

Title:

Author:

Advisor:

Department:

Academic year:

Master of Science in
 Advanced Mathematics and
Mathematical Engineering

Effective computation of base points of two-dimensional ideals

 Guillem Blanco Fernández

 Fe Maria Alberich Carramiñana and Josep Àlvarez Montaner

 Fe
Department of Applied Mathematics I
 Fe

2014-2015

 Fe

Universitat Politècnica de Catalunya

Facultat de Matemàtiques i Estad́ıstica

Treball Final de Màster

Effective computation of base
points of two-dimensional ideals

Guillem Blanco Fernández

Maria Alberich Carramiñana and Josep Àlvarez Montaner

Departament de Matemàtica Aplicada I

Abstract

Keywords: Equisingularity, Base points, Puiseux series, Two-dimensional ideal

MSC2010: 14B05, 32S15, 14Q05, 13P05

This works focus on computational aspects of the theory of singularities of
plane algebraic curves. We show how to use the Puiseux factorization of a curve,
computed through the Newton-Puiseux algorithm, to study the equisingularity
type of a curve. We present a novel version of the Newton-Puiseux algorithm that
can compute all the Puiseux factorization of any arbitrary polynomial, removing
the restriction of reduced inputs. Next, we introduce the theory of infinitely near
points and the concept of base points of an ideal. Finally, we develop a novel
algorithm that, using our novel version of the Newton-Puiseux algorithm, computes
the weighted cluster of base points of any two dimensional ideal from any set of
generators.

Contents

Introduction 7

1 Puiseux series 9
1.1 Basic definitions . 9
1.2 Solving f(x, y) = 0 . 10
1.3 Newton polygon . 11
1.4 Searching for y-roots . 14
1.5 Newton-Puiseux semi-algorithm . 15
1.6 Separation of y-roots . 17
1.7 A general algorithm . 19
1.8 Implementation details . 23

2 Infinitely near points 25
2.1 Germs of curves . 25
2.2 Infinitely near points . 26
2.3 Resolution of singularities . 27
2.4 Clusters of points . 28
2.5 Virtual multiplicities . 30
2.6 Characteristic exponents . 32
2.7 Enriques’ theorem . 33
2.8 Computing Enriques diagrams . 36
2.9 Comparing branches . 39
2.10 Determining the equisingularity type 43
2.11 Implementation details . 45

3 Base points of an ideal 48
3.1 Linear systems . 48
3.2 Constructing the cluster of base points 50
3.3 An algorithm for computing base points 54
3.4 Newton-Puiseux expansion for ideals 56
3.5 Implementation details . 59

ii

A Macaulay2 code: Puiseux series 60

B Macaulay2 code: Newton-Puiseux algorithms 65

C Macaulay2 code: Enriques diagrams 69

Bibliography 79

iii

List of Figures

1.1 ∆(f) and N(f) for f = y4 − x2y2 − 2x4y2 + x4y + x5y + x7. From
[4, page 16]. 12

2.1 The tree of f = xy(x− y)(x3 − y2). 29
2.2 Enriques diagrams of xy(x− y)(x3 − y2) representing the weighted

cluster defined with multiplicities on the left side and with values
on the right side, see proposition 2.5.5. 30

2.3 The Enriques diagram of an arbitrary irreducible germ as described
in theorem 2.7.1. From [4, page 175]. 35

iv

List of Algorithms

1 Newton polygon . 13
2 Newton-Puiseux algorithm (reduced) 18
3 Yun’s algorithm . 20
4 Newton-Puiseux algorithm . 21
5 Characteristic exponents . 37
6 Enriques’ theorem’s values . 37
7 Proximity matrix (irreducible) . 38
8 Vector of multiplicities (irreducible) 39
9 Contact number . 42
10 Proximity matrix . 44
11 Vector of multiplicities . 46
12 Newton-Puiseux algorithm for an ideal 57

v

Introduction

The study of singularities of algebraic and analytic varieties is an old and still very
interesting field of research. Amongst all singularities, those of plane curves are
the most studied ones, and there is a well-established theory for its analysis and
classification, mostly due to Noether, Zariski and Enriques.

In this work, we will follow the geometrical approach of Enriques’ infinitely
near points, developed and synthesized by Casas in his book ‘Singularities of Plane
Curves’ [4]. As explained in [4], Puiseux series and the Puiseux factorization of
the algebraic equation of a curve provide a unique insight about the singularities
of plane curves. Therefore, we can use an algebraic object, the Puiseux series, to
completely determine the equisingularity class of a curve, which is equivalent to
its topological class.

Furthermore, Puiseux series can be, in some cases, computed algorithmically
given the equation of a curve. This make them even more suitable to study sin-
gularities from the computational point of view. However, the algorithm for com-
puting the Puiseux factorization of an algebraic equation, the Newton-Puiseux
algorithm, is only known to work for reduced inputs, i.e. not containing multiple
factors.

The weighted cluster of base points of an ideal is well studied in [4], however
it is not known any method to compute it algorithmically from the equations of
the generators of the ideal. One of the major issues when computing the weighted
cluster of base points is that one cannot reduce the generators of the ideals and
hence apply to them the known techniques to study their equisingularity type.
Results for some special cases are known [1].

The goal of this work is then double. First, we present a novel version of the
Newton-Puiseux algorithm to compute all the Puiseux series and their algebraic
multiplicities. Thus, our new version of the Newton-Puiseux algorithm is no longer
restricted to reduced inputs. We can then use all this information to determine
the equisingularity class of any arbitrary algebraic equation. Second, we present
a novel algorithm to compute the weighted cluster of base points, extending the
results in [1]. This algorithm relies on the fact that we can compute all the Puiseux
series and their algebraic multiplicities given any arbitrary algebraic equation.

7

This work achieves the goals of a Master’s Thesis. We have developed skills
to study plane curve singularities through the use of Puiseux series and weighted
cluster of infinitely near points. On the other hand, some results and algorithms
from chapter 1 are novel. Chapter 2 contains a new algorithm for computing
the equisingularity type of a curve from the equisingularity types of its branches.
Finally, most of the results in chapter 3 are either new or generalizations of previous
ones in the literature.

This memory is structured in three chapters. In the first one we introduce
Puiseux series and the traditional Newton-Puiseux algorithm to compute the
Puiseux factorization. After that, we show how to extend the traditional Newton-
Puiseux factorization to compute also the algebraic multiplicities of each Puiseux
series.

The second chapter is devoted to the study of the theory of infinitely near
points. We introduce all the results that will be necessary to compute the equi-
singularity type of a curve. We see how we can encode the equisingularity class
of a curve in a finite combinatorial object, the Enriques diagram, and how we can
use the Puiseux factorization to compute the Enriques diagram of curve. With a
new algorithm, we will merge all the results in [4] and compute the equisingularity
type of any curve.

In the last chapter, we first develop the theory of base points of an ideal and
then we extend the results in [1] to the case of two-dimensional ideals. These
generalized results plus two novel propositions will allow us to present a completely
novel algorithm to compute the weighted cluster of base points of and ideal. This
algorithm will require a modified versions of the new Newton-Puiseux algorithm
in order to make the computations practical.

We will provide detailed explanations of all the algorithms, including the al-
ready known ones in [4] and, of course, the new ones. We have also implemented
and tested all these algorithms in Macaulay2 [7], a software system devoted to
supporting research in algebraic geometry and commutative algebra. Our work
will, very likely, become a new publicly available package inside the Macaulay2
framework. The code of all the algorithms implemented in Macaulay2 has been
included in the appendices.

Last but not least, I would like to end this introduction thanking my advisors,
Maria Alberich and Josep Àlvarez, because this work would not have been possible
without their constant advice, patience and intuition.

8

Chapter 1

Puiseux series

This first chapter is devoted to the study of Puiseux series and its relation with y-
roots of series in C[[x, y]]. This study starts with the basic definitions of fractionary
power series. Next, we will see how Puiseux series are important to understand
y-roots of a bivariate formal power series in C[[x, y]]. Explicit computations of
y-roots of polynomials in C[x, y] will be possible thanks to the Newton-Puiseux
algorithm. All this will allow us to state and understand the Puiseux factoriza-
tion theorem. Because the traditional Newton-Puiseux algorithm only works with
reduced polynomials, we present a novel modification of the Newton-Puiseux al-
gorithm that work with any arbitrary polynomial and can compute the algebraic
multiplicities of the Puiseux series. Finally, we discuss the specific implementation
issues of this algorithm in the mathematical software Macaulay2.

1.1 Basic definitions

Given the ring of univariate formal power series C[[x]] one can construct its field
of fractions, that will be denoted by C((x)). This corresponds to the set of for-
mal Laurent series since its elements can be written as

∑∞
i=d aiz

i, d ∈ Z, ai ∈ C.
Formally, one can set C((x1/n)), for n ∈ N. Then, the field of fractionary power
series

C〈〈x〉〉 :=
{∑

i≥r

aix
i/n | r ∈ Z, n ∈ N

}
can be constructed as the direct limit of the system {C((x1/n)), x1/n 7→ x1/n′ | n′ =
dn}. The exact details of this construction can be found in [4, page 17]. In
particular, this means that two elements of C〈〈x〉〉 can be added or multiplied in
a suitable C((x1/n)) since any series belongs to C((x1/n′)) for any n′ ∈ (n).

9

Given a fractionary series

s =
∑
i≥r

aix
i/n ∈ C〈〈x〉〉 (1.1)

we can define, as for regular series, the order in x of s to be either ox(s) = ∞ if
s = 0 or

ox(s) =
min{i | ai 6= 0}

n

otherwise. Fractionary power series with positive order, that is ox(s) > 0, will be
called Puiseux series and will be our main object of study in this chapter.

After simplifying all the exponents appearing in s we can assume that n and
gcd{i | ai 6= 0} have no common factor. Then we say that n is the polydromy order
of s, usually denoted by ν(s).

Fix n ∈ N and consider C((x1/n)) as an extension of C((x)). For each n-th root
of unity ε ∈ C the substitution εx1/n 7→ x1/n induces an automorphism σε, ε

n = 1
of C((x1/n)) over C((x)). If s is as in equation (1.1) above, then

σε(s) =
∑
i≥r

εiaix
i/n

from which is easy to see that the conjugate do not depend on the field C((x1/n)).
It is also clear that all conjugates have the same order in x and the same polydromy
order. Finally, it is not difficult to see that the number of conjugates of a given
series s is ν(s) and that a series belongs to C((x)) if and only if σε(s) = s for all
ν(s)-th roots of unity ε.

1.2 Solving f (x, y) = 0

The main object of study in this section will be the complex bivariate formal power
series, i.e. C[[x, y]]. All the results below could also be applied to convergent
series, i.e. C{x, y}, or to bivariate polynomial in C[x, y]. In the sequel, we will
work with elements in C[x, y] when discussing algorithmic details as the inputs of
any algorithm must be finite.

Let f ∈ C[[x, y]]. In this section we are interested in solving the equation
f(x, y) = 0. We will focus on solving the equation f(x, y) = 0 with respect to
y since solving for x is analogous. This means that we need to find some sort of
function of x, y(x), such that f(x, y(x)) = 0. Trying to find a general function
accomplishing f(x, y(x)) is hard. Thus, we will restrict ourself to series in x.

Obviously, the elements of the form uxd, d ∈ N, u ∈ C[[x, y]] invertible, have
no y-roots. If one considers f ∈ C[[x]][y], then the y-roots of f can be seen as

10

roots of a certain polynomial and elements of the form uxd are coefficients. In the
sequel, we will work in a neighbourhood of the origin O = (0, 0) and assume that
f(0, 0) = 0, otherwise, we can apply a change of coordinates.

If we restrict ourselves to C{x, y}, their elements are well-defined functions. If
the origin is a regular point the inverse function theorem states that you can find
a function y(x) in a neighbourhood of O such that f(x, y(x)) = 0. Furthermore,
since f(x, y) is analytic so it is y(x) and hence,

y(x) = a1x+ a2x
2 + · · ·+ amx

m + · · · .

On the other hand, if the point is singular, the inverse function theorem does
not apply. For instance, taking the polynomial f = y2 − x3 ∈ C[x, y] it is easy
to see that y(x) = x2/3 does not belong to C[[x]] but belongs to C〈〈x〉〉. Thus,
fractionary power series, and in particular Puiseux series, play a fundamental role
in this problem.

The following lemmas show the close relationship between y-roots and divisors
of f ∈ C[[x, y]]. All the following results have an algebraic nature so they are
not restricted to C{x, y} and can be applied to C[[x, y]]. The lemmas are stated
without proof, a proof for each one of them can be found in [4, page 19]

Lemma 1.2.1 ([4, 1.2.2]). A Puiseux series s ∈ C[[x1/n]] is a y-root of f ∈ C[[x, y]]
if and only if y − s divides f in C[[x1/n, y]].

Lemma 1.2.2 ([4, 1.2.3]). If s is a y-root of f ∈ C[[x, y]], then all conjugates of
s are y-roots of f too.

Take a Puiseux series s ∈ C[[x1/n]] and write gs =
∏ν

i=1(y − σεi(s)). Then
gs ∈ C[[x]][y] as all its coefficients are invariant by conjugation.

Lemma 1.2.3 ([4, 1.2.4]). A Puiseux series s ∈ C[[x1/n]] is a y-root of f ∈ C[[x, y]]
if and only if gs divides f in C[[x, y]].

Lemma 1.2.4 ([4, 1.2.5]). The series gs is irreducible in C[[x, y]].

One can notice the similarity between the y-roots and algebraic roots in number
fields. Before describing a method to find y-roots of any element in C[[x, y]] we
need to introduce the Newton polygon.

1.3 Newton polygon

Take π = R+2
a plane with an orthogonal system of coordinates α, β. Let f =∑

α,β≥0Aα,βx
αyβ belonging to C[[x, y]]. For each (α, β) ∈ N2 with Aα,β 6= 0, we

11

α

β

Figure 1.1: ∆(f) and N(f) for f = y4 − x2y2 − 2x4y2 + x4y + x5y + x7. From [4,
page 16].

plot on π the point (α, β). This way we obtain a discrete set of of points with
non-negative integral coordinates

∆(f) = {(α, β) ∈ N2 | Aα,β 6= 0}

called the Newton diagram.
We are interested in the lower left part of the convex hull of the Newton dia-

gram. This set can be expressed as the convex hull of ∆′(f) = ∆(f)+(R+)2 minus
the two half lines parallel to the axis. This polygonal line (possibly reduced to a
single vertex) is called Newton polygon of f and it is denoted by N(f).

We will always consider the vertices and the sides of the Newton polygon
ordered from left to right. Thus, if the vertices of the Newton polygon are Pi =
(αi, βi), i = 0, . . . , k then αi ≤ αi+1, being P0 the beginning and Pk the end of
the polygon. The height h(N) and the width w(N) are, respectively, the maximal
ordinate and the maximal abscissa of its vertices, that is, h(N) = β0 and w(N) =
αk. Moreover, the side with endpoints (αi, βi), (αi+1, βi+1) will be denoted by Γi
and h(Γi) = βi− βi+1, w(Γi) = αi− αi+1 will be its height and width, respectively.

The following proposition summarizes several properties of the Newton polygon
that are easy to check and that will be important later on.

Proposition 1.3.1 ([4, 1.1]). Let f, g ∈ C[[x, y]] and N(f),N(g) their Newton
polygons, then:

1. N(f) begins (resp. ends) on the β-axis (resp. α-axis) if and only if f has no
factor x (resp. factor y).

12

2. N(f) of f is reduced to a single vertex if and only if f = uxαyβ, where u is
an invertible series.

3. If u ∈ C[[x, y]] is invertible, then N(f) = N(uf).

4. If x (resp. y) does not divide f , then the height of N(f) is oy(f(0, y)) (resp.
ox(f(x, 0))).

5. Height and width of Newton polygons are additive, i.e.,

h(N(fg) = h(N(f1)) + h(N(f2))

w(N(fg) = w(N(f1)) + w(N(f2)).

In algorithm 1 we detail an efficient algorithm to compute the Newton polygon.
This is a modified version of Andrew’s monotone convex hull algorithm [2].

Algorithm 1 Newton polygon

Require: A polynomial f(x, y) =
∑

α,β Aα,βx
αyβ ∈ R[x, y] with R a ring.

Ensure: The Newton polygon of f : {(α1, β1), (α1, α2), . . . , (αk, βk)}.
1: function NewtonPolygon(f)
2: E ← {(α, β) ∈ N2 | f(x, y) =

∑
α,β Aα,βx

αyβ} ∪ {(∞, 0)}
3: E ← Sort(E) . E = {(α1, β1), . . . , (αn, βn)}

. αi < αi+1, βi < βi+1 if αi = αi+1

4: N(f)← ∅
5: for i← 1, . . . , |E| do . |E| = n
6: j ← |N(f)|
7: α← (αj − αj−1)(βi − βj−1)− (βj − βj−1)(αi − αj−1)
8: while |N(f)| ≥ 2 and α ≤ 0 do
9: N(f)← N(f) \ {(αj, βj)} . (αj, βj) ∈ N(f)
10: end while
11: N(f)← N(f) ∪ {(αi, βi)} . (αi, βi) ∈ E
12: end for
13: return N(f)
14: end function

Andrew’s convex hull algorithm computes the upper and the lower convex
hulls separately. Hence, by adding a single point at infinity in the x-axis and
only computing the lower convex hull we can compute the Newton polygon more
efficiently. Andrew’s algorithm has a time complexity of O(n log n), where n is
the number of non-zero monomials in the input polynomial. Because our input
points are natural numbers the Newton polygon can be computed in O(n) steps
using a specialized sorting algorithm for integer values in algorithm 1. The reader

13

can check that algorithm 1 returns the points in the order required by the Newton
polygon.

1.4 Searching for y-roots

Let us say that we want to determine the y roots of the following series:

f(x, y) =
∑
α,β

Aα,βx
αyβ ∈ C[[x, y]], (1.2)

by means of an inductive procedure, we start by testing solutions of the form

s(x) = axm/n + · · ·

where m,n ∈ Z, such that gcd(m,n) = 1 and a ∈ C is non-zero. Substituting in
equation (1.2) we can see that the initial terms of f(x, s(x)) are∑

α,β≥0

Aα,βa
αxα+βm/n. (1.3)

This last series can be also written as∑
k

(∑
nα+mβ=k

Aα,βa
β

)
xk/n.

From here it is clear that the pair (α, β) giving rise to a term of degree k/n in
equation (1.3) are the points of ∆(f) lying on the line nα+mβ = k. Consider now
only one of those lines l with the minimal possible k: the terms of lowest degree
in equation (1.3) are then, ∑

(α,β)∈l∩∆(f)

Aα,βa
βxα+βm/n.

We can now consider two cases:
Case (a): There is no side on N(f) with slope −n/m. Then there is just a

single point (α0, β0), a vertex of N(f), on l and then f(x, s(x)) has a single term of
minimal degree, namely Aα0,β0a

β
0x

k/n, which cannot be cancelled by other terms.
Thus f(x, s(x)) 6= 0 and such an y-root is not possible.

Case (b): There is a side of N(f), say Γ, with slope −n/m and hence on l.
The terms of lowest degree in f(x, s(x)) are then(∑

(α,β)∈Γ

Aα,βa
β

)
xk/n

14

Assuming that (α1, β1) and (α0, β0) are the first and last end of Γ the former
expression may be written in the form

aβ0

(∑
(α,β)∈Γ

Aα,βa
β−β0

)
xk/n = aβ0FΓ(a)xk/n

where
FΓ(Z) =

∑
(α,β)∈Γ

Aα,βZ
β−β0 ∈ C[Z]

is a polynomial with non-zero constant term and degree equal to the height β1−β0

of Γ. The polynomial FΓ(Z) (resp. FΓ(Z) = 0) is called the polynomial (resp.
equation) associated with Γ.

We have found then necessary conditions for a monomial to be the initial term
of a solution. The Newton-Puiseux algorithm will iterate this process to find all
the terms of the y-roots.

Remark 1.4.1. We have been assuming that a 6= 0 which may not be the case if
f has 0 as y-root. This is easy to check and will occur if and only if y is a factor
of f , that is, if and only if N(f) ens above the α-axis, i.e., βk > 0.

Remark 1.4.2. It is not difficult to see that if the slope of Γ is −n/m, with
gcd(n,m) = 1, and n > 0 then FΓ ∈ C[zn]. Thus, if a is a root also is εa, with
εn = 1.

1.5 Newton-Puiseux semi-algorithm

In this section we will describe the inductive step of a semi-algorithm to compute
one of the y-roots of a general series in C[[x, y]]. This method is a semi-algorithm,
and not a proper algorithm, because the input is potentially infinite series and also
because the number of steps performed is not necessarily finite.

As always, let f be a bivariate formal power series as in equation (1.2). We
will start assuming that h(N(f)) > 0, otherwise it has no y-root by 1.3.1. Keeping
the same notation as in the initial step in the previous section:

Step (i): Each step begins with a series fi(xi, yi). The induction hypothesis
is that h(N(fi)) > 0 so either N(fi) ends above the α-axis or it has at least one
side:

(i.a) If N(f) ends above the α-axis, take s(i) = 0 and stop.

15

(i.b) Otherwise, choose a side Γ of N(f) and a root a of FΓ. Assume that Γ has
equation niα + miβ = ki, gcd(mi, ni) = 1. Perform the following change of
variables:

xi = xni
i+1 (1.4)

yi = xmi
i+1(ai + yi+1). (1.5)

Then we have

fi(xi+1, yi+1) = x
ki+1

i+1

(∑
niα+miβ≥k

Aα,βx
niα+miα−ki+1

i+1 (ai + yi+1)β

)

and we define fi+1 = x
−kk+1

i+1 fi ∈ C[[xi+1, yi+1]]. Finally take as yi-root of fi
the element

s(i)(xi) = x
m/n
i (ai + s(i+1)(xi+1))

where si+1 is a yi+1-root of fi+1 and has to be determined by the next itera-
tion.

Starting with f0 = f the result, once all the change of variables are reverted,
is:

s = s(0) = x
m0/n0

0 (a0 + x
m1/n1

1 (a1 + · · ·+ x
mi/ni

i (ai + s(i+1)) · · ·))
= xm/n(a0 + xm1/nn1(a1 + · · ·+ xmi/n···ni(ai + s(i+1)) · · ·)).

The fact that if one start with h(N(f)) > 0 then h(N(fi)) > 0 for any i, is
proved in lemma 1.4.1 of [4].

Finally, it is not hard to prove that the Puiseux series and y-roots can be
obtained using this iterated procedure.

As a consequence of all these facts we can obtain a constructive proof of the
Puiseux theorem:

Theorem 1.5.1 (Puiseux, [4, 1.5.4]). If f ∈ C[[x, y]] and h(N(f)) > 0, then there
is a Puiseux series s which is a y-root of f , namely f(x, s(x)) = 0

Corollary 1.5.2 ([4, 1.5.6]). Any f ∈ C[[x, y]] has a unique decomposition of the
form

f(x, y) = uxr
l∏

i=1

ni∏
j=1

(y − σεj(si))αi

with r, α1, . . . , αl ∈ Z, u ∈ C[[x, y]] invertible and h(N(f)) = α1ν(s1) + · · · +
αlν(sl) = α1n1 + · · ·+ αlnl.

16

1.6 Separation of y-roots

The first thing that one have to do to turn the previous semi-algorithm into an al-
gorithm that ends in a finite number of steps is to restrict the input to polynomials
in C[x, y] instead of general elements of C[[x, y]].

The other problem is that, even if the inputs are in C[x, y], the previous method
can, potentially, run indefinitely. Usually, one only needs to find a partial sum of
each of the series that is the partial sum of no other y-root. In such a situation
we will say that a root has been completely separated from the rest.

A sufficient condition for this fact can be given in the case that the input
polynomial is reduced, that is, all its factors have multiplicity one. The condition
is that h(N(fi)) = 1, for some i ∈ N. Following the notation in theorem 1.5.1, we
known that h(N(fi)) = α1ni1 + · · ·+ αilnil .

Lemma 1.6.1 ([4, 1.6.3]). For any i > 0, the multiplicity of s as y-root of f equals
the multiplicity of s(i) as yi-root of fi.

By lemma 1.6.1, if the input f is reduced so is fi for any i and hence, αi =
1, i = 1, . . . , l, and the height can only be one if l = 1 and ni1 = 1. Hence, the
y-root does not share the i-th non-zero term with any other y-root.

However, it is not clear that h(N(fi)) = 1 will happen at all. Indeed,

Lemma 1.6.2 ([4, 1.5.1]). There exists an integer i0 such that ni = 1 if i > i0.

Finally, a detailed description of the Newton-Puiseux algorithm is given in
algorithm 2.

As noted in remark 1.4.2, one could obtain all the y-roots directly from the
Newton-Puiseux algorithm, even the conjugated ones. Usually, it suffices to find
a root for each conjugacy class. As stated in [4, page 42], it is not difficult to
see that by taking always one of the conjugated roots of FΓ(Z), one obtains one
and only one Puiseux series for each conjugacy class of y-roots. For simplicity, in
line 16 of algorithm 2 one takes the root of FΓ(Z) corresponding to ε = 1.

Line 3 of algorithm 2 is the responsible for the finiteness of the algorithm, as
noted previously. Line 7 deals case (i.a), which is not mutually exclusive with case
(i.b). Finally, the case of an element of C[x, y] with no y-roots, i.e. elements of
the form uxr, is handled automatically by algorithm 2 since the loop in line 10
will not be executed and the algorithm will return the empty set, as one should
expect.

Remark 1.6.1. The separability condition presented in this chapter works because
of theorem 1.5.1. This means that, in principle, it applies only to inputs in C[[x, y]]
or C{{x, y}}. As we have seen, in order to make our algorithm practical we need
to restrict the inputs to C[x, y]. Being reduced in C[x, y] trivially implies being

17

Algorithm 2 Newton-Puiseux algorithm (reduced)

Require: A reduced bivariate polynomial f(x, y) =
∑

α,β Aα,βx
αyβ ∈ C[x, y] with

Puiseux factorization f(x, y) = ux
∏l

i=1

∏ni

j=1(y − σεj(si)).
Ensure: The shortest series s̄1, . . . , s̄l ∈ C〈〈x〉〉 approximating s1, . . . sl, and such

that s̄i 6= s̄j, i 6= j.
1: function NewtonPuiseuxReduced(f)
2: N(f)← NewtonPolygon(f) . N(f) = {(α0, β0), . . . , (αk, βk)}
3: if β0 = 1 then . h(N(f)) = β0

4: return {0}
5: end if
6: S ← ∅
7: if βk > 0 then
8: S ← {0}
9: end if

10: for (αi, βi), (αi+1, βi+1) ∈ N(f) do
11: n← βi − βi+1

12: m← αi+1 − αi
13: k ← βiαi+1 − αiβi+1

14: Γ← nx+my − k . Γ ∈ Z[x, y]
15: FΓ ←

∑
(α,β)∈ΓAα,βZ

β−β0 . FΓ ∈ C[Z]

16: for a ∈ {FΓ(zn) = 0 | z ∈ C} do
17: f ← x−kf(xn, xm(a+ y))
18: S ← NewtonPuiseuxReduced(f)
19: S ← S ∪ {xm/n(a+ s̄(x1/n)) | s̄ ∈ S}
20: end for
21: end for
22: return S
23: end function

18

reduced in C[x, y]. Fortunately, the converse is also valid but far from trivial. The
result is true because an algebraic variety is analytically unramified [5].

Example 1. The output of algorithm 2 for the following reduced polynomial

f = x17y11 − x17y10 + 4x18y8 + 2x19y5 + 4x10y12 − x21 − 4x10y11 + 16x11y9+

8x12y6 − x6y11 + x6y10 + 2x3y13 − 4x14y − 4x7y8 − 2x3y12 − y15+

8x4y10 + y14 − 2x8y5 − 4xy12 + 4x2y9 + x10 − 2x7y2 + x4y4

are the following Puiseux series:

s1 = x
3
2 + x

17
4 + · · · , s2 = x

2
5 +

4

25
x

1
2 + · · ·

with polydromy orders ν(s1) = 4 and ν(s2) = 10. The series are separated after
the first terms is computed, but lemma 1.6.2 does not occur until the second
iteration. This fact, later on, will turn out to be very useful (see remark 2.8.1).
By theorem 1.5.1 the polynomial f has then two factors f1, f2 ∈ C[[x]][y]. In fact,
f1, f2 ∈ C[x, y] and they are precisely:

f1 = −x17 − 4x10y + x6 − 2x3y2 + y4, f2 = −y11 + y10 − 4xy8 − 2x2y5 + x4.

1.7 A general algorithm

The algorithm 2 only works for reduced polynomials. However, for our final goal
we need the exact Puiseux decomposition of any given polynomial; that is, the
separated partial sums of the Puiseux series and the multiplicity of each series.

We have developed a new algorithm that extends algorithm 2 and computes
the multiplicity of each Puiseux series. The first step in this new algorithm consists
in computing the square-free decomposition of the input polynomial.

Definition 1.7.1. Let f an element of a unique factorization domain R such that

f = fα1
1 fα2

2 · · · fαn
n

with fi ∈ R irreducible, αi ∈ N. The square-free decomposition of f is

f = g1g
2
2g

3
3 · · · ann

with gi ∈ R reduced and n = max{α1, α2, · · · , αn}.

Note that gi could be equal to 1 for some i. The standard way to compute the
square-free factorization of a polynomial f ∈ k[x] with k a field of characteristic

19

Algorithm 3 Yun’s algorithm

Require: A polynomial f ∈ k[x] with char(k) = 0.
Ensure: (g1, 1), (g2, 2), . . . , (gn, n), gi ∈ k[x] reduced such that f = g1g

2
2 · · · gnn.

1: function SquareFreeFactorization(f)
2: A← ∅
3: f0 ← f
4: g0 ← f ′

5: i← 0
6: while deg f 6= 0 do
7: gi ← gcd(fi, gi)
8: fi+1 ← fi/gi
9: gi+1 ← gi/gi − f ′i+1

10: A← A ∪ {(gi, i)}
11: i← i+ 1
12: end while
13: return A \ {(g0, 0)}
14: end function

0, is the Yun’s algorithm [10]. A detailed description of Yun’s algorithm can be
found in algorithm 3.

Algorithm 3 can also be used to compute the square-free factorization of a
polynomial in k[x, y] by making the identification k[x, y] ∼= k[x][y]. This is possible
because the greatest common divisor in line 7 can also be computed in k[x, y] as
this ring is still a UFD. Also, the divisions in lines 8 and 9 are exact and hence,
they don’t present any problem.

The only problem is that this algorithm ignores any factor that is a constant
in k[x][y], i.e., any element of k[x]. However, this is not an issue for us as any
element in C[x] is either a unit in C[[x]][y] or a power of x and hence, it does not
have y-roots. If we were interested in extracting the x factor, we could use the
Newton polygon and proposition 1.3.1 to do so.

In order to overcome the problem with reduced inputs one may be tempted
to apply algorithm 2 to each reduced part of the square-free factorization of a
polynomial. However it is important to remark that this solution does not work as
it is not possible to know if the series obtained from one of the reduced factors will
be completely separated from the series coming from any other reduced factor.
Algorithm 4 extracts both the Puiseux series and their multiplicities using the
square-free factorization of the input polynomial.

Algorithm 4 makes a subtle but important distinction in the output between
the polynomial x ∈ C[x] and the Puiseux series x ∈ C〈〈x〉〉 of polydromy order 1.

20

Algorithm 4 Newton-Puiseux algorithm

Require: A bivariate polynomial f(x, y) =
∑

α,β Aα,βx
αyβ ∈ C[x, y] with Puiseux

factorization f(x, y) = uxr
∏l

i=1

∏ni

j=1(y − σεj(si))αi .
Ensure: (x, r), (s̄1, αi), . . . , (s̄l, αl) ∈ C〈〈x〉〉×N, the shortest series approximating

s1, . . . sl and their multiplicities such that s̄i 6= s̄j, i 6= j.
1: function NewtonPuiseux(f)
2: S ← ∅
3: N(f)← NewtonPolygon(f) . N(f) = {(α0, β0), . . . , (αk, βk)}
4: if α0 > 0 then
5: S ← {(x, α0)} . x ∈ C[x], r := α0

6: end if
7: f̃ ← f/ gcd(f, fy) . fy(x, y) := d

dy
f(x, y)

8: L← SquareFreeFactorization(f)

9: return S ∪NewtonPuiseuxLoop(f̃ , L)
10: end function
11: function NewtonPuiseuxLoop(f , L)
12: N ← {NewtonPolygon(g) | (g, α) ∈ L}
13: L← {(g, α) ∈ L | h(N(g)) 6= 0,N(g) ∈ N}
14: N(f)← NewtonPolygon(f) . N(f) = {(α0, β0), . . . , (αk, βk)}
15: if β0 = 1 then . h(N(f)) = β0

16: return {(0, α)} . L = {(g, α) | g ∈ C[x][y], α ∈ N}
17: end if
18: S ← ∅
19: if βk > 0 then
20: S ← {(0, {α ∈ N | βk > 0, (αk, βk) ∈ N(g) ∈ N, (g, α) ∈ L})}
21: end if
22: for (αi, βi), (αi+1, βi+1) ∈ N(f) do
23: n← βi − βi+1

24: m← αi+1 − αi
25: k ← βiαi+1 − αiβi+1

26: Γ← nx+my − k . Γ ∈ Z[x, y]
27: FΓ ←

∑
(α,β)∈Γ Aα,βZ

β−β0 . FΓ ∈ C[Z]

28: for a ∈ {FΓ(zn) = 0 | z ∈ C} do
29: f ← x−kf(xn, xm(a+ y))
30: L← {(x−kg(xn, xm(a+ y)), α) | (g(x, y), α) ∈ L}
31: S ← NewtonPuiseuxLoop(f, L)
32: S ← S ∪ {(xm/n(a+ s̄(x1/n)), α) | (s̄, α) ∈ S}
33: end for
34: end for
35: return S
36: end function

21

This is because x as a factor of f does not have a Puiseux series and has to be
treated separately; on the other hand, f = y − x has Puiseux series x ∈ C〈〈x〉〉.

NewtonPuiseux is the entry point of the algorithm. In line 5 it extracts the
x factor using the Newton polygon of the input. In line 7 it computes the reduced
part of the input polynomial so we can apply the separability condition.

NewtonPuiseuxLoop is basically a modified version of algorithm 2. Let’s
see how this new function differs form the original NewtonPuiseuxReduced
function and why it works:

• Given the input polynomial f , fi was recursively computed from fi−1 and
it has as first term of its Puiseux expansions the i-th term of some of the
Puiseux expansions of f .

• In the first iteration L0 contains the square-free decomposition of f . Follow-
ing the notations in definition 1.7.1 and in algorithm 4, define Li inductively
from Li−1 in the following way

L0 = {(g1, 1), (g2, 2) . . . , (gn, n) | f = g1g
2
2 · · · gnn}

Li = {(g(i)
j , j) | gi = x−kg

(i−1)
j (xn, xm(a+ y)),

h(N(g
(i)
j)) 6= 0, (g

(i−1)
j , j) ∈ Li−1}.

(1.6)

The following new proposition shows that the sets Li contains the square-free
decomposition of each fi in algorithm 4.

Proposition 1.7.2. Let f ∈ C[x, y] and let f = g1g
2
2 · · · gnn be its square-free

decomposition. Then, following the notation in algorithm 4, the set Li in equa-
tion (1.6) contains the square-free decomposition of fi for any i ∈ N.

Proof. It suffices to prove this for i = 1 and apply induction. Compute f1 and
apply the same transformation, i.e. equation (1.4) and divide by xk, to the reduced
factors of f in L. We known from lemma 1.6.3 in [4] that this transformation
cannot create new factors in f1 or increase the multiplicity of the existent ones.
However, some of the gi could become units after the transformation. If gi1 is a
unit, from proposition 1.3.1 we known that h(N(gi1)) = 0 and hence, the result is
proved.

In algorithm 4, line 13 removes the possible units generated in the previous
iteration and line 30 applies a new transformation to Li. Line 20 select the terms
from Li that fall under the case (i.a) and therefore have 0 as an y-root. This is
done by looking at the Newton polygon of each square-free term, just as we did
in algorithm 2. Finally, the stopping condition in line 16 can return the algebraic
multiplicity of the y-root that has been separated from the rest because at this

22

point L can only contain one square-free factor, the square-free factor the y-root
belongs to. This is true because the height is one and because, by definition,
different square-free factors in L cannot share the same y-root.

1.8 Implementation details

We have implemented all the above algorithms using the Macaulay2 computa-
tional algebra system [7]. This section explains the most important aspects of
our implementation and how it compares against other implementations in other
mathematical libraries such as Singular or Maple.

When dealing with polynomial roots and computers, as in the case of the
Newton-Puiseux algorithm, one has to make a choice between computing the
roots numerically or working with them symbolically. Each method has its own
advantages and disadvantages: numerical methods are very fast but inaccurate,
symbolical methods are exact but expensive to compute.

For the implementation of our Newton-Puiseux algorithm we have chosen to
work with floating point values and compute the polynomials roots using numer-
ical methods. The Newton-Puiseux algorithm could potentially compute many
polynomials roots for a single input and this process is done recursively, i.e. the
roots in an iteration depend on the roots computed in the previous iteration. This
means that a symbolic method that starts in Q will have to work in arbitrary
field extensions of Q. Algorithms that work with polynomials over arbitrary field
extensions of Q are only practical with relatively small inputs and this would limit
the size of the possible inputs for our algorithm. Another problem is that these
algorithms are not implemented in Macaulay2 yet.

We will see in the section 2.11 that, as long as the precision used for the
computations is enough two separate numerically the roots of each side FΓ, possible
small errors in the computation of the roots are not an issue for our purpose.
Furthermore, the Macaulay2 software has the option to work with floating point
numbers of arbitrary precision. This means that we can specify how many bits
of precision we want in our computations. Although there is no rule of thumb to
select the best number of precision bits, we have observed that the running time
of our program is not very sensible to the number of bits specified. If the user does
not specify any particular value, our program defaults to 300 bits.

We have tried to take advantage of all the packages that Macaulay2 include,
however this has not been always possible. In the computation of the Newton
Polygon we tried to use the Polyhedra package in Macaulay2. This solution
turned to be very slow since the algorithm to compute convex hull in the Poly-
hedra package of Macaulay2 is only designed to work with small inputs as it has
a O(n2) complexity. This is the reason why we had to develop algorithm 1.

23

Macaulay2 has no built-in functions to compute the roots of a polynomials
numerically. Therefore, in order to compute the roots of the polynomials in algo-
rithm 4, we had to use some routines that the NumericalAlgebraicGeometry
package in Macaulay2 provides. Although this solution works reasonably well for
small inputs, it starts to fails for some univariate polynomials of degree 17 and
19. This became a major issue as our algorithm could potentially work with poly-
nomials much bigger than that. For that reason, we had to modify the core of
Macaulay2 to provide a built-in function to compute roots of polynomials using a
much more robust function from the PARI library [9].

Another problem we have found is that Macaulay provide limited support for
polynomial rings over the complex numbers. In particular, by the time this thesis
was written, Macaulay2 has no support for polynomials divisions over C. This
basically means that the inputs of our program have to be polynomials over Q[x, y]
and the computation of the square-free factorization and the reduced part of the
input only works over Q[x, y]. As long as the input is in Q[x, y] this does not
change the output of the algorithm since the results of all the algorithms are the
same regardless if the input is considered to be in Q[x, y] or C[x, y].

By the time this work was done, we are aware of two other mathematical
softwares that can compute Puiseux series for reduced polynomials, the Singular
computational algebra system [6] and Maple

TM
[8]. Both packages use symbolic

methods to compute the roots of the polynomials.
The Macaulay2 code of all the algorithms described in this chapter can be found

in Appendix B. The code necessary for manipulating Puiseux series in Macaulay2,
can be found in Appendix A. We will end this section showing an example of the
usage and the output of our program running in Macaulay2 version 1.8.2.

Example 2. Using the same polynomials as in example 1 but now adding multi-
plicities greater than one:

i1: f1 = y^4 - 2*x^3*y^2 + x^6 - 4*x^10*y - x^17;

i2: f2 = x^4 - 2*x^2*y^5 - 4*x*y^8 + y^10 - y^11;

i3: puiseuxExpansion(f1^2*f2^3)

2 1 1 3 17 1

- - -- - -- -

5 2 10 2 4 4

o3 = {(x + .16x + O (x), 3), (x + x + O (x), 2)}

We can see how our program return both the Puiseux series and the multiplicities.

24

Chapter 2

Infinitely near points

The goal of this chapter is to make a study of the singular points in plane algebraic
curves and see how to compute the necessary information to determine the equi-
singularity type of a singularity. We first make a brief introduction to the theory of
infinitely near points and the resolution of singularities. After that, we introduce
the notion of a weighted cluster and how weighted clusters can be represented with
Enriques diagrams. Finally, we show how the Enriques theorem can be used to
compute proximity matrices from Puiseux series. We show a new algorithms to
compute the equisingularity type of a curve from the algorithms developed in the
previous chapter and the already existing ones in [4]. Through this chapter we
basically follow [4] for all the theoretical results.

2.1 Germs of curves

Fix a point O on a smooth analytic surface S. We will denote by OS,O (or just
O if S and O are clear from the context) the ring of holomorphic functions in a
neighbourhood of the point O. Similarly, we will denote by mS,O (or just m) its
maximal ideal, which consist of the functions f such that f(O) = 0.

If x, y are local coordinates at the point O, the representation of holomorphic
functions by convergent series leads to the identification: O ∼= C{x, y}. Further-
more, any pair of local coordinates, in particular x, y, will be a pair of generators
of m.

Given an analytic curve ξ lying on S and going through O it can be written
locally around O as the zero locus of f ∈ C{x, y} and we just say ξ : f = 0.
The germ of a curve ξ at point O is an equivalence class of all curves defined
in a neighbourhood of O, modulo the equivalence relation of having the same
restriction to an open neighbourhood of O. The same construction can be done
for holomorphic functions giving rise to germs of holomorphic functions. If ξ is a

25

curve on S, we will denote ξO its germ at O, being ξO the empty set if ξ does not
go through O.

The concept of a germ of curve is important as there is a one to one correspon-
dence between germs of curves at O and non-zero principal ideals of OS,O: two
equations f, g generate the same germ if and only if f/g is an invertible element
of OS,O.

Direct from the Puiseux theorem applied to any equation of a germ ξ:

Proposition 2.1.1 ([4, 2.1.1]). If ξ : f = 0 is a germ of a curve with origin at
O, then it has a uniquely determined decomposition as a sum of irreducible germs:
if f = fα1

1 · · · fαr
r , the equations fi being irreducible, then ξ = α1γ1 + · · · + αrγr,

where each γi is the irreducible germ fi = 0.

The germs γi are also called branches of ξ. The positive integer αi is called
the multiplicity of γi as a component of ξ. A component γi is called multiple if
and only if αi > 1. Finally, a germ ξ is said to be reduced if and only if it has no
multiple components, that is, ξ = γ1 + · · ·+γr with all γi irreducible and γi 6= γj if
i 6= j. Given a germ ξ there is just and just one reduced germ ξred with the same
branches as ξ: if ξ = α1f1 + · · · + αrfr with αi > 0, γi irreducible for i = 1, . . . , r
and γi 6= γj for i 6= j, then ξred = γ1 + · · ·+ γr.

2.2 Infinitely near points

Let π : S̄ → S be the blowing-up of a point O in a smooth analytic surface S. The
precise construction of the blowing-up can be found in [4, ch. 3]. Take ξ a curve
in an open subset W 3 O of S: we will denote by ξ̄ the pull-back of ξ by π, i.e.
ξ̄ = π∗(ξ), and it will be called the total transform of ξ.

Lemma 2.2.1 ([4, 3.2.1]). The total transform of a curve ξ has the form

ξ̄ = ξ̃ + eO(ξ)E

where ξ̃ is a curve in π−1(W) with finitely many intersections with E.

The integer eO(ξ) is the multiplicity of ξ at the point O. The strict transform
of ξ is the component ξ̃. This is a curve defined on π−1(W) and which does not
contain any copy of the exceptional divisor E.

The exceptional divisor E of blowing up a point O in a surface S will be called
the first (infinitesimal) neighbourhood of O in S. Since blowing up a point on a
smooth surface give rise to another smooth surface, we can iterate the process: if
i > 0, the points in the i-th (infinitesimal) neighbourhood of O (on S) will be the

26

points in the first (infinitesimal) neighbourhood of some point in the (i−1)-th (in-
finitesimal) neighbourhood of O. The points which are in the i-th neighbourhood
of O, for some i > 0 are called points infinitely near to O. Sometimes the points
on the original surface S are called ordinary points.

An essential notion regarding the relative position of infinitely near points is
the notion of proximity. Let two points p, q be equal or infinitely near to O. The
point q is said to be proximate to p (and denoted q → p) if it belongs to the
exceptional divisor Ep of blowing up p. This can happen for two reasons: q is an
ordinary point of Ep, that is πp(q) = p, where πp is the blowing up of p; or, q
is an infinitely near point to Ep that still belongs to one of the successive strict
transforms of Ep.

Because of the fact that the total transforms of the exceptional divisors (which
are smooth curves isomorphic to the projective line) either do not meet or meet
transversally at a single point and no three have a common point (see [4, 3.5.5]),
if p is infinitely near to O, then p is proximate to just one or two points equal
or infinitely near to O. A point p infinitely near to O is called free if and only if
it is proximate to just one point equal or infinitely near to O. Otherwise, if p is
proximate to exactly two points, it is called a satellite point.

2.3 Resolution of singularities

Given a point p infinitely near to O, the process of blowing up a curve ξ can be
iterated to get a curve on Sp denoted ξ̃p (resp. ξ̄p) and called the strict (resp. total)
transform of ξ at p. The curve ξ will go through p, or p will belong to ξ, if and only
if the curve ξ̄p is not empty. We will denote by NO(ξ) the set of points equal or
infinitely near to O that lie on ξ. The reader may notice that NO(ξ) = NO(ξred).

We define the multiplicity of ξ at p as being the multiplicity of ξ̃p and it will
be written ep(ξ). In particular ξ goes through p if and only if ep(ξ) > 0. As usual,
if ep(ξ) > 1 (resp. ep(ξ) = 1), p is called a multiple (resp. simple) (infinitely near)
point of ξ. Sometimes these multiplicities are called effective to distinguish them
from virtual multiplicities defined in section section 2.5.

The most important result regarding these concepts is that one can transform
a reduced compact singular curve into a smooth one by mean of a finite sequence
of blowing-ups.

Theorem 2.3.1 ([4, 3.7.1]). A reduced curve contains finitely many multiple in-
finitely near points to a given ordinary point on the curve.

However, for the purpose of classifying singularities knowing only the multiple
infinitely near points is not enough. Given a curve ξ an ordinary or infinitely near
point p on ξ will be called a singular point of ξ if and only if either

27

• p is multiple on ξ,

• p is a satellite point,

• p precedes a satellite point on ξ.

Notice that there may be simple and free points on a germ ξ preceding satellite
points still on ξ. The easiest example being the first neighborhood of the origin
on ξ : y2 − x3 = 0. An ordinary point is singular if and only if it is multiple
(see [4, 3.6.2]). Hence, this new notion of singular points extends the usual one to
infinitely near points.

Proposition 2.3.2 ([4, 3.7.7]). A germ of a curve contains at most finitely many
satellite points.

Thus, thanks to 2.3.1 and 2.3.2 the number of singular points is finite. Define
SO(ξ) as the subset ofNO(ξ) containing the first non-singular points in each branch
of ξ and all the points preceding them.

Definition 2.3.3. We will say that two curves germs of a curves ξ and ζ are said
to be equisingular if and only if there exists a bijection ϕ : S(ξred) −→ S(ζred)
such that ϕ and ϕ−1 preserve the natural ordering and the proximities of infinitely
near points and the multiplicities of branches are the same.

2.4 Clusters of points

Let K be a finite non-empty set of points equal or infinitely near to O, and assume
that for all p ∈ K all the points preceding p are contained in K. Such a set will
be called a cluster of points infinitely near to O and O the origin of K.

As the reader may notice, clusters can be used to represent desingularizations
of curves at a given point p. It is extremely useful to associate to each cluster
a graphical representation in the form of a tree-shaped diagram as we can see in
figure 2.1.

However, this kind of diagram does not encode the proximity relations between
points, only the natural ordering. This is why another kind of diagrams, called
Enriques diagram, is used to represent infinitely near points. These diagrams are
also a tree, like the one described before, but the edges are drawn in two ways,
curved or straight, according to the following rules:

• If q is free and proximate to p, the edge joining p and q is a smooth curve
which, if p = O, has the same tangent at p as the edge ending at p.

28

1111

1 1 2

5

Figure 2.1: The tree of f = xy(x− y)(x3 − y2).

• If points p and q, q in the first neighbourhood of p, have been represented,
the rest of the points proximate to p in the successive neighbourhoods of q
(and the corresponding edges) are represented on a straight half-line starting
at q and orthogonal to the edge joining it with p. To avoid self-intersections
in the diagram, such half-lines are drawn alternatively to the right and to
the left of the preceding one.

In particular, the Enriques diagram of S(ξ) will be called the Enriques diagram
of ξ and is a representation of the equisingularity type of ξ at O.

Example 3. The Enriques’ diagram in the right hand-size of figure 2.2 represents
the cluster of infinitely near points and the multiplicities of the infinitely near
points of the curve defined by the equation f = xy(x − y)(x3 − y2). It can be
seen how the curve is composed by four irreducible branches; usually, the last
free point with multiplicity one in each of the branches is omitted. However, for
the sake of clarity we will include them. It is importance to notice the difference
between figure 2.2 and figure 2.1 and the presence of a satellite point in the second
neighbourhood of the origin.

The notion of proximity leads to the following statement that describe the
multiplicity of an ordinary or infinitely near point in terms of the multiplicities of
tis proximate points.

Theorem 2.4.1 (Proximity equalities, [4, 3.5.3]). For any ordinary or infinitely
near point p on a curve ξ,

ep(ξ) =
∑
q→p

eq(ξ). (2.1)

29

5

1

1

2
1

1
1

O 5

6

6

7
8

14
13

O

Figure 2.2: Enriques diagrams of xy(x − y)(x3 − y2) representing the weighted
cluster defined with multiplicities on the left side and with values on the right
side, see proposition 2.5.5.

Thus, if we assume that the branches are reduced, given the Enriques diagram
of a desingularization one can recover the multiplicities of the infinitely near points
using the formula above.

2.5 Virtual multiplicities

A pair K = (K, ν), where K is a cluster and ν : K −→ Z is an arbitrary map, is
called a weighted cluster. The integer νp = ν(p), for p ∈ K, is called the virtual
multiplicity at p of K.

To a weighted cluster K = (K, ν) we associate another map ν̄ : K −→ Z
defined recursively as ν̄O = νO and ν̄p = νp +

∑
p→q ν̄q for p ∈ K − {O}. The

integer ν̄ = ν̄(p), for p ∈ K, is called the virtual value at p of K. Conversely,
the virtual multiplicities can be obtained recursively from the virtual values of a
cluster.

In this section we will work with virtual multiplicities. We say that a curve
ξ goes through the point O in a cluster with virtual multiplicity νO if and only if
eO(ξ) ≥ νO.

Definition 2.5.1. Assume that a ξ curve goes through the point O with virtual
multiplicity νO. Then, the virtual transform of ξ relative to the virtual multiplicity
νO is

ξ̂ = ξ̃ + (eO(ξ)− νO)E (2.2)

where ξ̃ and E denote, respectively, the strict transform of ξ and the exceptional
divisor of blowing up O.

30

Notice that also,
ξ̂ = ξ̄ − νOE

so that on may understand the virtual transform ξ̃ as being obtained from ξ like
the strict transform, but formally considering O as a point of ξ of multiplicity νO.
In particular we have ξ̂ = ξ̃ if and only if eO(ξ) = νO.

Assume now that K = (K, ν) is a weighted cluster which has origin at O.
Denote by pi, i = 1, . . . , s the points of K in the first neighbourhood of O.

For each i = 1, . . . , s, denote by Ki the cluster with origin at pi that contains
pi and all the points infinitely near to it in K. For i = 1, . . . , s, the restriction to
Ki is a system νi of virtual multiplicities for Ki. It gives rise to a weighted cluster
Ki = (Ki, νi).

Definition 2.5.2. If K = (K, ν) is a weighted cluster with more than one point,
we say that a curve ξ goes through K if and only if

1. ξ goes through O with virtual multiplicity νO and,

2. the virtual transform of ξ relative to the virtual multiplicity νO goes through
Ki, for i = 1, . . . , s.

If a curve ξ goes through a weighted cluster K with (effective) multiplicities
(ep(ξ)) equal to the virtual ones (ν(p)) and all the singular points of ξ are inside
K, i.e. SO(ξ) ⊂ K, then we will say that ξ goes sharply through K.

The next condition is useful to characterize weighted cluster for which there
are curves going with effective multiplicities equal to the virtual ones.

Definition 2.5.3 (Proximity Inequality). A consistent cluster is a weighted cluster
K = (K, ν) such that for all p ∈ K,

νp ≥
∑
q→p

νq. (2.3)

This basically means that the cluster has to fulfill, at least, the proximity
equalities in 2.4.1. The empty sum being zero by definition, the reader may notice
that if K = (K, ν) is consistent, then νp ≥ 0 for all p ∈ K.

It is clear from the last section that any weighted cluster can be associated
with an Enriques diagram. We can also represent a cluster K with a matrix.

Definition 2.5.4. The proximity matrix of K is

PK = I −M

where I denotes the |K| × |K| unit matrix and M is the matrix defined by

mq
p =

{
1, if p is proximate to q

0, otherwise

31

The dimension of the proximity matrix represents the number of points in the
cluster. By encoding the virtual multiplicities as a column vector νK , we can
encode a weighted cluster using a pair (PK , νK). The proximity matrix is lower
triangular and has ones in the diagonal, hence it is invertible over Z.

Example 4. The proximity matrix of the cluster represented in figure 3 together
with its vectors of multiplicities and values is

PK =

1 0 0 0 0 0 0
−1 1 0 0 0 0 0
−1 −1 1 0 0 0 0
−1 0 −1 1 0 0 0
−1 0 0 −1 1 0 0

0 −1 0 0 −1 1 0
0 0 −1 0 0 −1 1

, eK =

5
2
1
1
1
1
1

, vK =

5
7
13
6
6
8
14

However, the proximity matrix is not unique since the order of the points is

not unique; any partial order that maintains the relative position of infinitely near
points is equally valid.

Alternatively one can assign to each infinitely near point a value instead of a
multiplicity. The value of an infinitely near point p in the curve ξ, denoted vp(ξ),
is defined as the multiplicity of the exceptional divisor in the total transform of
ξ at p. As an example, the left-hand size picture of figure 2.2 shows an Enriques
diagram with values instead of multiplicities.

The relation between the multiplicities and the values is explained in the next
proposition.

Proposition 2.5.5 ([4, 4.5.1]). Given a cluster K with origin O, for any germ of
curve at ξ at O,

eK(ξ) = PKvK(ξ)

If ν : K → Z is system of virtual multiplicities, as we already said, we will
denote by ν̄ : K → Z the system of virtual values associated with it, where
ν̄ = P−1

K ν. Virtual values are useful as they allow us to state the condition of a
curve ξ going through a weighted cluster more easily:

vp(ξ) ≥ ν̄p ∀p ∈ K. (2.4)

2.6 Characteristic exponents

So far we have introduced Puiseux series and infinitely near points. In the remain-
ing sections we will see how to use the Puiseux factorization of an irreducible curve
γ to obtain its Enriques diagram or, equivalently, its proximity matrix.

32

The Puiseux series of an irreducible germ provide a set of numerical equisin-
gularity invariants that determine its equisingularity class. Let s =

∑
j>0 ajx

j/n

be a Puiseux series and assume that its polydromy order is n. We define a set
of rational numbers m1/n, . . . ,mk/n, the characteristic exponents of s, in the fol-
lowing way: m1/n is the first non-integral exponent that effectively appears in s,
and, for each i, mi/n is the first exponent effectively appearing in s that cannot
be reduced to the minimal common denominator of m1/n, . . . ,mi−1/n. In other
words, we have

m1 = min{j | aj 6= 0 and j 6∈ (n)},
and, inductively, provided that ni−1 = gcd(n,m1, . . . ,mi−1) 6= 1,

mi = min{j | aj 6= 0 and j 6∈ (ni−1)}.

Since n is the polydromy order of s, it is clear that we will eventually reach an
integer k for which nk = 1. Notice also that the set of characteristic exponents of
an integral powers series (n = 1) is the empty set.

After the definition of characteristic exponents, the series s may be written, in
the form

s =
∑
j∈(n)

1≤j<m1

ajx
j/n +

∑
j∈(n1)

m1≤j<m2

ajx
j/n + · · ·+

∑
j∈(nk−1)

mk−1≤j<mk

ajx
j/n +

∑
j≥mk

ajx
j/n. (2.5)

In the sequel, we will refer to the terms, exponents or coefficients in∑
j∈(ni)

mi≤j<mi+1

ajx
j/n

as the terms, exponents or coefficients depending on the i-th characteristic ex-
ponent. Furthermore, the terms, coefficients or exponents not associated with
any characteristic exponents will be called the tail terms, coefficient or exponents,
respectively.

Assume that local analytic coordinates x, y are fixed and let γ be an irreducible
germ of curve at O. The characteristic exponents of all Puiseux series of γ rela-
tive to the coordinates x, y being the same, they will be called the characteristic
exponents of γ relative to the coordinates x, y. We will see later that they do not
depend on the coordinates x, y, as long as the second axis is non-tangent to γ, and
hence they constitute an equisingularity invariant.

2.7 Enriques’ theorem

Given an irreducible germ, the set of terms associated to a characteristic exponents
have associated with them a finite sequence of consecutive free and satellite points

33

on the germ. In this section we will determine the multiplicities of the infinitely
near points on an irreducible germ γ, as well as their proximity relations, from one
of the Puiseux series of γ.

Assume that γ is an irreducible germ with origin at O, that is s is one of the
Puiseux series relative to fixed local coordinates x, y and that s has polydromy
order n and characteristic exponents {m1/n, . . . ,mk/n}.

Set m0 = 0 and ni = gcd(n,m1, . . . ,mi) so that, in particular n0 = n and
nk = 1. For each i = 1, . . . , k, perform the successive Euclidean divisions leading
to ni = gcd(ni−1,mi) = nir(i),

mi −mi−1 = hi0n
i−1 + ni1

ni−1 = hi1n
i
1 + ni2

·
·
·

nir(i)−2 = hir(i)−1n
i
r(i)−1 + nir(i)

nir(i)−1 = hir(i)n
i
r(i)

and notice that r(i) ≥ 1 and hij > 0 for j = 1, . . . , r(i). Then we have:

Theorem 2.7.1 (Enriques, [4, 5.5.1]). There are on the irreducible germ γ in
successive neighbourhoods, corresponding to the i-th characteristic exponent of s,

hi0 points with multiplicity ni0 : pi0,1, . . . , p
i
0,hi0

,

hi1 points with multiplicity ni1 : pi1,1, . . . , p
i
1,hi1

,

· · ·
hir(i)−1 points with multiplicity nir(i)−1 : pir(i)−1,1, . . . , p

i
r(i)−1,hi

r(i)−1

hir(i) points with multiplicity nir(i) : pir(i),1, . . . , p
ir(i), hir(i).

The first of these points (i.e., pi0,1 if hi0 6= 0 or pi1,1 if hi0 = 0) is the origin

O if i = 1 or a free point in the first neighbourhood of pi−1

r(i−1),hi−1
r(i−1)

if i > 1.

Furthermore, all point after pk
r(k),hk

r(k)

are simple and free. The above points are

related by proximity in the following way:

• Exclude first the case i = 1 and m1/n < 1. Then all the points

pi0,1, . . . , p
i
0,hi0

, pi1,1,

34

pi−1

r(i−1),hi−1
r(i−1)

pi0,1 pi0,2

pi
0,hi0

pi1,1
pi1,2

pi
1,hi1

pi2,1

pi2,2

pi
2,hi2

pi3,1 pir(i),1

pi
r(i),hi

r(i)

pi+1
0,1

O

Figure 2.3: The Enriques diagram of an arbitrary irreducible germ as described in
theorem 2.7.1. From [4, page 175].

i = 1, . . . , k but p1
0,1 = O are free points. The remaining ones are satellite

point, precisely, for j = 1, . . . , r(i)− 1,

pij,1, . . . , p
i
j,hij
, pij+1,1

are proximate to pi
j−1,hij−1

, and

pir(i),1, . . . , p
i
r(i),hir(i)

are proximate to pi
r(i)−1,hi

r(i)−1

• In the case i = 1 and m1/n < 1, we have h1
0 = 0, then p1

1,1 = O,

p1
1,2, . . . , p

1
1,h11

and also p1
2,1 if r(i) > 1, are free points on the y-axis. The remaining ones

are all satellite and proximity between them is as above.

Is clear that theorem 2.7.1 determines the multiplicity and the proximity rela-
tions of all the infinitely near points of γ, for a much better understanding of the
above theorem see figure 2.7.

Theorem 2.7.1 splits the points in SO(γ) in k + 1 pairwise disjoint sets of
consecutive points. For i = 1, . . . , k, we have the finite set {pi0,1, . . . , pir(i),hi

r(i)
}

35

whose points will be called the points depending on the i-th characteristic exponent.
The (k + 1)-th and last set is infinite and consist of all the points after pk

r(k),hk
r(k)

,

which are simple and free and will be called the tail points.
Each set of points depending on a characteristic exponent consist of a certain

number of consecutive free points followed by satellite points grouped together
in straight lines, usually called steps. There is at least one free point depending
on each characteristic exponent as r(i) > 0 for all i. Analogously, there are
satellite points depending on each characteristic exponent except for the case i = 1
and m1/n < 1: in this case the points pi1,l are all free. In particular, all points
depending on the characteristic exponents are singular but for the case m1 = 1
which corresponds to a smooth branch tangent to the y-axis.

Follows from the Enriques’ theorem the invariance of the characteristic expo-
nents.

Corollary 2.7.2 ([4, 5.5.3]). Assume that the y-axis is not tangent to γ. The
characteristic exponents of the Puiseux series of γ are determined by the multi-
plicities of the points of γ and their proximity relations. Hence, the characteristic
exponents of a Puiseux series of γ do not depend on the coordinates.

Corollary 2.7.3 ([4, 5.5.4]). Irreducible germs γ and γ̄ are equisingular if and
only if they have the same characteristic exponents.

Corollary 2.7.4 ([4, 5.5.5]). Two reduced germs ξ and ζ are equisingular if and
only if there is a one to one correspondence between branches of ξ and branches of
ζ such that:

1. corresponding branches have the same characteristic exponents, and

2. any two branches of ξ have the same intersection multiplicity as their corre-
sponding branches of ζ.

This follows from the previous corollary and [4, 3.8.6].

2.8 Computing Enriques diagrams

In this section we will show the algorithms that compute the proximity matrix and
the vector of multiplicities of the singular points of an irreducible germ of a curve
from its Puiseux series and applying theorem 2.7.1.

In order to apply theorem 2.7.1 we need to compute the numerical values
hij, n

i
j ∈ N, i = 1, . . . , k, j = 0, . . . , r(i) defined in section 2.7. But first we need to

compute the characteristic exponents of the input Puiseux series.

36

Algorithm 5 Characteristic exponents

Require: A Puiseux series s =
∑

j>0 ajx
j/n.

Ensure: The characteristic exponents {(0, n), (m1, n
1), . . . , (mk, n

k)}.
1: function CharacteristicExponents(s)
2: C ← {(0, n)}
3: ni ← n
4: while ni 6= 1 do
5: mi ← min{j ∈ N | aj 6= 0, j 6∈ (ni−1)}
6: ni ← gcd(ni,mi)
7: C ← C ∪ {(mi, n

i)}
8: end while
9: return C

10: end function

Algorithm 6 Enriques’ theorem’s values

Require: The characteristic exponents {(0, n), (m1, n
1), . . . , (mk, n

k)} of a
Puiseux series.

Ensure: The integers hij, n
i
j ∈ N | i = 1, . . . , k, j = 0, . . . , r(i) defined in section

2.7.
1: function EnriquesValues({(0, n), (m1, n

1), . . . , (mk, n
k)})

2: H ← ∅, N ← ∅
3: for (mi, n

i) ∈ {(m1, n
1), . . . , (mk, n

k)} do
4: m← mi −mi−1 . (m0, n

0) := (0, n)
5: n← ni−1

6: while n 6= 0 do
7: H ← H ∪ {bm/nc} . hij := bmj/njc
8: N ← N ∪ {n} . nij := nj
9: r ← m (mod n)

10: m← n, n← r
11: end while
12: end for
13: return (H,N)
14: end function

37

The valuesmi, n
i ∈ N are the ones defined in section 2.6. Then, we can compute

the values hij and nij from section 2.7 as explained in algorithm 6.
Algorithm 6 is a direct application of the definition of hij in section 2.7 and the

Euclidean algorithm. Next, we present algorithms 7 and 8, which, using the two
previous algorithms, will compute the proximity matrix P of the singular points
of an irreducible germ γ and its vector of multiplicities e(γ).

Algorithm 7 Proximity matrix (irreducible)

Require: The values hij, i = 1, . . . , k, j = 0, . . . , r(i) from theorem 2.7.1 of an
irreducible germ γ.

Ensure: The proximity matrix P of γ.
1: function ProximityMatrixIrreducible({hij})
2: n←

∑k
i=1

∑r(i)
j=0 h

i
j

3: P ← In
4: (Pij)i−j=1 ← −1
5: for i← 1 to k do
6: if i = 0 and h1

0 = 0 then
7: j0 ← 2
8: else
9: j0 ← 1
10: end if
11: hir(i) ← hir(i) − 1

12: for j ← j0 to r(i) do

13: m←
∑i−1

p=1

∑r(p)
q=0 h

p
q +

∑j−1
q=0 h

i
q

14: for l← 1 to hij do
15: (Pi′j′)i′=l+m,j′=m−1 ← −1
16: end for
17: end for
18: hir(i) ← hir(i) + 1
19: end for
20: return P
21: end function

For the special case of the curve x = 0, the y-axis, for which theorem 2.7.1
does not apply, the proximity matrix is trivial as it only contains free points.
Algorithm 7 applies theorem 2.7.1 to fill the proximities in the proximity matrix.
Clearly, the proximity matrix P will have ones in the diagonal and minus ones in
the positions Pij such that i − j = 1, hence we only have to use the values hij to
fill the remaining proximities corresponding to satellite points.

38

Algorithm 8 Vector of multiplicities (irreducible)

Require: The values hij, n
i
j ∈ N, i = 1, . . . , k, j = 0, . . . , r(i) defined in section 2.7

of an irreducible germ γ.
Ensure: The vector of vector of multiplicities e of γ.
1: function VectorMultReduced(({hij}, {nij}))
2: e← ()
3: for i = 0, . . . , k do
4: for j = 0, . . . , r(i) do

5: e← e ‖ (nij, . . .
hij. , nij)

6: end for
7: end for
8: return e
9: end function

Again, algorithm 8 is a direct application of theorem 2.7.1. We have denoted
with ‖ the concatenation of two vectors, and with () the empty vector. For the
special case of the curve x = 0, which does not have a Puiseux series, the vector
of multiplicities is trivial as only contains a single value r ∈ C, the algebraic
multiplicity of x in the equation of the curve.

Remark 2.8.1. For all the previous algorithms to work, all the Puiseux series
returned by algorithm 4 have to contain enough terms to compute all the charac-
teristic exponents. Indeed, checking the definition of characteristic exponents in
section 2.6 and lemma 1.6.2, it is clear that the Newton-Puiseux algorithm will
return, at least, series containing the term associated with the last characteristic
exponent and all the preceding terms. This is what happened in example 1, where
both Puiseux series have two characteristic exponents.

2.9 Comparing branches

We already know how to compute the Enriques diagram, or equivalently its prox-
imity matrix, of the singular points of an irreducible germ. The next step is to
compare the Enriques diagrams together to know how many infinitely near points
each pair of branches share.

This comparison process can also be done using the information encoded in the
Puiseux series of each branch. This process however turns out to be different for
the free and the satellite points. The next three results completely determine how
many points two branches share.

Let s be a Puiseux series of an irreducible germ γ. We will use the same notation
as in theorem 2.7.1; however, it will be useful to slightly change the notation for

39

the points at the corners of the Enriques diagram: pi
j,hij+1

= pij+1,1 for i = 1, . . . k

and j = 0, . . . , r(j)− 1.

Proposition 2.9.1 (going through a free point, [4, 5.7.1]). Fix a point pi0,l on an
irreducible germ γ, 1 ≤ i ≤ k + 1, 1 ≤ l ≤ hi0 + 1: pi0,l = O if i = l = 1, otherwise
it is a free point. Then, another irreducible germ ζ goes through pi0,l if and only if
it has a Puiseux series s̄ such that

[s̄](mi−1+(l−1)ni−1)/n = [s](mi−1+(l−1)ni−1)/n

where n is the polydromy order of γ.

Also, [·]τ denotes the partial sum of degree τ of any power series s, and by [·]<τ
we denote the sum of the monomials of of degree strictly less than τ . Notice that
if the y-axis is tangent to γ, then the only point p1

0,l is p1
0,1 = p1

1,1 = O and no
claim is made about the free points p1

1,l on the y-axis.

Proposition 2.9.2 (still going through a free point, [4, 5.7.3]). An irreducible
germ ζ, with Puiseux series s̄, goes through the last point depending on mi/n, p

i
r(i),hir(i),

and has a free point not on the y-axis in its first neighbourhood if and only if

s̄ = [s]<mi/n + axmi/n + · · ·

for some a ∈ C, a 6= 0.

Let ζ be another irreducible germ of a curve that goes through pi1,1, i.e. the
last free point depending on the i-th characteristic exponent in γ. According to
proposition 2.9.2, ζ as a Puiseux series of the form:

s̄ = [s]<mi/n + bxm̄/n̄ + · · ·

where n̄ is the polydromy order of s̄ and b 6= 0. If m̄/n̄ is not a characteristic
exponents, the point pi1,1 is not the last free points depending on the i-th charac-
teristic exponent in ζ, so γ and ζ diverge in pi1,1 and they don’t share any satellite
point beyond that point. Hence, we can assume that m̄ = m̄i is a characteristic
exponent of ζ.

Proposition 2.9.3 (going through a satellite point, [4, 5.7.5]). The irreducible
germ ζ goes through pit,j if and only if h̄0 = hi0, . . . , h̄t−1 = hit−1, h̄t ≥ j− 1 if r̄ > t,
or h̄0 = hi0, . . . , h̄t−1 = hit−1, h̄t ≥ j if r̄ = t

This condition is simple saying that the part of the Enriques diagram of ζ
depending on m̄i/n̄ fits into the part of the Enriques diagram of γ on mi/n, up to
point pit,j.

40

Assume that the y-axis is not tangent to γ, that is, m1/n > 1. Let us call J =
J (m1/n, . . . ,mk/n) the set of indices allowed in a Puiseux series with characteristic
exponents m1/n, . . . ,mk/n, that is,

J = {j ∈ Z | j > 0 and j ∈ (ni−1) if j < mi, i = 1, . . . , k}

Then the corresponding Puiseux series s may be written as

s =
∑
j∈J

ajx
j/n,

where aj ∈ C can be zero. On the other hand, let us call F = F(γ) the set of
all free points on γ, ordered by the natural order of infinitely near points. By
mapping the r-th element of J to the r-th element of F we can get a one-to-one
map from J to F . Let us write m0 = n, mk+1 =∞, the we can associate to each
coefficient aj of s a point pi0,l, l = (j − mi−1)/ni−1 + 1. Conversely, given a free
point pi0,l, j = mi−1 + (l − 1)ni−1.

We can now explicitly compute the proximity matrix of the singular points
of an arbitrary germ of a curve ξ containing an arbitrary number of irreducible
branches γ1, . . . , γr. The first steps towards that has been done in the last section
by computing the Enriques diagrams of an irreducible branch. The second consists
in computing the number of ordinary or infinitely near points that two branches
will share. We will call this number the contact number a pair of branches and
can be computed using the three propositions above.

Given a Puiseux series of an irreducible branch as in equation (2.5) we will
introduce the following useful representations of the information encoded in a
Puiseux series to compute contact numbers:

Definition 2.9.4. Using the above notation, we will encoded all the information
in a Puiseux series in the following way

S =
{(
{(aj, j) | j ∈ (n), 0 ≤ j < mi}, {hi0, . . . , hir(i)}

)
| i = 1, . . . , k + 1

}
(2.6)

where hi0, . . . , h
i
r(i) are the numerical values from theorem 2.7.1 and hk+1

0 =∞ for

r(k + 1) = 0.
For branches tangent to the y-axis the first tuple of 2.6 is simply ({(0, 0)},

{0, h1
1, . . . , h

1
r(1)}). For the special case of the y-axis curve, i.e. x = 0, which does

not have a Puiseux series let us set S =
{

({(0, 0}), {0,∞})
}

.

Algorithm 9 is pretty much a translation of propositions 2.9.1, 2.9.2 and 2.9.3.
Once we know how to compute the contact number of two branches it will be use-
ful for the next algorithm to store the contact numbers of all the branches in an

41

Algorithm 9 Contact number

Require: The Puiseux representation S and S, as in 2.6, of two Puiseux series s
and s̄.

Ensure: The contact number c of the Puiseux series s and s̄.
1: function ContactNumber(S, S)
2: c← 1
3: for i← 1 to min{|S|, |S|} do
4: (Fi,Hi)←

(
{(aj, j) | j ∈ (ν(s)), 0 ≤ j < mi}, {hi0, . . . , hir(i)}

)
5: (F i,Hi)←

(
{(āι, ι) | ι ∈ (ν(s̄)), 0 ≤ ι < mi}, {h̄i0, . . . , h̄ir̄(i)}

)
6: for l← 1 to min{|Fi|, |F i|} do . |Fi| = hi0, |F i| = h̄i0
7: if (ajl , jl) = (āιl , ιl) then . (ajl , jl) ∈ Fi
8: c← c+ 1 . (āιl , ιl) ∈ F i
9: else

10: return c
11: end if
12: end for
13: if |Fi| 6= |F i| then
14: return c
15: end if
16: hir(i) ← hir(i) − 1

17: h̄ir(i) ← h̄ir(i) − 1

18: for l← 1 to min{|Hi|, |Hi|} do . |Hi| = r(i), |Hi| = r̄(i)
19: c← c+ min{hil, h̄il} . h̄il ∈ Hi

20: if hil 6= h̄il then . hil ∈ Hi

21: return c
22: end if
23: end for
24: if |Hi| 6= |Hi| then
25: return c
26: end if
27: end for
28: return c
29: end function

42

arbitrary germ of curve all together. Given an arbitrary germ ξ with irreducible
branches γ1, . . . , γr we define the contact matrix C = (cij) of ξ by setting cij to be
equal to the contact number of γi and γj and let us set cii =∞ for i = 1, . . . , r.

2.10 Determining the equisingularity type

This section is devoted to present a new algorithm that computes the proximity
matrix and the multiplicities of the singular points of a germ of a curve ξ given
the proximity matrices, the vector of multiplicities and the contact matrix of its
branches. Hence, the equisingularity type of ξ will be completely determined.

Algorithm 10 is a recursive algorithm that computes the proximity matrix of a
cluster K given the proximity matrix of each branch in the cluster. If pi, i = 1, . . . , l
are the points in the first neighbourhood of the origin O ∈ K. Algorithm 10
computes the proximity matrix P of K from the proximity matrices Pi of Ki, where
Ki is the sub-cluster Ki ⊂ K with origin in pi. Applying this idea recursively to
each cluster Ki, i = 1, . . . , l one obtains algorithm 10.

Following the notation in algorithm 10: together with the proximity matrix P
algorithm 10 returns a set of vectors

Q = {(q1
1, . . . , q

1
n1

), . . . , (qr1, . . . , q
r
nr

) | qij ∈ N, i = 1, . . . , r, j = 1, . . . , ni}

where ni is the number of points in the i-th branch. Each number qij meaning that
the j-th point in the i-th branch is now in position qij inside P . This is useful for
computing the vector of multiplicities of germs ξ from the vectors of multiplicities
of γ1, . . . , γr.

• Lines 2-4 are the base case of the recursive algorithm, if there is only one
branch, we already know its proximity matrix, and the position of the points
is trivial. See remark 2.10.1 for more information on the base case.

• In lines 5-14 we compute which branches split in the current point, i.e. which
branches belong to the same subcluster Ki. This information is stored in S as
a partition of the branches going through the current points. Two branches
will be in the same set inside S if they remain together after the current
infinitely near point. The matrix Jr denotes the all-ones matrix. As we
move one point down the Enriques diagram, we subtract one from all the
contact numbers.

• Next, in lines 15-21, we first remove the current point from all the matrices
P1, . . . , Pr, i.e. the first row and column. Then, we can call the function
ProximityMatrix recursively for each partition of the branches in S, i.e.
for each subcluster Ki.

43

Algorithm 10 Proximity matrix

Require: The proximity matrices P1, . . . , Pr and the contact matrix C of the
irreducible branches γ1, . . . , γr of a curve ξ.

Ensure: The proximity matrix P of the curve ξ and the relative positions Q of
the points in γ1, . . . , γr inside P .

1: function ProximityMatrix(P = {P1, . . . , Pr}, C)
2: if r = 1 then
3: return (P1, {1, . . . , r})
4: end if
5: C ← C − Jr
6: C ′ ← C
7: B ← {1, . . . , r}, S ← {∅}
8: while B 6= ∅ do
9: A← {i ∈ N | c′1i 6= 0} . C ′ = (c′ij)

10: A← {i ∈ N | c′1i = 0}
11: S ← S ∪ A
12: B ← B − A
13: C ′ ← (c′ij)i∈A,j∈A
14: end while
15: P ←

{(
p

(l)
ij

)
i 6=0,j 6=0

| l = 1, . . . , r
}

. Pl =
(
p

(l)
ij

)
16: R← ∅
17: for Sk ∈ S do
18: Pk ← {Pi ∈ P | i ∈ Sk}
19: Ck ← (cij)i∈Sk,j∈Sk

20: R← R ∪ ProximityMatrix(Pk, Ck)
21: end for
22: n←

∑
(P ′k,Qk)∈R |P ′k|+ 1

23: (P,Q)← (In, ∅)
24: α← 1
25: for

(
Sk, (P

′
k, Qk)

)
∈ S ×R do . P = (pij)

26: (pij)i=i′+α,j=j′+α ←
(
p
′(k)
i′j′

)
. P ′k =

(
p
′(k)
ij

)
27: Q← Q ∪

{
(0,qkl + α)| qkl ∈ Qk

}
28: α← α + |P ′k|
29: for l ∈ |Sk| do
30: (pi0)i∈qkl

←
(
p

(l)
i′0

)
i′>1

31: end for
32: end for
33: σ ← (s11, s21, . . . , sn11, . . . , s1k, s2k, . . . , snkk, . . .) . sik ∈ Sk
34: return (P, σ−1(Q))
35: end function

44

• Lines 22-32 merge the results from each call in line 20 to construct the final
matrix P . We copy each sub-proximity matrix P ′k into P with the top-left
corner in position (α, α) and updates the relative positions of the points in
Q. Finally, line 30, updates the proximities of the current points. We use | · |
to denote the size of a square matrix.

• Finally, lines 33-34, reorder Q so we return the positions of the points in the
right order. Line 33, creates a permutation from the partitions in S, and we
apply the inverse of that permutation to the set Q before returning.

Remark 2.10.1. We assume that all the proximity matrices are computed from
the Puiseux series of ξ and that each pair of Puiseux series have been completely
separated. This is true if one uses algorithm 4 with an equation of ξ as input.
Because the Puiseux series are separated, after enough recursive steps of algo-
rithm 10 we will hit line 3 and the algorithm will terminate. Notice, that this is
no longer true if, for instance ξ = ξ1 + ξ2, and we compute the Puiseux series from
the equations of ξ1 and ξ2 separately.

Remark 2.10.2. For algorithm 10 to work it is important that all the matrices
P1, . . . , Pr have size at least equal to the maximum contact number, i.e. the
maximum entry of C. This is easy to achieve by expanding the matrices P1, . . . , Pr
with free points: p

(l)
ii = 1, p

(l)
ij = −1, i > |Pl|, i− j = 1, l = 1, . . . , r.

Finally, algorithm 11 computes the vector of multiplicities of ξ. Algorithm 11
uses the set Q from algorithm 10 and the fact that,

ep(ξ) = αiep(γ1) + · · ·+ αrep(γr)

for all the ordinary or infinitely points p, and where ξ = α1γ1 + · · ·+ αrγr.

2.11 Implementation details

We implemented algorithms 5, 6, 7, 8, 9, 10 and 11 in the Macaulay2 software
using the implementation of Puiseux series and Newton-Puiseux algorithm from
chapter 1.

In our implementation of the Newton-Puiseux algorithm we decided to use
floating points arithmetic to make computations practical. However, this causes
numerical approximations of the roots and hence, numerical approximations of the
Puiseux series. We should justify that using floating points values does not affect
the correctness of our program. From the way Puiseux series are constructed,
the numerical approximations only affect the coefficients. Therefore, we can have
a problem to determine when a coefficient is zero or not, and hence when an
exponent will appear in the series. We can also have problems determining when
two coefficients are equal or not, as it is required in line 7 of algorithm 9.

45

Algorithm 11 Vector of multiplicities

Require: The vector of multiplicities of each branch {e1, . . . , er}, the set Q from
algorithm 10 containing the relative position of the points, the algebraic mul-
tiplicity of each branch {α1, . . . , αr}, from algorithm 4, and the size n of the
proximity matrix from algorithm 10.

Ensure: The vector of multiplicities e of ξ.
1: function VectorMult(({e1, . . . , er}, Q, {α1, . . . , αr}, n))

2: e← (0, · · · n· · · · · · , 0)
3: for (qi1, . . . , q

i
ni

) ∈ Q do
4: for qij ∈ (qi1, . . . , q

i
ni

) do
5: (e)qij ← (e)qij + αi · (ei)j
6: end for
7: end for
8: return e
9: end function

• In order to solve the first problem, we assume that the input bit precision is
b and we perform all the operation with precision 2b. Then we set as zero
any α ∈ C such that |α| < 2−b.

• The second problem is actually easier to solve. As we said in the previous
chapter and in remark 2.10.1, we assume that the roots of each polynomial
side FΓ are separated numerically and all the Puiseux series come from the
same output of algorithm 4. Therefore, even if we use an approximation of
the root ai, we can be sure that comparing it against other roots will yield
the expected result.

The implementation of all these algorithms is straightforward once we can
operate safely on Puiseux series, and no further comment is required.

By the time this work has been completed, we are only aware of another pack-
age that can compute the proximity matrix from the equation of a curve. The
alexpoly.lib library from Singular [6] can compute the proximity matrix from
a reduced equation, whether our implementation handles arbitrary equations. It
is also important to notice that the alexpoly.lib does not use neither Puiseux
series nor the Enriques theorem to compute the proximity matrices. It uses the
Hamburger-Noether expansions of the equation, which is the analogue of Puiseux
series over fields of finite characteristic [3].

Finally, we present an example of the usage and the output of these algorithms
in our new Macaulay2 package. For the actual code, the reader is referred to
Appendix C.

46

Example 5. Let’s introduce the polynomial in example 4 in Macaulay2 and use
our program to compute the proximity matrix and the vector of multiplicities:

i1 : ZZ[x, y];

i2 : f = x*y*(x - y)*(x^2 - y^3);

i3 : (P, e) = proximityMatrix(f, ExtraPoint => true)

o3 = (| 1 0 0 0 0 0 0 |, {| 1 |, | 1 |, | 2 |, | 1 |})

| -1 1 0 0 0 0 0 | | 1 | | 0 | | 1 | | 0 |

| 0 -1 1 0 0 0 0 | | 1 | | 0 | | 0 | | 0 |

| -1 -1 0 1 0 0 0 | | 0 | | 0 | | 1 | | 0 |

| 0 0 0 -1 1 0 0 | | 0 | | 0 | | 1 | | 0 |

| -1 0 0 0 0 1 0 | | 0 | | 1 | | 0 | | 0 |

| -1 0 0 0 0 0 1 | | 0 | | 0 | | 0 | | 1 |

i4 : sum e;

o4 = | 5 |

| 2 |

| 1 |

| 1 |

| 1 |

| 1 |

| 1 |

We request to the proximityMatrix function an extra point at the end of
each branch so the dimensions of the output matrix match with example 4. We
return the vector of multiplicities of each branch separately, but we can obtain the
final vector of multiplicities by adding the vector of each branch.

47

Chapter 3

Base points of an ideal

In this section we will introduce the concept of linear system and the weighted
cluster of base points associated to an ideal. The objective of the chapter is to
describe an algorithm capable of computing the proximity matrix of that cluster
and the multiplicities of generic elements of the ideal. In order to do that we
first introduce the necessary concepts and we then state and prove a set of novel
results to compute the weighted cluster of base points of an ideal. In order to make
the computation feasible, we present a modified version of the Newton-Puiseux
algorithms to obtain the weighted cluster of singular points of all the generators
of an ideal.

3.1 Linear systems

We fix a point O on a smooth surface S and write O = OS,O,M = MS,O. A
linear system of germs of curve is a set of germs of curve at a point O of the form
L = {ξ : f = 0 | f ∈ I − {0}}, defined by an ideal I of O. Because C[[x, y]] is
Noetherian, any ideal of O is finitely generated, and one may take a system of
generators f1, . . . , fr of I and then L is the set of all germs of curve that have an
equation

∑r
i=1 aifi = 0 for some ai ∈ O.

We are in particular considering the linear system defined by the ideal I = (1),
clearly the only linear system containing the empty germ. It will be called the
irrelevant linear system. If g is the greatest common divisor of all the elements in
(or just the generators of) a linear system L of O, one may write L = gL′ where
L′ is a linear system and the greatest common divisor of all elements in L′ is 1.
The germ ξ : g = 0 is called the fixed part of the linear system L defined by I. If
g = 1 we say that L has no fixed part.

48

Let us set e = eO(L) = min{eO(ξ) | ξ ∈ L}. In particular, eO(L) = 0 if and
only if L is irrelevant. We will call e = eO(L) the multiplicity of L at O. It is clear
that, if G is a set of germs generating L, then also eO(L) = min{eO(ξ) | ξ ∈ G}.

If p is a point in the first neighbourhood of O, denote by Op its local ring,
by φp : O −→ Op the morphism induced by blowing up, and by z an equation
at p of the exceptional divisor. The ideal generated by z−eφp(I) obviously does
not depend on the particular equation z we are using and defines a linear system
Lp of germs at p that is generated by the virtual transforms, as defined in 2.5.1,
of any set of germs generating L, O being taken with virtual multiplicity e. The
linear system Lp will be called the transform of L with origin at p. We extend this
definition to all points on the successive neighbourhoods by using induction on the
order of the neighbourhoods. We write ep(L) = ep(Lp) and call this number the
multiplicity of L at p.

The first important result is that all but finitely many transforms Lp of any
given linear system L with no fixed part are irrelevant, or, equivalently, that
ep(L) = 0 for all but finitely many points p.

Proposition 3.1.1 ([4, 7.2.3]). If L is a linear system with no fixed part, for all
but finitely many points p infinitely near to O its transform Lp is irrelevant.

Now let L be a non-irrelevant linear system with no fixed part. We define
the weighted cluster of base points of L, BP (L) by taking the points p equal
or infinitely near to O for which Lp is not irrelevant, each p taken with virtual
multiplicity ep(L). BP (L) is actually a weighted cluster: if K denotes its set of
points, it is non-empty because L is non-irrelevant and is finite by proposition 3.1.1;
furthermore, if p ∈ K then also q ∈ K for all q < p because all transforms of an
irrelevant linear system are irrelevant too.

The points BP (L) will be called the base points of L. Note that p is a base
point of L if and only if ep(L) > 0. In such a case ep(L), the virtual multiplicity of
p in BP (L), will be called the multiplicity of the base point p. Sometimes BP (L)
is also called the weighted cluster of base points of the ideal I (defining L) and it is
denoted by BP (I). Both notations are common and their use depend on whether
the context is more geometric or algebraic.

Remark 3.1.1. It follows from the definition that all germs in L go through
BP (L). It is also clear from the definition that if a point p effectively belongs to
all germs in L, then it is a base point. Even more, since the virtual transforms
always contain the strict ones, if ep(ξ) ≥ e > 0 for all ξ ∈ L, the virtual multiplicity
of p in BP (L) is non-less than e. The reader may notice that the converse is far
from true as there may be germs in L failing to effectively go through some base
points.

49

The following theorem completely characterizes the behaviour of germs of curve
going through BP (L).

Theorem 3.1.2 ([4, 7.2.13]). Let L be a linear system of germs of curve at O with
no fixed part and T a finite set of points infinitely near to O, no one a base point
of L. All germs on L go through BP (L). The set of germs going sharply through
BP (L) and missing all points in T is a non-empty Zariski-open set, in particular,
they are reduced and have the same equisingularity type.

The following results will result useful in the next section.

Corollary 3.1.3 ([4, 7.2.16]). A linear system L with no fixed part may be gen-
erated by finitely many germs going sharply through BP (L), any two sharing no
point other than the base ones.

Lemma 3.1.4 ([4, 7.2.6]). Let G be a set of germs that generate L. If p is a base
point, the virtual transform with origin at p of some ξ ∈ G has multiplicity ep(L)
at p. If q is not a base point and lies in the first neighbourhood of a base point p,
then the virtual transform with origin at q of some germ G is empty.

3.2 Constructing the cluster of base points

In this section we will generalize the results in [1] for the case of an ideal with an
arbitrary number of generators. First let us state some results that will be useful
in the sequel and that follow directly from the definitions.

Proposition 3.2.1. Let K = (K, ν) a weighted cluster with origin at O and let
p ∈ K. Let ξ any germ of curve with origin at O. Then:

1. νp(ξ) = ep(ξ) +
∑

p→q νq(ξ).

2. ep(ξ̂p) = vp(ξ)−
∑

p→q νq, where ξ̂p is the virtual transform of ξ at p relative
to K≤p.

3. ξ goes sharply through K if and only if νp(ξ) = νp for all p ∈ K.

where K≤p is the weighted cluster that consists of all points preceding p in K with
the same weights ν.

Let O be a point on a smooth surface, and let ξi : fi = 0, i = 1, . . . , r be
arbitrary germs of curve at O. Consider the linear system L of the germs of curves
ξ1, · · · , ξr and the ideal I = (f1, . . . , fr). Consider BP (I) = (B, β) weighted by
the virtual values β. We will describe a weighted cluster K = (K, v), with v virtual

50

values, in terms of the infinitely near points and values of ξ1, · · · , ξr, and we will
prove that K equals BP (L).

First we assign to each point p equal or infinitely near to O two integers vp =
mini{vp(ξi)} and hp =

∑
p→q vq, hO = 0, the second one defined using induction on

the order of neighborhood p is belonging to. Define K as the set of points p equal
or infinitely near to O such that hp < vp, and for each p ∈ K define ep = vp − hp.
We will see that if p belongs to K then all the points preceding p also belong to
K. Hence, once it is proved that K is finite, we would have defined a weighted
cluster K = (K, v) = (K, e) with virtual multiplicities e and virtual values v.

First, let us prove a technical lemma that will be useful in the sequel.

Lemma 3.2.2. Let f ∈ I = (f1, · · · , fr), then

vp(f) ≥ min{vp(f1), · · · , vp(fr)}

for any point ordinary or infinitely point p.

Proof. Since vp(f) is a valuation in O (see [4], 4.5), for any g1, g2 ∈ I we have,

vp(g1 + g2) ≥ min{vp(g1), vp(g2)},

vp(g1g2) = vp(g1) + vp(g2).

Then, since f = g1f1 + · · ·+ grfr, with g1, · · · , gr ∈ O,

vp(f) = vp(g1f1 + · · ·+ grfr) ≥ min{vp(g1f1), · · · , vp(grfr)}
= min

i
{vp(gi) + vp(fi)} ≥ min{vp(f1), · · · , vp(fr)}

where in the last inequality we used that vp(g) ≥ 0,∀g ∈ O.

Next, we should prove that our definition of the cluster K does not depend on
the generators of the ideal.

Lemma 3.2.3. The virtual values vp do no depend on the generators f1, . . . , fr of
the ideal I. Namely, vp = minf∈I{vp(f)}.

Proof. It is clear that vp = mini{vp(fi)} ≥ minf∈I{vp(f)} since {f1, . . . , fr} ⊂ I.
On the other hand, by lemma 3.2.2, vp(f) ≥ mini{vp(fi)}, for all f ∈ I, hence
minf∈I{vp(f)} ≥ vp and the result follows.

Lemma 3.2.4. For any p equal or infinitely near to O, it holds hp ≤ vp.

51

Proof. For p = O it is clear. If p is free, take q ← p, then by proposition 3.2.1(1)

hp = vq = min
i
{vq(ξi)} ≤ min

i
{vp(ξi)} = vp.

If p is satellite, let {q, q′} be the points p is proximate to. Then

hp = vq + vq′ = min
i
{vq(ξi)}+ min

i
{vq′(ξi)}

≤ min
i
{vq(ξi) + vq′(ξi)}

and again, by the same equality as before, it follows the desired inequality.

Lemma 3.2.5. If there exists a generator ξi such that hp = vp = vp(ξi), then
ep(ξi) = 0 and vq = vq(ξi) for any q ← p.

Proof. Suppose first p is free and take q ← p. Since vp(ξi) = vp = hp = vq =
minj{vq(ξj)}, we infer that vp(ξi) ≤ vq(ξi). Then by proposition 3.2.1(1) the
equalities vp(ξi) = vq(ξi), ep(ξi) = 0 follow, and hence vq = vq(ξi).

Assume now p is satellite and take q ← p, q′ ← p. Since vp(ξi) = vp = hp =
vq+vq′ , we infer that vp(ξi) ≤ vq(ξi)+vq′(ξi). By proposition 3.2.1(1) the equalities
vp(ξi) = vq(ξi) + vq′(ξi), ep(ξ) = 0 follow. Now, if vq < vq(ξi) or vq′ < vq′(ξi), then
hp = vq + vq′ < vp(ξi), a contradiction.

Proposition 3.2.6. If p ∈ K, then any point q preceding p belongs to K.

Proof. Let us show the converse: if q /∈ K, i.e. hq = vq, then hp = vp for any p in
the first neighborhood of q, and inductively hp = vp, i.e. p /∈ K, for any point p
infinitely near to q.

Let p be a point in the first neighborhood of q, q /∈ K. Assume the minimum
vq is reached by the germ ξi, thus hq = vq = vq(ξi).

If p is satellite, take q′ ← p (we already know q ← p). Then by lemma 3.2.5

hp = vq + vq′ = vq(ξi) + vq′(ξi) = vp(ξi).

Hence and by lemma 3.2.4 hp = vp(ξi) = vp.
If p is free, the same reasoning is valid, by taking vq′ = vq′(ξi) = 0.

Proposition 3.2.7. If p is a point of B, then p belongs to K and the equality of
virtual values βp = vp is satisfied.

Proof. Take p ∈ B. Let us first prove that βp = vp, and then we will infer that
hp < vp, i.e. p ∈ K.

Taking ξ :
∑r

i=0 gifi = 0, g1, . . . , gr ∈ O as any germ going sharply through
BP (L), we obtain by proposition 3.2.1(3) and lemma 3.2.2

βp = vp(ξ) ≥ min
i
{vp(ξi)} = min

i
{vp(fi)} = vp.

52

Now, by corollary 3.1.3, we admit a system of generators (h1, · · · , hs) = I such
that ζi : hi = 0 goes sharply through BP (I). Then,

vp = min
i
{vp(fi)} ≥ min

i
{vp(hi)} = min

i
{vp(ζi)} = βp,

after applying again proposition 3.2.1(3) and lemma 3.2.2 to the elements fi ex-
pressed in terms of h1, · · · , hs.

Therefore the equality vp = βp follows.
Since the same equality holds for all the points preceding p, we infer

vp − hp = βp −
∑
p→q

βq = bp > 0,

i.e. vp > hp, since bp it is the virtual multiplicity at p of the strictly consistent
weighted cluster BP (L).

Theorem 3.2.8. The weighted clusters BP (L) and K are equal. In particular, K
is finite.

Proof. From 3.2.7, it only remains to show the inclusion K ⊂ B. Let p ∈ K,
we will prove, by induction on the order of neighborhood p is belonging to, that
p ∈ B. For p = O, it is clear that p belongs to both K and B. Now assume that the
assertion is true for all the points preceding p (which are in K by proposition 3.2.6)
and hence, by hypothesis of induction, they all belong to B.

Let q ∈ B be the antecessor of p. By lemma 3.1.4, p ∈ B if and only if 0 <
minζ∈P{ep(ζ̂p)}, where ep(ζ̂p) is the virtual multiplicity of the germ ζ at p relative
to the weighted cluster BP (L)≤q. This is equivalent, by proposition 3.2.1(2), to

min
ζ∈L
{vp(ζ)} >

∑
s→p

βs.

By lemma 3.2.3, vp = minξ∈L{vp(ξ)}. Thus, applying proposition 3.2.7 to the
points preceding p, p belong to B if and only if

vp >
∑
p→s

βs =
∑
p→s

vs = hp.

Corollary 3.2.9. Given an ideal I = (f1, · · · , fr), BP (I) = (B, β). Any cluster of
infinitely near points K ′ weighted by the values v, v(p) = vp = mini{vp(fi)},∀p ∈
K ′, or alternatively weighted by the multiplicities e, e(p) = ep = vp−

∑
p→q vq,∀p ∈

K ′, satisfying ep 6= 0 for any p ∈ K ′ is a subcluster of B.

Proof. Since by definition K = {p ∈ NO | ep > 0}, clearly K ′ ⊆ K. Now applying
theorem 3.2.8, the result follows.

53

3.3 An algorithm for computing base points

In this section we will describe an algorithm that, based on the results in the
previous section, will compute the weighted cluster of base points of an ideal.

Let I = (f1, f2, . . . , fr) be an ideal of O and we want to compute BP (I) =
(B, β). Let us assume for the moment that K′ = (K ′, v) is a weighted cluster with
system of values vp = mini{vp(fi)} for any p ∈ K ′ and satisfying two additional
properties: first, K ′ ⊂ B, and second, any point p ∈ B singular for ξ : f1 · · · fr = 0
is already in K ′. Assuming this we can know that any missing base point, not
already in K ′, will lie only in one or in zero generators. Indeed, if the point were
in two or more generators, it would be singular in ξ.

Next, we state and prove two novel results that are useful for adding the remain-
ing points to K ′ given only the virtual values of the generators in each infinitely
near point.

The first result states that all the free points in BP (I) lie on the generators.

Lemma 3.3.1. If q is free and does not lie on any ξ1, . . . , ξr then q 6∈ BP (I).

Proof. Let q → p. If q 6∈ ξj, ∀j: then vq(ξj) = vp(ξj) for j = 1, . . . r and vq =
minj{vq(ξj)} = minj{vp(ξj)} = vp, hence eq = vq − vp = 0 and q 6∈ BP (I).

The next result characterizes the free points in BP (I) non-singular for ξ.

Proposition 3.3.2. Keep the above hypothesis on K ′. Let q 6∈ K ′ be a free point
proximate to p ∈ K ′. Then q is in BP (I) if and only if there exists a unique
generator fi such that vp(fi) < vp(fj),∀j 6= i.

Proof. We shall apply theorem 3.2.8 to characterize whether q belongs to BP (I).
By definition vq = minj{vq(fj)} and vq(fj) = eq(fj) + vp(fj), for j = 1, . . . , r. Let
us prove first the reverse implication. Then:

• If q ∈ fj, j 6= i: we know that q 6∈ fk, for k 6= j. Then vq(fj) = eq(fj)+vp(fj),
with eq(fj) > 0 and vq(fk) = vp(fk) for k 6= j. Hence vq = minl{vq(fl)} =
mink{vp(fk), eq(fj) + vp(fj)} = vp(fi) = vp and q /∈ BP (L).

• If q ∈ fi: we know that q 6∈ fj for j 6= i. Then vq = minj{vp(fj), eq(fi) +
vp(fi)} > vp(fi) which implies that eq > 0 and hence q ∈ BP (L) as we
wanted to prove.

For the other implication we know that q can only belong to one generator fi.
This means that eq = vq − vp > 0 and comparing vp = minj{vp(fj), vp(fi)} and
vq = minj{vp(fj), vp(fi)+eq(fi)} we see that vp(fi) = vp and hence, it is unique.

54

Corollary 3.3.3. Let p ∈ BP (I) such that vp = vp(fi) for a unique generator fi
and define wp = minj 6=i{vp(fj)}. Then, there are (wp − vp) free base points in the
first neighbourhood of p with the same multiplicity.

Proof. By definition vq = min{wp, eq(fi) + vp(fi)}. If vq = wp we are done, other-
wise vq = eq(fi) + vp(fi) and we can use proposition 3.3.2 to add a free base point
in the first neighbourhood of p as many times as d(wp − vp)/eq(fi)e.

Keeping the above hypothesis on K ′, the next result deals with the missing
satellite base points not already in K ′. Notice that these missing satellite points
will not lie on any generator, otherwise they would belong to the singular points
of ξ : f1 · · · fr = 0,

Proposition 3.3.4. Keep the above hypothesis on K ′. Let q 6∈ K ′ be a satellite
point proximate to p, p′ ∈ K ′. Then q is in BP (I) if and only if for each generator
fi either vp(fi) > vp or vp′(fi) > vp′.

Proof. Let us start by proving the converse implication. We know that q 6∈ fj for
j = 1, . . . , r, otherwise q would be in K ′. We want to see that eq = vq−vp−vp′ > 0.
Then vq = minj{vq(fj)} = minj{vp(fj + fj)} and the last equality is true because
eq(fj) = 0. By hypothesis, vp(fj) + vp′(fj) > vp + vp′ , hence vq > vp + vp′ as we
wanted.

For the other implication, let us assume the contrary, that is, there exists a
generator fi such that vp(fi) = vp and vp′(fi) = vp. We know that q 6∈ fi, otherwise
it would be in K. By definition, vq = minj{vq(fj)} = minj{vp(fj) + vp′(fj)} =
vp(fi) + vp′(fi) = vp + vp′ , implying that eq = 0, which is a contradiction with the
fact that q ∈ BP (I).

Finally, we present the novel procedure to compute the weighted cluster of base
points of and ideal I. The procedure works as follows:

1. Start with a set of generators {f1, . . . , fr} of the ideal I and compute f =
f1 · · · fr.

2. Find the cluster K of singular points of f and the system of virtual values
{vp(fi)}p∈K of any generator fi, i = 1, · · · , r.

3. Compute, recursively on the order of neighbourhood p is belonging to, vp =
mini{vp(fi)} and ep = vp −

∑
p→q vq . Define K′ = (K ′, v) with K ′ ⊂ K

containing the points p ∈ K′ such that ep 6= 0 and the virtual values v(p) :=
vp.

4. Define K′′ = (K ′′, v) from K′ by adding the missing free points using propo-
sition 3.3.2 weighted by the values v(p) = vp = mini{vp(fi)} for each new
p ∈ K ′′ \K ′.

55

5. Define K = (K, v) from K′′ by adding the missing satellite points using
proposition 3.3.4, weighted by the values v(p) = vp = mini{vp(fi)} for each
new p ∈ K \K ′′.

6. Return K, the weighted cluster of base points.

Theorem 3.3.5. Keep the above notations. The above procedure actually computes
BP (I), the weighted cluster of base points of the ideal I.

Proof. First of all, note that by computing the cluster of singular points of f =
f1 · · · fr we are capturing all the singular infinitely near points in the germs of a
curve ξ = ξ1 + · · ·+ ξr. By corollary 3.2.9, after removing the points ep = 0 from
K, the resulting cluster K ′ is inside B. Since this set K ′ fulfils the hypothesis of
3.3.2 and proposition 3.3.4, we can use them to add the remaining base points.

At this point we have added all the base points: if we had to add a missing
base points in the first neighbourhood of a point already in K ′, it would have to
be free as we have added all the missing satellites in the last step. This free point
would have to be in a generator, by lemma 3.3.1, and it would have to be after one
of the new satellite points, otherwise we would have added it in the fourth step.
But that is impossible because the new satellite points cannot lie on a generator
and hence, neither can do any of its successors.

3.4 Newton-Puiseux expansion for ideals

In this section we focus on an efficient way of computing the step 2 of the pre-
vious algorithm. From chapter 1 we know that we can use the Newton-Puiseux
algorithm to compute the Puiseux factorization of a given polynomial and in chap-
ter 2 we saw how to use the Puiseux factorization to compute the cluster of the
desingularization.

In order to compute vp(fi) for each p ∈ K and each generator fi, we need to
compute

vp(fi) = αi1vp(gi1) + αi2vp(gi2) + · · ·+ αirivp(giri) (3.1)

where fi = gαi1
i1 gαi2

i2 · · · g
αiri
iri

, gij ∈ C[[x]][y] for j = 1, . . . , ri. We know from propo-
sition 2.5.5 how to compute vp(gi1) from the multiplicities of gij. At the same
time, we can compute those multiplicities from all the Puiseux series as we saw in
algorithm 11. Thanks to the novel algorithm 4 we can also compute the algebraic
multiplicities αi1, · · · , αiri of each branch gi1, · · · , gri of a fixed generator fi.

The main problem here is that when we compute the f = f1 · · · fr we are losing
the information about which generator each branch belongs to. This is due to the
fact the several generators of the ideal can contain the same branch.

56

We present a novel algorithm, based on algorithm 4 that can keep track of re-
peated branches (i.e. Puiseux series) across different generators and their algebraic
multiplicity in each generator. Then, once we know the multiplicity with which
each branch belongs to a generator, we can compute equation (3.1) easily. For the
detailed description of the algorithm see algorithm 12.

Algorithm 12 Newton-Puiseux algorithm for an ideal

Require: A list of bivariate polynomial f1, f2, . . . , fr.
Ensure: A set of pairs (sj, Aj) where sj is a Puiseux series of the prod-

uct f1f2 · · · fr completely separated from the rest and the sets Aj =
{(ij1 , αj1), . . . , (inj

, αnj
)} contain pairs (i, α) meaning that (y − sj)α|fi.

1: function NewtonPuiseux({f1, f2, . . . , fr})
2: f ← f1f2 · · · fr
3: S ← ∅
4: N(f)← NewtonPolygon(f) . N(f) = {(α0, β0), . . . , (αk, βk)}
5: if α0 > 0 then
6: {N(f1), . . . ,N(fr)},← {NewtonPolygon(fi) | i = 1, . . . r}
7: S ← {(x, {(i, α0i) | (α0i, β0i) ∈ N(fi), α0i 6= 0, i = 1, . . . , r})}
8: end if
9: f̃ ← f/ gcd(f, fy) . fy(x, y) := d

dy
f(x, y)

10: L← ∅
11: for fi ∈ {f1, f2, . . . , fr} do
12: for (gij, αij) ∈ SquareFreeFactorization(fi) do
13: L← L ∪ {(gij, αij, i)}
14: end for
15: end for
16: return S ∪NewtonPuiseuxLoop(f̃ , L)
17: end function

57

18: function NewtonPuiseuxLoop(f , L)
19: N ← {NewtonPolygon(gij) | (gij, αij, i) ∈ L}
20: L← {(gij, αij, i) ∈ L | h(N(gij)) 6= 0,N(gij) ∈ N}
21: N(f)← NewtonPolygon(f) . N(f) = {(α0, β0), . . . , (αk, βk)}
22: if β0 = 1 then . h(N(f)) = β0

23: return {(0, {(i, αij) | (gij, αij, i) ∈ L})}
24: end if . L = {(gij, αij, i) | gij ∈ C[x][y], αij, i ∈ N}
25: S ← ∅
26: if βk > 0 then
27: S ← {(0, {(αij, i) ∈ N2 | βki > 0, (αki , βki) ∈ N(gij) ∈ N,

(gij, αij, i) ∈ L})}
28: end if
29: for (αi, βi), (αi+1, βi+1) ∈ N(f) do
30: n← βi − βi+1

31: m← αi+1 − αi
32: k ← βiαi+1 − αiβi+1

33: Γ← nx+my − k . Γ ∈ Z[x, y]
34: FΓ ←

∑
(α,β)∈Γ Aα,βZ

β−β0 . FΓ ∈ C[Z]

35: for a ∈ {FΓ(zn) = 0 | z ∈ C} do
36: f ← x−kf(xn, xm(a+ y))
37: L← {(x−kgi′j(xn, xm(a+ y)), αi′j, i

′) | (gi′j(x, y), αi′j, i
′) ∈ L}

38: S ← NewtonPuiseuxReduced(f, L)
39: S ← S ∪ {(xm/n(a+ s̄(x1/n)), A) | (s̄, A) ∈ S}
40: end for
41: end for
42: return S
43: end function

The basic idea behind algorithm 12 is the same as in algorithm 4. We apply the
traditional Newton-Puiseux algorithm to both the product and to each square-free
factor of each generator but also keeping track of the generator each square-free
factor belongs to. When we reach the base case in line 22, we know that the
current branch has been separated from the rest and we can return the zero Puiseux
series, as usual, and both the generator index and the algebraic multiplicity of each
reduced factor in the set L.

58

3.5 Implementation details

As all the other algorithms in this work, these two new algorithms have been
implemented in Macaulay2. However, because these algorithms are novel we have
not be able to compare them against any other package or library. The Macaulay2
code of algorithm 12 and the algorithm for computing the base points can be found
in Appendices B and C, respectively.

To end this section, we will show a basic example of use of the algorithm that
computes the base points of an ideal in Macaulay2.

Example 6. Consider the two-dimensional ideal I = (x2, y3).

i1 : I = ideal(x^3, y^2)

3 2

o2 = ideal (x , y)

i3 : basePoints I

o3 = (| 1 0 0 |, | 2 |, | 2 |)

| -1 1 0 | | 1 | | 3 |

| -1 -1 1 | | 1 | | 6 |

In our implementation we are returning both the virtual multiplicities and the
virtual values defining BP (I). We can see that although the generators of the
ideal are smooth, the cluster of base points contains a satellite point in the second
neighbourhood of the origin. The reader can check that f = x2 − y3 ∈ I goes
sharply through BP (I).

59

Appendix A

Macaulay2 code: Puiseux series

--

--

----------------------------- CONSTRUCTORS -------------------------------------

--

--

PuiseuxSerie = new Type of HashTable;

puiseuxSerie = method(TypicalValue => PuiseuxSerie);

puiseuxSerie (RingElement, ZZ) := (f, m) -> (

if not isPolynomialRing ring f then error "not a polynomial";

if (degree f)#0 <= 0 then return new PuiseuxSerie from hashTable {p=>f, n=>1};

return new PuiseuxSerie from hashTable {p=>f, n=>m};

)

--

--

------------------------- OVERLOADED UNARY METHODS -----------------------------

--

--

ring (PuiseuxSerie) := (f) -> ring f.p;

terms (PuiseuxSerie) := (f) ->

reverse apply(terms f.p, term -> puiseuxSerie(term, f.n));

PuiseuxSerie _ PuiseuxSerie := (f, m) -> (

if size m != 1 then error "expected a monomial";

60

R := coefficientRing ring f;

e := first exponents m;

idx := position(exponents f, i -> i == e);

if idx === null then return 0_R else return (listForm f)#idx#1;

)

listForm (PuiseuxSerie) := (f) ->

return reverse apply(listForm f.p, (e, c) -> (e/f.n, c));

exponents (PuiseuxSerie) := (f) -> if f.p == 0 then return {{0}} else

reverse apply(exponents f.p, e -> {(first e)/f.n});

coefficients (PuiseuxSerie) := (f) -> coefficients f.p;

size (PuiseuxSerie) := (f) -> size f.p;

lift (PuiseuxSerie, PolynomialRing) := (f, R) -> (

if f.n != 1 then error "cannot lift to polynomial ring";

return lift(f.p, R);

)

- PuiseuxSerie := (f) -> puiseuxSerie(-f.p, f.n);

rootUnity = method(TypicalValue => RingElement, Options => {Bits => 300})

rootUnity (QQ) := opts -> (kn) -> (

bits := 2*opts.Bits;

ppi := numeric_bits pi;

root := exp(2*ppi*ii*kn);

if (abs(realPart root) < 2.0^(-bits/2)) then root = (imaginaryPart root)*ii;

if (abs(imaginaryPart root) < 2.0^(-bits/2)) then root = realPart root;

return root;

)

conjugate (PuiseuxSerie) := (f) -> (

x := first generators ring f;

n := f.n;

bits := precision coefficientRing ring f;

return apply(toList(1..n), k -> sum apply(listForm f, (e, c) ->

c*rootUnity((e#0)*k, Bits => bits//2)*x^(e#0)));

)

61

clean (PuiseuxSerie) := (f) -> (

x := first generators ring f; y := last generators ring f;

bits := precision coefficientRing ring f;

s := puiseuxSerie(0*x, 1);

s = s + sum apply(listForm f, (e, c) -> (

if (abs(realPart c) < 2.0^(-bits)) then c = (imaginaryPart c)*ii;

if (abs(imaginaryPart c) < 2.0^(-bits)) then c = realPart c;

return c*x^(e#0)*y^(e#1);

)); return s;

)

toPolynomial = method(TypicalValue => RingElement)

toPolynomial (PuiseuxSerie) := (s) -> (

R := ring s;

y := puiseuxSerie(last generators R, 1);

factors := apply(conjugate s, si -> y - si);

p := clean(product apply(conjugate s, si -> y - si));

x := first generators R; y = last generators R;

return sum apply(listForm p.p, (e, a) -> a*x^(e#0//p.n)*y^(e#1//p.n));

)

--

--

------------------------- OVERLOADED BINARY METHODS ----------------------------

--

--

PuiseuxSerie + PuiseuxSerie := (f, g) -> (

n := lcm(f.n, g.n);

fSubs := apply(generators ring f, gen -> gen => gen ^ (n // f.n));

gSubs := apply(generators ring g, gen -> gen => gen ^ (n // g.n));

ff := sub(f.p, fSubs);

gg := sub(g.p, gSubs);

return puiseuxSerie(ff + gg, n);

)

PuiseuxSerie - PuiseuxSerie := (f, g) -> f + (-g);

PuiseuxSerie * PuiseuxSerie := (f, g) -> (

62

n := lcm(f.n, g.n);

fSubs := apply(generators ring f, gen -> gen => gen ^ (n // f.n));

gSubs := apply(generators ring g, gen -> gen => gen ^ (n // g.n));

ff := sub(f.p, fSubs);

gg := sub(g.p, gSubs);

return puiseuxSerie(ff * gg, n);

)

Number + PuiseuxSerie := (n, f) -> puiseuxSerie(n + f.p, f.n);

PuiseuxSerie + Number := (f, n) -> n + f;

Number * PuiseuxSerie := (n, f) -> puiseuxSerie(n*f.p, f.n);

PuiseuxSerie * Number := (f, n) -> n * f;

RingElement + PuiseuxSerie := (p, f) -> puiseuxSerie(p, 1) + f;

PuiseuxSerie + RingElement := (f, p) -> f + puiseuxSerie(p, 1);

RingElement * PuiseuxSerie := (p, f) -> puiseuxSerie(p, 1) * f;

PuiseuxSerie * RingElement := (f, p) -> f * puiseuxSerie(p, 1);

PuiseuxSerie ^ ZZ := (f, k) -> puiseuxSerie(f.p ^ k, f.n);

RingElement ^ QQ := (f, q) -> (

if size f > 1 then error "no method for binary operator ^ applied

to polynomials with more than one monomial";

return puiseuxSerie(f^(numerator q), denominator q);

)

PuiseuxSerie ^ QQ := (f, q) -> (

if size f > 1 then error "no method for binary operator ^ applied

to polynomials with more than one monomial";

return puiseuxSerie(f.p^(numerator q), f.n*(denominator q));

)

substitute (PuiseuxSerie, Option) := (f, opt) -> (

if not isPolynomialRing ring opt#1 or size opt#1 != 1 then

63

error "substitution error";

if class opt#1 === PuiseuxSerie then

return puiseuxSerie(sub(f.p, opt#0 => (opt#1).p), f.n * (opt#1).n)

else

return puiseuxSerie(sub(f.p, opt), f.n);

)

--

--

--------------------------- FORMATTING OUTPUT ----------------------------------

--

--

expression PuiseuxSerie := f -> (

gens := generators ring f;

if length listForm f == 0 then return expression 0

else return sum apply(listForm f,

(exps, coef) -> coef * product apply(exps, gens, (e, g) ->

(expression g)^e)) + O"("(expression first gens)^(1/f.n)")";

)

net PuiseuxSerie := f -> net expression f;

toString PuiseuxSerie := f -> toString expression f;

tex PuiseuxSerie := f -> tex expression f;

html PuiseuxSerie := f -> html expression f;

--

--

--

--

64

Appendix B

Macaulay2 code: Newton-Puiseux
algorithms

needs "puiseuxSeries.m2"

squareFreePart = method(TypicalValue => RingElement);

squareFreePart (RingElement) := (f) -> (

y := last generators ring f;

return f//gcd(f, diff(y, f));

)

squareFreeFactorization = method(TypicalValue => List);

squareFreeFactorization (RingElement) := (f) -> (

-- Yun’s algorithm

y := last generators ring f;

d := diff(y, f);

squareFree := {};

while degree f != {0} do (

a := gcd(f, d);

f = f//a;

d = d//a - diff(y, f);

squareFree = append(squareFree, a);

);

squareFree = drop(squareFree, 1);

return apply(select(pack(2, mingle(squareFree, 1..#squareFree)),

fact -> not isConstant fact#0), toSequence);

)

ZZ * InfiniteNumber := (n, inf) -> if n == 0 then 0 else

65

if n > 0 then infinity else -infinity;

ccwTurn = method(TypicalValue => Boolean);

ccwTurn (BasicList, BasicList, BasicList) := (p1, p2, p3) -> (

return (p2#0 - p1#0)*(p3#1 - p1#1) - (p2#1 - p1#1)*(p3#0 - p1#0) <= 0;

)

newtonPolygon = method(TypicalValue => List);

newtonPolygon (RingElement) := (f) -> (

pol := {};

apply(sort exponents f | {{infinity, 0}}, p -> (

while (#pol >= 2 and ccwTurn(pol#(#pol - 2), pol#(#pol - 1), p)) do

pol = drop(pol, -1);

pol = append(pol, p);

)); return drop(pol, -1);

)

newtonSide = method(TypicalValue => Sequence);

newtonSide (List, List, RingElement) := (p, q, f) -> (

g := gcd(p#1 - q#1, q#0 - p#0);

n := (p#1 - q#1)//g;

m := (q#0 - p#0)//g;

k := (p#1*q#0 - p#0*q#1)//g;

-- Select which exponents are on the side generated by p & q.

use ZZ[local X, local Y];

side := n*X + m*Y - k;

onSide := sort select(listForm f, (e, A) -> sub(side, {X=>e#0, Y=>e#1}) == 0);

-- Construct the equation associated with the pq side.

bits := precision ring f;

use CC_bits[local Z];

beta0 := (last onSide)#0#1;

return (m, n, k, sum apply(onSide, (e, A) -> A*Z^((e#1 - beta0)//n)));

)

newtonSides = method(TypicalValue => List);

newtonSides (RingElement, List) := (f, points) -> (

numSides := #points - 1;

return apply(points_{0..numSides-1}, points_{1..numSides}, (p, q) ->

66

newtonSide(p, q, f));

)

puiseuxExpansion = method(TypicalValue => List,

Options => { Terms => -1,

Bits => 300 });

puiseuxExpansion (RingElement) := opts -> (f) -> (

if not isPolynomialRing ring f then error "not a polynomial";

if numgens ring f != 2 then error "not a bivariate polynomial";

R := coefficientRing ring f;

if R =!= ZZ and R =!= QQ then error "coefficient ring must be ZZ or QQ";

z := first generators ring f; w := last generators ring f;

use CC_(2*opts.Bits)[local x, local y];

Nf := newtonPolygon f;

yBranch := {};

-- If Nf starts on the right of the y-axis, we have an x-factor.

if (first Nf)#0 > 0 then yBranch = { (x, (first Nf)#0) };

V := {z => x, w => y};

return yBranch | apply(puiseuxExpansionLoop(sub(squareFreePart(f), V),

apply(squareFreeFactorization(f), (g, m) -> (sub(g, V), m, 1)), opts.Terms),

s -> (s#0, s#1#0#1));

)

puiseuxExpansion (List) := opts -> (L) -> (

if not all(L, f -> numgens ring f == 2) then

error "not bivariate polynomials";

R := coefficientRing ring L#0;

if R =!= ZZ and R =!= QQ then error "coefficient ring must be ZZ or QQ";

z := first generators ring L#0; w := last generators ring L#0;

use CC_(2*opts.Bits)[local x, local y];

f := product L;

Nf := newtonPolygon f;

yBranch := {};

-- If Nf starts on the right of the y-axis, we have an x-factor.

if (first Nf)#0 > 0 then yBranch = { (x, select(apply(L, 1..#L, (g, i) ->

(i, (first newtonPolygon g)#0)), (i, m) -> m != 0)) };

67

V := {z => x, w => y};

sqFreePart := sub(squareFreePart(f), V);

sqFreeFact := flatten apply(apply(L, l -> apply(squareFreeFactorization l,

(g, m) -> (sub(g, V), m))), 1..#L, (l, i) -> apply(l, (g, m) -> (g, m, i)));

return yBranch | apply(puiseuxExpansionLoop(sqFreePart, sqFreeFact, -1));

)

puiseuxExpansionLoop = method(TypicalValue => List);

puiseuxExpansionLoop (RingElement, List, ZZ) := (f, L, num) -> (

x := first generators ring f;

y := last generators ring f;

eps := 2.0^(-(precision ring f)/2);

-- Select only those factors that contain the current branch.

L = select(L, (g, m, i) -> (first newtonPolygon g)#1 != 0);

Nf := newtonPolygon f;

-- If the height is 1 we can stop here as this branch has been

-- separated from the rest. (Except if more terms have been requested.)

if (num < 0 and (first Nf)#1 == 1) or num == 0 then

return { ((0*x)^(1_QQ), apply(L, (g, m, i) -> (i, m))) };

-- Step (i.a): Select only those factors containing the 0 branch.

if (last Nf)#1 > 0 then exactBranch := { ((0*x)^(1_QQ), apply(select(L,

(g, m, i) -> (last newtonPolygon g)#1 > 0), (g, m, i) -> (i, m))) }

else exactBranch = {};

-- Step (i.b): For each side...

return exactBranch | flatten apply(newtonSides(f, Nf), (m, n, k, F) ->

-- For each root...

flatten apply(roots(F, Unique => true), a -> (

-- Get the solution, do & undo the change of variables.

newVar := { x => x^n, y => x^m*(a^(1/n) + y) };

apply(puiseuxExpansionLoop(

clean(eps, sub(f, newVar)), apply(L, (g, m, i) ->

(clean(eps, sub(g, newVar)), m, i)), num - 1),

(s, I) -> (x^(m/n)*(a + sub(s, x => x^(1/n))), I))

))

);

)

68

Appendix C

Macaulay2 code: Enriques diagrams

needs "puiseuxExpansion.m2"

basePoints = method(TypicalValue => Sequence)

basePoints (Ideal) := (I) -> (

gen := first entries generators I;

if not all(gen, f -> numgens ring f == 2) then

error "not bivariate polynomials";

-- Remove the fixed part.

if #gen > 1 then gen = gen//gcd(gen)

else (

(P, e) := proximityMatrix(gen#0);

return (P, sum e, P^-1*(sum e));

);

-- Compute the Puiseux expansion & the prox. matrix for the product.

branches := puiseuxExpansion(gen);

(P, e) = proximityMatrix(apply(branches, (s, l) -> (s, 1)),

ExtraPoint => true);

-- Multiplicities of each generator.

ee := new MutableList from apply(1..#gen, i -> vector toList(numcols P:0));

for i from 0 to #branches - 1 do (

(s, l) := branches#i;

scan(l, (j, n) -> ee#(j-1) = ee#(j-1) + n * e#i);

); ee = toList ee;

-- Values for each generator.

vv := P^-1*ee;

-- Values for the points in the cluster.

v := vector apply(entries matrix vv, min);

-- Multiplicities for the cluster base points.

69

m := P*v;

-- Remove points not in the cluster of base points.

inCluster := positions(entries m, x -> x != 0);

P = P_inCluster^inCluster;

vv = apply(vv, vg -> vector apply(inCluster, i -> vg_i));

ee = P*vv;

v = vector apply(entries matrix vv, min);

-- Add NEW free points.

-- For each last free point on a branch...

apply(positions(sum entries P, i -> i == 1), p -> (

-- Values for each generator in the point p.

vvp := (entries matrix vv)#p;

uniqueGen := #select(vvp, x -> x == v_p) == 1;

-- Index of the generator achieving the minimum.

g := minPosition(vvp);

-- Multiplicity of that generator in the point p.

mgp := (entries matrix ee)#p#g;

-- If there exist a unique generator achieving the minimum

-- value vp and the excess is positive add new points...

if uniqueGen and mgp != 0 then (

-- Minimum of the values for all the generators but g.

wp := min(delete(v_p, vvp));

-- Number of new free points.

k := ceiling((wp - v_p)/mgp);

-- Expand the prox. matrix.

n := numcols P;

P = expandMatrix(P, k);

P_(n, n - 1) = 0; P_(n, p) = -1;

P = matrix P;

-- Expand the vector of mult. of each gen. with zeros.

ee = new MutableList from apply(ee, e -> expandVector(e, k));

-- For the generator g fill the new points with mult. mp.

eeg := new MutableList from entries ee#g;

for j from 0 to k - 1 do eeg#(n + j) = mgp;

ee#g = vector toList eeg;

ee = toList ee;

-- Recompute all the other vectors for the next iteration.

vv = P^-1*ee;

v = vector apply(entries matrix vv, min);

);

70

));

-- Add NEW satellite points.

points2test := numcols P - 1; p := 1;

while points2test != 0 do (

-- Values for the generators at point p.

vvp := apply((entries matrix vv)#p, x -> x - v_p);

-- Points p is prox to. && Points prox. to p

Pprox := positions(flatten entries P^{p}, x -> x == -1);

proxP := positions(flatten entries P_{p}, x -> x == -1);

apply(select(Pprox, q -> sum flatten entries P^proxP_{q} == 0), q -> (

vvq := apply((entries matrix vv)#q, x -> x - v_q);

if product(vvq + vvp) != 0 then (

-- Expand proximity matrix with a new point.

n := numcols P;

P = expandMatrix(P, 1);

P_(n, n - 1) = 0; P_(n, p) = -1; P_(n, q) = -1;

P = matrix P;

-- Expand de vector of multiplicities of each generator.

ee = apply(ee, e -> expandVector(e, 1));

-- Recompute all the other vector for the next iteration.

vv = P^-1*ee;

v = vector apply(entries matrix vv, min);

points2test = points2test + 1;

);)

); points2test = points2test - 1; p = p + 1;

); return (P, P*v, v);

)

proximityMatrix = method(TypicalValue => Sequence,

Options => { ExtraPoint => false, Bits => 300 });

proximityMatrix (RingElement) := opts -> (f) -> (

if not isPolynomialRing ring f then error "not a polynomial";

if numgens ring f != 2 then error "not a bivariate polynomial";

-- Get the Puiseux expansion of f.

branches := puiseuxExpansion(f, Bits => opts.Bits);

return proximityMatrix(branches,

ExtraPoint => opts.ExtraPoint, Bits => opts.Bits);

)

proximityMatrix (List) := opts -> (branches) -> (

71

-- Compute the proximity matrix and the contact matrix of each branch.

contactMat := contactMatrix(branches);

-- Proximity matrix of each branch.

branchProx := apply(branches, 0..#branches - 1, (s, i) ->

proximityMatrixBranch(s#0, max flatten entries contactMat^{i},

ExtraPoint => opts.ExtraPoint));

-- Compute the multiplicities of the infinitely near points of each branch.

branchMult := apply(branches, 0..#branches - 1, (s, i) -> s#1 *

multiplicityVectorBranch(s#0, max flatten entries contactMat^{i},

ExtraPoint => opts.ExtraPoint));

-- Get the proximity matrix of f and the position of each infinitely

-- near point inside P.

(P, p) := proximityMatrix(contactMat, branchProx);

mult := {};

-- Rearranges each point’s multiplicity so its position is coherent with P.

for i from 0 to #branches - 1 do (

m := new MutableList from (numcols(P):0);

for j from 0 to #p#i - 1 do m#(p#i#j) = branchMult#i_j;

mult = mult | {vector toList m};

); return (P, mult);

)

proximityMatrix (Matrix, List) := opts -> (contactMat, branchProx) -> (

------------------------- Base case --------------------------------

-- If there is only branch, return its prox. matrix.

if #branchProx == 1 then

return (branchProx#0, {toList(0..numcols(branchProx#0)-1)});

------------------- Compute the splits -----------------------------

-- Substract one to all the contact numbers except the diagonal ones.

contactMat = contactMat - matrix pack(#branchProx, (#branchProx)^2:1) +

matrix mutableIdentity(ZZ, #branchProx);

-- Idenitify each current branch with an ID from 0 to #brances.

C := contactMat;

remainingBranch := toList(0..numcols(C) - 1);

-- Splits will contain lists of branches ID, where two branches will

-- be in the same list iff they don’t separate in the current node.

splits := {};

while #remainingBranch != 0 do (

-- Get the contact number of the first remaining branch;

branchContacts := first entries C;

72

-- Get the positions of the branches with contact > 1 & contact = 1.

sameBranchIndex := positions(branchContacts, c -> c != 0);

otherBranchIndex := positions(branchContacts, c -> c == 0);

-- Save the branches with contact > 1 together.

splits = append(splits, remainingBranch_sameBranchIndex);

-- Remove those branches since they’ve been splitted from the rest.

remainingBranch = remainingBranch_otherBranchIndex;

-- Compute the contact matrix of the remaining branches.

C = submatrix(C, otherBranchIndex, otherBranchIndex);

);

---------- Compute the prox. matrix of each subdiagram -------------

-- Substract one to all the contact numbers and erase the

-- first point of the proximity matricies of the current

-- branches since we are moving down the Enriques diagram.

newBranchProx := apply(branchProx, P -> submatrix’(P, {0}, {0}));

-- Traverse each sub-diagram recursively.

splitResult := apply(splits, split -> (

proximityMatrix(submatrix(contactMat, split, split), newBranchProx_split)));

-------------- Merge the prox. matrix of each split ----------------

-- Create the matrix that will hold the proximity branch of this subdiagram.

numPoints := sum apply(splitResult, (M, pos) -> numcols M) + 1;

P := mutableIdentity(ZZ, numPoints);

rowPoint := {}; k := 0;

-- For each set of branches that splits in this node...

for s from 0 to #splits - 1 do (

-- Get the proximity matrix & the position of the points

-- (relative to that prox. matrix) of the s-th subdiagram.

(M, splitRowPoint) := splitResult#s;

-- Copy the submatrix M inside P with the top left entry in (k+1, k+1)

copySubmatrix(P, M, k + 1);

-- Sum k+1 and add the new point ({0}) to the position of the

-- points relative to the prox. matrix of the subdiagram.

splitRowPoint = apply(splitRowPoint, pp -> {0} | apply(pp, p -> p + k + 1));

rowPoint = rowPoint | splitRowPoint;

-- Use the information in splitRowPoint to set the proximities of

-- the current point into the new prox. matrix (P):

-- For each branch in this subdiagram...

for i from 0 to #(splits#s) - 1 do (

Q := branchProx#(splits#s#i);

-- For each element int the first column...

73

for j from 1 to numcols(Q) - 1 do P_((splitRowPoint#i)#j, 0) = Q_(j, 0);

); k = k + numcols(M);

);

-- Make sure rowPoint is returned in the original order.

splits = flatten splits;

splits = toList apply(0..#splits-1, i -> position(splits, j -> j == i));

return (matrix P, rowPoint_splits);

)

contactMatrix = method(TypicalValue => Matrix);

contactMatrix (List) := (branches) -> (

-- Add a dummy term so compare exact branches is easier.

x := first generators ring (first branches)#0;

maxExp := max apply(branches, (s, m) -> ceiling((last exponents s)#0 + 1));

branches = apply(branches, (s, m) -> (s + x^maxExp, m));

branchesInfo := apply(branches, (s, m) -> puiseuxInfo s);

contact := mutableIdentity(ZZ, #branches);

-- For each pair of branches compute their contact number.

for i from 0 to #branches - 1 do (

for j from i + 1 to #branches - 1 do (

contactNum := contactNumber(branchesInfo#i, branchesInfo#j);

contact_(i,j) = contact_(j,i) = contactNum;

);

); return matrix contact;

)

contactNumber = method(TypicalValue => ZZ);

contactNumber (List, List) := (branchInfoA, branchInfoB) -> (

contactNumber := 0;

-- For each characteristic exponent...

for r from 0 to min(#branchInfoA, #branchInfoB) - 1 do (

-- Get the contact number of this char. exponent and whether

-- or not we should compare more points.

(numExp, compNext) := contactNumberExp(branchInfoA#r, branchInfoB#r);

contactNumber = contactNumber + numExp;

if not compNext then break;

); return contactNumber;

)

contactNumberExp = method(TypicalValue => Sequence);

74

contactNumberExp (Sequence, Sequence) := (expInfoA, expInfoB) -> (

contactNum := 0;

-- Free points associated with the char. exponent.

freeA := expInfoA#0;

freeB := expInfoB#0;

-- Satellite points associated with the char. exponent.

satelliteA := new MutableList from expInfoA#1;

satelliteB := new MutableList from expInfoB#1;

-- Compare free points.

for i from 0 to min(#freeA, #freeB) - 1 do (

if freeA#i == freeB#i then contactNum = contactNum + 1

else return (contactNum, false);

);

-- If the number of free points is not the same, no more points can be shared.

if #freeA != #freeB then return (contactNum, false);

-- Compare satellite points.

satelliteA#-1 = satelliteA#-1 - 1;

satelliteB#-1 = satelliteB#-1 - 1;

for i from 1 to min(#satelliteA, #satelliteB) - 1 do (

contactNum = contactNum + min(satelliteA#i, satelliteB#i);

if satelliteA#i != satelliteB#i then return (contactNum, false);

);

-- If the number of stairs is not the same, no more points can be shared.

if #satelliteA != #satelliteB then return (contactNum, false);

-- Otherwise, all the points are shared.

return (contactNum, true);

)

puiseuxInfo = method(TypicalValue => List);

puiseuxInfo (PuiseuxSerie) := (s) -> (

pInfo := {}; allExps := charExponents(s);

if tailExponents(s) != {} then allExps = allExps | { last tailExponents(s) };

for i from 1 to #allExps - 1 do (

(mj, nj) := allExps#(i-1);

mi := allExps#i#0;

h0 := (mi - mj)//nj;

free := apply(apply(0..h0, l -> (mj + l*nj)/s.n), e -> (e, s_(x^e)));

satellite := first euclides(mi - mj, nj);

pInfo = append(pInfo, (toList free, satellite));

); return pInfo;

75

)

puiseuxInfo (RingElement) := (x) -> {({(0,0)}, {0, infinity})}

multiplicityVectorBranch = method(TypicalValue => List,

Options => { ExtraPoint => false });

multiplicityVectorBranch (PuiseuxSerie, ZZ) := opts -> (s, maxContact) -> (

mult := (); charExps := charExponents(s);

for i from 1 to #charExps - 1 do (

(mj, nj) := charExps#(i-1);

mi := charExps#i#0;

(hs, ns) := euclides(mi - mj, nj);

scan(hs, ns, (h,n) -> mult = mult | (h:n));

);

mult = mult | ((maxContact - #mult):1);

if opts.ExtraPoint then mult = mult | (1:1);

return vector toList mult;

)

multiplicityVectorBranch (RingElement, ZZ) := opts -> (x, maxContact) -> (

if opts.ExtraPoint then maxContact = maxContact + 1;

return vector toList (maxContact:1);

)

charExponents = method(TypicalValue => List);

charExponents (PuiseuxSerie) := (s) -> (

exps := reverse exponents s.p;

charExps := {(0, s.n)};

ni := s.n;

while ni != 1 do (

-- m_i = min{ j | a_j != 0 and j \not\in (n_{i-1}) }

idx := position(exps, e -> e#0 % ni != 0);

mi := exps#idx#0;

-- n_i = gcd(n, m_1, ..., m_k)

ni = gcd(ni, mi);

charExps = append(charExps, (exps#idx#0, ni));

); return charExps;

)

tailExponents = method(TypicalValue => List);

76

tailExponents (PuiseuxSerie) := (s) -> (

exps := reverse exponents s.p;

(mk, nk) := last charExponents(s);

-- If smooth branch take all, otherwise look for the last char. exp.

if mk == 0 then idx := 0 else idx = position(exps, e -> e#0 == mk);

return take(apply(exps, e -> (e#0, 1)), {idx, #exps});

)

euclides = method(TypicalValue => List);

euclides (ZZ, ZZ) := (m, n) -> (

hs := {}; ns := {};

while n != 0 do (

hs = hs | {m // n};

ns = ns | {n};

r := m % n; m = n; n = r;

); return (hs, ns);

)

proximityMatrixBranch = method(TypicalValue => Matrix,

Options => {ExtraPoint => false});

proximityMatrixBranch (PuiseuxSerie, ZZ) := opts -> (branch, maxContact) -> (

h := drop(apply(puiseuxInfo branch, charExps -> charExps#1), -1);

numPoints := max(sum flatten h, maxContact);

if opts.ExtraPoint then numPoints = numPoints + 1;

-- Construct a prioximity matrix with free points only.

prox = expandMatrix(matrix {{}}, numPoints);

-- Fill in satellite points proximities.

for i from 0 to #h - 1 do (

-- Inverted branch case.

if i == 0 and h#0#0 == 0 then start := 2 else start = 1;

hi := new MutableList from h#i; hi#-1 = hi#-1 - 1;

for j from start to #hi - 1 do (

l := sum flatten h_{0..i-1} + sum (toList hi)_{0..j-1};

for k from 1 to hi#j do prox_(l+k, l-1) = -1;

);

); return matrix prox;

)

proximityMatrixBranch (RingElement, ZZ) := opts -> (branch, maxContact) -> (

if opts.ExtraPoint then maxContact = maxContact + 1;

77

return matrix expandMatrix(matrix {{}}, maxContact);

)

copySubmatrix = method(TypicalValue => Nothing);

copySubmatrix (MutableMatrix, Matrix, ZZ) := (A, B, k) -> (

for i from 0 to numcols(B) - 1 do

for j from 0 to numcols(B) - 1 do

A_(k + i, k + j) = B_(i, j);

)

expandMatrix = method(TypicalValue => MutableMatrix)

expandMatrix (Matrix, ZZ) := (A, k) -> (

newA := mutableIdentity(ZZ, numcols A + k);

for i from 1 to numcols(newA) - 1 do newA_(i, i-1) = -1;

copySubmatrix(newA, matrix A, 0);

return newA;

)

expandVector = method(TypicalValue => Vector)

expandVector (Vector, ZZ) := (v, k) -> return vector(entries v | toList(k:0));

78

Bibliography

[1] M. Alberich-Carramiñana. An algorithm for computing the singularity of
the generic germ of a pencil of plane curves. Communications in Algebra,
32(4):1637–1646, 2004.

[2] A. Andrew. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5):216–219, December 1979.

[3] A. Campillo. Algebroid Curves in Positive Characteristic. Number 813 in Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin Heidelberg, first edition,
1980.

[4] E. Casas-Alvero. Singularities of Plane Curves. Number 276 in London
Mathematical Society Lecture Note Series. Cambridge University Press, Cam-
bridge, UK, first edition, 2000.

[5] C. Chevalley. Intersections of algebraic and algebroid varieties. Transactions
of the American Mathematical Society, 57(1):1–85, January 1945.

[6] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 4.0.2
— A computer algebra system for polynomial computations. Available at
http://www.singular.uni-kl.de, 2015.

[7] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research
in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/,
2015.

[8] Maplesoft, a division of Waterloo Maple Inc. Maple 2015. Available at
http://www.maplesoft.com/products/Maple/, 2015.

[9] The PARI Group. PARI/GP version 2.7.4, 2015. Available at
http://pari.math.u-bordeaux.fr/.

[10] D. Y. Yun. On square-free decomposition algorithms. Precedings of the 1976
ACM Symposium on Symbolic and Algebraic Computation, pages 26–35, Au-
gust 1976.

79

