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Abstract—Connected vehicles promise to enable a wide range of new

automotive services that will improve road safety, ease traffic manage-

ment, and make the overall travel experience more enjoyable. However,

they also open significant new surfaces for attacks on the electron-

ics that control most of modern vehicle operations. In particular, the

emergence of vehicle-to-vehicle (V2V) communication risks to lay fertile

ground for self-propagating mobile malware that targets automobile

environments. In this work, we perform a first study on the the dynamics

of vehicular malware epidemics in a large-scale road network, and unveil

how a reasonably fast worm can easily infect thousands of vehicles in

minutes. We determine how such dynamics are affected by a number

of parameters, including the diffusion of the vulnerability, the penetration

ratio and range of the V2V communication technology, or the worm self-

propagation mechanism. We also propose a simple yet very effective

numerical model of the worm spreading process, and prove it to be able

to mimic the results of computationally expensive network simulations.

Finally, we leverage the model to characterize the dangerousness of the

geographical location where the worm is first injected, as well as for

efficient containment of the epidemics through the cellular network.

Index Terms—Vehicular networks, V2V, mobile malware.

1 INTRODUCTION

Pervasive wireless device-to-device (D2D) communication is

regarded as a game changer that could enable a broad range of

new applications in a wide range of contexts. However, if not

properly secured, the network interfaces of smart devices can

turn into easily exploitable back-doors, allowing illegal remote

access to the information stored on the device as well as to

the local network it may be connected to. Even worse, D2D

communication can be leveraged by self-propagating malware

to reach a large number of devices and damage them, disrupt

their services or steal sensible data.

Although mobile malware first appeared a decade ago [2],

[3], [4], the low penetration of smart devices and the het-

erogeneity of their operating systems have prevented major

outbreaks to date [5]. Yet, as the diffusion of communica-

tion interfaces keeps growing and the OS market becomes

more stable, we may face smart-device worm epidemics in

the near future. In fact, the research community has started

assessing the risks associated to a large-scale diffusion of

so-called mobile worms. Simulative and experimental studies

have considered epidemics in campuses [6] or urban areas [7],

and different infection vectors, from metropolitan Wi-Fi asso-

ciations [8] to text messaging in cellular networks [9], [10].
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A quite underrated context where mobile malware could

cause dramatic damage is the automotive one. Indeed, vehi-

cles feature today a wide range of Electronic Control Units

(ECUs) that drive most of the car automatic behaviors and

are interconnected by a Controller Area Network (CAN) bus.

Experimental tests have demonstrated that ECUs are extremely

fragile to the injection of non-compliant random messages over

the CAN. Even worse, a knowledgeable adversary can exploit

them to bypass the driver input and take control over key

automotive functions, e.g., disabling brakes or stopping the car

engine [11]. Remote attacks on ECUs have been proved fea-

sible via the Tire Pressure Monitoring Systems (TPMS) [12]

or the CD player, Bluetooth and cellular interfaces [13].

In a context where awareness of the security risks associated

to connected vehicles is growing [14], [15], D2D technologies

for vehicular environments, enabling direct vehicle-to-vehicle

(V2V) communication, are nearly upon us. Regulators in the

US are already crafting a proposal enforcing all new vehicles

to embed V2V radio interfaces by early 2017 [16]. Despite

the advantages it will bring in terms of support to road safety

and traffic management services, the emergence of the V2V

paradigm risks to significantly widen the range of attack

surfaces available to vehicle-targeted mobile malware [17].

Understanding the dangers associated with a vehicular mal-

ware epidemics becomes then critical.

In this paper, we contribute to that endeavor by providing

a first comprehensive characterization of the dynamics of

a mobile worm that exploits V2V communication to self-

propagate through a large-scale road network. To that end,

after a review of the literature, in Sec. 2, we first identify

the major properties of a generic vehicular worm, in Sec. 3,

and present our reference road traffic scenarios, in Sec. 4. In

Sec. 5, we propose a data-driven numerical model of the worm

propagation process that is at a time simple and accurate. We

then unveil, in Sec. 6, the significant features of a vehicular

worm epidemics in a very large-scale environment. Sec. 7

provides an in-depth analysis of the dangerousness of worms

injected at different geographical locations, and proposes a

practical technique for the containment of worm epidemics,

which achieve a 100% healing of infected nodes while reduc-

ing patch transmissions by up to 90% with respect to a naive

approach. Finally, Sec. 8 concludes the paper.

2 RELATED WORK

Despite the significant danger represented by the appearance

of mobile malware in vehicular environments, the literature

on the topic is still relatively thin. Indeed, surveys on automo-

tive security only recently started to acknowledge V2V-based
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malware as a major threat [18], [19].

In a seminal work, Khayam and Radha [20] perform a first

analytical study of vehicular worm spreading on a highway.

In order to make the model tractable, their analysis relies

on average values rather than on a complete description of

the network connectivity. Nekovee [21] remarks that such an

approach fails to capture the spatiotemporal dynamics of V2V

connectivity and overestimates the rapidity of the infection. In

order to account for the time-evolving nature of the vehicular

network, Nekovee uses a set of snapshots of the road traffic,

and simulates the diffusion of a worm in each separately.

Although he employs realistic microscopic mobility models

to derive road traffic densities, Nekovee assumes uniform

distributions of vehicles, which have later been shown not to

occur in the real world [22], [23].

Chen and Shakya [22] overcome the problem by populating

highway traffic snapshots according to inter-vehicle spacing

distributions fitted on real-world data collected by researchers

of the Berkeley Highway Laboratory. The availability of such

dual-loop detector data for different daily traffic conditions

allows to explore the impact of daytime on the worm epi-

demics. However, the lack of temporal correlation between

the snapshots does not allow to study the propagation of

worms over time; this, in turn, precludes the possibility of

leveraging the model in systems where car positions change

during the spreading process, e.g., in presence of roads longer

than a few kilometers or of worms that take more than a

few milliseconds to self-propagate. For the same reason, this

technique cannot capture diffusion through store-carry-and-

forward, where vehicles physically transport the malware until

the latter can infect other cars during occasional contacts.

Wang et al. [24] properly account for such temporal features

by leveraging tools for the simulation of both road traffic

and vehicular network operations. The approach allows to

evaluate how worm epidemics are affected by several system

parameters, i.e., the communication range, the density of

vehicles, and the medium access control mechanism. The

study by Wang et al. represents, to the best of our knowledge,

the only other work on an urban scenario: however, their road

network is modeled as a simple Voronoi tessellation, and it

covers a small surface of 1 km2 with less than 200 vehicles.

When compared to the previous works above, our study

yields the following original contributions:

• Our evaluation is carried out on a scale that is orders of

magnitude larger than those considered in the literature:

considering a 10.000 km2 region with over 3.600 km of

heterogeneous roads allows us to picture vehicular worm

epidemics with unprecedented breadth an detail;

• Our analysis is performed on different state-of-art datasets

of road traffic that yield realistic macroscopic and mi-

croscopic features: we do not thus rely on simplistic

assumptions on the features of vehicular mobility – an

approach that substantiates the reliability of our results;

• We propose an original numerical model of vehicular

worm propagation, which leverages statistical road traffic

data commonly available to transportation authorities;

the model is simple, yet it can accurately reproduce

the epidemics in realistic mobility conditions and for

the whole space of system parameters, capturing worm

diffusion via both connected multi-hop and store-carry-

and-forward paradigms.

The spreading of generic vehicular worms can also be as-

similated, to some extent, to the dissemination of information

in vehicular networks. Research activities in that context have

mainly focused on: (i) simulative analyses of the dissemina-

tion of delay-tolerant data within urban areas; (ii) analytical

modeling of epidemic dissemination in highway environments.

As far as the first category is concerned, efficient protocols

such as MDDV [25] and VADD [26], just to cite a couple

of well-known approaches, are built around complex decision

algorithms that minimize the communication overhead while

preserving high packet delivery ratios and low delays. These

works are thus different in spirit from ours, where worms

propagate in a completely uncontrolled fashion, and without

any concern on the overhead they generate. Such epidemic

dissemination in urban vehicular networks has been also

studied [27], although in scenarios spanning a few tens of km2,

and without proposing an actual modeling of the phenomenon.

Also when confronted to the second type of works, all of

our major contributions listed above still hold. In addition,

epidemic dissemination models typically build on strong as-

sumptions on, e.g., deterministic [28] and exponential [29],

[30] inter-vehicle spacing distributions, or on independently

distributed speeds of vehicles [31], [32]. As already discussed,

our study is instead based on realistic road traffic datasets.

Finally, as we deal with malware rather than normal content,

we address aspects – such as the worm containment or the

level of danger associated to geographical locations – that are

not considered in epidemic dissemination.

3 MOBILE WORMS IN VEHICULAR NETWORKS

Worms are programs that self-propagate across a communica-

tion network through security flaws common to large groups of

network nodes; they are thus different from computer viruses

in that the latter need the intervention of the user to propagate.

Worms can be classified on the basis of several factors [33]:

the target discovery, i.e., the way they discover targets to

propagate to; the carrier, i.e., the infection mechanism used

for the self-propagation; the activation, i.e., the technique by

which the worm code starts its activity on the infected host;

the payload, i.e., the set of routines undertaken by the worm,

that clearly depend on the nature and objective of the attacker.

Our interest is on the worm epidemics within the vehicular

network. Therefore, in this paper we focus on the first two

aspects above, the type of target discovery and the kind of

carrier employed by the worm, as they mainly drive the mal-

ware self-propagation process. Our study is instead activation-

and payload-independent, since we do not delve into the kind

of damage caused by the worm nor the motivation behind

the attacks – although the discussion in Sec. 1 hints at how

dangerous the outcome could be.

In the remainder of this section, we will characterize ve-

hicular worms in terms of their target discovery and carrier

features. We will also introduce the overall worm infection

process which we will assume in our study.
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Fig. 1. Distribution of the node degree in the vehicular
network of the Canton of Zurich dataset.

3.1 Target discovery

The target discovery of a worm within a vehicular network is

dictated by the dynamics of road traffic. As a matter of fact,

the relatively short range of V2V communication limits the set

of potential worm targets to cars in geographic proximity of

the one the worm resides in. Thus, it is the physical mobility

of cars that allows the worm to enlarge its target set, by

exploiting links established between communication-enabled

vehicles that come into contact during their trips.

Such a mobility-driven geographic target discovery occurs

in a way that significantly differs from that of standard Internet

worms, which have to perform global or local scans for IP

addresses to infect. In vehicular networks, the target discovery

is implicitly (and involuntarily) supported by the forthcoming

V2V communication standards, that mandate the periodic

broadcast of beacon messages by all vehicles and with high

(1 to 10 Hz typically) frequency: this is the case of, e.g.,

SAE J2735 heartbeats (part of the WAVE stack) and ETSI

ITS Cooperative Awareness Messages (CAMs). A worm could

then simply leverage the information collected by the vehicle

via these messages in order to determine its current target set.

3.2 Carrier

As far as the carrier is concerned, two mechanisms are

possible. In the first case, the worm can self-propagate through

broadcast messages, infecting all of its neighbors at once. We

refer to this mechanism as the broadcast carrier. In the second

case, the worm can only propagate to one neighboring vehicle

at a time, which we tag as unicast carrier. We argue that,

in the case of a unicast carrier, no real decision has to be

taken on which communication neighbor to attack: unlike what

happens in the Internet, where the choice is between hundreds

of millions of machines, the number of cars concurrently in

range of a worm is generally low. As an example, in the large-

scale road traffic scenario we will detail in the next section

and consider in our analysis, the distribution of the number of

one-hop neighbors (i.e., the vehicular network node degree)

follows Fig. 1. The degree ranges from a few units to a few

tens of vehicles at most, and a car typically has less than 10

neighbors half of time. Such a small target set size makes a

selection of the target node subset pointless, and worms can

randomly pick the neighbor car to infect next.

The carrier is also characterized by a second aspect, i.e., the

number of transmissions (either broadcast or unicast) required

to complete the infection. This value depends on the size of

the worm (in KB) and on the way it is hidden into messages.

(a) Canton of Zurich, road map (b) Madrid, highway segment locations

Fig. 2. (a) Road network layout in the Canton of Zurich

dataset, scaled at 1:2.700.000. (b) Geographical location
of the highway segments in the Madrid dataset.

We translate this aspect into a second parameter, the carrier

latency τ , i.e., the amount of time a worm needs to self-

propagate to all (broadcast carrier case) or one (unicast carrier

case) of its neighbors. Thus, τ also accounts for all delays

possibly incurred in at different layers of the stack: e.g.,

association and session establishment procedures, wireless

channel contention or lost message retransmissions.

3.3 Worm infection process

Borrowing the terminology from epidemiology, we adopt in

our study a Susceptible, Infected, Recovered (SIR) model

with Immunization. According to this model, a clean node is

susceptible to become infected by the worm, but it is healed if

it receives a dedicated cure, i.e., a patch, that prevents it from

contracting the infection again. The same cure can be delivered

even to a susceptible node, which is then immunized, i.e., it

cannot be infected by the worm1. We also denote the first

infected vehicle as patient zero, and the location and time at

which it was first infected as the origin of the worm infection.

The population affected by the SIR model with Immuniza-

tion is formed by all communication-enabled vehicles that

circulate in the geographical area of interest, and suffer from

the security flaw exploited by the worm to propagate. We

characterize such a fraction of vehicles through the penetration

ratio ρ, which thus accounts for the diffusion of both the

vehicular communication technology and the security flaw.

4 REFERENCE SCENARIOS

We employ two types of road traffic datasets in our study. The

first is a large-scale representation of vehicular mobility within

the Canton of Zurich, in Switzerland. We employ this dataset

as our reference scenario for the investigation of malware

epidemics over a wide geographical region. The second is a set

of accurate descriptions of highway traffic along two segments

of the beltway surrounding Madrid, Spain. We leverage this

1. We favor a SIR model over other common models, such as Susceptible-
Infected-Susceptible (SIS), as we believe that it better fits the threat use case
we consider. Indeed, we assume the mobile worm to self-propagate among
connected vehicles without human intervention. The worm thus exploits
some backdoor or software vulnerability to infect a new vehicle, rather than
thoughtless actions by a human actor. Hence, a patch that solves the software
flaw can prevent further infections by the same mobile worm.
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latter dataset for the fine-grained calibration and validation of

our numerical model of the vehicular worm propagation.

Both datasets are synthetic, yet they faithfully mimic the

features of real-world road traffic. Below, we present the two

datasets, and motivate their choice for the purpose of our study.

4.1 Canton of Zurich dataset

Our reference scenario encompasses the whole Canton of

Zurich, an area of 10.000 km2 in Switzerland. The region,

whose 3.683-km road layout is portrayed in Fig. 2(a), com-

prises the urban and suburban neighborhoods of Zurich, sev-

eral smaller towns nearby, as well as the highways, freeways

and minor regional roadways interconnecting them. The syn-

thetic mobility of vehicles in the area has been generated

by means of the multi-agent microscopic traffic simulator

(MMTS) developed at ETH Zurich. The MMTS queuing-

based mesoscopic modeling approach has been proven to

reproduce real-world large-scale traffic flow dynamics and

small-scale car-to-car interactions [34].

The choice of this dataset for our large-scale study of

vehicular worm epidemics is an unescapable one. Indeed, no

other synthetic or real-world mobility dataset that is publicly

available covers today a similarly wide region in a comparable

realistic manner. Other synthetic datasets may feature higher

microscopic detail [35], [36], however they cover geographical

areas that are two orders of magnitude smaller than that

included in the Canton of Zurich dataset. Even real-world

data on vehicular mobility, logged from taxis [37], [38] or

buses [39], cannot compete in terms of spatial coverage;

moreover, such data is only representative of a limited subset

of road traffic. Overall, using alternate datasets would signifi-

cantly limit the scope and interest of our analysis.

4.2 Madrid dataset

The Madrid dataset comprises 16 traces of road traffic on

two highway segments in proximity of Madrid, Spain. The

geographical locations of the two highways are portrayed in

Fig. 2(b): the left marker pinpoints a segment of the A6 motor-

way that connects A Coruña to Madrid, the right one identifies

a segment of the M40 that runs around the conurbation. The

traces represent vehicular mobility on each highway segment

at rush (8 am) and off-peak (11 am) hours on four working

days. The traces were generated by feeding fine-grained real-

world traffic counts to a microscopic simulator implementing

well-known car-following and lane-changing models. They

feature free-flow traffic in quasi-stationary conditions [40].

The Madrid dataset is the most realistic description of

road traffic on individual highway segments that is publicly

available to date. It thus represents the sensible choice for the

calibration and validation of our numerical model of the worm

propagation speed along single road segments, in Sec. 5.2.

5 MODELING THE WORM EPIDEMICS

The computer simulation of worm epidemics in the large-scale

scenario presented in Sec. 4.1 is computationally expensive.

The span of the road topology – where up to 36.000 vehicles

travel concurrently for a time span of several hours – prevents

the use of traditional network simulators, such as ns-3 or

OMNeT++. Instead, we developed a dedicated simulator2 that

abstracts the detailed processing of messages through the

network protocol stack, and adopts a simple R-radius disc

modeling of the radio-frequency signal propagation. Unless

stated otherwise, we will consider a default V2V communi-

cation range R = 100 m. This represents an average value

among those identified for reliable packet delivery by different

experimental studies on DSRC-based transfers [41], [42].

Such a design makes simulations of very large-scale vehic-

ular networks more bearable. In Sec. 6, we will leverage sim-

ulations to provide first qualitative insights into the epidemics

dynamics, in presence of different carrier types, penetration

ratios, V2V communication ranges and infection origins.

However, even such a scalable simulation approach remains

limited by its computational cost, which does not allow to

perform comprehensive, quantitative analyses. To overcome

this issue, we propose a numerical model capable of faithfully

mimicking the vehicular worm epidemics. Our broadcast-

carrier worm propagation model is data-driven, in that it is

based on commonly available road traffic statistics. Although

simple in its expression, the model can capture the impact

of a number of system parameters on the large-scale worm

propagation delay, at a computational cost that is orders of

magnitude lower than that of a simulative evaluation. We

devote this section to the description and validation of the

model, which we will later exploit in Sec. 7 to carry out

extensive studies that are not feasible via simulation.

5.1 Preliminaries

Most existing analytical models of information propagation

along road segments build on strong assumptions on the

nature of vehicle inter-arrivals, so as to make the problem

mathematically tractable. As discussed in Sec. 2, many such

models presume, e.g., deterministic or Poisson arrivals. How-

ever, measurements on real-world arterial roads have shown

that actual vehicular inter-arrival times follow a more complex

normal-exponential mixture distribution [23], i.e.,

fT (t) = wN

1√
2πσ2

e−
(t−µ)2

2σ2 + wEλe
−λ(t−t0), (1)

where µ, σ, λ and t0 are the parameters of the normal and

exponential components, respectively, whereas wN and wE are

their associated weights. Clearly, the discrepancy between the

assumed and actual arrival distributions questions the validity

of many models proposed in the literature.

Instead, our model does not require any assumption on

the distribution of vehicle inter-spacing, speed or inter-arrival

time. As we will later detail, the model operates on averages

only, which makes it independent of higher order statistics

and capable of accommodating any distribution. This notwith-

standing, we make sure that our model is evaluated under

inter-arrival settings that faithfully mimic those encountered

in the real world. Specifically, we verified that the reference

2. URL: http://people.ac.upc.edu/trullols/downloads.html.
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Fig. 3. Inter-arrival time distributions. (a) Canton of Zurich. (b,c,d,e) Madrid highways at different days and hours.

scenarios used in our study and introduced in Sec. 4 yield inter-

arrival distributions that match the normal-exponential mixture

identified by empirical measurements. Fig. 3 portrays the inter-

arrival distributions observed in the Canton of Zurich dataset

and in four Madrid traces: in all cases, the synthetic road traffic

data follow the mixture theoretical distribution in (1).

The numerical model we propose builds on (i) information

about the road topology and (ii) statistical information about

the road traffic. In the first category, we need, for each road

segment3 i, knowledge of its length li and a list of the other

roads it intersects with: this data can be easily extracted from

accurate road mapping services such as, e.g., OpenStreetMap.

As for the second category, the model requires information on

the average travel speed vi(t) on road segment i at time t, and

on the mean inter-arrival time ai(t) of vehicles at road segment

i at time t. Such road traffic metrics are typically collected

by transportation authorities and automobile service providers

through induction loops, infra-red counters, traffic monitoring

cameras, and, more recently, floating car data [43]. Therefore,

historical or statistical data on measures such as vi(t) and ai(t)
is available for large portions of the road topology, and its

public disclosure is growing, fostered by open data initiatives.

As road traffic information is, by its own nature, time-

varying, the average speed and inter-arrival time are not the

same over the day or on different days of the week, which is

why we consider vi(t) and ai(t) to be dependent on time. The

aforementioned historical or statistical data already reflects this

aspect, with finite yet representative time granularity4. We also

remark that, although higher order statistics may be available

to transportation authorities or automobile service providers,

our model only requires knowledge of the mean values of

vi(t) and ai(t) during each time period. This keeps the model

simple and computationally efficient, at the same time avoiding

to raise privacy or security issues related to the disclosure of

exceedingly detailed data about road traffic dynamics.

In the remainder of this section, we will discuss how the

aforementioned information is leveraged to build our model,

following the notation summarized in Tab. 1. Specifically, in

Sec. 5.2, we will present a model of the worm propagation

speed along a single road segment. Then, in Sec. 5.3 we will

extend the result to a network-wide infection process.

3. The model can accommodate any definition of road segment, and can
adapt to the detail level of available road traffic statistics. In our study, we map
road segments to (i) segments between any two intersections in the Canton
of Zurich scenario, and (ii) 10-km highway stretches in the Madrid dataset.

4. In our evaluation, we assume that statistical data on the road traffic
is aggregated and updated with a time granularity of 15 minutes, largely
sufficient to capture the temporal variability of road traffic.

TABLE 1

Summary of notation.

τ Carrier latency – amount of time a worm needs to self-propagate

ρ Penetration ratio – fraction of communicating vehicles susceptible of infection

R Communication range – maximum distance for two vehicles to communicate

vi Average traval speed on road i

ai Average inter-arrival time on road i

5.2 Per-road segment worm propagation

Our goal is initially to model the worm propagation speed

si(t) along a segment i at time t, characterized by average

road traffic parameters vi(t) and ai(t), while accounting for

R, ρ and τ . For the sake of clarity, in the following we will

refer to a generic time instant and drop the time notation.

We start from the consideration that the worm propa-

gation speed mainly depends on the network connectivity

level. Namely, the malware can propagate wirelessly, and

thus at a high speed, in a well-connected vehicular network

where multi-hop communication can take place. Conversely,

the worm propagation is slowed down when communication

opportunities are scarce. Focusing on the two extreme cases,

we can state that: (i) in complete absence of vehicle-to-vehicle

connectivity, the worm propagates at the vehicular speed vi,

as it is physically carried by isolated cars; (ii) in presence of a

complete road coverage by a very dense multi-hop vehicular

network, the worm proceeds by jumps of distance equal to the

communication range R, each needing a time τ (i.e., the carrier

latency) to complete, during which the worm still moves at

speed vi. Thus, the worm propagation speed can be written as

si = vi +
R

τ
f(ai, vi, ρ, R, τ) , (2)

where f(·) is a function that describes how the vehicular net-

work connectivity depends on the different system parameters.

The function returns values between 0 (complete absence of

connectivity, all vehicles are isolated) and 1 (fully connected

network, any pair of cars is connected via a multi-hop path).

In order to characterize the exact expression of f(·), we

consider the impact of the different parameters on the network

connectivity. Let us start from the simplified case of vehicles

moving along the same road direction. In that case, the

average distance between two subsequent vehicles is given by

ai ·vi, i.e., the distance traveled by the first vehicle before the

following one enters the same road. The penetration ratio can

be accounted for by assuming that the first vehicle is equipped

with a V2V radio interface and vulnerable to the worm, and

ρ can be seen as the probability that the following vehicle
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aivi/ρ
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next vulnerable vehicle
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Fig. 4. Example of the negative impact on network con-
nectivity of the deviation of an individual vehicle speed

and inter-arrival time from the mean values vi and ai.

is communication-enabled and vulnerable as well. Then, an

average of 1/ρ vehicles must enter the road before a second

car susceptible of being infected appears on the same road.

The average distance between to vehicles that can be involved

in the epidemics is then aivi
ρ

.

The connectivity is determined by the relationship between

the distance above and the transmission range R. In particular,

it is the ratio between the two values, aivi
ρR

, that matters: the

lower the ratio, the higher the network connectivity, and vice-

versa. In fact, it is to be noted that those above are all average

values, and that some variability is natural in both the inter-

arrival time and speed of individual vehicles. As shown in

Fig. 4, the actual distance between vulnerable vehicles can

be lower (case (a), next vehicle shifted towards the first) or

higher (case (b), next vehicle shifted away from the first) than

the mean aivi
ρ

. The key remark here is that the two effects

do not compensate for each other. On the one hand, distances

shorter than the mean (case (a) in Fig. 4) do not improve the

connectivity, as the individual vehicles were already within

range when traveling at the mean speed and separated by the

mean inter-arrival time. On the other hand, distances larger

than the mean (case (b) in Fig. 4) can disrupt the link between

two subsequent vulnerable vehicles, by creating a gap larger

than R between them. As a result, the intrinsic variability of

the road traffic metrics can only have a negative impact on the

network connectivity, and considering average values means to

overestimate the availability of V2V communication. A simple

approach to address this issue is to introduce a factor K ≥ 1

that reduces the propagation opportunities by multiplying the

previous expression, which results5 in a term Kaivi
ρR

.

Recall that the discussion above refers however to the case

where vehicles all move in the same direction. The presence

of an opposite vehicular flow can be accounted in a rough

(yet effective, as we will show next) way, by considering ai
to be the average inter-arrival of vehicles at both ends of the

bi-directional road segment. Finally, the carrier latency τ , as

an application-level parameter, has no major impact6 on the

network connectivity expressed by f(·). In summary

si = vi +
R

τ
f

(

K ai vi

ρ R

)

. (3)

We still have to identify a proper expression for the function

5. As discussed later, we found K to be invariant to road traffic and
communication settings, and we thus treat it as a constant in the following.

6. The only case where τ can indirectly affect the network connectivity is
that of a carrier latency so large to be comparable to the time required to
travel a whole road segment between two intersections. However, the latter is
at least several tens of seconds, while τ is expected to be much shorter.

f(·) and a value for the parameter K . To that end, we employ

the realistic dataset of road traffic on highways segments

around Madrid that we presented in Sec. 4. By fitting the ex-

pression in (3) to network simulations of the worm propagation

in such mobility datasets, we observed that a single function

f(x) = exp(−x2) and a single value K = 3 fit the data for any

combination of road traffic and communication parameters.

The worm propagation speed along segment i is then

si = vi +
R

τ
exp

[

−
(

3 ai vi

ρ R

)2
]

. (4)

This single, simple expression can be employed to describe the

average worm propagation speed along a road segment, given

that its road traffic statistics, i.e., the average vehicular speed

vi and the average inter-arrival time ai, are known. We remark

that the exponential shape of f(·) and the rather high value

of K make connectivity decrease very rapidly. E.g., when

the average distance between two vehicles involved in the

epidemics is half of the communication range, i.e., αivi
ρi

= R
2 ,

there is only a 10% probability that the worm can successfully

propagate between the two.

We validate the per-road segment propagation model in (4)

by assessing its capability of matching simulation results under

the whole space of combinations of the system parameters

R, ρ and τ . Fig. 5 compares the propagation speed si com-

puted with the model in (4) against that obtained by running

simulations on the Madrid highway datasets. We can observe

that the model is consistently in good agreement with the

simulation outcome, when varying any of R, τ , and ρ over

their significant value ranges along the x axis. Moreover, we

found this result to hold for any combination of highway

segment, day time and weekday. in the Madrid dataset.

We also tested the model in (4) against simulations of the

infection propagation along individual road segments of the

Canton of Zurich scenario. We found again a good agreement

between the model and the simulation, in Fig. 6. There, the

plots marked as (a), (b) and (c) aggregate the results for all

road segments that feature similar average vehicular speeds,

ranging between 11 m/s (less than 40 km/h) and 28 m/s

(over 100 km/h). Each plot displays a scatterplot of the worm

propagation speed measured at each segment i, versus the road

average inter-arrival time, ai, with baseline parameters R =

100 m, τ = 1 s ρ = 1. The red curve represents the average

behavior observed in simulation on all roads, while the black

curve is the result provided by our model. The plots marked

as (d), (e) and (f) show instead the worm propagation speed

for different values of R, τ and ρ, respectively. There, for the

sake of clarity, the scattered simulation samples are not shown

and only the average curves, in red, are reported.

Overall, the results in Fig. 5 and Fig. 6 show that our data-

driven model can faithfully mimic the average behavior of the

worm propagation speed, under any road traffic condition, in

both the Madrid and Canton of Zurich scenarios. Of course,

the model does not capture the random variability around the

mean that is observed for specific roads. This is due to the

fact that we only consider the average values of vi and ai in

our study, and not higher-order moments of their distributions.
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System parameters R, τ , and ρ are varied in plots (d,e,f).

This is an intentional choice that allows us to keep the model

simple, and yet to obtain excellent results when considering

the network-wide infection, as discussed next.

5.3 Road network-wide worm propagation

The per-road segment worm propagation speed expression in

(4) can be leveraged to describe the propagation process over

the whole road network. In particular, the road network-wide

infection is completely described by the spread delay, i.e., the

time that a worm takes to reach a specific location after the

appearance of patient zero at the origin.

In order to translate the per-road segment propagation into

the network-wide spread delay, let us represent the road layout

as a graph G=(V , E), where the set of vertices V represents the

intersections and the set of edges E represents the roads joining

such intersections. Knowing the worm propagation speed si
along a road segment i, as well as the length of such segment

li, the spread delay from one end of the road to the other is

immediately derived as wi=
li
si

. Each edge in E can then be

associated to a weight corresponding to its spread delay wi.

Note that the resulting weighted graph is time-varying, since

the worm propagation speeds along each road change over

time, and so do the weights derived from them.

Given the infection time t and the location on the road

topology of patient zero, calculating the spread delay from

the origin point to any other point of the region reduces to

a single-source shortest path problem on the weighted graph

associated to time t. A standard Dijkstra’s algorithm can be

used to efficiently solve the problem. The spread delay to a

given location on the road network maps to the cost of the

shortest path to its corresponding vertex or edge on the graph,

or, in other words, to the sum of the spread delays along the

fastest path from the infection origin to the given location.

An intuitive representation of the model accuracy is pro-

vided in Fig. 7. The plots depict the geographical spread of a

worm originating in downtown Zurich at 3 pm, as occurring

in simulation and as predicted by the model. The red dots

represent the locations that are reached by both approaches at

fixed times after the worm injection. Filled circles are used to

denote locations reached in simulation only, and empty circles

those reached by the model only. We can note that the worm

propagation is almost identical in the two cases, as most of the

reached points are covered at the same time by the simulation

and the model. The differences, i.e., the points that are reached

at each time instant by the simulation or by the model only, are

few and always limited to the rim of the propagation process.

The spread delay for the epidemic process in Fig. 7 can

be summarized in a plot such as that of Fig. 8(a). The

plot portrays the road network-wide spread delay measured
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Fig. 7. Model validation. Geographical spread of the worm over the Canton of Zurich road network and at different
time instants, in simulation (red dots and •) and in the proposed model (red dots and ◦) with R = 100 m, τ = 1 s, ρ = 1.
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Fig. 8. Model validation. Road network-wide spread delay with (a) default settings, varying (b,c) R, (d,e) τ , (f,g) ρ.
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in simulation (dots), and that derived with our data-driven

model (solid line). Graph vertices (i.e., road intersections) are

ranked along the x axis according to the worm spread delay

determined by the model. Therefore, by fixing a specific time

instant along the y axis (e.g., 8 minutes in Fig. 8(a)), the

plane is split into four regions. Dots in each region map to

intersections that, 8 minutes after worm injection, are reached

by infection (i) in both simulation and model, (ii) in simulation

only, (iii) in model only, and (iv) in none of the two.

Clearly, it is desirable that the model solid line in Fig. 8(a)

fits well the dots obtained in simulation. This is the case, as

the deviation of the individual dots from the line is limited –

which translates into the minor errors at the rim of the infection

observed in Fig. 7. We remark that Fig. 8(a) refers to the case

of R = 100 m, τ = 1 s, ρ = 1. However, the quality of the

result is the same when the systems parameters R, τ , and ρ

are varied, as shown in the other plots of Fig. 8.

Finally, a comprehensive picture of the model reliability

in terms of road network-wide spread delay is provided in

Fig. 9. The three plots show the average error, in minutes,

between the simulation results and the model outcome for the

whole parameter space. Notably, the error is always positive,

i.e., the model always overestimate the speed of the infection.

However, the error stays below 2 minutes for most of the

combinations of R, τ and ρ, and is often at or below 1 minute.

6 UNDERSTANDING THE EPIDEMICS

As a first step in the characterization of worm epidemics

in large-scale vehicular networks, we aim at understanding

the main features of the infection propagation, as well as

the impact that the different system parameters have on it.

To that end, we run a comprehensive simulation campaign

in the Canton of Zurich scenario presented in Sec. 4.1. At

this time, our focus is on on the worm infection propagation

process in the vehicular environment. Thus, we do not consider

patching as an option to recover or immunize the vehicles.

In epidemiology, this is equivalent to consider a Susceptible,

Infected (SI) model. We will study malware patching and the

complete SIR with Immunization, in Sec. 7.

6.1 Worm carrier

We start by studying the impact of the worm carrier. Let us for

now assume that patient zero appears in downtown Zurich, i.e.,

at the center of the map in Fig. 2(a) approximately, at 3 pm,

when the road traffic intensity is at its peak. In Fig. 10(a), we

focus on the carrier mechanism, setting the carrier latency τ =

1 s and comparing the results achieved by a broadcast carrier

against those obtained by a unicast carrier. The reach of the

epidemics is measured in terms of the infection ratio, i.e., the

fraction of vulnerable vehicles that the worm has reached four

hours after the injection time7. The x axis reports the combined

V2V technology and security flaw penetration ratio ρ, growing

from 1% to 100% of the vehicles.

We observe that a broadcast carrier achieves a higher

infection ratio than a unicast one. This is expected, since the

latter mechanism requires the worm to carry out multiple self-

propagations, each taking a time τ , to reach all the nodes

that a broadcast-carrier worm can infect with a single self-

propagation in a time τ . However, the difference is marginal

7. As we will later see, such a timespan is largely sufficient for this analysis.
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Fig. 11. Infection ratio versus time, for different penetration ratios ρ and latencies τ , in presence of a broadcast carrier.
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at very low penetration ratios, and the two carrier mechanisms

perform basically the same once 5% or more of the vehicles

are susceptible of contracting the worm.

As far as the impact of ρ is concerned, higher penetration

ratios clearly lead to a more connected network of vulnerable

vehicles, which in turn facilitates the spreading of the worm.

A value of ρ = 0.3, mapping to 30% of communication-

enabled vehicles, is already sufficient for the worm to achieve

a complete infection of the vehicular network. However, it is

surprising to note that very high infection ratios, well above

0.7, are achieved even in very sparse networks comprising

1% of the cars, and that 90% of the network is reached by

the worm when just 5% of the vehicles are vulnerable. This

susceptivity of vehicular environments to worm epidemics

is imputable to the fact that the high velocity of cars can

compensate for the reduced penetration ratio, generating many

V2V contacts and facilitating the worm self-propagation in a

store-carry-and-forward fashion.

In Fig. 10(b), we focus on the broadcast carrier case and

study the impact of the carrier latency τ , in presence of

different penetration ratios. More precisely, we consider a τ

ranging from 0 s (which represents an ideal upper bound to

the worm spreading performance, since the worm infection

is instantaneous) to 20 s. We observe that, even in presence

of low penetration ratios, a sufficiently fast worm (i.e., one

capable of self-propagating to its 1-hop neighborhood in one

second or less) can successfully infect the vast majority of the

vehicles in a very large region such as the one we considered.

In fact, when τ ≤ 1 s, at least 85% of the vehicles are infected

under any penetration ratio. Longer carrier latencies appear

instead to be more dependent on ρ: when τ ≥ 10 s the worm

is unable of spreading throughout the whole network even if

all the vehicles are susceptible of being infected.

The results above let us conclude that: (i) unicast-carrier

worm are as dangerous as broadcast-carrier ones; (ii) a low

percentage of vulnerable vehicles is sufficient for worms to

spread over a large area, due to the fast dynamics of road

traffic that facilitate malware propagation; (iii) worms do not

need to be extremely fast in infecting neighboring vehicles, as

a 1-second carrier delay8 is largely sufficient to vehiculate the

worm to the whole network in all conditions.

6.2 Worm epidemics over time and survivability

The percentages of infected nodes presented before are com-

puted at some fixed temporal deadline. Now, we consider the

temporal dynamics of the infection propagation. Specifically,

we focus on: (i) the time needed for the worm to reach a given

infection ratio within the vehicular network; (ii) the so-called

worm survivability, defined as the period of time during which

the infection can persist in the vehicular network.

6.2.1 Results

In Fig. 11, each plot refers to a specific penetration ratio ρ, and

portrays the temporal evolution of the infection for different

values of the carrier latency τ . When ρ = 0.01, in Fig. 11(a),

only rapid malware with carrier latencies τ of 1 s or less can

propagate through most (although not all) of the network.

The bell-shaped infection ratio for τ = 5 s is explained by

the aggregated road traffic volume, also depicted in the figure

as the thick solid orange line: the worm is not fast enough to

infect the whole network before the traffic peak ends, at around

4.30 pm, i.e., 1 hour 30 minutes after the infection started.

As a result, the infection stays limited to the surroundings of

the injection area, and then dies out when the traffic becomes

sparser due to vehicles leaving the area or concluding their

trips. Slower worms do not even start to spread in the system.

Increasing ρ to 0.05, in Fig. 11(b), also allows slightly slower

worms, characterized by a τ in the order of a few seconds, to

infect an even larger majority of the vehicles. Namely, worms

with τ ≤ 5 s perform similarly and achieve a 95% infection

ratio with a linear growth during the first 45 minutes from

the worm injection. This clearly makes such worms extremely

dangerous, since, in order to be effective, a patch should be

provided to network nodes within a very few minutes after the

worm injection. The bell shape now characterizes the diffusion

8. We remark that 1 s is a perfectly realistic value for the carrier latency,
considering that worms consists in a few tens of KB of code and that the
V2V base data transmission rate is in the order of a few Mbps.
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Fig. 12. (a) Infection ratio versus time, for different carrier

mechanisms and penetration ratios ρ. (b) V2V contact

duration distribution in the Canton of Zurich scenario.

of malware with a carrier latency of 10 s, for the same reasons

discussed above. Slower worms find it still difficult to spread

at such a low ρ.

A larger participation of 10% of the cars in the network, in

Fig. 11(c), does not affect the behavior of worms characterized

by a τ ≤ 5 s, and only slightly favors slower worms. On the

other hand, as the population of susceptible vehicles grows

to 50% of the overall road traffic, in Fig. 11(d), we remark

two effects. First, the infection evolutions of the faster worms

start to separate. This effect is highlighted in the inset plot,

which details the spreading process during the first 30 minutes

from the worm injection time. Indeed, very fast worms (i.e.,

with τ < 1 s) were previously limited by the lack of multi-hop

connectivity, and had to rely on carry-and-forward to find new

susceptible vehicles. As a result, their performance, hitting the

bar imposed by the limited network connectivity, was similar

to that of slower worms (e.g., with τ = 5 s). Now, fast malware

can take advantage of the presence of larger connected clusters

of vehicles, and spread over 95% of the network in some 20

minutes. Moreover, the growth is now faster than linear, with

50% of the nodes being infected in less than 6 minutes. As

a second remark, the higher penetration ratio has a largely

beneficial effect on the spread dynamics of slower worms, as

now even the curves for τ ≥ 10 s depict the infection of very

wide portions of the network. However, the worm still does

not self-sustain in those conditions, since its infection ratio

tends to drop once the road traffic peak ends.

In Fig. 11(e) we consider the case where all the vehicles

are communication-enabled, i.e., the best possible network

connectivity scenario. The effects already observed in the

previous plot are exacerbated, as the faster worms infect 50%

of the network in less than 2 minutes and spread over 95% of

nodes in 10 minutes. Slower worms also take advantage of the

increased connectivity, although they do not achieve complete

infection (τ = 5 s) or even self-sustainability (τ ≥ 10 s).

A similar temporal analysis can be done when comparing

different carrier mechanisms. Fig. 12(a) depicts the infection

evolution of broadcast and unicast worms, in presence of

varying penetration ratios, when τ = 1 s. The inset plot shows

again the detail of the first thirty minutes of the spreading

process. We can note that, although they attained a similar

final infection ratio in Fig. 10(a), unicast and broadcast car-

riers differ in terms of delay. In fact, the difference is only

remarkable at high penetration ratios, when ρ = 0.5 or 1. As the

penetration ratio decreases, the difference in the time needed to

infect the network becomes negligible, and the two paradigms

match when 10% or less of the cars are involved.

6.2.2 Carrier latency and contact time

The previous results show a striking difference in the spread

process of worms characterized by various carrier latencies.

In particular, values of τ of 1 s or less seem to result in high

infection ratios no matter the number of vehicles involved in

the network; moreover, such values of τ allow the infection

to occur much faster as the penetration ratio increases. On

the other hand, worms with a τ ≥ 10 s need high penetration

ratios to propagate and take a lot of time in doing so. Values

of τ in between those result in intermediate behaviors.

The physical reason behind this diversity lies in the V2V

contact duration distribution, shown in Fig. 12(b). There, we

can observe that most contacts among moving vehicles are

extremely short-lived: more than 70% last less than 5 seconds,

and less than 10% are longer than 10 seconds. Indeed, the

vast majority of links is established by high-speed vehicles

moving in opposing directions along highways in the Canton

of Zurich scenario: these links last just a few seconds and

dominate the network connectivity dynamics. We can remark

that relatively long-lived contacts are also present, but they

decay exponentially fast as per the inset plot in Fig. 12(b). As

a result, only 5% of the links last one minute or more, making

their contribution to the overall vehicular network connectivity

of lesser importance with respect to short contacts.

Our conclusion is that fast worms, capable to spread from

one vehicle to another in one second or less, can exploit

any contact occurring in the network. Conversely, a worm

characterized by a τ of 5 s will be only able to leverage 20%

of the contacts, and one with τ = 10 s will propagate through a

mere 8% of the actual V2V links. In other words, fast worms

enjoy a more connected network to spread through.

6.3 Infection origin

The previous results all refer to the case where the worm is

injected in the center of the geographical region we consider,

which corresponds to the urban area of Zurich. Moreover,

we considered the the infection start at the beginning of

the afternoon traffic peak, occurring at 3 pm. Given the fast

spatiotemporal dynamics of road traffic, the origin of the

infection is a critical aspect to be taken into account. Here,

we study the impact that the location and hour at which the

worm is first injected in the vehicular network have on the

infection propagation.

6.3.1 Patient zero location

We first vary the worm origin area, by considering five

different possibilities. Other than at the city of Zurich, i.e.,

our default setting, we analyze infections starting at the North,

West, South and East boundaries of the 10.000-km2 simulated

region. More precisely, as plotted in Fig. 13(a), we identify

one circular area for each origin location and pick, at each

simulation run, one vehicle in that area as our patient zero.
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The overall infection ratio recorded for each origin location,

under different penetration ratios, is shown in Fig. 13(b).

Clearly, the position of the worm injection plays a major

role in the success of the spreading: placing patient zero in

the West or East areas yields an infection ratio comparable,

and at times even better, than that achieved in the Center

case. Conversely, worms starting from the North area seem

to be slightly penalized, and those injected in the South area

consistently lag behind the other cases.

The explanation to such a result lies in the heterogeneity

of the road topology, composed of highways, major arterial

and minor urban or suburban roads, that are characterized by

diverse car traffic densities. This can be observed in Fig. 13(a),

where roads are colored according to the daily traffic volume

they carry: darker roads are more trafficked, while a very

few vehicles travel over roads that are almost white, and thus

hardly visible in the plot. The resulting map outlines how most

of the vehicles travel in or around the city of Zurich, but also

that the West and East areas are traversed by major highways.

The North area is also touched, although in a smaller measure,

by heavy-traffic arteries, whereas the South area appears only

characterized by low-traffic roads. It is easy to conclude that,

even in presence of high penetration ratios, worms injected in

the South area hardly find vehicles to carry them towards the

rest of the region.

The infection survivability in presence of different patient

zero locations and penetration ratios is depicted in Fig. 14(a),

Fig. 14(b), and Fig. 14(c). As already observed, higher pene-

tration ratios allow for a faster diffusion of the infection, an

effect that does not seem affected by the injection location.

Interestingly, the plots show that an infection starting at

the Center area is significantly faster than those starting at

the region borders. The difference lies in the first phases of

the infection. When the infection starts from the Center, the

infection ratio has a linear (or super-linear at high penetration

ratios) growth, while the curves for worms injected at the

region borders are very slow at first. More precisely, in the

North, West, South and East cases the infection ratio stays

close to zero up to a specific point, where the spreading

process seems to ignite and a linear (or super-linear at high

penetration ratios) growth, similar to that of the Center case,

begins. The precise moment at which such a transition occurs

varies for each injection area, and appears the earliest in the

West case and the latest in the South case. It is intuitive to

map the transition point to the instant when the worm reaches

the urban area of Zurich. Such a point corresponds to the

injection time for the Center area, while it depends on how

easily the worm can travel to the city center in the other cases:

e.g., the presence of a heavy-traffic highway clearly speeds up

infections originating in the West area.

6.3.2 Worm injection time

The road traffic has temporal variations, and it is typically

heavier at peak hours in the morning and in the afternoon.

This motivates a study of the impact of the injection time.

We thus fix the patient zero location within the Center area,

and vary the time at which the first infected vehicle appears.

Fig. 14(d) illustrates the resulting infection ratio over time,

under different penetration ratios. It can be observed that, no

matter the penetration ratio considered, the injection time does

not seem to have any significant effect on the overall infection

ratio achieved by the vehicular worm, nor on its survivability.

Instead, the injection time has a non-negligible impact on the

latency of the epidemics: a patient zero appearing during the

rush hours, e.g., at 3 pm, induces a faster infection, thanks to

the denser and thus better connected vehicular network that is

available at that moment of the day. Injecting the worm at the

same location, but during off-peak hours, results in a slower

propagation, consistently with the sparser car traffic observed

at those times.

6.4 Summary

Summarizing our findings, we conclude that a reasonably fast

worm can be extremely dangerous, independently of the carrier
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mechanisms it adopts, of the susceptible vehicle penetration,

or of the infection process origin. More precisely, we observed

that a worm that fits in a few IP packets, and that can thus be

transmitted over the wireless medium in less than one second

(accounting for channel contention and losses), can easily

infect a vast majority of the tens of thousands of vehicles

traveling in a very large region. Even worse, such infection

would occur in a time in the order of a few tens of minutes

at most, making it hard to counter the infection.

The physical reasons behind such an impressive perfor-

mance of the worm diffusion lie in (i) the elevate mobility

of nodes in the vehicular network, and (ii) the high number

of short-lived connections generated by the movement of

vehicles. Both these factors contribute in creating an ideal

environment for a fast worm to self-propagate. We also found

the geographical location of the infection origin to have a

dramatic effect on the reach and speed of the epidemics,

mainly due to the spatial heterogeneity of road traffic. The

temporal heterogeneity of road traffic is instead the cause

behind the different infection latencies observed when varying

the injection time of patient zero in the system.

7 EXPLOITING THE EPIDEMICS MODEL

In this section, we leverage the proposed model of a vehicular

worm epidemics in order to derive results that would be com-

putationally infeasible via network simulation. Specifically, in

Sec. 7.1 we use the model to perform a complete fine-grained

analysis of the level of danger associated to infections that

originate at each geographical location in the Canton of Zurich

scenario. Then, in Sec. 7.2, we exploit the model to design a

patching strategy aimed at taming vehicular worm epidemics.

7.1 Danger analysis of patient zero location

In Sec. 6.3, we discussed the relevance of the origin location to

the spread and rapidity of the infection process. However, that

analysis was limited to worms injected at random locations

within five broad regions, due to the cost of running more

extensive simulations of the epidemics.

The numerical model we presented in Sec. 5 lets us delve

much deeper in the study of the impact of patient zero’s

location. Specifically, the very low computational complexity

of the model allows us to estimate the evolution of the

vehicular worm epidemics when it originates on each of

the hundreds of roads present in the 10.000-km2 region of

the Canton of Zurich. We can thus draw a complete map

of the dangerousness of each geographical location as the

infection origin, in Fig. 15(a). There, we color each road

segment according to the spread delay that a worm injected

in that segment would require in order to infect 95% of the

susceptible vehicular population.

The map shows that the infection origins that are more

dangerous, i.e., yield lower spread delays, are those inside

the city of Zurich – a result consistent with the discussion

in Sec. 6.3. However, we have now a more comprehensive

view of the system, and we can observe how the spread

delay grows (and thus the epidemics become less rapid) as we

move away from the city center. Interestingly, the reduction is

not geographically uniform: we remark that, e.g., low-delay

regions stretch towards the West, and, to a lesser extent,

towards the South and North-East.

In order to clarify the reasons behind the geographical het-

erogeneity observed in the map, we investigate the correlation

between the spread delay associated to each road segment and

two sensible measures: (i) the distance of the segment from

the center of the city of Zurich, in Fig. 15(b), and the average

traffic density measured on the segment, in Fig. 15(c).

We remark a positive linear correlation between the distance

from Zurich and the spread delay in Fig. 15(b). However, there

is also significant variability in the numerical data around

the linear fitting, which confirms our obervation that the

distance from the city center alone cannot be the only physical

factor driving the level of danger associated to a geographical

location. In Fig. 15(c), the vehicular traffic is negatively

correlated to the spread delay, meaning that roads with more

intense traffic are more dangerous locations where to start

the infection. Moreover, we observe that such a negative

correlation is exponential, i.e., a minor growth in troad traffic

intensity tends to induce a significant decrease of the spread

delay. The reason is that heavily trafficked roads are typically

linked to each other, and build a well-connected vehicular

network backbone through which a worm can easily propagate.

Still, even in Fig. 15(c) the data is quite sparse around the

negative exponential fitting, and the density information alone

is again not sufficient to explain the map.

However, by considering the two measures at once, a bi-

dimensional fitting σ(∆, T ) = a + b∆c + deT is possible,

where σ is the spread delay, ∆ is the road segment distance

from the center of Zurich, T is its average traffic density,

and a, b, c, d, e are constants. Such a joint fitting with a =
10.3, b = 0.03, c = 1.4, d = 8.7, e = 1.05, depicted in

Fig.15(d), approximates the spread delay with a limited Root

Mean Square error of 2.19 minutes. This good result lets us

conclude that the dangerousness of a location can be well

characterized by jointly considering its distance from the city

center and its average traffic density.

7.2 Containing the worm epidemics

The results in Sec. 6 unveiled the dangerousness of vehicular

worms, which motivates the development of solutions for the

rapid containment of their outbreaks. Assuming the SIR with

Immunization model introduced in Sec. 3.3, the typical tech-

niques proposed in the literature are preemptive immunization

and interactive patching [20], [21]. In the first case, a subset

of the vehicles is preemptively immunized so as to prevent the

propagation of the worm. However, preemptive immunization

makes sense only in the case of static networks, where

immunized nodes can disrupt the connectivity exploitable by

the malware. In highly mobile environments, worms can easily

overcome the obstacle of preemptively immunized vehicles

thanks to car movements. In the case of interactive patching,

a patch to the worm is released in the network and diffused

through V2V communication in an epidemic fashion. In other

words, the patching follows a spreading process similar to that

of the worm itself. However, resorting to V2V communication
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to contain the malware epidemics does not seem a sensible

choice, as it implies high delays and cannot guarantee the

complete removal of the threat.

We consider instead that cellular communication can be

leveraged to distribute the patch in a rapid and reliable

fashion. Indeed, vehicles already start to be equipped with

3G/4G radios, whose diffusion will anticipate that of V2V

communication interfaces. Therefore, that of a complete cel-

lular coverage of V2V-enabled vehicles seems a reasonable

assumption. The problem then becomes that of determining

which vehicles to patch. If a rough estimation of the area and

time at which the infection started is available, a smart cellular

patching can be adopted, limiting the immunization to vehicles

actually interested by the infection.

We thus propose a smart cellular-based patching based on

our data-driven model of the worm epidemics. Namely, the

model is exploited to determine the region within which the

worm may have spread since the estimated infection instant.

Then, only vehicles within such a region are immunized

through the cellular network. We remark that an equivalent

network simulation would take hours: given the rapidity of the

epidemics, the simulation result would be already outdated at

the time it becomes available.

Fig. 16 shows the results of the smart patching in the Canton

of Zurich, considering that the epidemics starts in the center of

Zurich at the peak traffic time. This is a worst-case scenario,

since it yields maximum network connectivity and thus ideal

conditions for the vehicular malware to self-propagate. The

response delay is the estimated time between the patient zero

appearance and the instant at which the smart patching is

run: clearly, longer response delays imply that the infection

has already reached larger portions of the road network when

countermeasures are taken. For each value of the response

delay (along the x axis) we report the number of vehicles

belonging to different and mutually exclusive categories: sus-

ceptible nodes were not infected and did not receive the

patch, recovered nodes were infected and later recovered upon

receiving the patch through the cellular network, immunized

nodes were not infected yet received the patch, and infected

nodes were infected but did not received the patch. Clearly,

the goal of a smart cellular-based patching is to recover all

infected nodes, leaving no infected vehicles and reducing the

number of unnecessarily immunized nodes to a minimum.

The results show that for a response time of 2 minutes,

the model correctly predicts the nodes to be patched, with

a negligible number of unnecessarily immunized vehicles.

As the response delay increases, the percentage of vehicles

infected by the malware grows, leading to the necessity of

patching a larger portion of the road traffic. Yet, our model

allows to successfully patch all infected vehicles, sparing up to

90% of transmissions with respect to an undiscerning patching,

and limiting the percentage of unnecessarily immunized nodes

to 20% in the worst case. More importantly, in all cases no

node remains infected after the smart patching, which proves

once more the quality of the model and its applicability to the

efficient containment of malware outbreaks.

8 CONCLUSIONS

We presented an extensive study of malware epidemics in

vehicular networks through V2V communication. Our simu-

lative analysis evidenced the high level of danger of vehicular

worms, capable of spreading through very large areas and

infect tens of thousands of vehicles in a tens of minutes at

most. We found that the high mobility of vehicular nodes

and the elevate number of short-lived V2V contacts they

generate are the key reason behind such a result. We then

presented a simple yet very effective data-driven model of

the worm propagation process, and leveraged it to show that

the level of danger associated to the worm injection position

can be ascribed to the distance of the location from the

urban center and to the local road traffic density. We also

employed the model as part of a solution for the containment

of the epidemics, based on smart patching of infected vehicles

through cellular communication.
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(UPC) He received his PhD from UPC, in 2014,
and M.Sc and B.Sc degrees from UPC, in 2008.
He joined the Computer Architecture Depart-
ment in 2007 with the Computer Networking
Research Group. He visited KTH, Stockholm,
Sweden, in 2009. His research interests include
Internet of things, mobile ad hoc networks, delay
tolerant networks and mobility modeling.

Marco Fiore (S’05, M’09) is a researcher at
CNR-IEIIT, Italy, and an associate researcher at
Inria, France. He received a PhD degree from
Politecnico di Torino, in 2008, and a habilitation à
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