$$

Its image is the subcategory of prorepresentable functors.

▶ tangent space $t_F = F(\mathbb{C}[\varepsilon]), \varepsilon^2 = 0$

Definition

A morphism $u: F \longrightarrow G$ is

- ightharpoonup unramified if t_{μ} is injective,
- **smooth** if for any surjection $A \longrightarrow B$ in C, the map

$$\eta: F(A) \longrightarrow G(A) \times_{G(B)} F(B)$$

is surjective

• étale if it is unramified and smooth ($\Rightarrow t_u$ bijective)

Given a functor F and morphisms of C $A' \longrightarrow A \longleftarrow A''$. we consider

$$\beta: F(A' \times_A A'') \longrightarrow F(A') \times_{F(A)} F(A'').$$

Define the following properties:

H3 dim_C $t_F < \infty$.

H1
$$\beta$$
 is surjective for any simple surjection $A'' \longrightarrow A$

H1
$$\beta$$
 is surjective for any simple surjection $A'' \longrightarrow A$,

H2
$$\beta$$
 is bijective for $A = \mathbb{C}$, $A'' = \mathbb{C}[\varepsilon]$,

Definition

Say that F has a *hull* if there is an object $C \in Ob\ \hat{C}$ and an étale morphism $h_C \longrightarrow F$.

Theorem (Schlesinger 1968)

Any deformation functor satisfying properties H1-H3 has a hull.

Fact: an étale morphism $h_R \longrightarrow h_{R'}$ is an isomorphism.

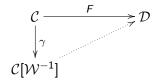
So we can interpret Schlessinger theorem in the following form:

Corollary

Let **Def** be the category of deformation functors satisfying H1-H3. Take S=W the class of étale morphisms of functors. Then, (**Def**, W) is a left Sullivan category and its minimal models are the prorepresentable functors.

6. Functor categories: models of functors and derived functors

Consider (C, W) a category with weak equivalences. Given a functor $F: C \longrightarrow \mathcal{D}$ we look for an approximation



Obviously, if $F(W) \subset Iso_{\mathcal{D}}$, then F induces a functor

$$F': \mathcal{C}[\mathcal{W}^{-1}] \longrightarrow \mathcal{D}.$$

If $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a functor, a *right Kan extension* of F along $\gamma: \mathcal{C} \longrightarrow \mathcal{C}[\mathcal{W}^{-1}]$ is a functor

$$\operatorname{Ran}_{\gamma} F : \mathcal{C}[\mathcal{W}^{-1}] \longrightarrow \mathcal{D},$$

together with a natural transformation

$$\theta_F = \theta_{\gamma,F} : (\operatorname{Ran}_{\gamma} F) \gamma \Rightarrow F,$$

satisfying a universal property.

$$\begin{array}{ccc}
C & \xrightarrow{F} & \mathcal{D} \\
\downarrow^{\gamma} & & & \\
\mathbb{C}[W^{-1}] & & & \end{array}$$

Definition

A functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ is called *left derivable* if it exists the right Kan extension of F along γ . The functor

$$\mathbb{L}_{\mathcal{W}}F := (\operatorname{Ran}_{\gamma}F)\gamma$$

is called a *left derived functor of F* with respect to W.

There is a natural transformation

$$\theta_F: \mathbb{L}_{\mathcal{W}}F \Rightarrow F.$$

Notation:

- ▶ Cat'((C, W), D): category of left derivable functors from (C, W) to D.
- ▶ $\mathbf{Cat}_{\mathcal{W}}(\mathcal{C}, \mathcal{D})$ full subcategory of $\mathbf{Cat}_{\mathcal{W}}(\mathcal{C}, \mathcal{D})$ of functors F such that $F(\mathcal{W}) \subseteq \mathit{Iso}_{\mathcal{D}}$; which is isomorphic to $\mathbf{Cat}(\mathcal{C}[\mathcal{W}^{-1}], \mathcal{D})$.

We have

$$\mathsf{Cat}_{\mathcal{W}}(\mathcal{C},\mathcal{D})\subset \mathsf{Cat}'((\mathcal{C},\mathcal{W}),\mathcal{D})$$

and

$$\mathbb{L}_{\mathcal{W}}: \mathsf{Cat}'((\mathcal{C},\mathcal{W}),\mathcal{D}) \longrightarrow \mathsf{Cat}_{\mathcal{W}}(\mathcal{C},\mathcal{D})$$

Let

$$\widetilde{\mathcal{W}}$$
 = preimage of isomorphisms by
$$\mathbb{L}_{\mathcal{W}}: \mathbf{Cat}'((\mathcal{C},\mathcal{W}),\mathcal{D}) \longrightarrow \mathbf{Cat}_{\mathcal{W}}(\mathcal{C},\mathcal{D}).$$

Proposition

- 1. $\mathbb{L}_{\mathcal{W}}$ and the natural transformation θ induce a resolvent functor $\mathbb{L}_{\mathcal{W}}: \mathbf{Cat}'((\mathcal{C},\mathcal{W}),\mathcal{D}) \longrightarrow \mathbf{Cat}'((\mathcal{C},\mathcal{W}),\mathcal{D})$,
- 2. $(Cat'((\mathcal{C},\mathcal{W}),\mathcal{D}),\widetilde{\mathcal{W}})$ is a left CE category,
- 3. $Cat_{\mathcal{W}}(\mathcal{C}, \mathcal{D})$ is the subcategory of cofibrant objects.

Theorem (Derivability criterion)

Let $(\mathcal{C}, \mathcal{S}, \mathcal{W})$ be a left CE category. For any category \mathcal{D} ,

- 1. $Cat_{\mathcal{S}}(\mathcal{C}, \mathcal{D})$ is a full subcategory of $Cat'((\mathcal{C}, \mathcal{W}), \mathcal{D})$;
- 2. if $F \in Ob \operatorname{Cat}_{\mathcal{S}}(\mathcal{C}, \mathcal{D})$, then

$$\mathbb{L}_{\mathcal{W}}F = F'\lambda\gamma,$$

where $F': \mathcal{C}[\mathcal{S}^{-1}] \longrightarrow \mathcal{D}$ is induced by F;

3. $\theta_F : \mathbb{L}_W F \longrightarrow F$ is defined by $\theta_F = F' * \varepsilon' * \delta$, i.e.

$$(\theta_F)_X = F'(\varepsilon'_{\delta X}), \quad X \in Ob \ \mathcal{C}.$$

Example

Let \mathcal{A},\mathcal{B} be abelian categories, and assume \mathcal{A} has enough projectives.

With the ususal structure, $(\mathbf{C}_{+}(A), \mathcal{S}, \mathcal{W})$ is a left CE category.

In this case the criterion above reduces a well known fact: An additive functor $F:\mathcal{A}\longrightarrow\mathcal{B}$ induces an additive functor $F:\mathbf{C}_+(\mathcal{A})\longrightarrow\mathbf{K}_+(\mathcal{B})$ which, by additivity, sends homotopy equivalences to isomorphisms. Hence it is left derivable.

Theorem

Let (C, S, W) be a left CE category and D any category. In $\mathbf{Cat}_{S}(C, D)$, take

$$\widetilde{\mathcal{W}} = \{ \phi : F \to G; \phi_M \text{ is } \cong, \forall M \in \mathcal{C}_{cof} \}.$$

The functor

$$\mathbb{L}_{\mathcal{W}}: \textbf{Cat}_{\mathcal{S}}(\mathcal{C}, \mathcal{D}) \longrightarrow \textbf{Cat}_{\mathcal{S}}(\mathcal{C}, \mathcal{D}), \quad \mathbb{L}_{\mathcal{W}} \mathit{F} := \mathit{F}' \lambda \gamma,$$

and the natural transformation $\theta : \mathbb{L}_{W}F \Rightarrow F$ defined by $(\theta_F)_X = F'(\varepsilon'_{\delta(X)})$, for each object X of C, satisfy

- 1. $(\mathbb{L}_{\mathcal{W}}, \theta)$ is a left resolvent functor on $(\mathbf{Cat}_{\mathcal{S}}(\mathcal{C}, \mathcal{D}), \widetilde{\mathcal{W}})$;
- 2. $(Cat_S(C, D), W)$ is a left CE category; and
- 3. $Cat_{\mathcal{W}}(\mathcal{C},\mathcal{D})$ is the subcategory of its cofibrant objects.

In order to get total derived functors for $(\mathcal{C}, \mathcal{W}_{\mathcal{C}}) \longrightarrow (\mathcal{D}, \mathcal{W}_{\mathcal{D}})$, we make the following assumption:

 $ightharpoonup (C, S, W_C)$ is a left CE category with a resolvent functor R

Define

- $\mathbf{Cat}_{\mathcal{S},\mathcal{W}}(\mathcal{C},\mathcal{D}) = \{F: \mathcal{C} \longrightarrow \mathcal{D} \mid F(\mathcal{S}) \subseteq \mathcal{W}_{\mathcal{D}}\}.$
- $-\ \widetilde{\mathcal{W}} = \{\varphi: \textit{F} \rightarrow \textit{G} \mid \varphi_{\textit{M}} \in \mathcal{W}_{\mathcal{D}}, \quad \textit{M} \in \textit{Ob} \ \mathcal{C}_{\textit{cof}}\},$
- $-\widetilde{\mathcal{S}} = \{ \varphi : F \to G \mid \varphi_X \in \mathcal{W}_{\mathcal{D}}, \quad X \in Ob \ \mathcal{C} \}.$

Theorem

- 1. $(Cat_{\mathcal{S},\mathcal{W}}(\mathcal{C},\mathcal{D}),\widetilde{\mathcal{S}},\widetilde{\mathcal{W}})$ is a left CE category
- 2. $R^*(F) = F \circ R$, $\varepsilon_F^* = F \circ \varepsilon$, is a left resolvent functor
- 3. Moreover,

 $\textit{Fcofibrant} \Leftrightarrow \textit{F}(\mathcal{W}_{\mathcal{C}}) \subseteq \mathcal{W}_{\mathcal{D}}.$

Example

Let A be a commutative ring and $R: \mathbf{C}_+(A) \longrightarrow \mathbf{C}_+(A)$ the resolvent functor defined by the free functorial resolution. Any additive functor $F: \mathbf{Mod}(A) \longrightarrow \mathcal{B}$, \mathcal{B} abelian category, induces an additive functor

$$F: \textbf{C}_+(A) \longrightarrow \textbf{C}_+(\mathcal{B})$$

with $F(S) \subset W$, therefore $FR \Rightarrow F$ is a left cofibrant model of F in $Cat_{S,W}(C_+(A), C_+(B))$.

Corollary

 $F\varepsilon: F\circ R\Rightarrow F$ is a cofibrant model, hence the left derived functor $\mathbb{L}F$ of $\gamma_{\mathcal{D}}\circ F$ is induced by $\gamma_{\mathcal{D}}\circ F\circ R$:

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{F \circ R} & \mathcal{D} \\ \gamma_{\mathcal{C}} \downarrow & & & \downarrow \gamma_{\mathcal{D}} \\ \mathcal{C}[\mathcal{W}^{-1}] & \xrightarrow{\mathbb{L}F} & \mathcal{D}[\mathcal{W}^{-1}] \,. \end{array}$$

7. CE structres defined by a cotriple

Definition

Let \mathcal{X} be a category. A cotriple $\mathbf{G} = (G, \varepsilon, \delta)$ in \mathcal{X} is given by

- 1. a functor $G: \mathcal{X} \longrightarrow \mathcal{X}$
- 2. a natural transformation $\varepsilon: G \Rightarrow id$
- 3. a natural transformation $\delta: {\it G} \Rightarrow {\it G}^2$

satisfying

$$\delta G \cdot \delta = G \delta \cdot \delta : G \Rightarrow G^3,$$

$$\varepsilon G \cdot \delta = 1_G = G \varepsilon \cdot \delta$$
 : $G \Rightarrow G$.

Examples

1. Let

$$U: \mathcal{X} \leftrightarrows \mathcal{Y}: F$$

be a pair of adjoint functors, $F \dashv U$. They define a cotriple in $\mathcal X$ with G = FU.

For example, if $R \longrightarrow S$ is a ring homomorphism, take

$$U: \mathbf{Mod}(S) \leftrightarrows \mathbf{Mos}(R): F$$

with U the forgetful functor and $F = \bigotimes_R S$, to obtain a cotriple in $\mathbf{Mod}(S)$.

Examples

2. Cotriples from models: let \mathcal{X} be a category with arbitrary coproducts and \mathcal{M} a set of objects of \mathcal{X} (the models). Define $G: \mathcal{X} \longrightarrow \mathcal{X}$ by

$$G(X) = \bigsqcup_{f:M\to X,M\in\mathcal{M}} M_f$$

with $M_f = M$. One can easily define ε, δ to obtain a cotriple.

For example, take $\mathcal{X} = \textbf{Top}$ and $\mathcal{M} = \{\Delta^n, n \geq 0\}$.

The standard construction associated to a cotriple

Let **G** be a cotriple in \mathcal{X} . The standard construction associated to **G** is the augmented simplicial functor $B_{\bullet}G$ defined by

$$B_nG = G^{n+1},$$

$$\partial_i = G^i \varepsilon G^{n-i} : G^{n+1} \Rightarrow G^n, \quad 0 \le i \le n,$$

$$s_i = G^i \delta G^{n-i} : G^{n+1} \Rightarrow G^{n+2}, \quad 0 \le i \le n.$$

The natural transformation ε defines an augmentation

$$\varepsilon: B_{\bullet}G \Rightarrow 1.$$

Let \mathcal{A} be an additive category with an additive cotriple \mathbf{G} . Denote also by G the induced additive cotriple on $\mathbf{C}_{+}(\mathcal{A})$.

The standard construction induces a functor

$$B: \mathbf{C}_{+}(\mathcal{A}) \longrightarrow \mathbf{C}_{+}(\mathcal{A})$$
 $K_{*} \mapsto TotB_{*}K_{*}$

with a natural transformation $\varepsilon:B\Rightarrow 1$ induced by the augmentation of $B_{\bullet}G$.

Definition

A class of morphisms $\mathcal S$ of $\mathbf C_+(\mathcal A)$ is a *class of summable morphisms* if:

- 1. S is saturated
- 2. \mathcal{S} contains the homotopy equivalences
- 3. let $f: C_{**} \longrightarrow D_{**}$ be a morphism of first quadrant double complexes. Then

$$f_n: C_{*n} \longrightarrow D_{*n} \in \mathcal{S}, \quad n \geq 0 \Longrightarrow \text{Tot } f \in \mathcal{S}.$$

If A is abelian and the morphisms in S are quesi-isomorphism, we say that it is an *acyclic class of morphisms*.

Let S be a class of summable morphisms of $C_+(A)$, and G an additive cotriple on A.

Definition

G is *compatible* with S if $G(S) \subset S$.

Theorem

Let $\mathcal A$ be an additive category, $\mathbf G$ an additive cotriple in $\mathcal A$ and $\mathcal S$ a class of summable morphisms in $\mathbf C_+(\mathcal A)$ compatible with G. Take $\mathcal W=G^{-1}(\mathcal S)$, then,

- 1. $W = B^{-1}(S)$
- 2. (B, ε) is a resolvent functor for $(\mathbf{C}_{+}(A), \mathcal{S}, \mathcal{W})$,
- 3. is a left CE category,
- 4. $K \in Ob \ \mathbf{C}_{+}(A)$ is cofibrant iff $\varepsilon_{K} : BK \to K \in S$.

Application to functor categories

Data:

- $\triangleright \mathcal{X}$ a category with a cotriple **G**
- \triangleright \mathcal{A} an abelian category
- denote also by **G** the induced cotriple in $Cat(\mathcal{X}, C_+(\mathcal{A}))$
- ▶ S a class of summable morphisms in $Cat(X, C_+(A))$, compatible with G, as for example
 - ▶ the class of homotopy equivalences S_h
 - the class of quasi-isomorphisms
 - lacktriangle the class of pointwise homotopy equivalences \mathcal{S}_{pt}

Corollary

Let $\mathcal X$ be a category and $\mathcal A$ an additive category. Let $\mathbf G$ be an additive cotriple on $\mathbf{Cat}(\mathcal X,\mathcal A)$, and $\mathcal S$ a class of summable morphisms in $\mathbf{Cat}(\mathcal X,\mathbf C_+(\mathcal A))$ compatible with $\mathbf G$. Then,

- 1. (B, ε) is a left resolvent functor for $(\mathbf{Cat}(\mathcal{X}, \mathbf{C}_{+}(\mathcal{A})), \mathcal{S}, \mathcal{W})$
- 2. $(Cat(\mathcal{X}, C_{+}(\mathcal{A})), \mathcal{S}, \mathcal{W})$ is a left CE category
- 3. $K \in Ob \operatorname{Cat}(\mathcal{X}, \mathbf{C}_{+}(\mathcal{A}))$ is cofibrant if $\varepsilon_{K} : BK \longrightarrow K \in \mathcal{S}$.

Remark

The theorem applies for functor categories with values in a simplicial descent category with a compatible cotriple. For example, we can replace $C_+(A)$ by the category **SSets**.

Example

- \triangleright $\mathcal{X} = \textbf{Top}$ be the category of topological spaces.
- ▶ S the class of homotopy equivalences in $Cat(Top, C_+(\mathbb{Z}))$.
- ▶ **G** defined on $Cat(Top, C_+(\mathbb{Z}))$ by

$$G(K)(X) = \bigoplus_{n, \ \sigma \in \mathbf{Top}(\Delta^n, X)} K(\Delta^n, \sigma).$$

Then, $(Cat(Top, C_+(\mathbb{Z})), \mathcal{S}, G^{-1}(\mathcal{S}))$ is a left Cartan-Eilenberg category, in which the singular simplex functor

$$S_*: \mathsf{Top} \longrightarrow \mathsf{C}_+(\mathbb{Z}),$$

is a cofibrant model of $H_0(-,\mathbb{Z})$.

Theorem (Acyclic models theorem, Barr 2002)

Let \mathcal{X} be a category with a cotriple \mathbf{G} , let \mathcal{A} be an abelian category, and \mathcal{S} a class of acyclic morphisms in $\mathbf{Cat}(\mathcal{X}, \mathbf{C}_{+}(\mathcal{A}))$ compatible with the cotriple induced by \mathbf{G} .

If K, L are objects of $Cat(\mathcal{X}, C_+(\mathcal{A}))$ such that K is cofibrant and L is G-acyclic, then the map

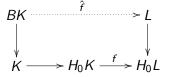
$$H_0: [K, L] \longrightarrow [H_0K, H_0L]$$

is bijective, that is, given a morphism $f: H_0K \longrightarrow H_0L$ there is a unique morphism $\hat{f}: K \longrightarrow L$ in $\mathbf{Cat}(\mathcal{X}, \mathbf{C}_+(\mathcal{A}))[\mathcal{S}^{-1}]$ such that, $H_0\hat{f}$

Definition

L is G-acyclic if if $L \longrightarrow H_0L$ is in \mathcal{W} , that is, $G(L) \longrightarrow G(H_0L)$ is in \mathcal{S} .

For the proof, it suffices to consider the diagram



in which, by hypothesis the left vertical morphism is in S and the right vertical morphism is in W. The existence of \hat{f} follows since B_*K is cofibrant.

Monoidal variation

We have also adapted all this machinery to the monoidal and the symmetric monoidal settings For example, we get a left CE structure on categories $\mathbf{SyMon}(\mathcal{X}, \mathbf{C}_+(\mathcal{A}))$, and as a consequence an acyclic model theorem:

Theorem (Guillén-Navarro-Pascual-Roig 2007)

Let $\mathcal X$ be a monoidal category with a monoidal cotriple $\mathbf G$, let $\mathcal A$ be an abelian monoidal category, and $\mathcal S$ a class of acyclic morphisms in $\mathbf{SyMon}(\mathcal X, \mathbf C_+(\mathcal A))$ compatible with the cotriple induced by $\mathbf G$.

If K, L are objects of $SyMon(\mathcal{X}, C_+(\mathcal{A}))$ such that K is cofibrant and L is G-acyclic, then the map

$$H_0: [K, L] \longrightarrow [H_0K, H_0L]$$

is bijective.

Symmetric monoidal functors admit an extension to operad categories. As a consequence of the acyclic models theorem we obtain

Corollary (GNPR 2007)

The functors of singular chains and ordered cubical chains

$$S_*, C_*^{ord}: \mathbf{Op_{Top}} \longrightarrow \mathbf{Op_{C_+(\mathbb{Z})}}$$

are weakly equivalent.