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Abstract

Multinomial probabilistic values were introduced by one of us in reliability. Here
we define them for all cooperative games and illustrate their behavior in practice
by means of an application to the analysis of a political problem.
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1 Introduction

Weber’s general model for assessing cooperative games [14] is based on probabilistic
values.1 Every probabilistic value is defined by a set of weighting coefficients and
allocates, to each player in each game of its domain, a convex sum of the marginal
contributions of the player in the game. These allocations can be interpreted as a
measure of players’ bargaining relative strength. The most conspicuous member of
this family (in fact, the inspiring one) is the Shapley value [13]. In the present paper
we study a subfamily of probabilistic values that we call multinomial (probabilistic)
values.2 Technically, their main characteristic is the systematic generation of the
weighting coefficients in terms of a few parameters (one parameter per player).

For more than a decade, our research group has been studying semivalues, a
subfamily of probabilistic values introduced by Dubey et al. [9], characterized by
anonymity and including the Shapley value as the only efficient member. In the
analysis of certain cooperative problems we have successfully used binomial semival-
ues, a monoparametric subfamily defined by Puente [12] that includes the Banzhaf

∗Research supported by Grant SGR 2014–435 of the Catalonia Government (Generalitat de
Catalunya) and Grant MTM 2012–34426 of the Economy and Competitiveness Spanish Ministry.

1A family of values axiomatically characterized in [14] by means of linearity, positivity, and the
dummy player property.

2These values were introduced in reliability by Puente [12] (see also [10]) with the name of
“multibinary probabilistic values.” They were independently defined by Carreras [3], for simple
games only —i.e. as power indices—, in a work on decisiveness (see also [4]) where they were called
“Banzhaf α–indices.”



value introduced by Owen [11].3 From this experience, we feel that multinomial val-
ues (n parameters, n being the number of players) offer a deal of flexibility clearly
greater than binomial semivalues (one parameter), and hence many more possibilities
to introduce additional information when evaluating a game.

Probabilistic values provide tools to study not only games in abstracto (i.e. from
a merely structural viewpoint) but also the influence of players’ personality on the
issue. They are assessment techniques that do not modify the game but only the
criteria by which payoffs are allocated. In the multinomial case, a series of parameters
are used to cope with different attitudes the players may hold when playing a given
game, even if they are not individuals but countries, enterprises, parties, trade unions,
or collectivities of any other kind. We will attach to parameter pi the meaning of
generical tendency of player i to form coalitions, assuming pi and pj independent of
each other if i ̸= j.

Summing up, the paper tries to present multinomial values as a consistent alter-
native or complement to classical values (Shapley, Banzhaf). Tendency profiles can
encompass a variety of situations arising from players’ attitudes. Thus, multinomial
values represent a wide generalization of binomial semivalues, whose monoparametric
condition implies a quite limited capability of analysis for such situations. Of course,
these situations cannot be analyzed, without modifying the game, by means of the
classical values, which are concerned only with the structure of the game.

The organization of the paper is as follows. Section 2 includes a minimum of
preliminaries. In Section 3 we present a motivating political problem and discuss some
features of probabilistic values. In Section 4, we introduce multinomial values. Finally,
Section 5 is devoted to analyze again the political problem, using now multinomial
values, in order to emphasize their intuitive meaning, flexibility and usefulness.

2 Preliminaries

Let N be a finite set of players, usually denoted as N = {1, 2, . . . , n}. A (TU)
cooperative game in N is a function v that assigns a real number v(S) to each coalition
S ⊆ N , with v(∅) = 0. This number is understood as the utility that coalition S can
obtain by itself, that is, independently of the remaining players’ behavior.

Game v is monotonic if v(S) ≤ v(T ) when S ⊂ T ⊆ N . Players i, j ∈ N are
symmetric in v if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}. Endowed with the
natural operations for real–valued functions, v+ v′ and λv for all λ ∈ R, the set of all
cooperative games in N becomes a vector space GN of dimension 2n − 1.

We also recall that a cooperative game v is a simple if it is monotonic, v(S) = 0
or 1 for all S ⊆ N , and v(N) = 1. In this case, the set of winning coalitions W (v) =
{S ⊆ N : v(S) = 1} determines the game. Often v is a weighted majority game: there
exist a quota q > 0 and weights w1, w2, . . . , wn ≥ 0 such that S ∈W (v) if and only if∑

i∈S wi ≥ q. We denote this fact by setting v ≡ [q;w1, w2, . . . , wn].
A value on GN is a map g : GN → RN , which assigns to every game v a vector g[v]

with components gi[v] for all i ∈ N . The total power of value g in v is
∑

i∈N gi[v].

3[1], [5], [6], [7] and [8] are samples of our work in this line.

2



Following [14], given a set of weighting coefficients {piS : i ∈ N, S ⊆ N\{i}}, with

all piS ≥ 0 and
∑

S⊆N\{i}

piS = 1 for each i, (1)

the expression

ϕi[v] =
∑

S⊆N\{i}

piS [v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN (2)

defines a probabilistic value ϕ on GN . Notice that, fixing i ∈ N , the piS provide a
probability distribution on the set of coalitions S ⊆ N\{i}. Thus, the payoff that
a probabilistic value allocates to every player in each game is a convex sum of all
marginal contributions of the player in the game. We quote from [14]:

“Let player i view his participation in a game v as consisting merely
of joining some coalition S and then receiving as a reward his marginal
contribution to the coalition. If piS is the probability that he joins coalition
S, then ϕi[v] is his expected payoff from the game.”

Among probabilistic values, semivalues, introduced by Dubey et al. [9], are char-
acterized in [14] by the fact that all coalitions of a given size share a common weight
with regard to all players. Formally: there is a vector {ps}n−1

s=0 such that piS = ps for
all i ∈ N and all S ⊆ N\{i}, where s = |S|. Thus

ϕi[v] =
∑

S⊆N\{i}

ps[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN .

The weighting coefficients {ps}n−1
s=0 of any semivalue ϕ satisfy two characteristic con-

ditions, derived from Eq. (1): each ps ≥ 0 and
∑n−1

s=0

(
n−1
s

)
ps = 1.

Among semivalues, the Shapley value [13], denoted here by φ and defined by
ps = 1/

(
n−1
s

)
n for all s, is the only efficient semivalue, in the sense that its total

power for every v ∈ GN is
∑

i∈N φi[v] = v(N). The Banzhaf value [11], denoted here
by β and defined by ps = 1/2n−1 for all s, is the only semivalue satisfying the total
power property :∑

i∈N

βi[v] =
1

2n−1

∑
S⊆N

∑
i/∈S

[v(S ∪ {i})− v(S)] for every v ∈ GN .

The Banzhaf value is also the only semivalue with constant weighting coefficients.

3 A political problem with ideological constraints

To illustrate the notion of probabilistic value we will discuss here a political problem
described by a simple game. Besides their interest for modeling political problems,
simple games constitute very often a test bed for many cooperative concepts.
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Example 3.1 We consider a 50–member parliamentary body with n = 4 parties
and a seat distribution of 21, 18, 7 and 4 seats, respectively. Assuming that voting is
ruled by absolute majority and voting discipline holds within each party, the weighted
majority game v ≡ [26; 21, 18, 7, 4] describes the formal structure. The family of
minimal winning coalitions is Wm(v) = {{1, 2}, {1, 3}, {2, 3, 4}}, so the family of
winning coalitions is

W (v) = {{1, 2}, {1, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.

Notice that players 2 and 3 are symmetric in v. The Shapley value yields the following
evaluation of the game:4

φ[v] = (5/12, 3/12, 3/12, 1/12) ≈ (0.4167, 0.2500, 0.2500, 0.0833).

Let us assume that the basic ideological feature is defined by a classical left–to–
right axis5 where the parties can be precisely located as for example in Fig. 1.

left 4 1 2 3 right

0 0.1 0.4 0.6 0.8 1

Fig. 1: Party–distribution on a left–to–right axis

It is clear that the Shapley value strictly represents the relative strength of each
party in the game, disregarding the effect, in the coalition formation process, due to
the ideological positions of the involved parties. We wish to incorporate this exogenous
information to the evaluation of the game by using a suitable probabilistic value.

Any probabilistic value ϕ is defined by a set {piS} of weighting coefficients for all
i ∈ N and all S ⊆ N\{i}. For each i ∈ N , the coefficients {piS} must provide a
probability distribution on the family of coalitions S ⊆ N\{i}. In our case (n = 4),
32 coefficients piS are needed in principle. However, since the game is simple and
hence some marginal contributions vanish, we only have to define piS when i is crucial
for S ∪ {i} in v, i.e. when S /∈ W (v) but S ∪ {i} ∈ W (v) (we will write S ∈ Cv(i) to
denote this fact). This reduces the set to 12 coefficients, namely

p1{2}, p
1
{3}, p

1
{2,3}, p

1
{2,4}, p

1
{3,4}, p

2
{1}, p

2
{1,4}, p

2
{3,4}, p

3
{1}, p

3
{1,4}, p

3
{2,4}, p

4
{2,3},

and the restrictions in choosing these coefficients for each S ∈ Cv(i) are

all piS ≥ 0,
∑

S∈Cv(i)

piS ≤ 1 for each i, and hence all piS ≤ 1.

4Incidentally, the Banzhaf value gives the same allocations in this game.
5A similar scheme could be applied if the relevant notion were nationalism (vs. centralism), as for

example in regions like Quebec, Scotland, Padania (Po Valley), Catalonia or the Basque Country.
Higher–dimensional ideological spaces might be treated in a similar but more complicated way.
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Once the coefficients are chosen, we will simply have, from Eq. (2),

ϕi[v] =
∑

S∈Cv(i)

piS . (3)

Note that (a) ϕi[v] ≤ 1 for all i, and (b) the total power is
∑

i∈N ϕi[v] ≤ n.6

Given {piS}, let qi(v) be the probability that i joins any coalition S /∈ Cv(i),
i.e. such that i is not crucial in S ∪ {i}. This is the amount of irrelevant probability
that we may leave undefined. Then, from Eq. (3) it follows that ϕi[v] = 1 − qi(v).
Thus, the greater is the probability qi(v) the less is the allocation that player i will get
according to the corresponding probabilistic value.

How should we take into account the ideological constraints to define a suitable
probabilistic value? Well, one could try to combine, in a rather intuitive form, the
available information. Therefore a seemingly reasonable possibility could be

p1{2} = 0.4, p1{3} = 0.2, p1{2,3} = 0.1, p1{2,4} = 0.2, p1{3,4} = 0.1, p2{1} = 0.6,

p2{1,4} = 0.1, p2{3,4} = 0.3, p3{1} = 0.4, p3{1,4} = 0.1, p3{2,4} = 0.5, p4{2,3} = 1.

However, by using Eq. (2) or, even better, Eq. (3), we have ϕi[v] = 1 for all i,
which does not seem a reasonable result. Indeed, the reader will agree that both the
structure and the ideological positions distinguish among parties, and also that it is
extremely unlikely that the combination of these two ingredients leads to a common
relative strength for all parties. Of course, there are infinitely many other possibilities
for defining all piS , and in particular it is not necessary that they satisfy, like in our
example, qi(v) = 0 for all i, that is,∑

S∈Cv(i)

piS = 1 for all i.

The conclusion is that the weighting coefficients should be carefully chosen, in terms
of the information given by Fig. 1 but also in a way as systematic as possible. Hence,
in Example 5.1 we will apply multinomial values.

4 Multinomial values

We introduce multinomial values following [12] and [10].

Definition 4.1 Set N = {1, 2, . . . , n} and let a profile p ∈ [0, 1]n, that is, p =
(p1, p2, . . . , pn) with 0 ≤ pi ≤ 1 for i = 1, 2, . . . , n, be given. Then the coefficients

piS =
∏
j∈S

pj
∏

k∈N\S
k ̸=i

(1− pk) for all i ∈ N and S ⊆ N\{i} (4)

6The numerical example proposed below in this section shows that this bound cannot be improved,
since the total power equals n in this example.
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(where the empty product, arising if S = ∅ or S = N\{i}, is taken to be 1) define
(see [10]) a probabilistic value on GN that we call the p–multinomial value λp. Thus,

λpi [v] =
∑

S⊆N\{i}

∏
j∈S

pj
∏

k∈N\S
k ̸=i

(1− pk)[v(S ∪ {i})− v(S)] for all i ∈ N and v ∈ GN .

As was announced in Section 1, we will attach to pi the meaning of generical tendency
of player i to form coalitions, and thus we will say that p is a tendency profile on N .
According to Eq. (4), coefficient piS , the probability of i to join S, will depend on the
positive tendencies of the members of S to form coalitions and also on the negative
tendencies in this sense of the outside players, i.e. the members of N\(S∪{i}). Thus,
neither piS nor λpi [v] will depend on pi.

Remarks 4.2 (a) For n = 2 we have p = (p1, p2) and, if i ̸= j,

λpi [v] = (1− pj)[v({i})− v(∅)] + pj [v(N)− v({j})].

Hence, the allocation given by λp to player i does not depend on pi but only on
pj . If player j is not greatly interested in cooperating (say, pj tends to 0), player
i’s allocation will tend to his individual utility v({i}). Instead, if player j is highly
interested in cooperating (say, pj tends to 1), player i’s allocation will tend to his
marginal contribution to the grand coalition v(N)− v({j}).

(b) Whenever, in particular, p1 = p2 = · · · = pn = q for some q ∈ [0, 1], coefficients
piS reduce, for all i ∈ N , to

piS = ps = qs(1− q)n−s−1 for s = 0, 1, . . . , n− 1,

where s = |S| and 00 = 1 by convention in cases q = 0 and q = 1. These coefficients
{ps}n−1

s=0 define the q–binomial semivalue ψq introduced in [12] and, obviously, λp =
ψq. If, moreover, q = 1/2 then we obtain ψ1/2 = β, the Banzhaf value.

Remark 4.3 An important difference between the Shapley value and any (multino-
mial or not) probabilistic value is that the former is efficient whereas the latter, in
general, is not (for a discussion on efficient probabilistic values, see [14]). For this
reason we speak of relative strength. Thus, if the allocations given by a multinomial
value in a simple game have to be applied to sharing political responsibilities, or sim-
ply compared with the Shapley value, a normalization process is needed, similar to
that of the original Banzhaf power index [2], by defining

λ
p

i [v] =
λpi [v]∑

j∈N

λpj [v]
(5)

for each i ∈ N and any v ∈ GN for which this normalization makes sense. In this
case, we interpret each λpi [v] just as a relative measure of the bargaining strength of
player i in v and feel justified in using normalized versions.

Notice that the normalization does not work for all games and values. Neverthe-
less, it works e.g. for any nonnull monotonic game (this includes all simple games)
and any value whose total power in the game does not vanish.
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5 The political problem revisited

Our model, based on multinomial values, is able to encompass additional information
due to ideological constraints. We will discuss here the political problem described in
Example 3.1.7

Example 5.1 It is worthy of mention that, in Weber’s general model, piS may well
depend not only on i’s interest in forming coalition S∪{i} —which has been the basis
for our failed attempt in Example 3.1— but also on the opinion of the members of S
as to joining (accepting) i. In other words, coefficient piS is not simply a choice of i
himself.

Here we will see that using multinomial values offers a reasonable solution to this
since, given a profile p = (p1, p2, . . . , pn), the weighting coefficients of the correspond-
ing multinomial value λp are defined by means of Eq. (4). It also solves the question
of defining the weighting coefficients in a systematic way. Thus, it remains only to
choose the profile p = (p1, p2, . . . , pn) in terms of Fig. 1.

The usual decision–making procedure in a parliamentary body is as follows. For
each issue at stake, there exists a previous status quo Q and a proposal P to modify it.
Each member’s action reduces to vote for or against P . The simple game that defines
the decision rule merely establishes the set of winning coalitions. Thus, proposal P
will pass if and only if the members voting for the proposal form a winning coalition.
If this is not so, Q will remain in effect.

Following Remark 2.3(c) in [3], an alternative interpretation of the profile in simple
games is that each pi can be viewed as the probability that member i votes for P . Since
the result of voting is essentially equivalent to forming a coalition (the coalition of
members that vote for P ), this interpretation of pi perfectly agrees with that of
“tendency to form a coalition” that we are using here.

Step 1. Additional assumption. According to the above paragraph, we will
assume that any coalition C represents, in fact, the set of parties that would vote for
a given proposal P , and hence we will attach to this coalition C the ideological degree
µ (such that 0 ≤ µ ≤ 1) of the proposal P at stake.

Then, it is natural to take pi as the level of agreement of party i with this ideo-
logical degree, i.e.

pi = 1− |µ− µi|, (6)

where µi is the position of party i.
This is a simple but not too radical assumption. If µi ≤ µ then pi can vary

between 1−µ and 1, whereas if µ ≤ µi then pi can vary between µ and 1. As extreme
cases, pi = 0 if and only if either µ = 0 and µi = 1 or µi = 0 and µ = 1, and pi = 1 if
and only if µ = µi.

7As to the additional information given by ideological constraints in politics, it is worthy of
mention, at least incidentally, a singular example. In the general elections held in Greece in May
7 and June 17, 2012, the willingness of the parties to form any coalition was being, due to Greek
economy’s dramatic situation, much more decisive than the ideological constraints. Our model might
well apply to study this situation. The profile components after May 7 were very low and led to an
impasse, whereas they increased after June 17 and gave rise, finally, to a coalition government.
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Step 2. A particular case. As a matter of illustration, let us take µ = 0.5 for C
(see Fig. 2). Then, by Eq. (6),

p1 = 0.9, p2 = 0.9, p3 = 0.7, p4 = 0.6.

left 4 A 1 C 2 B 3 right

0 0.1 0.3 0.4 0.5 0.6 0.7 0.8 1

Fig. 2: Coalitions on the left–to–right axis

The weighting coefficients are given by Eq. (4). Precisely,

p1{2} = 0.108, p1{3} = 0.028, p1{2,3} = 0.252, p1{2,4} = 0.162,

p1{3,4} = 0.042, p2{1} = 0.108, p2{1,4} = 0.162, p2{3,4} = 0.042,

p3{1} = 0.036, p3{1,4} = 0.054, p3{2,4} = 0.054, p4{2,3} = 0.063.

To compute λp[v] we use Eq. (3) and obtain

λp1 [v] = 0.592, λp2 [v] = 0.312, λp3 [v] = 0.144, λp4 [v] = 0.063.

These allocations are the result of combining both the strategic position of each party
in the game and its ideological relevance in forming a “politically balanced” coalition
(µ = 0.5). Notice that the symmetry between parties 2 and 3, reflected by the
Shapley value, has been broken by the introduction of ideological constraints since
λp2 [v] ̸= λp3 [v]. The total power is

∑
i∈N λpi [v] = 1.111.

Looking at qi(v) we find

q1(v) = 0.408, q2(v) = 0.688, q3(v) = 0.856, q4(v) = 0.937.

These amounts represent the probability wasted by each party in joining coalitions
where it is not crucial. For example, party 1 is not crucial in {1}, {1, 4} and {1, 2, 3, 4},
and q1(v) is therefore the probability that party 1 joins ∅, {4} or {2, 3, 4}. This waste
of probability is the effect of the choice of p1 but also of p2, p3, p4.

According to Remark 4.3, the above allocations must be normalized, using Eq. (5),
before comparing them with the Shapley value of the game. They are given in Table
1. We also report the allocations corresponding to coalitions A and B described in
Fig. 2, with ideological positions µ = 0.3 and µ = 0.7, respectively.

Thus, the (normalized or not) allocations take into account: (a) the relative
strength of each party in the game, where Wm(v) = {{1, 2}, {1, 3}, {2, 3, 4}}; (b)
the ideological positions of the parties in the left–to–right axis; and (c) the particular
definition of the profile, given by pi = 1− |µ− µi| for each i.
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parties 1 2 3 4

φ[v] 0.4167 0.2500 0.2500 0.0833

(normalized) λ
p

1 [v] λ
p

2 [v] λ
p

3 [v] λ
p

4 [v]

C 0.5329 0.2808 0.1296 0.0567

B 0.5265 0.1407 0.1407 0.1921

A 0.4011 0.3448 0.2294 0.0246

Table 1: Shapley value and normalized allocations relatively to A, B and C

The comparison of these allocations with the Shapley value shows the influence of
the ideological positions of the parties when rewarding them, but always relatively to
a particular coalition (i.e., to a proposal) with a given ideological degree.

Step 3. Arbitrary ideological position. Now we proceed for a general µ. From
Eq. (6) we have in Table 2 the expression of the profile in terms of µ.

µ in: [0, 0.1] [0.1, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1]
p1 0.6 + µ 0.6 + µ 1.4− µ 1.4− µ 1.4− µ
p2 0.4 + µ 0.4 + µ 0.4 + µ 1.6− µ 1.6− µ
p3 0.2 + µ 0.2 + µ 0.2 + µ 0.2 + µ 1.8− µ
p4 0.9 + µ 1.1− µ 1.1− µ 1.1− µ 1.1− µ

Table 2: The profile in terms of parameter µ

Then we get the multinomial value λp[v] in terms of µ:

λp1 [v] =


−µ3 − 2.5µ2 + 0.78µ+ 0.448 if 0 ≤ µ ≤ 0.1,

µ3 − 1.5µ2 + 0.82µ+ 0.432 if 0.1 ≤ µ ≤ 0.6,

−µ3 + 3.5µ2 − 2.62µ+ 1.128 if 0.6 ≤ µ ≤ 0.8,

µ3 − 5.5µ2 + 8.02µ− 2.648 if 0.8 ≤ µ ≤ 1,

and similar expressions for the remaining values λpi [v] for i = 2, 3, 4.
Finally, if we wish to aggregate these results and obtain a single evaluation of

the relative strength of each party in the coalition formation process in abstracto,
i.e. without prescribing any ideological degree µ to the coalition, it suffices to integrate
the multinomial value of each party with respect to µ, thus getting

ξ1[v] =

∫ 1

0

λp1 [v]dµ ≈ 0.6333
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and, similarly,

ξ2[v] ≈ 0.3365, ξ3[v] ≈ 0.2681, ξ4[v] ≈ 0.1393.

Remark 5.2 The normalization procedure may of course be applied also to the single
evaluation ξ[v] obtained in Step 3, giving normalized values that sum up to 1:

ξ1[v] ≈ 0.4598, ξ2[v] ≈ 0.2443, ξ3[v] ≈ 0.1947, ξ4[v] ≈ 0.1012.

In the same way as one accepts the Shapley value of the game as an a priori
evaluation of the relative strength of each player in the coalition formation bargaining,
the values just obtained represent an analogous a priori evaluation of this relative
strength when the political relationships between the parties are taken into account.
The differences between our (normalized) assessment and the mere evaluation of the
game provided by the Shapley value are interesting: if ∆i[v] = ξi[v] − φi[v] and
∆i[v] = ∆i[v]/φi[v] for all i, then

∆1[v] = 0.0431, ∆2[v] = −0.0057, ∆3[v] = −0.0553, ∆4[v] = 0.0179,

∆1[v] = 0.1034, ∆2[v] = −0.0228, ∆3[v] = −0.2212, ∆4[v] = 0.2149.

This indicates that the political relationships in this particular game improve party 1
strongly (around 10.34%) and party 4 very strongly (around 21.49%), while they dam-
age party 2 very slightly (around 2.28%) and party 3 very strongly (around 22.12%).
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