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Abstract

The two main stability results for nearly-integrable Hamiltonian systems are
revisited: Nekhoroshev theorem, concerning exponential lower bounds for the sta-
bility time (effective stability), and KAM theorem, concerning the preservation of
a majority of the nonresonant invariant tori (perpetual stability). To stress the
relationship between both theorems, a common approach is given to their proof,
consisting of bringing the system to a normal form constructed through the Lie
series method. The estimates obtained for the size of the remainder rely on bounds
of the associated vectorfields, allowing to get the “optimal” stability exponent in
Nekhoroshev theorem for quasiconvex systems. On the other hand, a direct and
complete proof of the isoenergetic KAM theorem is obtained. Moreover, a modifi-
cation of the proof leads to the notion of nearly-invariant torus, which constitutes
a bridge between KAM and Nekhoroshev theorems.

1 Introduction

We consider a nearly-integrable Hamiltonian written in action—angle variables:

H(g, 1) = (1) + f(, 1), (1)

where ¢ = (¢1,...,¢,) € T" and [ = ([1,...,1,) € G C R" are, respectively, the
angular and action variables, and f is a small perturbation, of size ¢, of the integrable
Hamiltonian h. It is well-known that the dynamics associated to the unperturbed Hamil-
tonian h is very simple: the action [(¢) remains constant for all motions. Then, all
n-dimensional tori [ = const. in phase space T" x G are invariant. The flow on each
torus is linear, with frequency vector w(I) = grad h([).

In general, for the perturbed system associated to (1), the dynamics can be very
complicated. It is thought that there are unstable motions, and that Arnold diffusion
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takes place. Concerning stability, the main results are provided by Nekhoroshev and
KAM (Kolmogorov—Arnold-Moser) theorems.

Nekhoroshev theorem, which was first proved in [25], leads to the concept of effective
stability. Roughly speaking, it states that an estimate of the type

[1(t) — 1(0)] < Ry e’ for |t < To-exp{<€€—0) } )

holds for all initial conditions (¢(0),7(0)) € T" x G, provided steepness conditions
are fulfilled by h. The stability exponents a and b are positive constants. For the case
of a perturbation of a quasiconvex Hamiltonian (the simplest kind of steepness), these
exponents have been successively improved along several papers. Thus, the exponent
a=2/(n*+n) was found in [2]; and a < 1/(2r + 1) in [16]. Finally, the exponents

1

:%7

a=25

are stated in [18], [28]. It has been conjectured [7] that the exponent « = 1/2n is optimal.

Estimates of an analogous type can be obtained for the case of a perturbation of a
system of harmonic oscillators: H(p, 1) = w - I + f(¢p,I), where w is now a constant
vector satisfying a Diophantine condition:

k-w| > = Wkez"\ {0}, (2)

for some 7 > n — 1 and v > 0 (it is well-known that, if 7 > n — 1, the set of vectors w
satisfying this condition for a given v > 0 has relative measure 1 — O(y) in R"). We use
the notation |k, =377, |k;| for k = (ki,..., k,). We say a vector w satisfying (2) to be
T,v-Diophantine. In this case, the optimal stability exponent seems to be a = 1/(7 +1).
This exponent has been obtained in [12], [11] and [8].

KAM theorem states, under a suitable nondegeneracy condition, that most of the
n-dimensional invariant tori are preserved with some deformation in the perturbed sys-
tem (1) if the size ¢ of the perturbation is small enough. More precisely, this preservation
is guaranteed for tori that have frequency vector w([) = grad h([) satisfying a Diophan-
tine condition. In this way, one gets perpetual stability, but only for initial conditions on
a Cantorian set, which does not contain any open set although its measure is large. In
fact, it was first stated by Kolmogorov [14], for analytic Hamiltonians, the preservation
of one given torus, suitably chosen. Afterwards, Arnold proved in [1] (see also [27]) the
existence of a large family of invariant tori and estimated the measure of the complement
of the invariant set. An analogous theorem for area-preserving maps of the plane was
proved by Moser [21], without the hypothesis of analiticity.

Concerning the nondegeneracy condition required for the validity of KAM theorem,
two sorts of conditions are usually imposed on the unperturbed frequency map w =
grad h, namely the (standard) nondegeneracy and the isoenergetic nondegeneracy (see
definitions (31-32) in section 4.1). There are slight differences between the statements of
KAM theorem under both nondegeneracies. Indeed, in the standard case every preserved
invariant torus keeps its frequency vector in the perturbation. In the isoenergetic case,
the frequency vector is not usually kept but, nevertheless, every invariant torus keeps its
frequency ratios and its energy and, moreover, on each fixed energy hypersurface most
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of the invariant tori are preserved. A well-known consequence is that, for two degrees
of freedom (n = 2), it follows from the isoenergetic nondegeneracy the stability of the
perturbed system.

The usual proofs of Nekhoroshev and KAM theorems do not allow to stress the close
relationship existing between the different types of stability provided by these theorems.
Actually, no use is made of the existence of the KAM tori in the proof of Nekhoroshev
theorem, which gives a uniform stability time for all trajectories in phase space. These
trajectories include the ones lying in KAM tori, which are the most numerous (in the
sense of measure theory), and clearly have an infinite stability time. But one can also
expect that, for a trajectory starting near a KAM torus, the stability time is much larger
than the one predicted by Nekhoroshev theorem. Results concerning this “stickiness” of
KAM tori, with Nekhoroshev-like estimates, have recently been obtained in [26], [20].

In this paper we are concerned about a unified approach to Nekhoroshev and KAM
theorems, already announced in [9]. After a preliminary part where the common method
is set up, we give quantitative proofs of Nekhoroshev theorem under the assumption of
quasiconvexity (theorem D in section 3.5) and the isoenergetic KAM theorem (theorem E
in section 4.4). We notice that our approach to the isoenergetic theorem is direct, unlike
the usual proofs where it is deduced from the standard KAM theorem (see, for example,
[5]) or making use of the associated Poincaré map (see [22]).

Moreover, under the same hypothesis of KAM theorem, we get a Nekhoroshev-like
stability result (theorem F in section 4.5) which is slighlty different from the ones of [26]
and [20]. The result we prove considers the invariant tori of the unperturbed system
such that their associated frequency vector satisfies appoximately, up to a given precision
r, a Diophantine condition. In the perturbed system, these tori survive in the form of
nearly-invariant tori, i.e., the trajectories starting on such a torus remain near to it up
to a stability time which is exponentially long in 1/r. This result is similar to the one of
[19] where, however, the estimates are expressed in terms of the stability time, which is
previously fixed.

On the other hand, in [26] and [20] the stability estimates are expressed in terms
of the distance to a given KAM torus, meaning in this way the “stickiness” of KAM
tori. The stability time is then exponentially long in the inverse of this distance (or
even “superexponentially” long for quasiconvex Hamiltonians [20]). We do not prove that
KAM tori are “sticky” but we believe that our result is more useful for practical purposes,
since our estimates for nearly-invariant tori do not require the existence of a KAM torus
nearby.

The method we follow for the proof of Nekhoroshev and KAM theorems is standard in
classical perturbation theory. It consists of seeking for a suitable canonical transformation
¥, bringing our Hamiltonian H into a normal form H* = HoW, asked to depend on fewer
angles, none if possible. The transformation W is constructed iteratively as a product of
successive canonical transformations ®, &) near to the identity, which provide a

?).... coming nearer and nearer to the normal form.

sequence of Hamiltonians H("), H(

We construct the successive canonical transformations with the help of the well-known
Lie series formalism, which we describe in section 2.1. This is a very suitable procedure
for practical applications, since it allows to carry out explicit computations in concrete
examples. The procedure can be directly implemented in computers, since we only use

harmonics of finite order.
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It is well-known that an obstruction for the construction of the normal form is found
on the resonances or near them. A resonant manifold is characterized by a given module
M CZm

Sm={l€gG : k-w(l)=0 Vke M}

The obstruction comes from the presence of the small divisors k - w([l), with & € M,
which can be zero or too small. It is because of the presence of the small divisors that one
considers, near the resonance Sy, a resonant normal form, which accepts dependence on
combinations of angles k- ¢, with & € M. The union of all resonances is dense in the set of
frequencies, but one only needs to consider resonances up to a given suitable finite order:
|k|, < K, since it turns out that the effect of higher-order resonances is exponentially
small in K. Thus, we say a function g(¢, I) to be in normal form with respect to M of
degree K if its Fourier series expansion in the angular variables is restricted to the form

g(¢. 1) = > gi(l)e™.

keM

lkly <K
We express this by writing ¢ € R(M, K). Note that a fuction is in normal form with
respect to the trivial module M = 0 if it does not depend on the angular variables.

In the first part of this paper, we restrict ourselves to a subset G C G, where the
frequency vector w([) is allowed to satisfy resonance relations corresponding to a fixed
module M, but a neighborhood of all other resonances of order less or equal than K are
excluded. For such a set we say that w(() is nonresonant modulo M up to order K (see
definition (16) in section 2.3). On this set G we make successive reductions to the type
of normal form defined above: the harmonics corresponding to integer vectors satisfying
k¢ M, |k|;, < K, become smaller and smaller in the successive Hamiltonians, whereas
the harmonics corresponding to k € M or |k|, > K have to be kept because in the set G
the small divisors k- w([l) associated to these harmonics are not avoided. In this way the
final Hamiltonian H* = H o ¥ can be written as

HY (), 1) = h (1) + 27 (¢, 1) + B (9, 1),

where 7* € R(M, K) and the remainder R* is exponentially small in K.

As in [25] and [2], the proof of Nekhoroshev theorem is divided two parts, usually
named analytic and geometric ones. The analytic part concerns the iterative process
and the estimates for the successive remainders. In the geometric part the whole action
space G is covered by a family of sets associated to every module in order to get stability
estimates for the trajectories corresponding to all initial conditions. A similar distinction
may also be carried out in the proof of KAM theorem. In this case the geometric part
concerns the estimates for the measure of the complement of the invariant set.

For given M and K, we consider a subset G C G where the nonresonance condition
quoted above is satisfied. In section 2.1, we show how the Lie series method is applied
to the construction of the iterative process, which is finite for the proof of Nekhoroshev
theorem and infinite for KAM theorem. In the case of KAM theorem we always take
M = 0. The lterative Lemma (theorem A in section 2.3), which is common to both
proofs, provides estimates for one given step of this process. We make use of a vectorfield
norm, introduced in section 2.2, which allows us to optimize the estimates of the Iterative
Lemma with respect to other related papers.
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From successive application of the Iterative Lemma, with a fixed K, and carrying out
an appropiate number of iterative steps, we get the Normal Form Theorem (theorem B
in section 3.1), where the estimate obtained for the remainder is exponentially small in
K, and hence H* is an approximate normal form, specific for the set . This theorem
completes the analytic part of the proof of Nekhoroshev theorem. We point out that this
approach is carried out along the lines of Poschel’s proof [28] of Nekhoroshev theorem,
but our proof is somewhat simpler because the Iterative Lemma has been optimized.

From the Normal Form Theorem, one can deduce stability estimates for the trajectories
starting in T” x (&, which hold up to an exponentially long time. The estimates for
nonresonant (M = 0) and resonant (M = 0) regions are given in sections 3.2 and 3.3,
respectively. In the resonant case we impose a quasiconvexity condition. Following [28],
in the geometric part of the proof, the whole domain G is covered by a family of sets
(G = G p associated to the different modules M C Z", with suitably chosen parameters
(section 3.4). One sees that it suffices to consider K -modules (a module M C Z" is said
to be a K-module if it is generated by vectors of order less or equal than K'). To complete
the proof of Nekhoroshev theorem (section 3.5), with optimal exponents, we choose K as
a suitable function of ¢ and apply the stability estimates to each set G . In this way, we
obtain estimates for all trajectories starting in T" x G.

As an additional application of the Normal Form Theorem, we also consider a pertur-
bation of a system of n harmonic oscillators with a Diophantine frequency vector. The
nonresonant estimates of the case M = 0 give rise to effective stability in such a system
(theorem C in section 3.2).

Our approach to KAM theorem is parallel, in its main lines, to the Arnold’s one [1].
We first prove the Inductive Lemma (proposition 11 in section 4.3), which concerns the
estimates given by the Iterative Lemma, with M = 0, for one given step of the iterative
process. In this case, it does not suffice to bring our Hamiltonian H to an approximate
normal form with an exponentially small remainder. It is necessary to perform an infinite
number of iterations, with orders Ky, K, ... increasing to infinity. Then, the resonances
up to higher and higher orders are removed from the domain along the successive iterative
steps. In this way, the remainders tend quickly to zero and the final Hamiltonian becomes
integrable: H*(¢,[) = h*(I). Therefore, the domain where the transformation holds is
filled with n-dimensional invariant tori with linear flow, but it shrinks to a Cantorian
set corresponding to Diophantine frequencies. To finish the proof of KAM theorem, the
measure of the invariant set can be estimated assuming that a suitable nondegeneracy
condition is fulfilled by the unperturbed system.

In section 4.4, we give this direct proof of KAM theorem under the hypothesis that
the unperturbed frequency map w is isoenergetically nondegenerate. We point out that
the same scheme would be useful for the standard nondegeneracy. An explanation of both
nondegeneracy conditions and the technical difficulties arising in the isoenergetic case is
given in section 4.1 (quantitative lemmas are provided in section 4.2). This common
approach to both nondegeneracy conditions can be seen as a first step towards the proof
of KAM theorem under higher-order nondegeneracy conditions. We recall that a very
general condition has been announced by Riissmann [29]. See [30], [6], [31] for very recent
results along this line.

Finally, we see in section 4.5 that, inside the same iterative scheme used for KAM
theorem but stopping it at an appropiate step, instead of carrying it to the limit, we find
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that Nekhoroshev-like estimates hold for the trajectories starting in the domain at this
step. This domain is then filled with nearly-invariant tori (theorem F). This result is
quantitatively very close to KAM theorem. Qualitatively, the perpetual stability of KAM
tori is sacrificed but, on the other hand, the domain where the result holds contains inner
points, and hence it is not a Cantorian set.

It is worth reminding that KAM theorem is meaningless from a practical point of view
despite its theoretical importance. This is due to the fact that, from an approximation of
a concrete frequency vector, one cannot decide whether this vector is Diophantine or not.
The notion of nearly-invariant torus may be understood as an attempt to compensate this
deficiency.

Acknowledgements The authors would like to thank G. Benettin, A. I. Neishtadt,
J. Poschel, C. Sim6 and D. V. Treschev for their very useful comments, suggestions and
general interest.

2 The common part

2.1 Normal forms via the Lie series method

We describe in this section the iterative process leading our Hamiltonian H(¢,[) =
h(I) 4+ f(¢,I) to normal form. This setup provides a common environment for the
proofs of Nekhoroshev and KAM theorems. According to the approach described in the
introduction, we restrict our Hamiltonian H to a subset G C G, where it is assumed that
the frequency set w(() is nonresonant modulo M up to order K for given M and K. For
notational convenience, we consider the starting Hamiltonian H written, on the set G, in
the form
H(gp, 1) = k(1) + Z(0, 1) + R(o, 1), (3)

with Z € R(M, K). For instance, we may choose Z = 0 and R = f. However, if the
starting Hamiltonian is already near to the normal form, we may write it in the form (3),
with a small R with respect to Z, and seek for a better approximation to the normal
form.

The transformation ¥ leading to normal form is constructed as a product of canon-
ical transformations ® &3 We put U@ = d¢M o ... 0 @ At the step ¢, the
transformed Hamiltonian is written in the form

HD = HoU@ = p 4 70 4 R@),
with Z@) € R(M, K). Obviously we start with Z®) = Z and R®) = R.

Now, to describe a concrete iterative step, we write H, Z, R, Z, R, ®, instead of
H=Y | 7z pla=1) 7@ R@) oW respectively. Following the Lie series method, as
in [8], we construct ® as the flow at time 1 associated to a generating Hamiltonian W to
be determined.

More precisely, if ®; denotes the flow at time ¢ of an autonomous Hamiltonian W, it
is known from the Hamiltonian theory that, for any function f, the derivative of f o &,
with respect to ¢t can be expressed in terms of the Poisson bracket of f and W:

d
Sfod) = {f.W}od.
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So, assuming analyticity in ¢ and taking the Taylor expansion, one has the Lie series

fobi=3 LS

where we denote Ly, f = f and Ljf = {LV@”_lf, W} for m > 1. For the remainders
of the Lie series, we use the notation

m—1 tl %] tl

=0 "° l=m "*

for m > 0.
With this notation, we have for the transformed Hamiltonian the following expression:

Ho®=h+Z+R+{h,W}+ry(h, W,1)+ri(Z+ R,W,1). (5)

We want R to be smaller than R in order to get H o ® closer to normal form than .
Consequently W should be chosen in such a way that R+ {h, W} be in normal form.
As a matter of fact, this can only be guaranteed up to order A" because the nonresonance
condition on w(() does not avoid the small divisors corresponding to higher orders. Thus,
we seek for AZ € R(M,K) and W solving the linear functional equation

{W.h}+ AZ = Rk, (6)

where we write R<g(¢,1) = Z Ri(1) ek,
[kl <K
The resolution of equation (6) is standard. In terms of Fourier coefficients, we have
the solution

I
Wi(I) 5’“( ()[) . AZ(I) =0, for ke Zr\ M, |k, <K;
3 s W
We(l) =0, AZ(I) = Re(I), for ke M, k|, <K; (7)
Wi(I) =0, AZ(I) =0, for |k|, > K.

This is the only solution of equation (6) if we require W to have no resonant terms with
respect to M and to be of degree K. We denote by NR(M, K') the set of the functions
satisfying these requirements. If & and R are real functions, we see from (7) that AZ and
W are also real.

The new Hamiltonian can be put as

HOCI):h—I—Z—I—E’,
with

= Z+AZ € R(M,K), (8)
= R>K—|—T2(h,W,1)—|-T1(Z—|-R, Wvl)v (9)

o FEANE

where we write Rygx = R — R<g. If h, Z and R are real, then the transformation @
preserves real domains, and the new Hamiltonian is also real. Recall that the algorithm
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explicited in (7-9) is just one step of the iterative process. It describes how to get H@ =
H1) o @),

Roughly speaking, this procedure can be considered as linear if we ignore the term
R(fj_(l). Indeed, if 7= = O(g), R4 = O(e?), we see from equations (8-9) that
R@ = O(£t1), since the generating Hamiltonian for @) is taken of the same order as
R@=1. We use this procedure for the proof of Nekhoroshev theorem (section 3). The
term R(f;l) is exponentially small in K. So its influence can be overcome by choosing K
large enough.

We remark that the canonical transformation ®9) could also be constructed by means
of a quadratic procedure: if RO~ = O (52q_1), then RY = O (52q). We can attain
this aim by taking another term of the Lie series in (5), which gives rise to an alternative
algorithm for the reduction to normal form. However, for an arbitrary module M, the
linear equation substituting (6) is not easily resoluble, and an approximate solution does
not seem to improve the estimates of Nekhoroshev theorem.

In the case of KAM theorem (section 4), where M = 0, the linear procedure described
in (7-9) is almost quadratic, provided we take Z(4=1) = 0 at each step (the procedure can
never be strictly quadratic because of the presence of small divisors). This forces us to a
little change in the algorithm: we include AZ@=1 in the integrable part in order to have
7@ = 0 for the following step. In this way, the integrable part changes at every step: we
begin the step ¢ with H@=Y (¢, I) = he=Y(I) + R (¢, I), and the new Hamiltonian
can be written as

HD(6, 1) = h(1) + R, 1), (10)

where, by (7),
B = pla=t)  Agz-1) = ple=1) | Réq_l) (11)

(note that the function Réq_l)([) is the angular average of R~V (¢, 1)). The new re-
mainder R¥ is obtained like in (9), which then gives a fastly convergent procedure if
the term R(f;l) is ignored. Following the idea of the Arnold’s approach [1], we overcome
the difficulty caused by this term by taking increasing orders K, tending to infinity for
q — oo. We can then see the convergence to zero of the remainders R, and hence
the existence of invariant tori. However, resonances of successive higher orders have to
be removed along the procedure and hence the final domain is reduced to a Cantorian
set, given by Diophantine frequencies. For one further reference on Lie series methods
regarding normal forms at Diophantine tori, see [4].

Another remark is that in section 4.4 we prove KAM theorem without showing explic-
itly that the remainders R converge in a fast way, but linear. Nevertheless, we use the
almost quadratic convergence of the remainders to show the existence of nearly-invariant
tori, with exponential estimates (see section 4.5).

2.2 A norm for Hamiltonian vectorfields

In order to obtain rigorous estimates for the successive remainders, we need to define
norms for the functions taking part in the iterative process introduced in section 2.1.
An important remark is that a Hamiltonian function H does not take part directly in
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the Hamiltonian equations, but rather its derivative

DH - (aH 8H) B (aH OH OH 6H)‘

96 1) =\oe " ag, oL al,

Then, to obtain the stability estimates leading to the proof of Nekhoroshev and KAM
theorems, we do not need to obtain estimates for the successive remainders provided
by (9), but estimates for the derivatives of these remainders suffice.

Looking carefully at equations (8-9), one realizes that it is possible to bound the
derivatives DZ and DR from the derivatives DZ and DR, since the Lie remainders rq, 75
have been defined in (4) in terms of Poisson brackets. So it would be a nice tool to work
with a suitable vectorfield norm for the derivatives, which would avoid unnecessary uses
of the Cauchy inequalities in estimating derivatives. This idea was suggested to us by
A. L. Neishtadt, although it goes back to [11], where estimates for the Lie series method
for not necessarily Hamiltonian vectorfields are fully developed.

However, we cannot avoid all uses of the Cauchy inequalities, since the remainders ry,
r2 in (9) have to be differentiated in order to estimate DR. Moreover, a differentiation has
to be done before starting the first iterative step. Thus, we work with analytic functions
on complex neighborhoods of the domain T™ x . Given p = (p1,p2) > 0 (i.e. p; > 0,
J =1,2), we first introduce the sets:

Wy, (T"):={¢ : Regp €T, [Im¢|, < pi},
Vo, (G):={1e€C" : |[I-1TI|<pyfor some I' € G},

where |-|__ and |-| = |-|, denote, respectively, the maximum norm and the Euclidean norm
for vectors. We then define:

D,(G) =W, (T") x V,,(G).

Several kinds of norms are used along this paper. First, we consider functions of
the n action variables. Given a (real or complex) function f([), defined on a complex
neighborhood V, (), n > 0, we introduce the supremum norm:

|JC|G,77 = sup [f(I)], |fla = |f|G,0 :

1€V, (G)

In this way, the subscript 1 is removed from the notation if n = 0. This remark applies
throughout this section.

In an analogous way, we consider the supremum norm for vector-valued functions, i.e.
vectorfields. Given F': V,(G) — C" and 1 < p < oo, we define

2T

F = sup |F(I)| , F = |F
Flogy = i P} 1Pl == IFlg

In this definition, ||, means the p-norm for vectors in C", i.e.: [v| = (2?21 |vj|p) Ve for
1 <p < oo, and |v| = maxi<;<, |v;|. Note that we remove the subscript p to mean the
Euclidean norm (p = 2).

We also define the supremum norm for matrix-valued fuctions or even tensor-valued
functions (e.g. successive total derivatives of a function). The definition is analogous,
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taking for matrices and tensors the norm induced by the Euclidean norm for vectors (we
only consider the case p = 2).

Next we consider functions of the action—angle variables. For a given complex function
f(o, 1) (2m-periodic in ¢) defined on the neighborhood D,(G), p = (p1,p2) > 0, we may

consider its supremum norm:

e, = sup [f(&,1)]. (12)

(#,1)EDH(G)

But if f is analytic on (a neighborhood of) the set D,(G'), we may deﬁne an exponentially

weighted norm in terms of the Fourier series of f. Writing f(¢, ) Z fi(l ““b, we
keZn
introduce
e, = 20 elg,, - o (13)
keZn

Note that |fl , <|[fllg, - This exponentially weighted norm, analogous to the one used
in [28], allows to carry out easily a separate control of harmonics in estimating the solution
of the linear functional equation (6), in proposition 4 of section 2.3. This would be more
difficult by using the supremum norm.

Exactly in the same way as before we may extend the definitions of the norms (12-13)
to the case of vector-valued functions. Given F' : D,(G) — C” and 1 < p < oo, and
writing Fi(¢, 1) = > Fi(I) e'F? where Iy : V,,(G) — C", we define

keZn

Fllgp = 2 Frlap, €M AIFlg, = 11Fllg,.
keZn

Let us recall the Cauchy inequalities for the ¢-derivatives and the [-derivatives (see
also [28]). Given f analytic on D,(G), for 0 <d < p (i.e. 0 < d; < pj, 7 =1,2) one has

To have a more compact writing and to avoid to carry out separate estimates for the
¢-derivatives and the [-derivatives along the iterative process, we introduce for Df =

(ﬂ ﬂ) the vectorfield norm
(14)
Gp,1 H Gopyoo )

55 Bl
of
1D, = max (H%

where ¢ > 0 is a parameter to be fixed in subsequent sections. This parameter (having
the physical dimension of the action variables) is introduced in order to compensate the

1
Wl | < 1l

G, (p1—61,p2),1 G, (p1,p2—82),00

difference between the Cauchy inequalities for ¢-derivatives and [-derivatives.

Lemma 1 Let f, g be analytic functions on D,(G). For 0 < = (61,62) <p and ¢ >0
given, let us denote

N

. := min(cdy, d2).
Then,
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a) [Dfllgpmse <

C
£l -

2
by IHfgtle, = Z 11D, 1Pdllg,.. -

) NP (o)l =1mrc = €MD Nlipe -

The proof of the properties contained in this lemma is very simple. In subsequent
sections, we shall see that an appropiate choice for the parameter ¢ makes possible to
obtain better estimates, even in case of very different 4y, 4,.

More notation is required. At every step of the iterative process described in sec-
tion 2.1, the canonical transformation ® leading our Hamiltonian to normal form is con-
structed as a flow associated to the generating Hamiltonian W defined in (7). To know
how near to the identity map this canonical transformation is, we need to define a norm
for maps like ® —id. This map is defined in D,((), and we may consider it taking
values in C*". First, we take the parameter ¢ > 0 of definition (14) and, for a 2n-vector
x = (¢, ), we introduce its “c-norm” as

|z|, := max (¢|®|__,|L]).

Then, for a map T : D,(G) — C?", we define the norms:

c ?

Ylg,.= sup |T(x)l.,  [DY|g,. = sup |[DY(x)|

z€D,(G) z€D,(G)
where, for the second definition, the matrix c-norm is the one induced by the ¢-norm for
vectors. With these notations, it is easy to prove the following property: if T is analytic

on D,((), then
T
DY, < Mope |f;’”’c .

p—bec — 50 (15)

In the following lemma, the effect of the flow associated to a generating Hamiltonian is
estimated in terms of the norms introduced above. Moreover, a bound for the remainder
of a Lie series is found. The proof is given in section 5.

Lemma 2 Let W be an analytic function on D,(G), p > 0, and &, its associated Hamil-
tonian flow at time t, t > 0. Let § = (61,03) > 0 and ¢ > 0 given. Assume that
HDWHG%C < .. Then, ®; maps D,_45(G) into D,(G) and one has:

a) @ —idlg, . <IDW]g

sPC

b) @Dy (G)) D Dyess(G) for p < p—15.

c) Assuming that |[DW|| . < 80/26, for any given function f, analytic on D,(G),
and for any integer m > 0, the following bound holds:

2 (2 DWle N
(£ W5 < [Z (,+m)-( —ces ) |,

(=0 50

2 |DW ],
. (— Ll

C
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where, for 0 <z <1, we define

%@%Zi

2.3 The Iterative Lemma

Now we are going to obtain estimates for one step of the procedure of section 2.1, with
the help of the norm introduced in section 2.2. We consider the Hamiltonian (3), real
analytic on D,(G), with Z € R(M, K), and we restrict it to a subset (¢ C G such that
w((G) is nonresonant modulo M up to order K (see the introduction).

We first introduce, following [28], a quantitative version of this nonresonance condition.
Given a module M, an integer K and a > 0, a subset F' of the n-dimensional frequency
space is said to be a, K-nonresonant modulo M if

k-v|>a VEeZ'\M, [k, <K, YveTF. (16)

We begin by seeing that this nonresonance condition on the set w(() can be extended
to a complex neighborhood of small enough radius ps.

Lemma 3 Let h(I) be a real analytic function on V,,(G), let w = grad h, and assume

that w(G') is a, K-nonresonant modulo M. Assume that g% “ <M. If
sP2
a
< — 17
P2 =9MK (17)

then w (V,,(G)) is 5, K-nonresonant modulo M.

The proof is a simple application of the mean value theorem. We point out that, as
shown in section 3.5, condition (17) on pz imposes an important restriction on the domain.
An exception is the very special case of a system of harmonic oscillators, where M = 0
(see section 3.2).

The next result provides estimates for the functions AZ and W solving the linear
functional equation (6).

Proposition 4 Let h(1l), Z(¢p, 1), R(o, 1) be real analytic functions on D,(G), let w =
grad h, and assume that w(G) is o, K-nonresonant modulo M, and that 7 € R(M, K).

Assume that ‘g% . < M, and py < Let ¢ > 0 given. Then the functions
P2

? X
AZ e RIM,K) and W € NR(M, K) given in (7), which solve the linear equation (6),
are both real analytic on D,(G'), and the following bounds hold:

ot

HD(AZ)HG,/),C S HDRHG,/),C ’ HD(R - AZ)HG,/),C S HDRHG,/),C ?

2A
I1DWllg,pe = — IDEll6,p,c »

where we define

2Me

(a4

A=1+

(18)
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Proof We obtain the estimates from the explicit solution given in (7), in terms of Fourier
coefficients. The two first ones are clear, since AZ and R — AZ are obtained from R just
removing the appropiate Fourier harmonics. To estimate DW., we bound %—W d 2

Using lemma 3, it is easy to see that

OR
2

H aqb Gpl
Next we write, for k € Z"\ M, |k|, < K,

Gpl

oWy, _ e Ry(1) Z(ik - w(D)) _ ol n {%}k 51
al ik-w(l ) (tk-w(l))? ik-w(l) " (k-w(D)?’

R} =1 Ry(I) k (differentiating the Fourier expansion of R).

where we have used that {—(b

From lemma 3, we obtain

) czjom) o
a[ G, p2,00 a[ G, p2,00 aqb kG, po
Thus,

57,5215, - 5

Gpoo a[ GLp,00 aqb G,p
and finally
2  AMe 2A
|DWlg < (= + =57 ) IDRl gy =~ DRl - O

Remarks

1. These estimates do not involve a reduction of the domain D, (). This becomes more
difficult if we use a norm that does not take into account the explicit expansion
in Fourier series (for example, the supremum norm). One exception is the case
dim M =n—1, i.e. near periodic orbits, where integral expressions for the solution
of equation (6) are available (see [16] and also [15]).

2. The value of A could be big (of the order of 1/a). Therefore, it would be an
obstruction to the obtainment of the optimal exponent, unless we chose ¢ small.
But we shall see in the subsequent sections that our choice of ¢ allows to bound A
by a constant not depending on «.

Theorem A (Iterative Lemma) Let H(¢, 1) = h(I)+ Z(o,1)+ R(o,1) real analytic
on D,(G), let w = grad h, and assume that w((G) is a, K-nonresonant modulo M, and

that 7 € R(M, K). Assume that ‘ < M. Letd < p and ¢ > 0 given, and let A
defined as in (18). Assume:

I

ad.
p2—2M177 H RHG/}C—74A
Then, there exists a real analytic canonical transformation ® : D, _s(G) — D,(G) such

that Ho® =h+ Z+ R, with 7 € R(M, K), and one has:

(19)
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a) |DZ|, < IDZlG,. +IDRIG,, -

K, 144
< < DRIG, + —= (1026, + IDRG,.) - 1D Rl

G,p—b8,c —

b) | DA|

, 24
C) |(I) — 1d|G7p_%,c S ? HDRHG,/),C .

d) ®(Dy(G)) > D,_s(G) for o/ <p— 5.

Proof We take AZ, W and ® as constructed in section 2.1. Then the bounds of
proposition 4 for D(AZ), D(R — AZ) and DW hold. In particular,

24 b 4.
D < <<=
H RHG,/},C - 37 < 4e ’
and therefore lemma 2 applies, with ¢t = 1 and with §/2 instead of §. We obtain & :
D _%(G) — D,(G) and expressions (8-9) hold for the transformed Hamiltonian.

P
From (8) and proposition 4, we easily get estimate (a). On the other hand, from (9)

and parts (a) and (c) of lemma 1,

HDWHG,/),C S

(a4

|DR|,, . <™ DRI, + = (Irah W Dllg,—s + Ir1(Z + B,W D), s) -

2¢
G,p—6b,c 5c

From part (c) of lemma 2,

de HDWHG,/),C
722, W, D)l pm s < 72 B — {{r, W} Whla,
Z+ RW,1 oy (2IPWllene gy g
Hrl( + L, W, )HG,p—g >N S ) H{ + 1, }HG,p :

We estimate the Poisson brackets using part (b) of lemma 1:
2
{2+ B W lg, < = (IDZ)6,c + 1Dl G, - 1DW G,

2
AW Wi, = HAZ = B, Wi, < DBl - 1DW e,
where, in the second estimate, we have used proposition 4 to ensure that
ID(AZ = B )l e < IDIAZ = B)lg,. < DR, -
For 0 < = < 1, one has

’yl(:z:):—M, Vz(x):x—l-(l—x)ln(l—x)‘

x 2

Using that these functions are increasing and evaluating them at @ = 4¢/37, we obtain

[r2(h, W, I)HG,p—% + r(Z + R, W, I)HG,p—%

2 de de
< Z(nlg)+n(5)) (10216, +1DRI6,) 1DV,
7A

cQx

IA

(102, + IDRl ) - 1D R, - (20)
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By putting all of these estimates together, we get (b). Finally, we deduce from lemma 2
(with 6/2 instead of ) the statements (¢) and (d), concerning the distance from ® to the
identity. O

Remarks

1. The Iterative Lemma provides a description for one step of the transformation to
normal form constructed in section 2.1. The improvement of this result, with respect
to related papers (for instance, [28]), is the main contribution of the vectorfield
norm (14). It avoids a subsequent application of the Cauchy inequalities, which
would cause an extra division by o, in estimate (b).

2. In the statement of the Iterative Lemma the value of the parameter c is still free.
From now onwards, we shall take

and hence Sc = ¢y. This choice of ¢ seems to be the best because it leads to the
smallest possible value for the quotient

HDRHG,/),C
e

Y

appearing implicitly in condition (19) and estimate (b).

3 Nekhoroshev estimates and related results

3.1 Estimates for the normal form

Now, starting with H(¢, 1) = h(I) + Z(¢,I) + R(¢, ) on D,(G), we apply () times
the Iterative Lemma and obtain an estimate for the remainder. By choosing ) = Q(K)
adequately, we get an exponentially small remainder in the next theorem.

Theorem B (Normal Form Theorem) Let H(¢,I) = h(I)+ Z(¢, 1)+ R(o, 1) real

analytic on D,(G), let w = grad h, and assume that w(G) is a, K-nonresonant modulo

M, and that 7 € R(M, K). Assume that ‘g% <M. Let § <p given, ¢ = 63/61,

and let A the constant defined in (18). Assume:

G,p

Oé(SQ

o
< — D7z D < —. 21
P2 > IMK ” H HG,p,c + H RHG,p,c — 6114[(51 ( )

Then, there exists a real analytic canonical transformation ¥ : D, s(G) — D,(G) such
that Ho W =h+ 7Z*4+ R*, with Z7* € R(M,K), and one has:

EL) HDZ*HG,/)—S,C + HDR*HG,/)—S,C S HDZHG,/),C + 2 HDRHG,/),C .
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) _K§
b) DR lg,s5. < 3¢ 2 -[[DR|g,. -

) 4A
C) |LI} - 1d|G,p—5c S T HDRHGpC .

d) ¥ (D,(G)) D Dp,_%(G) for pf <p—29.
Proof Let () > 1 be an integer to be chosen below, and let us introduce the sequence

-, 9
Q

We take 6@ = §/Q for every 1 < q < Q. Next we shall construct a sequence of real
analytic canonical transformations R : Dy (G) — Dya-1(G), 1 < g < Q. Denoting
U@ = oW o ... 0 ®@ the successive transformed Hamiltonians will be written in the
form H@ = How@ = 1+ 7@ 1 R(q), with Z@ ¢ R(M, K). Moreover, we are going
to show that, if

0<¢q¢<Q.

K& > 20, (22)

the following statements are true for 0 < ¢ < Q:

020, <1971, + 5 oA

G,plD e G,p() e

|pR@)| < é DR, .

Gl e

We proceed by induction. The results are obviously true for ¢ = 0. For 1 < ¢ < Q,
note that, by (2,-1) and condition (21),

Oé(SQ Oé(SQ
(q—1) S -1 HDRHG,/),C S - S
Gopla=1) e = e 6LAKS, — 122A4Q

Jore]

and hence the Iterative Lemma applies, with ¢ /() instead of §, and we obtain the canonical
transformation ®@. We immediately get (1,). The bound (2,) comes from the following

estimate:
|DED] 0.
Ixél 1)
<e HDR " HG pla=1) e
14AQ _
+ oz52 (HDZ = Hqu 1) c—l_ HDR(q ! HGp(q 1) c) HDRq Y HGW(q_l)vC
< ((21_2 + QiAQ (HDZHG/)C + HDRHGpc)) ' HDR(q_l)HG,p(q—l),c
1
< (5+135) [P e, < HIOR]

Now, let us assume that Kd; > 2 (if K6y < 2, all results are obvious if we take
U as the identity map). Then, we may choose @) = Q(K) as the maximum integer
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satisfying (22), i.e. Q = [%} Denoting ¥ = W@, 7* = 7@ R* = RQ), we have
HoW =h+ 7Z*4 R*. Then, part (a) comes from (1g). For part (b), we use (2¢):

1 | K5y
HDR*HG7p—5,C S G_Q HDRHG,/),C = "K§ 4 _1 HDRHG/)C — Je 7 HDRHG,/),C :

e 2

The proof of (¢) is very simple from the analogous bound in the Iterative Lemma and the
inequalities (2,):

@ _; Sl —1) 44
‘\I} B ld‘G,p—(s,c < Z ‘(I) - ld‘G,p(q) < Z o HDR HG,,)(q—l),c = o HDRHG%C :

Finally, to get (d) it suffices to prove that, for 0 < ¢ < @,
WO (DUG) DD, s (G) i <o 8.
V'~3a

Indeed, this inclusion is obvious for ¢ = 0. By induction, we assume it for ¢ — 1:

VO (D) DD, (@) i p7 < p—
P—T

Then, taking p”" = p'— % in this inclusion and applying part (d) of the Iterative Lemma,
we get:

@WQMMZQW”@@@AQDD@HwQ#%@DDQ#%@)D

Remark This result is essentially equivalent to the analogous one in [28], and seems
to be “optimal” in the sense that the exponent for K in the second condition of (21) is
1. The difference is that our proof is much simpler because the Iterative Lemma is also
optimal, whereas the proof appearing in [28] relies in a very careful choice of the size of
the successive reductions of the domain (see also [24]).

3.2 Nonresonant stability estimates: application to the har-
monic oscillators case
From theorem B, one can obtain estimates for the variation of the action variables on the

set (¢ where this theorem is applied. This is very simple in a nonresonant region (M = 0),
where no extra geometric condition on the unperturbed Hamiltonian h is required.

Lemma 5 Let H(o,1)=h(I)+ Z(I)+ R(¢,I) real analytic on D,(G), let w = grad h,

and assume that w(G) is a, K-nonresonant modulo 0. Assume that ‘g% . < M. Let
P2
¢ = pafp1, and assume:
ap2
D7 DR < 23
/02 = 2M[r ’ H HG,p,c + H HG,p,c — 122[(,01 ( )

Then, for every trajectory (¢(t), I(t)) of H, with ($(0),1(0)) € T" x G, one has

Kpi

24 2
1) = HO)| < = DRI, for It <>

(24)
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The proof is deferred to section 5. Now, as a simple application, we consider the case
h(I)=w-1, i.e. H is a perturbation of a system of n harmonic oscillators. The frequency
vector w € R™ is assumed to be 7,v-Diophantine (see (2)), for 7 > n—1 and v > 0 given.
This case, where no geometric part is required, is also considered in [13], [12], [11], [28]
and [8]. We obtain, like in the last four of the quoted papers, the “optimal” stability
exponent a = 1/(7 +1). We remark that, since M = 0 in this case, condition (17) does
not impose any restriction on ps.

Theorem C Let H(¢p, ) =w- -1+ f(o,1) real analytic on D,(G), and assume that the

vector w is T,v-Diophantine for some 7 > n —1 and v > 0. Assume:

TP2
e:=|fllg, = c0=

Then, for every trajectory (¢(t), [(t)) of H, with (¢(0),1(0)) € T" x G, one has

1/(r+1) 9 1/(r+1)
1) - 10 < 22 () Jor < = exp{ ()70,
5p1 \&g ~y 24 \ ¢

Proof Let ¢ = py/p1. We notice that we may take M = 0 in lemma 5. For a fixed K
to be chosen, the set {w} is clearly =, K-nonresonant modulo 0. We are going to apply
lemma 5 with Z =0, R = f, and p/2 instead of p. Since
2e

1Dfllge. < o
the second condition of (23) is satisfied for

c< P2
T 244 K+

We then choose K = [(%0) 1/(T+1)] and obtain:

[1(t) = 1(0)] <

24K7 2_5 < P2 (5 )1/(74—1)‘

Y pr Bpr \eo

Concerning the stability time, it is easily obtained from the one of lemma 5 if we take

) . e 1 (e \M(TH1)
into account that, since ¢ < g9, we have K > 3 (?0) . O

Remarks

1. One may notice that our results in the case of a perturbation of a system of harmonic
oscillators are slightly worse than the ones obtained in [11]. Indeed, the stability
exponent a = 1/(7+1) is the same but we have obtained b= 1/(7+1) instead of
b =1. This difference comes from a different performance of the iterations leading
to normal form. Indeed, in [11] the linear functional equation (6) is solved without
cutting the Fourier expansions at order K (but making a reduction of the domain).
This approach makes the estimates of proposition 4 better, but it is limited to
the nonresonant case (M = 0). Although our approach leads to worse estimates,
it avoids dealing with infinitely many small divisors, and also allows to treat the
resonant case.



3 NEKHOROSHEV ESTIMATES AND RELATED RESULTS 19

2. Even in the harmonic oscillators case, our approach looks more significative from a
practical point of view. Indeed, if we consider ¢ fixed (i.e. a concrete Hamiltonian),
then the result of theorem C still holds if Diophantine condition (2) is required just

1/(7+1 . . . .
for |k|, < (5?0) ! ). For instance, if the frequency w is known only up to a finite
precision then it has no sense to check the Diophantine condition farther than a
certain finite order, but our estimates could also be applied.

3.3 Resonant stability estimates

Now we restrict ourselves to a neighborhood of the resonance associated to a given module
M C 7", and afterwards the whole domain G will be divided in resonant and nonresonant
regions corresponding to the different modules. A set of frequencies F' C R" is said to be
n-close to M-resonances if

lv — [po] <9 Yv e F,

where Iy denotes the orthogonal projection onto the space of exact M-resonant frequen-
cies

Mt={veR": k-v=0 Vke M}.

To obtain stability estimates for the trajectories with initial condition in a set G such
that w(() is close to a resonance, we need to impose some geometric condition on the
unperturbed Hamiltonian h. In the original Nekhoroshev’s proof [25], a general steepness
condition was imposed. But the main geometric ideas of the proof are contained in
the simpler quasiconvex case, considered for instance in [2] (convex case), [16] and [28].
Following [16], we say the function h([) to be m-quasiconvex on a set U if

> m |v|? Yo e ()", YieU

S (00)

(this definition is slightly different from the one given in [28]). One remarks that the level
hypersurfaces of h are convex if i is m-quasiconvex. Moreover, the quasiconvexity implies
that, for every module M, the resonant manifold Sy and the vector subspace generated
by M are always transversal.

Under this condition, the next lemma (called Resonant Stability Lemma in [28]) pro-
vides stability estimates on a region ¢ C G such that w((') is assumed to be close to the
resonance associated to a given module M and satisfying a nonresonant condition mod-
ulo M. Our proof is standard. It follows [16] and [28] in the main ideas, which go back
(for convex systems) to [3]. The basic point is that, for a Hamiltonian in normal form
with respect to M with an exponentially small remainder, the speed of variation of the
action variables along the M*-direction is exponentially small. On the other hand, the
quasiconvexity condition forces the energy hypersurface of i passing through a point of
the resonance S to have a contact of order two with the M-direction. Then, by energy
conservation, one may bound the variation of the actions along the M-direction, giving
rise to the stability estimate. It has to be noticed that this approach differs from the one
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of [2], where a different feature of (quasi)convex Hamiltonians is used: the transversality
between the resonant manifold Sy and the M-direction.
We define a real neighborhood of the domain G as

U, G):={TeR" : |[I -I'| <pgforsomel" e G} =V, (G)NR". (25)

Lemma 6 Let H(¢, 1) =h(I)+ Z(¢p, 1)+ R(¢, 1) real analytic on D,(G), and let w =
grad h. For a given module M # Z", assume that w(G) is n-close to M-resonances, and
a, K-nonresonant modulo M, with K > 1, and assume also that 7 € R(M, K). Assume
that

0%h

W SMa |W|G§La

G7p2

and that h is m-quasiconver on U,,(G). Let ¢ = pa/p1, and assume:

mop}

350

mao mps

< — <
P2=Tgaer 0 1= 60

HDZHG,/),C + HDRHG,/),C S (26)

1, ﬁ) Then, for every trajectory (é(t), I(t)) of H, with
(¢(0),1(0)) € T" x G, one has

where we write o 1= mm(

2 (

mp; mK p1
18— [0V < /| < 6M 27
I(t) = 1(0)| < p2 for "—74LHDRHG,p,c€ .

We give the proof of this result in section 5.

Remark If R = 0, this lemma implies that, if the quasiconvexity condition is fulfilled, all
trajectories starting in T™ x (G have perpetual stability. Nevertheless, one could deduce
this fact in a more direct way, because in this case the Hamiltonian H = h + 7 is already
in normal form with respect to M.

3.4 Geometry of resonances

Next we return to the Hamiltonian (1), which we assume real analytic on D,(G). The
stability estimates obtained in lemmas 5 and 6 only apply to the trajectories starting in a
subset G C G where the frequencies are assumed to be close to the resonance characterized
by a fixed module M C Z" and satisfying a nonresonance condition modulo M. In order
to obtain stability estimates for all trajectories starting in T” x G, the whole action domain
G is covered by a family of sets Gay, called resonant and nonresonant blocks (for M #£ 0
and M = 0, respectively). For each module M, the frequencies on the block G'xs have to
be close to M-resonances, and to satisfy the nonresonance condition (16) up to a fixed
order K.

A construction of such a covering is carried out in [25] and [2]. The quantitative aspect
was improved in [28]. The Geometric Lemma stated below has been taken from [28] with
no changes.

Actually one may work in frequency space. We obtain for this space a covering { B},
which can be pulled back by the frequency map w to a covering {Ga} for G. Before
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stating the Geometric Lemma we recall some concepts and terminology introduced in
[28].

For each module M C Z", we consider the space of M-resonant frequencies M*.
Note that there are a lot of modules giving rise to the same resonant space. Obviously
we only have to consider the maximal one. A module M C Z" is said to be maximal if
it is not properly contained in any other module of the same dimension. See appendix 3
of the book [17] for an explicit characterization of the maximal modules in Z".

Given a maximal d-dimensional module M C Z", the set B is constructed by taking
a neighborhood of the space M and removing from it a neighborhood of the resonant
spaces associated to the (d 4 1)-dimensional modules. The set constructed in this way
would not contain any open set. However, one remarks that, to satisfy the nonresonance
condition (16) up to order K, it suffices to consider K-modules. A module M C Z" is
said to be a K-module if it is generated by vectors of order less or equal than K.

To make these ideas quantitative, one requires the notion of volume of a module. For
a d-dimensional module M C Z", 1 < d < n, let C be the (n x d)-matrix obtained
by choosing a basis of M and putting its vectors as columns. The volume of M is then

defined as
|IM| :=4/det(CTC),

i.e. the d-dimensional volume of the parallelepiped spanned by the vectors of the basis.
The choice of the basis does not have influence in this definition.

Let Ay > 0, for 1 < d < n, be fixed parameters. For each maximal d-dimensional
K-module M, one introduces

pyp— Ad
and the resonant zone associated to M is defined as a neighborhood of radius 1 around
M*. Recalling that II denotes the orthogonal projection onto M*, one defines

Apv={veR" : |v—1lpmv| <num}.
Then, the resonant block associated to M is defined as
BM = AM \ A;+17

where A7, 1 <1 < n, stands for the union of all resonant zones corresponding to maximal
*

[-dimensional K-modules, and A, = 0. Note that every resonant block By is na-close
to M-resonances. For the trivial module one defines the nonresonant block:

BO =R" \ AT
It is easy to see that the whole frequency space is covered by the blocks Ba.
Lemma 7 (Geometric Lemma) Letusfir K > 1, E >0 and F > E4+/2. Assume:

Ad+1

> FK
d

for1 < d < n. Then, the blocks By defined above are apng, K-nonresonant modulo M,
with

am = EKnpm  for M #£0,

Qo 1= )\1.
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For the proof, see [28]. The desired covering for G is then obtained from this lemma
by putting Gy = w™' (Ba) for each maximal K-module M, except for the ones giving
rise to an empty set.

3.5 Global effective stability

Our main result on effective stability concerns estimates holding for all motions in phase
space. Like in [28], these estimates are obtained by considering the covering supplied by
lemma 7 with a fixed order K (which is chosen as a suitable function of the size ¢ of
perturbation) and then applying the stability estimates to each block of the covering.

Theorem D (Nekhoroshev Theorem) Let H(¢, )= h(I)+ f(p, 1) real analytic on
D,(G), let w = grad h, and assume that

0*h

— Y

lwly < L.
g7p2

Assume also that h is m-quasiconver on U,,(G). Let X > 0 given, and assume:

23M2p2 m4n—1ﬁ)\2
AL e, € s

= 224n—2 | f4n ’ (28)

2

where we write p := min (,01, 7) Then, for every trajectory (o(t), I(t)) of H, with
n

(¢(0),1(0)) € T" x G and satisfying |w(1(0))] > X, one has

(t) = 1(0)] < po - (3)1/2” for |t] < % exp{%} (50)”%}. (29)

€o S

Proof Fix K > 1 to be chosen below. Let

2882 M
F= 882 ,  E=F-V2
m
For 1 < d < n, we put:
A
M= g -
(FK)r

Then, lemma 7 provides a covering {Ga} of G, with G = w™ (Bam), and its parameters
are

B A B EX
MMZTM(FK)y = M T M) PR
for every maximal d-dimensional K-module M, 1 < d <n, and
A
g = ———
T (FK)!

for the trivial module. We also put 1y = 0.
We are going to apply lemma 6 with Z = 0 and R = f on all blocks, except on the
one corresponding to M = Z". In this way the estimates hold for all initial conditions
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satisfying |w(1(0))] > nz» = A. Unlike the case of theorem C (harmonic oscillators),
the smallness condition (17) on ps makes us restrict the domain. For every M we take

M M .
P = (p pP), with

(M) _ P1 (M) mam P2

For every d-dimensional K-module M, 0 < d <n — 1, one has
60A (M) 61A P2

— < <—<
mEFr—dgn =P = (FKy—d = 2
where we used that 1 < M| < K9 We have

g 2e
<

HDfHGM,p(M),cM = P(1M) < ,0_1 :

To apply lemma 6 on (G oq, we must verify the three inequalities of (26). The two first
ones are easily verified and the last one is fulfilled for all M if

2
2 < 25]0271 < mo 60)‘, -] < ma (p(QM))Z,
p1 ~ piK 350 \m(FK) 350

with ¢ = min ( ) Thus, we choose K = [(6—0) I/Qn]. For every M, the stability

. 2
Y \/ﬁpl £

radius and the stability time for the trajectories starting in T" x G5 are obtained from

lemma 6:
1/2n 1/2n
N O
mF K ml € €

2
m (ng)) ﬂig&l N 4 mp (50)1/271 _
——— € — X b — .
TAL-Z =7 P oanr \:

N

Remarks

1. These estimates would have been a little better if, on the nonresonant block Gy, we
had used lemma 5 instead of lemma 6. But the stability exponents obtained would
have been the same, so we used lemma 6 on all blocks for sake of simplicity.

2. We also point out that, actually, condition (28) on ¢ is not essential. It can be
removed with some additional effort, but we omit the details. Note, however, that
for a large ¢ Nekhoroshev estimate (29) is meaningless. The same remark holds for
theorem C.

In the proof of theorem D, we have obtained the stability exponents
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by carrying out the estimates on every block Gy and always taking the worst possible
case. The key point is to find greater and lower bounds for ,o(zM), valid for all modules
M. However, the stability exponents can be improved by means of a particular analysis,
if one is only interested in a given region.

In particular, one remarks the case of the nonresonant block GGy. This case corresponds
to the smallest ,0(20), which gives rise to the smallest stability radius. It is not hard to see
that, as stated in theorem 2 of [28] and theorem 3 of [§], the stability exponents obtained
for this case are

1 1
= —, b= —.
2n 2

However, if lemma 5 were used to obtain the stability estimate, one may check that the
exponents would be

a

1 b n+1
"o o2

It is also interesting to consider, for a fixed module M, a neighborhood of the resonant
manifold Saq,. This set can be covered by the blocks Gaq associated to the modules M
containing My. If we restrict ourselves to these modules, the lower bound for p(QM) is
greater than the one obtained in theorem D. This allows to choose K greater, and leads

to the exponents:

a

1
a=0>b=

= % 7
where 1 is the codimension of M. A precise statement of this result is given in theorem 3

of [28].

4 KAM theorem and nearly-invariant tori

4.1 Nondegeneracy conditions

Now our aim is to prove that, for a nearly-integrable Hamiltonian H (¢, I) = h(I1)+f(o, 1),
analytic on D,(G), most orbits lie in n-dimensional invariant tori if the perturbation f is
small enough. To reach this result, a suitable nondegeneracy condition has to be fulfilled
by unperturbed system. In the usual statements of KAM theorem, two sorts of nonde-
generacy conditions are imposed on w = grad h. These are the (standard) nondegeneracy
and the isoenergetic nondegeneracy. The frequency map w is said to be nondegenerate if

det (%(1)) £0 VIeg, (31)

and isoenergetically nondegenerate if

o (1) wlh)

W7 0 );AO Vieg. (32)

An equivalent formulation for the isoenergetic nondegeneracy is to require that w is non-
vanishing on G and
Ow

W([) v+ (D) A0 Yoe (w)\ {0}, YYeR, VIeg, (33)
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In action space, condition (33) can be interpreted as transversality, at every point, between
any energy level My = h™'(F) and the hypersurfaces w(I)-v = 0 (which include the
resonant ones). The interpretation in frequency space is that the image w (Mg) of any
energy level and the subspace (w([)) are always transversal.

It is easy to construct examples showing that conditions (31) and (32) are independent:

h(ly, I3) zln% , h(ly, 1) = %[12+[2. (34)
The first one is only nondegenerate on its whole domain, and the second one is only
isoenergetically nondegenerate.

We give in the next sections a direct and quantitative proof of KAM theorem under
the assumption of isoenergetic nondegeneracy, although the same approach holds for the
standard nondegeneracy. Our setup differs from the one which can be found in [10], [5],
where the isoenergetic KAM theorem is proved from the standard one.

We first remind that the standard version of KAM theorem (under the standard con-
dition (31)) states that, given 7 > n — 1 and v > 0 previously fixed, and assuming for the
size of the perturbation f a smallness condition of the type

e=0(vY), (35)

then every invariant torus of the unperturbed Hamiltonian h having 7,~-Diophantine
frequency (i.e. satisfying (2)) is preserved in the perturbed system with the same frequency
vector. Moreover, the measure of the complement of the set filled with the invariant tori
is O(v). In proving this statement it is crucial to use that, under condition (31), the map
w 1s a local diffeomorphism and therefore the unperturbed invariant tori can be locally
parametrized by their frequency vector.

The preservation of the invariant tori with the same frequency vector can be false
under the isoenergetic condition (32). Indeed, it suffices to consider h([) as in the second
example of (34), where the frequency map w(/ly, lz) = (I1,1) maps the whole plane into
a straight line, and f(¢,1) = e h([l) as a perturbation.

Nevertheless, it is known that in the isoenergetic case the unperturbed invariant tori
can be locally parametrized on each energy level Mg by their frequency ratios. More
precisely, if we assume, with no loss of generality, that the component w,, does not vanish
on G, then the isoenergetic condition is equivalent to requiring that the map

(1) = (Z(([[)) , h([)) _ (jg; o wﬁg) h([)) (36)

is a local diffeomorphism on G. We use, in this section and in the subsequent ones,
the notation T = (vy,...,v,-1) for v = (vy,...,v,-1,v,). Note that, including the last
component (1) in the definition of Q, we avoid to consider each energy level separately.

Using the nondegeneracy of the map (), we are able to state that, if a smallness condi-
tion on ¢ like (35) is fulfilled, then for every 7,~v-Diophantine torus of the unperturbed
Hamiltonian there exists an invariant torus of the perturbation, with the same frequency
ratios (though the frequency itself can vary) and the same energy. Moreover, like in the
standard case, we get that the measure of the complement of the invariant set can be
estimated as O(v). One deduces that in the isoenergetic case most of the invariant tori
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on any energy level are preserved under the perturbation. Indeed, since w,(I) # 0 for
I € G, the frequency vector w([) associated to a given torus is Diophantine if the vector

(:;((II)) ,1) is also Diophantine. This occurs for most of the unperturbed tori on a fixed
energy level, since these tori can always be parametrized by their frequency ratios.

It is worth noting that the isoenergetic version of KAM theorem is more significative
from the point of view of stability, because in this case the existence of a large family
of invariant tori is ensured on every fixed energy level. For two degrees of freedom (n =
2), it follows the stability of the system (in the sense that all motions are bounded),
since a given energy level is always separated by the invariant tori. Under the standard
nondegeneracy condition, one cannot deduce from KAM theorem that on a given energy
level any invariant tori is preserved. On the other hand, for more than two degrees of
freedom, stability cannot be guaranteed under any nondegeneracy condition but in the
isoenergetic case the preserved tori seem to be stronger barriers to Arnold diffusion.

Another remark is that the isoenergetic KAM theorem can eventually be applied
to periodic nonautonomous Hamiltonians, by taking the time variable as an additional
angular variable.

Let us make an outline of the method we use for the proof of KAM theorem and
the main technical problems found. As established in section 2.1, we use an iterative
procedure leading to successive Hamiltonians of the form H? = A(@) 4 R@ with the
integrable part A9 changing from every step to the next one. The domain is restricted by
removing at every step resonant strips up to successive orders K, increasing to infinity. A
first problem is that we need to guarantee the nondegeneracy condition for the frequency
map w? = grad A9 at every iteration. Hence the analytic part and the geometric part
cannot be separated and must be carried out simultaneously along the proof.

Another technical problem is that, to move the bounds of the measure of the resonant
zones from frequency space to phase space, we need to estimate from below the Jacobian
determinant of a suitable diffecomorphism. In the standard case, the frequency map w
itself is a local diffeomorphism, and one can see that the successive maps w(@ are still
diffeomorphisms on their domains. One can assume the starting map w to be one-to-
one (restricting the domain if necessary). To guarantee the perturbed maps w(® to be
also one-to-one, their domains still have to be slightly restricted after having removed
resonances.

The isoenergetic case is, in this aspect, more cumbersome. As showed above, the
frequency map w is not necessarily a local diffeomorphism, but we may use the map €
introduced in (36), which we shall assume to be one-to-one on G. Then, like one would
do in the standard case, successive perturbations Q9 of this map will be guaranteed to
be also one-to-one provided their domain is slightly restricted.

We notice that the resonant strips to be removed along the successive iterations are
better expressed in the image space w(G) or Q(G). Indeed, the strips can then be taken
as linear and are thus easier to handle. To be more precise, in the isoenergetic case we
remove from Q(G) resonant strips of the form

Ak, o) := {JER” : ‘E-j—l—kn

<o}, (37)

with a > 0. This is very appropiate for the isoenergetic case since {) maps every resonant
zone |k -w([l)| < ¢ intosuch alinear strip. The only exception is the case k = (0,...,0,1),
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since A(k, «) is then empty if o < 1, but this integer vector corresponds to the resonance
wn(I) = 0, which has previously been excluded from the domain. We also remark that
it is easy to bound the measure of a linear strip like (37), and that this bound can be
pulled back to action space by estimating from below the Jacobian determinant of the
diffeomorphism.

It is possible to construct a common environment for both the standard and the
isoenergetic nondegeneracy conditions. Indeed, let us consider the condition:

%"(1) b A0 Woe (w(I)E\ {0}, VIeg, (38)

which means that the restriction of w to each energy level My is a local diffeomorphism.
It is not hard to check that this condition is equivalent to that, at every point I € G, the
standard or the isoenergetic condition holds.

It is known that the measure of the set of vectors which do not satisfy Diophantine
condition (2), with given 7 > n — 1 and v, is O(y). Note also that the nondegeneracy
condition (38) implies that every resonance k- w(l) = 0, with & # 0, is a regular
hypersurface. Then, the measure of the complement of the invariant set is also O(~), since
this estimate is obtained by pulling back to action space the measure of every resonant
strip removed along the iterative process. This is the idea of the measure estimates for
both nondegeneracy conditions (31) and (32), and the only reason for carrying out the
proofs separately is the technical problem concerning the appropiate diffeomorphisms
described above.

A higher-order nondegeneracy condition has been announced by Riissmann [29]: the
Taylor expansion of w at a point [ is required to contain n linearly independent coefficients.

As a matter of fact, it is easy to see (using that g—‘}’([) is a symmetric matrix) that
condition (38) is equivalent to imposing that n of the vectors w([), 887‘*1(]), e 887‘”([) are

linearly independent, namely Riissmann’s condition at order 1. As said in [29], KAM
theorem remains true even under the most general Rissmann’s condition. However, the
estimate one would get for the measure of the complement of the invariant set would then
be larger: O(~), with b < 1. Very recent results along these lines can be found in [30],
[6] and [31].

4.2 Isoenergetic nondegeneracy: quantitative results

We give in this section several quantitative results related to the isoenergetic nondegen-
eracy. All proofs are technical and we postpone them to section 5.

We need to work with a quantitative version of the isoenergetic nondegeneracy in its
form (33). If A([) is defined on a set G C R", we say the frequency map w = grad h to
be p-isoenergetically nondegenerate if w does not vanish on G and

a—w([)v—l-)\w([)

— >ulv]  Yee(w), YAeR, VIed.

Moreover, we modify slightly the map defined in (36). For a fixed constant a > 0, we

define
Quna(l):= (c:(([[)) , ah([)) , I eG. (39)
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The constant a is introduced for quantitative reasons. It has the appropiate dimensions
to make the components of the map (39) dimensionally coherent. But its main motivation
is that the estimates given in the next lemma are better with a good choice of a.

Lemma 8 Let h be a real function of class C* on G C R™, and w = grad h. Assume the
bounds:

0*h
012

o
ol

— Y

G

< M, lwle <L and lw, (1) =1 VI €.
G
Assume also that w is p-isoenergetically nondegenerate on G. Let a > 2M/I* be a fived
constant, and denote Q0 = Q. 1, .. One has:
of

a) |==

<9La.
ar| . =

G

b |S)w

n—1
¢) |det (6—9(1) ‘ >E 2 viea.

_ (M sary
co\em T )

Next we state how a slight variation of the frequency map affects the constant p of the

isoenergetic nondegeneracy condition. This result may be expressed in terms of vectors
and matrices.

d) | ==

Lemma 9 Let w,& € R”, and let A, A be (n x n)-matrices. Let ¢ = |0 —w|, & =
‘A — A|, and define | = min (Jw|,|©]|), M = max (|A| ) rzZlD For some v > 0, assume
that

|Av + Aw| > u|v| Yoe (w)', YieR.
Then,

‘Av + A&

M
Z(M_ 55—5')|v| Yo e (@), VAER.

Finally, we see that a small perturbation of a one-to-one map is still one-to-one pro-
vided the domain is slightly restricted. Previously, for b6 > 0 we define the set

G-b:={leG : U(l)C G},
where U, (1) means the closed ball of radius b centered at I, according to (25).

Lemma 10 Let G C R" a compact, and let Q, Q: G — R maps of class C2, with
‘Q — Q‘G < e. Assume that Q is one-to-one on G, and let F' = Q(G). Assume the
bounds:

. g
oN <M. oN <l 0°Q <

ol |, ol |, or* |,

99 00

— > _ > ~ n

8]([)U >m|v], 8]([)U >mlv| YveR" VIeG,
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with 0 <m <m, M > M. Assume also that

~ 2

m
e < —— . (40)
A4M’
~ AM N N .
Then, given a subset F C F — ° and writing G = (Q) ' (F), the map € is one-to-
m

one from G to F', and one has the inclusions
~ ¢ ~
GcG-=, Q(G)o>F--
m
Moreover, the following estimate holds:

(@) -0 <

&
Foom

4.3 Analytic and geometric estimates for one step

We provide in proposition 11 below quantitative estimates for one concrete step of the
iterative process described in section 2.1 for the isoenergetic KAM theorem. A parallel
result for the standard theorem is called Inductive Lemma in [1].

Let us outline what we call the “analytic part”. If the starting Hamiltonian in a
step of the iterative process is written in the form H(¢,I) = h(I) + R(¢, 1), we get,
from the Iterative Lemma (section 2.3), estimates for the new Hamiltonian H(¢,I) =
iL(]) + R(¢,I). Assuming the starting frequencies w(I) to be Diophantine up to a given
order K, we ensure the Iterative Lemma to apply with M = 0. To be more precise, the
Diophantine condition up to order K is slightly modified (see condition (41) below) in
view of the resonant strips introduced in (37). In this way, we obtain the estimates of
parts (a—e) of proposition 11, which could be stated without the hypothesis of isoenergetic
nondegeneracy.

On the other hand, some “geometric part” is required. Indeed, assuming that w is
isoenergetically nondegenerate on the domain (i, we need to guarantee that the new
frequency map w = grad h is also isoenergetically nondegenerate, with a new parameter,
in order to allow further iterations. This is established in part (f) of proposition 11.
Moreover, if the map €, introduced in (39) is one-to-one, we see in part (g) that the
new map {2 ; , is also one-to-one on a new domain GCd.

Proposition 11 (Inductive Lemma) Let G C R" a compact, and H(p, ) = h(I) +
R(¢p, I) real analytic on D,(G). Let w = grad h, and assume the bounds:

0*h

— Y

G7p2

lwl < L and lw, (1) =1 VI €.

Assume also that w is p-isoenergetically nondegenerate on G. Let M > M, L > L, I <1
and [t < p given. For a fired constant a > 2M [I*, assume that the map Q = Qup. s
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one-to-one on G, and let F' = Q(G). Fort >0,0 <8 <1 and K given, K an integer,
assume the nonresonance condition:

FnA (k%) =0 Vk= (E kn) €2, k|, <K, k#0. (41)
1
Let 6 < p given, ¢ = 65/, and
Ay Mk
= 3

Let ¢ := ||DR|;,. , n = |Rolg, and £ := ‘%G

(where Ro(I) is the angular

P

average of R(o,1)), and assume:
s

<27 42
P2 = oK (42)
135, . - : = (k=) pe
< < _ I B A e OV
e o g_mm((M M)&y, L—L, 11, g . (43)
L¢ [i*(p2 — 02)
TN TS Tl (44)

Then, there exists a real analytic canonical transformation @ : Dp_%(G) — D,(G) and
a descomposition H o ® = ;L([) + fx’(qb, I) such that, writing © = grad h and Q = Qshas

one has:

a) [&—wlg,, =& |h-h|, =n
- 14AK™
X o._ —1851 . . 2
b) €= HDRHG,/)—&C S ¢ c lﬁ(SQ =
~ . TAKT
C) = 0 G7P2—6—2 = Clﬁ o
2AK”
d) |[®—1id < -E.
) | 1 |G,p—%,c — lﬁ €
9%h - N - N -
e) |53 <M, @<L and |0,()>1 VIeG.
ol Gip2—b2

f) @ is fi-isoenergetically nondegenerate on G.
16 L La*y

. . H
one-to-one from G to F', and one has the inclusions

g) Given a subset FcF— and writing G = (Q)_l (F), the map Q is

Gea 0@y s b ay
[

Moreover, the following estimates hold:

2Lan’

<
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Proof By condition (41) we have, for every [ € G and 0 < |k|, < K, k # 0,

B

6

This estimate holds even if k = 0 since |w,(/)] > and B < 1. Then, the set w(G) is
Ilﬁ,]& -nonresonant modulo 0. This fact and conditions (42) and (43) on py and & allow
to apply the Iterative Lemma with Z =0, M =0 and a = Ilf We obtain the canonical
transformation ® and, according to (10-11), the new Hamiltonian may be written as
Ho®=h + R where h=h + Z and we have Z = Ro. One sees the estimates of (a)
using that

8 dRo

|w _w|G,p2 = ‘ a[

The estimates of (b) and (d) are provided directly by the Iterative Lemma. The bound (¢)
comes from the inequality (20) in the Iterative Lemma. The estimates of part (e) come
from (45), condition (43) on ¢ and the Cauchy inequality

—¢. (45)

G7p2

92h  9%h

§
- < >
arr  olI? )

G,p2—52

We prove (f) using lemma 9, which tells us that @ is y’-isoenergetically nondegenerate on

G, where

orr ~ o1,

. AM | .
Wo=p— o —wlg -

AM ¢ 3¢
[ P2 P2

We have used (45), condition (43) on &, the inequality
i)
ar?r  olI?

G P2

and the inequality p, < [/2M, deduced from (42).

Before going on, we remark that the bounds on the derivatives of {2 given in lemma 8
are also valid for Q, on G, provided one replaces M, L, I, u, by M, L, [, fi, respectively.
We do not need to Change the constant ¢ because we are assuming that a > 2]\1/[~2 We
shall now apply lemma 10 but we have to take, instead of the parameters of that lemma
M, m, M, r, the values obtained applying lemma 8 to  and to Q. We first find the
Value Wthh W1H replace € in lemma 10, i.e. an estimate for ‘Q Q‘ We have

B —wn D] D)+ B = B0 (D)
1) = 91| < (D] (D)
() — ()] (D] _ L€
S T el el S

Qu(1) = Qu(D)| < a|B(1) = h(1)| < an.
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Therefore,

_ LEN?
2-9|, < J (l—f) + (an)? < an,

where the condition on a has been used. Then, lemma 10 applies if the next inequality

(which replaces (40) of that lemma) is fulfilled:

l (2L2 (46)

where we have taken into account the inequality

i
oI3

< M = M .
a ,02—52

It is easy to check that the inequality (46) is guaranteed by condition (44) on 7’. Then,
lemma 10 gives part (g). O

4.4 Invariant tori

In order to estimate the measure of the resonant strips which we remove along the suc-
cessive steps, a reasonable condition has to be imposed on the domain. Given £ C R”
and D > 0 we say F' to be a D-set if, for any 0 < by < bs,

mes [(F — by) \ (F — by)] < D(by — by).

We remark that the constant D is a rough upper bound of the “area” of the boundary of
F, which is forced to be finite.

The next technical lemma provides the necessary estimates for the measure when
resonant strips of the type introduced in (37) are removed from F. We point out that

it suffices to remove resonant strips corresponding to integer vectors k = (E, kn) ez

with & # 0, since it is assumed that w, (/) # 0 throughout the domain. The proof of
this result is deferred to section 5.

Lemma 12 Let FF C R a D-set. Ford >0, 7 >0, 3 >0 and K > 0 given, K an
integer, let us denote

PdB,K) = (F—d)\ |J A (k %) .
|kl <K 1
E#0

One has:
a) Givend >d, ' > and K' > K,
mes [F(d, 3, K)\ F(d, ', K
< D(d' —d) +2(diam F)*" [ Fob + > b

T 7. T 7 .
[kl <K k|1 ) ‘k‘ K <]kl <K' k|1 ) ‘k‘
k#0 k#0




4 KAM THEOREM AND NEARLY-INVARIANT TORI 33

b) For every b >0,
mes [F(d, 3, K)\ (F(d. 3. K) = 0] € (D + 2 (diam F)' ' K"} b

Next we give the proof of KAM theorem under the assumption of isoenergetic non-
degeneracy. We remark that the basic scheme of the proof would be the same for the
standard nondegeneracy.

Our approach consists, like the original Arnold’s proof [1], of iterating the estimates
of the Inductive Lemma, which give rise to a rapidly convergent (i.e. more than linear)
procedure. However, conversely to [1], for the proof of KAM theorem we only need to
show explicitly that the remainders decrease in a linear way. This approach already
appears in [27]. However, in the next section (on nearly-invariant tori) we show the rapid
convergence in order to obtain exponential stability estimates.

A comment has to be made on the parameter v appearing in theorem E below. Our
statement and its proof have been slightly complicated because of the presence of this
parameter. Actually, the freedom on the choice of v is not strictly necessary but we make
use of it in the next section, where it is shown that a small v gives rise to an almost
quadratic procedure (with exponent 2'7%) and hence to better stability estimates. It is
not possible to choose v = 0, which would actually provide a quadratic procedure.

Theorem E (Isoenergetic KAM Theorem) Let G C R", n > 2, a compact, and
let H(op, 1) = h(I)+ f(p,I) real analytic on D,(G). Let w = grad h, and assume the

bounds:

0*h
012
Assume also that w is p-isoenergetically nondegenerate on G. For a = 16M/[*, assume
that the map Q = Q. is one-to-one on G, and that its range F = Q(G) is a D-set.
Lett>n—1,v>0and 0 <v <1 given, and assume:

<M, lwlg <L and lw, (1) > 1 VI eg.

g7p2

2 A2742
p

e:=|fllg, <

216 LM
v SLMp: ) (47)

SR O VER ’ngin(yzﬁm ,

where we write p := min (ﬁ, 1). Define the set

PN 2
G=0G,:= {] €g— =, w(l) is T,V-Diophantine} .
7

(T") x G — D,(G), analytic with

Then, there exists a real continuous map T : W%
respect to the angular variables, such that:

a) For every I € G, the set T(T" x {I}) is an invariant torus of H, its frequency
vector is colinear to w(1l) and its energy is h(I).

b) Writing
T (o, 1) =(o+Ts(0, 1), I+ Ti(o, 1)),

one has the estimates

227+15L2M € 27+16L3M €

|7:b|§,(2—1,0),oo < V2[2p27H ) ? ) |TI|§(€1—10) = uPupt! ) ; :
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c) mes {(T” X g)\T(T” X G)} C~, where C is a (very complicated) constant
M,

<
}ﬁ}

depending on n, 7, diam F', D L, 1 p.
Proof
A. Choice of the parameters.  Since we make iterative use of proposition 11, we first

introduce appropiate sequences of parameters to replace the constants of that proposition.
For ¢ > 0, we define

1 1 I 1\ g
My=(2-g )M L= (2-g) L b= (1 g) 5. m=(1tg)5

Note that M,, L, increase from M, [ to 2M, 2L, respectively, for ¢ — oo, and that [, x,
decrease from [,  to {/2, u/2. We also put

Ky =0, K,=K-27" ¢>1,

where K" > 1 is an integer to be fixed below. Moreover, we define

and, for ¢ > 0, we put p9) = (p(lq),pgq)), with

. i) 4 P T RMK AT

We notice that ,o(lq) decreases from p;/2 to p1/4, and that ,o(zq) decreases to 0. We also

write
@ @-1) (@) @ -1 (@) 5
51 =M —P1 52 = P2 — P2, Cq = 5(q) .

1

Taking into account that the inequalities & <1 — 2% <y and 1 — # > %, hold for
0 < v <1and 7T > 0 respectively, it is easy to see that, for every ¢ > 1,

o e VB
8 . 2vla=1) SO S 4 . 9v(g=1) 7 %" 2 64M K T+ ? (48)
13 - 9vle-1) 13 . 9ov(a—1)
: <<y (49)

- L EAEE—
16MK [ py — ‘1= AMK [+ p,
Finally, we define

Y

_ 1 r ﬁq + ﬁq-l—l
= (-ga)p A=
which are both increasing with limit 3. It is also easy to check that 3, > v3/4 for every
q = 0.

We choose K as the minimum integer such that Kp > 1. Then, one has K < 2/p.
Using this inequality, our choice 8 = v/L and the inequality p < vp;, we deduce from

conditions (47) the inequalites

31y 32 V218?32 ) 7 5 < SMK™p, ‘

227’—|—20M[(27’—|—1 ’ 27’—|—30L4M3[{27’—|—2 I/l (50)

€§min(
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B. Induction.  Starting with Gy = G, we shall now construct a decreasing sequence
of compacts G, C G and a sequence of real analytic canonical transformations & :

D, (Gy) — Dy (Gy-1), g > 1. Denoting U@ = oW o... 00 the transformed
Hamiltonians will be written in the form H@ = HoW(®) = p@([)+ R (¢, I). Moreover,
we write w(@ = grad A9 and Q) = Q@ @ o Weare going to show that the following

statements hold for every ¢ > 0:
8¢

Gq7p(q)7cq+1 - I/pl . 2(2T+2)q .

1)) & :=||DRY)|

(2) 6 A7 10T+
L (9) & L 6]%0 2°MK &
2q) Mg -= ‘RO Gq7p£q) < 9(27+3)g fq T ol “ — I/lﬁ Lo(t+2)q °
qu/)2q
92h(@)
DT, o M [, S e and OO 20 V€ Gy

4,) w9 is p,-isoenergetically nondegenerate on G,.
5,) Q@ is one-to-one on G, and Q@ (G,) = F,, where we define
._ P
Fam(F-s) U A (k). (51)
1

[klp <Kq
E#0

We proceed by induction. For ¢ = 0, we choose Gy =G, h® =h, R® = f. Note
that

© & (0) _ L < &
PLo=50 P2 I2MK™+ = 2
by (50). Then,
g e
= D 0 < (1) < Uo. 52
o H ng,p( )er = (ﬁl) - vp1 ( )

namely (1g). The first estimate of (2¢) is obvious, and the second one comes from the
Cauchy inequality
2 | p)
<R, <=<o-
P2 P2 2~ pl
The remaining statements (3p—59) are clear.

For ¢ > 1, we assume the statements true for ¢ — 1 and we prove them for q. We
attain this aim by applying proposition 11 to H=1 = pla=1) 4 Rl=D  with K, instead
of K. However, in order to fulfil condition (41), we must replace the domains G,_; and
F,_1 by suitable subsets where the resonances from order K, ; 4+ 1 to order K, have been
removed. More precisely, we define

/ - ’ ! ,
F ‘:<F‘ﬁq‘1)\wgﬁ(’“ﬁ)’ Ghoi= (20 (L) 9)
E#£0

The nonresonance condition (41) is then fulfilled by F;_;, 3, _; and K, instead of I, 3
and K, respectively (taking 3;_, instead of 3, 1, we avoid to apply proposition 11 with
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Bo = 0 for ¢ = 1). The remaining parameters taking part in proposition 11 are M, i,
Lq—h lq—lv Hq—1, p(q_l)v 5(q)7 Cq Mq7 qu lqv Haq>s replacing M7 L7 lv s Py 57 ) M7 L7 lv /lv
respectively, and

16M _ 2M,
a=— 2
[ L
It is clear that condition (42) on ,o(zq_l) is satisfied with our choice of the parameters.

Concerning condition (43) on ¢,_1, we first notice that, by (49) and our choice of K,

2Myre, Ky 32M 1B 8,

T g S T aMKe T ke

Then, to see that condition (43) is fulfilled we have to check the inequality

ly1 3 6%
148K 7

Eq—1 S

Indeed, recalling the definitions of the parameters and applying (1,-1) and (48), it suffices

to check that
8 - vif vif

vor — 2UKT GAMEKTH
which can be deduced from (50). Let us verify the second condition of (43), namely

_ (¢-1)
{y—1 < min ((Mq - Mq_l)ééq) s Ly —Lyq, Lo — 1, (#1g-1 g‘q)/oz ) ‘

By (2,-1) and (48), this condition holds, since we may deduce from (50) the inequality

MK e . (M vip L [ pu vif
Tgmm — —

2 GAMATH 274712 32MK7H
Finally, we have to check condition (44):

(2)
Ly_1&1 [g P
o= 4 < . 54
Mot Toa, TN S 3oL (54)
By (2,-1), we have the estimate
L 2WMK™ e 5 LK™ e
77:1—1 < oM vl (r+2)(g—1) T S S r+2)(g—-1) (55)
vip -2 q 20@7+3)(e=1) = ,[3 . 20+2)(s=1)

Taking into account the value of a, the inequality (54) holds, since

LK™ e I u? vip
< :
vig T 2B8[3M2 27O M KT

as deduced from (50).

Applying proposition 11 with the parameters considered above, we obtain a canonical
transformation ®@ and a new Hamiltonian H® = A0 + R4 The new domain G, C
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G _, is chosen below. First, we prove (1,~4,). By the bound (b) of proposition 11 and
the inequality c¢,41 < ¢y,

14A, K]

_K. 5@
< e MLy —T 4. e, . (56)

Guelt o L1515

Let us bound the terms of this sum. By (48) and the inequality Kp > 1,

o< Jore

[,7
K6 > % 20=1=1) > (27 4 3)In 2, (57)

and therefore
e —I(q(ggq) < 1

— 922743 °
Moreover, applying (48), (1,—1) and (50),
14A, K] K] 64MKH 8e - 1 .
T T B I B T Rl SR Tl (58)
Then, we deduce from (56) that
< Sal
S 92742

which gives (1,). For (2,), we use part (c) of proposition 11. Writing qu) = ,o(zq_l) —55(1)/2,

we have:

AR, ey 1 e

< ‘ (9) <
>~ RO Gq7g£q) — cqlq—lﬁ(;_l q—1 9 92743 . 9¢—1 — 2(27+3)q 9

(59)

where we have used the inequalities (58), (48) and (1,-1). We obtain the other estimate
of (2,) using the Cauchy inequality and (48):

< 2 €
G0l @ 2(27+3)q

(9)

0

& <

5

The statements (3,~4,) are clear from proposition 11. For (5,), we apply part (g) of
proposition 11 to the subset F,. We have to check that

16L,_1 Lyan,_,

F,C P, — (60)
Hq
Defining
d . ﬁq ﬁq 1
2K
and looking at (53) and (51), we have
P S (F =Gk d)\ U A(k gl 4) 5. o
k| <Kgq

k#0
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where we have used the inequalities

Byt < B

Bymr +dy < B, + k] d, <

|EI{ R
Moreover, applying estimate (55) for n;_, and (50),
16 Loy Lya®n)_, < 2BLEM? 2°LKTH e < v <d.
[y l4lu I/lﬁ . 2 T+2)(g—1) 4 . 2u(q—1)[{qﬂ'—|—1 g

This bound and the inclusion (61) imply (60). Hence, part (g) of proposition 11 says that
0 is one-to-one on G, = (Q(q))_l (F,). This gives (5,), and the induction is completed.

C. Convergence of the diffeomorphisms. We now see the convergence of the successive
maps Q@ : G, — F, . Applying part (g) of proposition 11 again, we obtain for ¢ > 1
the estimates

< 2Lq—1a77z/;—1

o[ )

(62)

Fy Hq—1

Therefore, by the bound (55) on 7;_,, the sequences Q@) and (Q(q))_l converge respec-

tively to maps which we name Q* and T, defined on the sets

G =Gy P = () Fy = (F— ﬁ\UA( 5) (63)
q>0 q20 keZn |k|1
E#0

Note that the compacity of F* has been used to establish the second equality. From (62)
we deduce:

2Lsan;

-1
@ —00| <3, ‘T—( )7, s (64)
s>q s2q s
Note also that, for every ¢,
AL,an! 160, 1 L,a*y!
G C Gy — 1Mt o 2t g
Hq Haq
[terating these inclusions we deduce the following two ones:
4L, 16L;Lyi1a®n,
G C G- “an“" Frc -y —menett @l (65)

5>q Hs+1 s>q HMs+1

to be used below. We are now going to see that * is one-to-one on G* and that Q* (G*) =
F*. Given I € G*, we have QW(I) € F, for every q. Hence Q*(I) € F*, and we deduce

that Q*(G*) C F*. Analogously, we have T (F*) C G*. Moreover, we prove that
T (Q*(1)) =1 for every I € G*. Indeed, for every g,
T (1)) — 1]
\r (@ (1) = (20) ™ (@ ()] + | (20) ™ (@) - (29) 7 (20(1)
~1 2L
T (2) + =20 — )| 66
| ) - (66)
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For the estimate of the second term, we have used the following two facts: on one hand,
part (b) of lemma 8 gives the bound

0()
‘am (I’)v‘ 2’“‘; |  YweR", VI'ed,;
q

on the other hand, by (64-65) the segment joining Q@ (I) and Q*(I) is contained in
F,. Then, since the bound obtained in (66) tends to zero for ¢ — oo, we deduce that
T (Q*(1)) = I, and therefore Q* is one-to-one. A symmetric argument allows to prove
that Q*(Y(J)) = J for every J € F*. This implies that Q* (G*) D F*. Thus, the map
Q" is one-to-one and Q* (G*) = F™*.

We also see, from proposition 11, that

_77q1

-1
1 )‘ q 1 _fq 1,

‘h(q) _ pla-1)

‘w(q) — ot

Gapy Gy, /)2

This implies that the sequences w(® and h® converge to some continuous maps w* and
h*, respectively. Note also that, for I € G*,

e (D .
9(1)_(w*(1), h([)). (67)

n

From (2,) we deduce, for every ¢ > 0, the following bound to be used later:

MK ¢
" — —_. 68
w* — Wl Zf < 3207 (68)
D. Convergence of the canonical transformations.  Next we estimate how near to the

identity map the transformations U@ are. Applying part (d) of proposition 11 and
using (1,-1), (48) and (50), one deduces that, for every ¢ > 1,

2A, K7 KT
‘q)(q) _id < et B et < Y 8¢
Gyro(@) g ly—13_4 Vi3 vpy - 20721
8 17T (@)
_ 2°K7 ¢ - s (69)

V2lpy3-200+2)(=1) = §.929-1 "

1)

where we write o0 = pla=1) /2 Then, applying property (15) of section 2.2,

DO _1d <

Gq,cr(q),cq 4 .99-1 )

2
(@) _;
(q)‘q)q id

Gq7p(q) 7Cq -

Let z, y such that the segment joining them is contained D, (G,). The mean value
theorem gives the bound:

(q)‘ ey —
S ‘Dq) Gq,p(q),cq |$ y|cq ‘

By (69),

<o, |e(y)

< 83
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Then, since p® 4@ = pla=1) it turns out that the segment joining ®?(z) and &) (y)
is Contamed in D,g-1)(Gy-1). Therefore,

‘q)(q—l) (q)(q)(x)) _ pla-1) (q)(q)(y))

< ‘Dq)(q—l)

Gq—l 7p(q—1) 1Cq—1

< 27’—|—1—1/ D(I)(q—l)

Gq—l 7p(q—1) 1Cq—1

where we have used that ¢,_;/¢, = 27T, Tterating this argument and putting the
successive bounds obtained together, we arrive at the estimate

‘q;(q)(l,) — P (y)

€1

< 9Ur+1=1)(a=1) | np)

< - ‘ch o o |Do®)| oo, 1T,
1 1 1
< olr+1=1)(a-1) (1 —) (1 —) (1 ) o
< VAR +4 o) e =l
< o(r+1-v)(g=1) , ,1/2 e —y| < 9(r+1-v)(a=1) 9 le —y|_ (70)

which holds for ¢ > 1, and for every z, y such that the segment joining them is contained
in D, (G,). Now, given ¢ > 2 and x € D,y (G,), we put y = ®@(x) and apply (70)
with ¢ — 1 instead of q. We obtain:

‘q;(q)(l,) — P (g)

— ‘q;(q—l) (q)(q)(x)) _ q;(q—l)(x)

< lrH=n)( ‘CI) -

€1 €1

22K7 e
= V2lpy B - 20+1)(a=1) {71)

IA

(T+1=v){a ‘CI) —x

Cq

where (69) has been used. This estimate holds for ¢ > 2, but one readily sees from (69)
that it is also true for ¢ = 1 (we put W® =id). Clearly, estimate (71) implies that the
sequence of transformations Y9 converges to a map

A :D(p_lp) (G") = WTI (T") x " — D,(G)
and we deduce, for every ¢ > 0, the estimate

- 20K ¢
G (80)er — v2lpy 3 - 20140

‘q;* _ g

(72)

Moreover, by carrying to the limit the equation H o W@ = pl@d 4 R@  we see that
HoU* =h*(I) on D(p_lo) (G™).

E. Stability estimates.  Next we see that, for ¢ — oo, the motions associated to the
transformed Hamiltonian H@ = h{0) 4+ R@ and the quasiperiodic motions of A(?) be-
come closer and closer. Let us denote x((t) = (qb(q)(t),[(q)(t)) the trajectory of H(®

corresponding to a given initial condition 2(®(0) = x5 = (¢35, I) € T* x G,, and let
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$D(t) = (qg(q)(t),lg) = (qbg + w9 (1) t,[g) the corresponding trajectory of the inte-
grable part (9. Tt is clear that #@(¢) is defined for all + € R. Like in lemma 5, let us

denote

Tyi=inf{t>0 : |1(1) - I3

> 60 or ¢ (1) — 4(1)| > s (73)

Clearly, x(q)(t) is defined and belongs to D, (G, ) for 0 <t < T, (we remark that our use
of 641 instead of p(@) is just due to the fact that we shall take some advantage of the
“cop1-norm”). From the Hamiltonian equations associated to H (9

) (9) i (2)
(@) = _a§¢ (x(q)(t)) : PD(1) = w@ ([(q)(t)) + agj (x(q)(t)) 7

we get the bounds:

OR@)
) < | <s, (71)
aqb Gq7p(q)
(9)
0(t) =@ (15)]_ < M, 100 — 1] + |2
° a[ Gq,p(q),oo
<2M [19(t) - 13| + Sa
Ca+1
< oMY 4 St < gppslity), (75)
Ca+1
In the second bound, we have used the inequality
€
—L < Mg, (76)

Ca+1

which comes from the bounds (1,) and (48-50). Thus, since one of the inequalities
defining (73) is an equality for ¢t = T}, we have

SFHY =191y = I5| < Tye,
or
S = (60 (T,) = 30(T,)| < T, - 3M8LHY. (77)
Therefore,
slat1) slat) 1
T, > min | - - T .= 78
g = Min ( £q 9 3M(S£q+1) - q 3Mcq_|_1 ” ( )
where the inequality (76) has been used again. This implies:
2@ =D)<Y for ) <1y (79)

Cq+1

Since H@ = H oW and ¥ is canonical, it turns out that W (x(q)(t)) is a trajectory
of H, defined for [t| < T]. For large values of ¢, this trajectory remains near the torus
W) (T™ x {I;}). Note that T7 tends to infinity for ¢ — co.
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F. Invariant tori. Assume now that zf € T" xG*, and write x*(¢) = (¢§ +w* (I5)t,I3),
t € R. Note that

*

:i'(q)(t) . x*(t) _Tq// < 5£q+1)

< g [0 (1) = w (I3)

] < egpn ‘w(q) —w
Cqt1 oo - G* 00

for 1)
5 q
"o, 1
|t| S Tq T |w(q) . (,(j* 9
G* 00

which also tends to infinity, by (68). Then,

‘x(q)(t) — ™ (¢) < 25£q+1) for |t| < T,” := min (T’ T").

97" q

Cq+1

Next, we see that the trajectory W@ (x(q)(t)) is very close to W* (2*(t)) for large values
of ¢. Indeed, for [t| <T."

Y

O () = v ()]
‘q;(q) (x(q)(t)) _ gy (x*(t))‘c +
2(rH=)(a=1) . 450t 4 ‘q;(q) P

IA

WO (*(1)) — U (*(1))

€1

IA

G*,(i—l,O),cl

(80)

4ey (ﬁq-l—l) + ‘\I}(Q) — P

G*,(i—l,O),cl ’

where we have applied (70). The bound obtained in (80) tends to zero, by (72). Then,
for every fixed t, we see that W(%) (x(q)(t)) exists for g large enough, and its limit is
U* (2*(t)). This fact and the continuity of the flow of H imply that U* (a*(¢)) is also
a trajectory of H, which is defined for all ¢ € R. This holds for every initial condition
xy = (¢5, I3) € T" x G*. Hence U* (T" x {I3}) is an invariant torus of H, with frequency
vector w* (I7). Moreover, the energy on the torus is H (U* (¢35, I5)) = h* (15).

The preserved invariant tori are thus parametrized by the transformed actions [ € G*.
We are now going to parametrize the preserved tori by their original actions. First, let

us see that € (G C F* (the Diophantine set F™* has been introduced in (63)). Indeed,

using part (b) of lemma 8 and the fact that 3 = v/L, we see that Q (g — %) C F—p.

On the other hand, given [ € @, we deduce from the Diophantine condition fulfilled by
w([I) that

W fen Dl 8

kE-Q(I) + k, >
[e-aun AL

>

and therefore Q1) ¢ A (k, %) for every k # 0 (we point out that this estimate moti-
1

vated our choice 3 = +/L). Hence 2 (G) C F~ and, since Q* : G* — F* is one-to-one,

we can take for the set of invariant tori a parameter I, € G (note that some of the

invariant tori are thus neglected). We define, for (oo, lo) € Wa (T") x G,

K

T (¢0, lo) = V™ (o, 1) ,
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where I7 = (Q%)7' (Q(l)) € G*. One then obtains part (a): the set T (T" x {I}) is
an invariant torus of H, with frequency w* (1) and energy h* (I3). Since Q* () = Q(1lp),
we deduce from (67) that w* (Ig) is colinear to w(/ly) and that h* (I5) = h(lo).

For (b), let us write, for (¢, I5) € WZ_I (T") x G,

W (o, 13) = (b0 + W) (b0, 5) . I3 + W (0. 15)) -

Then, for (¢o, o) € Wer (T") x G,

L1
4

To(¢o, lo) = V5 (@0, I5) Tr(¢o, lo) = W7 (¢o, I5) + Lo — I3 .
Using (72) and (49), we get the following estimates:
PN KT+ ¢
6 (2L.0),ex < N
20K ¢
G, (50),e1 = p 3

W (60, 13)

1
< — | —id
0 Ccq

(W7 (o, [5)] < |07 —id

By (64) and (55),
2Lsan, - 8La

5= 1| < (@) -0~

. S >,

520 Hs B H 520
27LM  2TLK"t'e  2MIPMKTte
2p vip B vlBPuf

By putting these bounds together, applying the inequalities p < vp; and K < 2/p and
writing the estimate in terms of 4 instead of 3, we get part (b).

(. Estimate of the measure.  Finally, we carry out the estimate of part (¢). Writing
G = Q7! (Q (G)), the invariant tori found fill the set 7T (T” X G) =y~ (T” X G*)

Since the transformations W@ are canonical,
mes [0 (T x G7)| = mes (T" x G7) = (27)" - mes (G7).
Using estimate (72) and the compacity of ¥* (T" x G*), we get the inequality
mes [0* (T" x G*)] = (27)" - mes (G7).

Then, to estimate the measure of the complement of the invariant set, it suffices to bound
the measure of G\ G*.
First we construct an auxiliary set, included in G*, such that the estimates become

~  64LM~ - 1\ -
p=m e = (15
for ¢ > 0, and note that 3 > 3. We define the sets
. N ¢ . 1.
r=(r-5)\ U a (k IquT . Gy= (W) (R,
1

[klp <Kq
E#0

easier on it. Let
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and

— B = (F- ﬁ)\UA( |,f|) &= )

q>0 keZin

E#0

From the fact that Q9 (Gq) = Fq for every ¢, we deduce * (G*) = [*. Let us check
that Q (G) > I*. Indeed, from part (a) of lemma 8, we get that (2 (g — 2%) > F -4
Moreover, given J = Q([) € I, for every k € Z™ with & # 0 we have

.

kJ4+ k)| >—=

Tl = g

and hence

BlautDl , 13 4 4

|kly LM
For k = 0, it is clear that the Diophantine estimate is also fulfilled since |w, (I)| > 1 > 7.
Hence (G) > F* and therefore G* > G*. Then,

k- w(l)] >

mes (g \ G*) < imes (Gq_l \ Gq) .
g=1
For ¢ > 1 we have the estimate
. . 92n—T7]2 [ n—2 . . /
mes (Gq_l \ Gq) < o mes (Fq_l \ (Fq — C”7q—1)) .

It has been used that Q=1 (éq_l) = Nq_l and that Q=1 (éq) D Fq - 6“7;—1- This

inclusion comes from part (g) of proposition 11. Another point we have used is the bound

on=1) 15t a pmtM
det nyl>4 >
€ ( BN ( ))‘ = L;z_—12 = 92n-7]2[n-2 "

glven by part (C) of lemma 8. In accordance to the notation of lemma 12, we have

Fyt = F (Bye1, By Koo ), By = F (B3, 35, ;). Applying that lemma,

mes (Fq—l \ Fq) <D (Bq - Bq—l)

. n— @1 @1 1 Bq
+ 2(diam F) 1 + —= |-
|k|1_SZI\:'q—1 |k|1 ‘k‘ Kq—llek:hﬁf\’q |k|1 ) ‘k‘
E#0 E#0

mes (Fq \ (Fq — 6”7;—1)) < (D + 2”+1(diam F)”_qu”) . 6”7;—1 )

Putting these estimates together, we get

(0\&) < Z BT g+ adiam pyt Y 5

mes —_— lam

B Mn_lM keZn |k|1
k0

-I-DZcmq 1-|-2n+1(d1amF ne IZ[ anq 1)

q=1
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It is crucial to use the condition 7 > n — 1 in checking that the three series taking part
in the right hand side of (81) are convergent. Indeed, for the first series,

Vi -
k%" |k|1 ‘k‘ B ke%": 1 knze:z (‘k‘ + |k |) ‘ ‘ < \/_2 ]Z:lkze:z ]—I' |k |)

where we have used that the number of vectors k& € Z"~! with ‘E‘l =3 > 1 can be

bounded by 27713772 The series indexed by k, can be bounded by comparing it with an
integral:

s Lot /oo dz 1 2 T4l 1
wez Ukl =7 o Gt g7 (=)t T =1 gt

We have used that 7 > 1 since n > 2. Then,

n—1 o0
Z Tl_SﬁQ (71—+1)Z 7'177‘-|—27
ez [kI] - [F] T =
E#£0
which converges by the condition 7 > n — 1. It is easy to check that the second and the
third series of (81) converge, using the bound

l32

anq L= 27+20L3M2[x7+1 9(r+2)(q—1) B,

which comes from estimates (55) and (50). Writing all bounds in terms of + instead of 3
or (3, we get from (81) a bound of the type

mes (g \ é*) < (',

where (' is a constant depending on n, 7, diam F, D, K, M, L, [, u. We then get
estimate (c¢), with C' = (27)"C". This constant may be explicited if desired. O

Remarks

1. All of the sequences introduced at the beginning of the proof have linear conver-
gence. Of course, alternative choices for those sequences are possible provided the
restrictions imposed by proposition 11 are fulfilled.

2. The reason of our choice of K, and 5§q) will be transparent in the next section, where
we see that, for a small v, the remainders decrease in an almost quadratic way.

3. The estimates of part (b) on the deformation of the perturbed invariant tori from
the unperturbed ones are essentially the same of [23].
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4.5 Fast convergence and nearly-invariant tori

We have established in the previous section the linear convergence to zero of the sizes
of the successive remainders. This kind of convergence is enough (and very suitable) for
the proof of the existence of invariant tori. But in the current section we show that the
remainders actually decrease much faster, and we take advantage on this fact. Indeed, by
stopping the iterative process at an appropriate step, we deduce that the domain obtained
is full of nearly-invariant tori, i.e. Nekhoroshev-like estimates hold for the trajectories
starting on these tori.

One may look our theorem F on effective stability as an attempt to make KAM and
Nekhoroshev theorems closer. Indeed, we provide Nekhoroshev-like estimates which are
very near, from a quantitative point of view, to KAM theorem. From the practical point
of view, this result is more significative than KAM theorem. Indeed, if the coordinates
of a given unperturbed invariant torus are known just approximately, up to a precision r,
it is not possible to decide whether the frequency associated to this torus is Diophantine
or not, and therefore one cannot deduce that this torus survives in the perturbation. In
fact, in checking the Diophantine condition it has no sense to go farther than a finite
order K) (tending to infinity as » — 0). However, this finite test is enough to ensure
that the torus is still included in the domain at an appropiate step of the iterative process
and that this torus survives in the perturbation at least in the form of a nearly-invariant
torus: a trajectory starting on this torus remains near to it up to a stability time which
is exponentially long in 1/r.

This result is similar to the one of [19], which does not however worry about optimal
estimates. Moreover, in that paper the stability estimates are expressed in terms of the
stability time, previously fixed, instead of r.

Another related result is obtained in [26] and [20], where it is shown that KAM tori
are “sticky”: estimates are given for the time to move away from a fixed KAM torus.
The estimates are exponential in [26] and “superexponential” (but only for quasiconvex
systems) in [20]. This result requires the transformation to normal form to hold in a full
neighborhood of the given KAM torus, which is achieved in the quoted papers by carrying
out the Kolmogorov’s approach to KAM theorem instead of the Arnold’s one. But our
result seems in practice more useful since the existence of a KAM torus is not used for
the estimates.

We notice that theorem E gives a large family of invariant tori if 4 is small. But for
large values of v one cannot guarantee the preservation of any invariant tori even if (47)
is satisfied, since the set @w may be empty. Actually, there is a maximum value vy such
that @w is empty for v > o (in the case n = 2, the set GWO corresponds to the noble
frequencies). Nevertheless, in theorem F the nearly-invariant tori are parametrized by a
set G({) (defined below) containing GW properly. Then, for some interval of values v > g
we may still ensure the existence of nearly-invariant tori.

Theorem F Consider notations and hypothesis as in theorem E and assume also that

V2ol prrH?

< g0 )

e
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6(2_21—1/).2(1—1/)5

where we define o := rsnzlgl @) > 0. Let
AT41
p
0 <r < 1o =5 )
given, and write
GU) = = {1 cG—"L 0 |k-w()]> |k7|7 Yk Z", 0 < |k|, < K(”)},
H 1

where

(_0) 1/(7+14v)
. .

G — G and a real analytic canonical

(G(f’))) — D,(G) such that, writing TU) =

= b>|[\9

Then, there exist an analytic map AU

o

\_/

p1 o _wlr
4 797457,

transformation YU) : D(

T0) o (id X A(r)), any torus T (T" x {[0}), with Iy € GU) has the property that, for
every trajectory (o(t), I(t)) = TU ( )) of H with (¢(0),1(0)) belonging to this

torus, one has:
R 2 1 /rg\(=V)/(r+14v)
A0 - B
i)~ A0 )| < exp{ () 2 (53

o) = (3(0) + X (Loyr) | < 2 (i

v/(2742) 1 (1-v)/(7+14v)
s 2 (D) e S () , (85)
51V M e \ro 2\r

where the vector N (1y) is colinear to w(ly). Moreover, if E denotes the energy of the
tragectory (o(t), (1)),

22n—l—1 (1-v)/(7+14v)
B — h(l)| < “— 5-exp{— (T—O) }
p

7

) (84)

for

Proof We go again into the iterative process of the proof of theorem E. Improving the
argument given there for the linear estimate (1,), we are going to see that the successive
sizes of the remainders admit an almost quadratic estimate. We first notice that, choosing
K as in the proof of theorem E, and taking into account the definition § = v/L and the
inequalities p < 2/K and p < vp;/16, we deduce from (82) the inequality

viol?p, 32
We next prove that, for every ¢ > 0,

(86)

gq S % 6—2(1_11)‘1‘

vpq

(87)
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Indeed, this is true for ¢ = 0 by (52). Given ¢ > 1 and assuming the estimate true for
g — 1, we are going to establish it for ¢. From (57) and the inequality Kp > 1, we deduce

Kq(ﬁq) > @ L 20=1)(a=1) > 19 4 9(1=¥)(a-1)
=73 > ,

and therefore

e_angq)S 6—2(1—11)(!1—1)‘

[N

Moreover, applying the inequalities (48) and (86), the definition of ¢ and the hypothesis
that (87) holds for ¢,_1,

14AqKqT QSKqT 64MKqT+1 32e _,(1-»)(g-1)

- g1 — €
L1155

g vip vp1
1 —(21-v=1)200=1)(a=1)

—e
2

IA

(88)
Then, from (56) we deduce:

1 -V — 1 1—v -V — 1—v —v —
T e R e

which gives estimate (87) for &,.
The stability time given in (79) can also be improved. Recall that we denote (9 (t) =

(qb(q)(t), ](q)(t)) the trajectory of H(® such that «9(0) = (¢, I5) € T" x G,. We deduce
from the inequality (74) that, for 0 <t < T,

‘[(q)(t) — I

< Tyheq
(T, was introduced in (73)). Then, we may replace (75) by the next alternative bound:

<OMTyz, + —4 < 5MT,e,,

Ca+1

691 = (1)

where (78) has been used. Then, the inequality (77) becomes

(SYH_I) S Tq2 . 5]\46(17

§lat1) glatt) ~ glatt)
Tq>mim(2 ! =1, := !

and we obtain:

e, |\ DMe, 5Me, ’

where we have used (76) to see that the minimum is given by the second term. Hence, for
every initial condition (¢}, If) € T™ x (,, the corresponding trajectory of H(® satisfies:

(ﬁq-l-l)
5M

Eq

(1D~ I5| < Tpe, =

W) = (g + @ () )| <Y, (89)

for

it < T,. (90)
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This stability time is much better than the one of (79), because of the quadratic behaviour
of g,. This estimate says that T™ x {I;} is a nearly-invariant torus of H@ for every I} €
Gy, since every trajectory starting at a point on this torus remains near a quasiperiodic
motion with frequency vector w(@ (1) for a long time. Then, the torus W@ (T™ x {I;})
is also nearly-invariant for the flow of H.

We are now going to choose ¢ = ¢(r) > 1, as large as possible, such that F, D
Q (G(r)). Given Iy € G, there exists I, € GU) such that |I}— Io] < r. We get

loe G — (Zf — r) and hence

O(ly) € F — ( = %) (91)

by part (b) of lemma 8. On the other hand, for 0 < |k|, < K,

k- w(lo)| = = — || - Mr
k],

and therefore

% QL) + ks

1 ~ Ié; |k| - Mr
> —T—|k|'MT) > —— — ) (92)
|wn (1o)] (|k|1 |kl L

We deduce from (91-92) that Jy € F}, provided the following inequalities are fulfilled:

,r(r) - _l . C iq
KY > Ky, rs M K7+

Noting that 8 — 8, = #/2"? and reminding that K < 2/p, we see that it suffices to
choose ¢ such that the inequality

glr+1+0)(a-1) < 10 (93)
r

holds. Hence, we choose ¢ > 1 as the maximum integer such that this happens. We then
have also

o(r+14v)g ~ 0

Tor
With this choice of ¢, we have () (G(r)) C F,. We take AU = (Q(q))_l 0 {2, and note
that A®) (G(r)) C (,. The transformation Y := W@ is defined on D, (Gy), and we

have the inequalities ,o(lq) > p1/4 and

(94)

(2) vif vip™p virg vir
P2’ = - Z = Z ”
32M K7+ . 20+l = 9m+6 pf . 2(7+1)g 24 [ . 2(7+1)e = 9745 ],

where we have used the inequality (93). This gives, in function of r, the complex domain

where T is defined. For (¢o, Iy) € T™ x GU), we put

7’(7’)(¢07 [0) = q;(q) (quv [g) ”
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where I; = AV(L) € G,. If (6(t),I(1)) is a trajectory of H starting on the torus
TO(T™ x {Io}), then (qb(t),j(t)) is a trajectory of H(9, with f(()) = [I;. We can thus
apply the stability estimate of (89-90). Using the inequalities (87), (48) and (93-94), we

get the bounds
39¢ o (1-v)/(7+14v)
B [ (),
vp r

5(q+1) < vpq < ﬂ ( T )V/(T-I-l-l-l/)

I R A ’
(ﬁq-l—l) Z vpy Z ﬂ (L) v/(t+14+v) ‘
16 - 2v(=1) = 16 \rg

Including these bounds in (89-90), we get (83-85). Note that we put AU)(Iy) = w@ (1),
which is colinear to w(ly) since Q@ (1) = Q(l). Finally, the energy of the trajectory

(6(1). 1(1)) is
B = H(¢(0),1(0)) = H" (§(0), I;) = h(Io) + B ((0), I;)
since A9 (1) = h(ly). Then,

OR@)
d¢

B = h(lo)| <R ((0), I;)

< ‘Réq)

-t <y + ey,

G
q Gy

‘

To get a quadratic estimate for n,, we proceed as in (59) but we now use (88), (48)

and (87):

TAK]

2
Ng < ————-¢,4 <
! quq—lﬁé—l o

Then,

327" — 22n—l—1 (1-v)/(7+14v)
|E—h([0)|§(2—|— W)g,e—z(l )qS Ag-exp{—<r—0) } 0
p

vpq

Remarks

1. To give an idea of how this theorem should be applied in practice, assume that Iy is
the action of a given unperturbed torus, for which we just know an approximation
1L, with [l — L] <r. If I} € G({), i.e. the frequency ratios of w ([)) satisfy the
Diophantine condition (2) up to order K), then the invariant torus corresponding
to the action Iy survives as a nearly-invariant torus.

2. We have omitted statements like parts (b) and (¢) of theorem E because they would
be exactly the same, with 7 instead of 7.
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If the size € of the perturbation is fixed, we could take r small and the stability
estimate given in (83-85) is then much better than the one provided by Nekhoro-
shev theorem. This is due to the fact that the estimate has been expressed in
the transformed coordinates (qAb, f) provided by the canonical transformation Y().
These coordinates are better because the nearly-invariant tori are given by equations
[ = const. In Nekhoroshev theorem, the stability estimate includes the coordinate
change because it is expressed in the original coordinates.

The comparison between the estimates (83-84) for action and angular variables
shows that the separation from a given torus remains much smaller than the sepa-
ration from a linear flow inside this torus.

The stability exponent given in (85) is larger (as near to 1/(7 4 1) as wanted) if we
choose the parameter v near to zero.

Roughly speaking, the set G(WT) parametrizing the nearly-invariant tori has a very
large boundary for r small. However, the “area” of this boundary is finite, which
means that the set G({) is not as strange as the Cantorian set @w provided by
KAM theorem. An alternative way to express this fact is used in [19]: the set of
nearly-invariant tori contains balls of a suitable radius, and hence it contains inner
points.

We can also get “superexponential” stability estimates, like in [20], by means of an
alternative approach. However, we need to assume that the unperturbed Hamiltonian A

is quasiconvex. Applying the iterative process of KAM theorem, our starting Hamiltonian
H is transformed after ¢ steps into H@ = Al 4 R If b is m-quasiconvex with m > 0

and we assume ¢ = O(m), then h(@ is also quasiconvex and Nekhoroshev theorem may
be applied to H@. In this way, we can obtain for every trajectory (qb(q)(t), [(q)(t)) of

H(Q)7

with

with initial condition in T x (7, a stability estimate of the type

1O =190 <R for 1| <T,

1/2n
1

weaten e {(H)7)
€q

Choosing ¢ = ¢(r) as in (93-94), we get

re o) e { L))}

where we have put ¢ = (1 —v)/(7+1+v). The stability radius R and the stability time
T substitute the ones obtained in (83) and (85), respectively.



5 APPENDIX: PROOFS OF THE TECHNICAL LEMMAS 52
5 Appendix: proofs of the technical lemmas

Proof of lemma 2 Given (¢, Iy) € D,_i5(G), let (o(s), [(s)) = Dy (o, Lp). First, we
prove that

ow
606) ~ ol < 1| G (99

, If()—fo|<tH

GLp,00 aqb G,p, 1

for 0 < s <t. Let 59 be the supremum of the s > 0 satisfying both inequalities in (95).
Clearly sg > 0, and one of these inequalities is an equality for s = sg. On the other hand,
we have (¢(s),1(s)) € D,(G) for 0 < s < sg. From the mean value theorem,

ow ow
)= ul < s0- o [SEt6t0 10| =57 (%)
ow ow ow
] < g o < o ow
o) =kl < s0- w0000 10| < | 5| 2|57 o)

Thus, so >t and (95) is true. This implies that ®; is defined in D,_45(G) and that the
bound (a) holds. We can deduce the inclusion (b) from the fact that ®_; is the flow at
time t of —W.

To see (c), note that f o ®; is defined in D,_45(G). Since W is analytic, fo @, is
also analytic in ¢, and hence the Lie series expansion (4) for r,(f, W,t) holds. Given

[>m+1,let n=406/({—m). For j=m+1,...,], we have

, 9 -
el oo = DD oy Wl
< i fHGW_(j_l_m)m : HDWHG,p,c .
Thus,
[—m [—m
Jedosl,, = () i, < aomp (212 o) g,

where we have used that k¥ < ¢eF- k! for £ > 1. In this way, the bound that we obtain
for Hrm(fv W7 t)HG,p—tS is

() (2610Wla, N
yo ot (2 e ) i g,

00 tl
R 1 ’

=m

this series being convergent for ||[DW/{|, . < 5./ 2e. O

Remark The bounds (96-97) are based on the special structure of Hamiltonian equa-
tions. Our choice of the co-norm for the angular variables was motivated by (96). Con-
cerning the action variables, the best choice would be, according to (97), the 1-norm, but
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our use of Euclidean geometry in the geometric parts of Nekhoroshev and KAM theorems
made us choose the 2-norm.

Proof of lemma 5 Assume first Kp; > 1. Let § = p/3. From (18), we see that

2M
A=14"— 2 <y
o py Kp,

<2

Then, theorem B provides a canonical transformation W : Dz (G) — D,(G) such that
HoV =h+ 74+ R, with Z7*=7Z*(1), and

_En;
DR | 2e . <3775 - [[DR| g, . -

Let us denote

8
n= E HDRHG,/),C .

By estimate (c) of theorem B and the second condition of (23),

. P2 P2
U —id|.2  <n< < —=.
W—idloze. Sn s FEm S 0
Moreover, by the inclusion (d) of theorem B, we have W (D2P(G)) D Dg(G) DT x G

and therefore we can write (¢(0), ( )) =W (g5, 15) and, since ¥ preserves real domains,

(o5, 15) € T™ x sz( ). Let (¢*(t), I*(t)) be the trajectory of HoW with (¢*(0),[*(0)) =
(5, 15). Let

=inf{t>0 : |I*(¢t)— I*(0)] > n}
(the procedure for negative times is exactly the same). For 0 < ¢t < T, we obtain
(¢*(t),I7(t)) € D2 (G). Since ¥ takes the motions of H o W into motions of H, we get
that (¢(t), 1(t)) = W (o*(t), [*(t)) is also defined for 0 <¢ < T, and obtain the estimate

[1(t) = L(0)] < [1(1) = ()] + [17(t) = I7(0)] + [17(0) = L(0)] < 3.

Next, we proceed to obtain a lower bound for T'. Let Al* = [*(T) — I*(0). Clearly,
|AT*| = 5. On the other hand, by using the form of the Hamiltonian equations and the
fact that the normal form Z* only depends on the action variables, we obtain

oR*
Al < T- <T. HDR*HGzp <7T-3e” HDRHG ,
aqb G.2e e
and it follows that ; 5
n K p1 K p1
T>———— €6 > —¢ 6 .
3 HDRHG,/),C a

For Kp; < 1, one obtains, by working in original coordinates,

24 24
1) = 10)| £ = DRI, for |1 <=,
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and it is then easy to see that this stability time is longer than the one proclaimed in (24).
O

Proof of lemma 6 First we assume Kp; > M/m. Let 6 = p/3. Like in the proof of
lemma 5, we have A < 2. Note that

mp3 ap2

350p; — 122K p;

D2l + DB, < (98)

Then, theorem B provides a canonical transformation W : Dz (G) — D,(G) such that
HoV =h+ 7"+ R*, with Z* € R(M, K), and

I1DZ7 g 2e o + DR G20 . < 1D 2|, + 2 DRl e

C

_Ep
DR |lg 2, <3¢ 8 - [DRllg,. -

Moreover, by estimate (c¢) of theorem B and the inequality (98),

P2 o P2
Kpy = 15M
Like in lemma 5, we can write (¢(0),1(0)) = W (&5, I5), with (¢F, [5) € T x VTrEL)pz (G).

15M

Let (¢*(t), I*(t)) be the trajectory of H o W with (¢*(0),1%(0)) = (¢g, I). Let

8
U —id|g2, < —||D <
| 1 |G,?,c ~ o H RHG,p,c - 15

T:inf{t>0 : |[*(t)—[*(0)|>%}.

For 0 <t <T, we have (¢*(1),1%(t)) € D2 (). We then obtain the estimate

mps —|—&—|— mps

[1(8) = HO) < () = DO+ 17(8) = F(O)] + [170) = H0)| < (=70 + 5+ =07

< pa.
We introduce the notations
Ag™=¢"(T) = ¢7(0),  AI"=1"(T)—17(0),
and, for a function f (¢, I),
Af = f(¢(T),17(T)) — f (67(0). 17(0)).

The definition of T' clearly implies that |Al*| = py/2.

We notice that, since Z* is in normal form with respect to M, it does not contribute to
AT* in any direction lying in M*. More precisely, let P denote the orthogonal projection
onto the one-dimensional space (Ilyw(1(0))). By the specific form of the Hamiltonian
equations, we have

PAI* = —/

0

"p (G . r) @

and it follows that the IIyw(7(0))-component of the vector AI* is small up to an expo-
nentially long time:

*

IPAI*| < T - HaR

“ _En;
aqb STHDR HG723_p7c§T'3€ 6 'HDRHG,/),C : (99)

2p
G5
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To bound the whole vector AI* we use the quasiconvexity condition on h. By Taylor
formula, one has
1 0%h
Ah=w(l}) A" + / (1—3s) e (15 + sATI™) (A", AT™) ds. (100)
0
We notice that, since W preserves real domains, [ + sAI* € U,,(G) for 0 < s < 1.
For a fixed s, we write A" = P,AI" 4+ Q,Al*, where P; and () denote the orthogonal
projections onto (w (I5 4+ sAl*)) and (w([5+ 3A]*)>L, respectively. Thus, applying
the quasiconvexity condition at the point I + sAl* (and this is the only time that we
use it), we obtain

azh b b b b b
oz I+ 5A) (QAT, QAL = m QAT 2.
We deduce that
9%h
oz I3+ sAI) (Al AT

> m|QAI[* = 2M [PATLT - [QAL"| — M [PAT?
= m |AI*]* — (m |P,AI| + 2M |Q,AI*| + M |P,AI*|) - | P,ATY|
> m |AI*|> —4M |AT*| - [P, AT

From formula (100) we obtain
1
% |A]*|2 < |AR| + |w (I5) - AT*| +4M |AT7 / (1 —s)|PsAT"| ds,
0

and hence )
mpy

1
< |AR| o (I2) - AT| + 2M p, / (1 —s)|PAT| ds. (101)
0

Next we bound the terms appearing in the right hand side of (101). To bound |P;AT*|
we use that the vector w (I§ + sAT*) is near to [yw(/(0)). More precisely, we apply the
following property: given v,v" € R, if I,y and P denote the orthogonal projections
onto the one-dimensional spaces (v) and (v’), respectively, then for every vector u € R”

one has:
4o — |

ul .
0]
First we notice that, from lemma 3 and the fact that M # Z" and K > 1, we deduce
lw(D)| > a/2 for I €U,,(G). Then, applying the property, one has:
4

[PAI = PAI| £ o (I + sA7) = ag10))| - |AT
0

4
< 2oL+ AT — Tuw(1(0))] .
(8%

|Payu = Ponu| <

Using that w(G') is n-close to M-resonances, we get
(I 4 5AL) (IO < MT; + sAT* — 1(0)] + ko(1(0)) — Tago( T(0))

- (m_l_sM) Ly < (m_l_sM) (102)



5 APPENDIX: PROOFS OF THE TECHNICAL LEMMAS 56

Thus,

4 M
PAT| < |PATT| + [PAT — PAIF| < |PAIT| 4 222 (ﬁ+%)
8}

and we obtain, using the first condition of (26),

1 1 4p2 fm M 1 mps
1 — 8)|[PAI"| ds < = |PAT” —2(— _) < LPAT" .
/0( s)| [ ds <51 I+l t) <3 |+ S6ar

To bound |w () - Al*|, we put s =0 in (102):

2
mpy

24

jw (15) - A < M (1(0))] - [PAT] + e (15) = Taaw(1(0))] - |ATT] < L[PAT"| +

Finally, by energy conservation,

Llo(Z7*+ R*
ah = —az ) = = [P s g+ ar) oo
0
Z* £
+ w (Pg 4 sAP™, 15 + sAT™) -A[*) ds
and we deduce
J(Z*+ R*) J(Z*+ R*)
Ahl < |———~< VANGS —_— AT*
< [HEEEY g RS ar
Viop2 e | e
< (re LB D (2 R
< (24 Vi) (102, + DR,
(27 + Ump; _ mp;
- 350 - 48
We insert all of these estimates in (101) and obtain:
m,o2 1 1 1) 9 3 m,022 49L 3
— L+M PAT"| < — |PAT
B2 < (54 5p+ 5g) Mo+ (L+ Mp) [PAT| < 2 PALY.

where we used that Mpy < L/48 since o < L. By estimate (99), it follows that

2 - 2 -
m Kpy m mK py
T > P2 e 6 > P2 ¢ BM .

~ TAL|[DR|g, ~ TAL|[DR|g,

For Kp; < M/m, one may work in original coordinates. Then, one obtains:

P2
I = 1O)| <pp  for i< 22—
HDRHG,/),C

It is not hard to check that this stability time is longer than the one proclaimed in (27).
O
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Proof of lemma 8 A simple computation gives, for I € G and v € R”,

We have the bound

o0 1 Jw Ow,, _
0] = i (5o lentnl+ Gz 1m0
< i e ety < A (103)
and we then get estimate (a):
2—? < ﬂ%) +(al)? < 2La. (104)
To prove parts (b) and (c) we use the isoenergetic condition. For any v € <w([)>L,
we have
o0 1 0w 88‘”["(]) v
a7 = [ (5rne - Zyen)
- [ (G0 - o) = g 09

where we have used the fact that the vector
ow den () v
—(I)v— -4 w( !
S - L
has its n-th component vanishing. Moreover, the isoenergetic nondegeneracy has been
used to bound the size of this vector from below. Now, consider an orthonormal basis

e1,...,e, of R™ with the first n—1 vectors belonging to (w(/))" and the last one belonging
to (w([)). Let P = (F, Pn) be the (n x n)-matrix having these vectors as columns. Let

us write: -
oN ([) P ZHI)P, A b
ﬁ([)P: ( 1Y ¥ aI Vo0 b, ) (106)
e P S P "
It follows directly from (105) that
— H — — n—1
|Av| > 7| Yo e R".
jeon (1))
Note also that ‘5‘ < Mw(D)]/* by (103). Moreover, b, = aw(l)- e, and hence
b, = a|w(l)|]. Then, computing the inverse of the matrix (106) and carrying out a

rough bound on its norm,

90 -1 A1 —bLA_IE
_ < n
(m(”) 5 ‘( oL

en(D] 1 feulD] Mle(D] |1

S

<
. alw(H)]  p 2 alw(1)]
L LM 1 L 2M
— — — 14+ — 1
w o Ppa  oal T op ( + lza) (107)
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This estimate implies (b), by our condition on a. To obtain the lower bound (c) for the
determinant, we take into account the expression (106) again:

det (50| > (ﬁm) aloln)] = Bt

Finally, we prove (d). For I € (G and u,v € R",

0*Q 0*Q 9*Q,,
Crn ) = (G0 SR )
(2B () (Br(Du) (G0 e) + (D)) (5D
B wn (1) wn(1)?
(S (1) (wo0)B(1) 2(Zn(Dyu) (Zp(1)0)S(1) o
a wn(1)? + w, ()3 ) & 6[2([) (u,v)) :

We can bound this expression like in (103-104):

9?°Q 1 0*w Ow Ow
R | < (1920 o] ki + 5 - 5
t o |-G

ML 3M*L
< (T + 5 ) el

and we deduce estimate (d):
M'L  3M2L\* M 3M
< M)z < — | La. O
G_\I(l2+ & )—I—(G )_(2M+l)a

Remark If the condition a > 2M/I? is removed, then estimate (b) has to be substituted
by (107), which is actually worse if « is taken too small.

00
o012

Proof of lemma 9 Clearly, it suffices to check the result for the vectors v € (&))" such
that |v| = 1. One has |w-v| < & for these vectors. Writing v = v + vy, with v; € (w)*
and vy € (w), one deduces that

£

9
o] <o — Ju[ =2 1=
[l [l

By the hypothesis,

2|A
|Av—|—)\w|2|Av1—|—)\w|—|Av2|Zu|v1|—|A|-|v2|Zu(l—i)—|A|i> _2fAfe

>
=l =l =l
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Then, if we assume that [\ < 2|A|,

we obtain

> JAv 4 dw| — |(A-

A)v
o 20Afe \A AMe

—c > U — — £
jw| ] [

|- A (@ —w)

In the case |A&| > 2|A|, the proof is much easier:

|[Av + 20| > o] = |Av| > |A| > [A] ¢/ > p—¢. D

AM
Proof of lemma 10 For a fixed J € F — fg, we are going to prove that there
m

exists a unique point I* € ¢ solving Q([*) = J. This aim is attained with the help of a
modified Newton algorithm. Let us consider

19 =07YJ) e cG-L

m

as a first approximation, and we have to see that the map

A =1- (2—? (1<0>)) (1) - )

has a unique fixed point in G. We first compute the derivative of this map:

== (50m) G- (5 0m) (50 -5i0)

and therefore

OA

a7

<_\1 o) if \1—1<0>\§%5, (108)

because the segment joining (%) and [ is fully contained in (7. Starting at (%), we consider

the sequence defined by [*) = A ([(k_l)), k > 1. We check by induction that

‘]w) _ ](k—l)‘ <_°

g Qk—l ~

and I € G for every k > 1. Indeed, this is true for k& = 1. For k > 1, the induction
hypothesis implies that the distance from 1O to 11 or [+=2) i Jess than 2¢/m. The

same holds for every point in the segment joining I*=1 and I*=2). Then, using (108)
and (40) we obtain

109 = 6=0] = | (169 = & (16-9) | < M’ 2 gy 10-2)| < %‘](k—l) — =),

ot
ot
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Thus, the sequence %) converges, for k — 0o, to a fixed point of A which we name [*.
This point satisfies

2
10l < = (109)
m

and therefore 5
rea-=. (110)

m

Then,
2
AryeF— =" cp o, (111)
m

The point [* is the unique fixed point of A. Indeed, assuming that there is another fixed
point I** # I*, we have Q(I*) = Q(I**) and hence [Q(I*) —Q(I**)| < 2. Then, we
have |I* — I**| < 2e¢/m because the whole segment joining Q(1*) and  (I**) is contained
in F, by (111). We deduce from (109) that the distance from (%) to every point in the
segment joining [* and [** is less or equal than fnTE + fn—s < £ Applying (108), we get a

m
contradiction:

M 4
m m

Given a subset F'C F— 0% the map & is one-to-one on G = ()™ (F). Moreover,
one has G C G—%@ by (110). For the proof of the other inclusion, note that Q (G'\ &)
[ = (. Then, since \Q - Q\G < e, wehave Q(G\G) N (F'—e) =0, and we deduce
that O (G) D F —e.

Finally, we check that ‘(Q)_1 _ Q!

< e/m. Forafixed J e F, let I=0Q7"J),
P
I= (Q)_l (J). We have

2 (1) -] = |a(7) - ()

and therefore the segment joining Q(7) and ([N) is contained in F', since Q([) € F C
F —e. Hence, we obtain ‘j—[‘ <e/m. O

<e

Y

Proof of lemma 12 The estimate of part (a) comes from the inclusion

F(d, 3, K)\ F(d, 7', K') € ((F=d)\(F—d))

0 M, (man s (e )ra (o))

E#0

v U ((F—d)mA(k,%))

K<|k|y <K'
E#0
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and the fact that, for 0 < a < o/ and k # 0,

2(a — «)

mes [(F —d) N (A(k, ')\ A(k,))] < (diam F)"' - ————~ . (112)

Concerning part (b), we first remark that, for b > 0,

F(d,3,K)=b> (F—(d+b)\ | A(k b +\E\b).

2 T
|kl <K |k|1

k#£0
Then, proceeding like in part (a) and applying (112) again,
mes [(F(d, 3, K)\ (F(d, 3, K) = b)] < Db+ > (diam F")"~" - 2b.

Ikl <K

k#0
From the fact that the number of integer vectors & € Z™ \ {0} with |k|;, < K can be
estimated by 2" K™, one gets part (b). It is worth noting that this estimate expresses the
“orowth” of the boundary of the domain when the resonances are removed. O
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