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In this master thesis two supervised learning classification methods are studied. The

research is aimed to study the Characteristic Boundary Points from the Optimized

Geometric Ensembles (OGE) methodology in order to include them in the Support

Vector Machines formulation. The new algorithm is proposed in batch and on-line

fashions and the di↵erence between both formulations are studied. With this exploration,

a gain of information from the optimal boundary is obtained in the reformulated SVMs,

as a consequence of the introduction of the CBP, that may lead to the optimization of the

tuning stage. In the on-line case, an automation of the � parameter of the RBF Kernel

improves the hyperparameter tuning time complexity. The results are promising for this

new algorithm that combines both methodologies and prevents the over-fitting problem.

A further line of research could be followed combining the Characteristic Boundary

Points with di↵erent types of Kernel as well as with other classification algorithms.
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Chapter 1

Introduction

Support Vector Machines (SVMs) [1][2] is a well know supervised learning algorithm

that performs binary classification of the data maximizing the margin (distance to the

boundary) from the closest data points to avoid over-fitting. In addition, if the Kernel

trick is taken into account the SVMs are able to construct a hyperplane in a space with

high or infinite dimensions. In this case, non-linear classification can be also performed

obtaining accurate and robust classification results, even when the input data is non-

monotone and non-linearly separable.

However, the main drawback of SVM is that the Kernel models can be quite sensitive

to over-fitting. To reduce it, a good optimization of the hyperparameters has to be

done including the Kernel parameters. For this purpose a grid search would always be

required, which means that computational cost and amount of time could be extensive

for this tuning process.

Another geometric classification method Optimal Geometric Ensembles (OGE), intro-

duced by Oriol Pujol and David Masip [3], computes and uses the points of the division

boundary called Characteristic Boundary Points (CBP) to perform the classification.

The CBP are special points in the feature space that should be crossed by the opti-

mal boundary under certain notions of robustness in the separable case, and its density

would define the region where to find this boundary in the case of non-separable data.

1



Chapter 1. Introduction 2

Adding the concept of CBP to the SVM may help to have additional information of the

boundary that would help to obtain an improvement of the parameter tuning, automa-

tizing it for the Kernel parameters with the use of some constraints.

Therefore, the motivation of this project will be the study of the relation between both

models SVM and OGE for a further inclusion of the CBP to the SVM formulation. Both

batch and online learning are considered when formulating this new model of SVM with

the CBP.

As a consequence, a criteria for the tuning automation of parameters with the use of

CBP is found that leads to a reduction of the size of the search grid.

1.1 Objectives

The main goals of this thesis consist in:

• Understanding the concepts of Optimized Geometric Ensembles and the Support

Vector Machines methods.

• Reformulating the Support Vector Machines in order to include the CBP from the

Optimized Geometric Ensembles method.

• Understanding the on-line learning models to reformulate the previous deduced

method into an on-line formulation.

1.2 Contributions

This master thesis contributes with:

• Obtaining a new classification algorithm that can be formulated in both batch and

online version, getting comparable results to those from SVMs.

• Automation in the tuning of the RBF Kernel parameter from the SVM, taking

advantage of the additional information of the boundary given by the incorporated

CBP.
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• Decrement of the total tuning time regarding the online version of the new formu-

lated model compared to the SVM tuning.

1.3 Outline

This master’s thesis will proceed as follows:

Chapter 2: Background. This chapter covers some background material: the

Support Vector Machines, the Optimized Geometric Ensembles and the online

learning with the use of the Stochastic Gradient Descent.

Chapter 3: Methodology. In this chapter the steps of thinking and deducing

the new formulation of SVM with CBP are introduced. Then, a study of this new

model is carried out for both batch and online learning. After, the chosen criteria

for optimizing the model is reasoned and presented.

Chapter 4: Experiments. This chapter exposes the results obtained from

executing the plan described in the previous section, as well as performing a com-

parison between the di↵erent models introduced.

Chapter 5: Conclusions. In this last chapter several conclusions deduced from

the previous chapters are discussed.



Chapter 2

Background

2.1 Support Vector Machines

Support Vector Machines is a statistical learning algorithm for performing regression [4]

and non-probabilistic binary classification of data. As many others, this technique has

two distinct phases: the learning and the prediction. In the learning step the SVM is

trained with examples at its disposition (training set). The prediction step takes a new

sample element (testing set) with an unknown result and produces a new result that

will be the most probable regarding those examples used in the learning step.

SVMs is a supervised method as it works with the data and its labels in the training

step to build a model. The main idea is to define a hyperplane as robust as possible that

separates the n-dimensional data perfectly into its two classes. In order to reduce the

over-fitting error the separation boundary has to be the exact function that minimizes

these errors. To make it possible, the resulting boundary will be the one that is most

distant among the examples used. This distance between the solution and the examples

is called margin and it is defined as 2
||w|| where w is the normal vector of the hyperplane

corresponding to the linear boundary model.

The two possible outputs of the classifier are +1 or -1, so the classification problem can

be written as follows:
w

T · x
i

� +1

w

T · x
i

 �1
(2.1)

4
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We can observe the margin representation in Figure 2.1. The total margin in e↵ect is
2

||w|| and the previous restrictions are fulfilled. The final linear boundary is situated

according to w

T · x
i

= 0, in the medium distance between the closest support vectors.

w

T

·x
i

�
+

1

w

T

·x
i

=
0

w

T

·x
i


�

1

2
||
w||

~

w

Figure 2.1: Lineal SVM

So as to allow miss-classifications, since not all datasets are linearly separable or even

separable, a slag variable has to be added to the previous equation 2.1, otherwise there

would be an error for non-separable data. This slag variable or error factor will be

denoted as ⇠

i

.

In other words, the aim of the SVM formulation is to maximize the margin and to

minimize the errors from the miss-classifications. This leads us to the Primal form

formulation that is the simplest formulation of the SVM since it is only able to perform

linear classification.

minimize
(w,⇠

i

)

1
2 ||w||2 +

P
i

⇠

i

subject to y

i

(wT · x
i

) � 1� ⇠

i

⇠

i

� 0

(2.2)

However, since often the data is not linearly separable, SVMs take benefit from the

notion of Kernel induced feature space or Kernel trick which casts the data into a higher

dimensional feature space (Hilbert’s space) where the data is separable (Figure 2.2) with

a chosen Kernel function k(x
i

, x

j

) added to the formulation.

With the Kernel trick the SVMs can be extended to the non-linear case, where there

is no need of computing the coordinates of the data in this new space and only the
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Figure 2.2: Non-lineal SVM

inner products between the images of all pairs are required. Normally, the computation

mentioned is cheaper than the explicit one of the coordinates and that is the basic reason

why this method is really convenient.

Nevertheless, the e↵ectiveness of the SVMs directly depends on the selection of the

Kernel, its Kernel parameters and the soft margin parameter. The usual choice is the

Gaussian Kernel k(x
i

, x

j

) = exp

�
�||x

i

� x

j

||2/2�

2
�

(x
i

,x
j

2 X where X is the data

sample) that has only one parameter to tune and it is the choice made in this project.

We will denote the Gram matrix as K

ij

from now on, that corresponds to the inner

products between every instance of the data X in the Hilbert space,

K

ij

= exp

�
�||x

i

� x

j

||2/2�

2
�

for all x

i

,x
j

2 X = x1, x2, ..., xN

, therefore the matrix has a dimensionality of N times

N as the number of instances in the dataset is N .

In a similar way, the Kernel vector k

X

(x
i

) = k(x, x

i

) = (k(x1, xi

), k(x2, xi

), ..., k(x
N

, x

i

))T

corresponds to the distances from the data point x

i

to the whole set of instances X of

the dataset.

A good separation boundary is achieved by the hyperplane that has the largest distance

to the nearest training data point of any class (functional margin). In general, the larger

the margin is the lower the generalization error of the classifier is.

There are two constraints for the error: ⇠

i

� 0 since the error has to be positive and

⇠

i

� 1� y

i

(↵T

k

X

(x
i

))
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where k

x

(x
i

) is the Kernel vector previously defined and x

i

2 X.

In conclusion, the constraints are translated to max(0, 1�y

i

(↵T

k

X

(x
i

))) and the function

to minimize will result in

↵

T

i

· K
ij

· ↵
i

+ max(0, 1� y

i

(↵T

k

X

(x
i

)))

So the region that will give us a feasible solution is shown in Figure 2.3.

⇠

i

� 0

⇠

i

� 1� y

i

(↵T

k

X

(x
i

))

Figure 2.3: SVM constraint

Then, the non-linear formulation of the SVM will be formulated as follows

minimize
(↵)

↵

T · K
ij

· ↵ + �

P
i

⇠

i

subject to y

i

(↵T · k
X

(x
i

)) � 1� ⇠

T

i

⇠

i

� 0

(2.3)

There are again two terms in the minimization clause being the first term the distance

while the second term remains as the error.

The parameters to be tuned are the Kernel parameter � and the trade-o↵ parameter

�. The first one refers to the complexity of the model and the second measures its

expressivity.

Therefore, to find the better combination of parameters commonly a grid search is

performed and each combination is checked using cross-validation. The usual value

selection of the parameters is an exponentially growing sequence of them. This grid
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search parameter tuning makes all the pre-training process to be time consuming and

computational costly for obtaining good results in the classification of the datasets.

An adequate parameter tuning is required in order to have a good generalization model

because Kernel models are prone to over-fitting. This occurs since the model is trained

for a determined set of training data, maximizing its performance over it. But we want

the model to be e�cient, that is to perform well on unseen data. Therefore, we need

to adequately tune the model parameters so that SVM will be able to correctly predict

data once this previous training is done, with a whole di↵erent set of data. In this way,

cross-validation is done to tune adequately the model parameters.

2.2 Optimized Geometric Ensembles

In their article [3], Oriol and David proposed the concept of Characteristic Boundary

Points (CBP) to geometrically define the decision border based on locally robust linear

classifiers defined and assembled in an additive model. These points actually belong to

the optimal boundary since they follow certain definitions of robustness and margin.

To obtain these CBP we first need to pick two points of the dataset and both must be

from di↵erent classes: x

i

2 X with label y(x
i

) = +1 and x

j

2 X with label y(x
j

) = �1

There is no closer example to the candidate boundary points x

CBP

that the ones that

define it x

i

and x

j

:

||x
i

� x

CBP

||  ||x
k

� x

CBP

|| , ||x
j

� x

CBP

||  ||x
k

� x

CBP

|| (2.4)

To finally obtain the CBP, the distance of every pair of points from di↵erent classes is

computed and at half of this distance is where the CBP should be x

ij

= x

i

+x

j

2 . Thus, for

determining if a CBP actually must be there or not a ball centred in x

ij

and of half of

the distance between x

i

and x

j

(r
ij

= ||x
i

�x

j

||
2 ) gives us the final clue: if there is another

data point inside this defined ball then the x

ij

will not be a CBP.

In Figure 2.4 is shown an example of the CBP computation (for visualization purposes

we have not represented all the distances to the x

j

). We can see that the only CBP

found, computing all the distances to point x

j

, is the point x

i

as no other data point is

located in the ball centred at x

ij

with the distance from x

i

to x

j

as the diameter.
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x

i

x

j

x

ij

x

i

x

j

CBP

Figure 2.4: Example of CBP computation

For the same toy problem, there is only another CBP that can be obtained and it is

represented in Figure 2.5. Again, no other point is found inside the ball described for a

di↵erent pair of data samples x

i

,x
j

2 X. On the other hand, it happens di↵erently for

the rest of pairs of data samples from this toy dataset as shown in Figure 2.6. In this

case the ball obtained from the new choice of x

i

and x

j

contains another data sample

x

k

, for this reason the middle point x

ij

is not considered as a CBP.

x

i

x

j

x

ij

x

i

x

j

CBP

Figure 2.5: Example of the other CBP computation

x

i

x

k

x

j

x

ij

x

i

x

k

x

j

x

ij

Figure 2.6: Example of a non CBP

Finally, according to the OGE model, a robust boundary is found joining all the CBP by

defining a model that crosses all of them. From the previous CBP computation, shown

in Figures 2.4 and 2.5, the classification boundary can be then defined by those points

as in Figure 2.7.

However, the non-separable problems need to be considered as well and that will mean

the choice of only the optimal CBPs as many other may appear due to noise in the

problem that are not part of the optimal boundary. Thus, where the density of CBPs

is larger it means that is closer to the optimal boundary.
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Figure 2.7: CBP defining classification boundary

From that point on, the modelling of the non-linear boundary from the set of CBPs will

be a piece-wise linear ensemble solution created via an additive model of base classifiers

⇡

k

(x) related to the Characteristic Boundary Points

⇧(x) =
NX

k=1

↵

k

sign(⇡
k

(x)) (2.5)

where N is the number of CBPs and ⇡

k

(x) as mentioned are the base classifiers.

Based on the selected CBPs, a set of hyperplanes that are locally optimal are created

and this boundary is approximated by a piece-wise linear function using a Tikhonov

regularization framework [5] that controls the complexity of the model weighting the

influence of each base classifier in the ensemble.

The final decision rule can be simply obtained by means of threshold in the ensemble

combination

ŷ = sign(⇧(x)� ↵0) = sign

 
NX

k=1

↵

k

sign(⇡
k

(x))� ↵0

!
(2.6)

with ŷ being the estimated label and ↵0 the global threshold value. Thus, the influence

of each base classifier in the ensemble is weighed by the vector ↵ that would be the pa-

rameter to optimize. Changing the previous formulation to matrix notation the solution

will be

A↵ = sign(⇡
k

(x
i

)) · ↵ = y (2.7)
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With the use of Tikhonov regularization that needs of an appropriate semi-norm or

2-norm, the solution of the system is the minimization of

↵

�

= arg

↵

min

�
k A↵� y k22 +�

2 k (↵� ↵

⇤) k22
�

(2.8)

where � controls the weight of the residual norm and ↵

⇤ is an initial estimation of

the solution. Therefore, the sensitivity of ↵

�

is controlled by � and in practise the

�-regularized ensemble solution reduces, based on neighbouring rules, the over-fitting

problem inherent in the local classifiers selection.

Only the definition of the base classifiers needs to be explained and it is formulated by

a hyperplane given the set of points x

i

and x

j

:

⇡

x

i,j

cp

(x) = (x� x

i,j

cp

)~n
j

(2.9)

~n

x

i,j

cp

=
x

i

� x

j

k x

i

� x

j

k (2.10)

If ⇡

x

i,j

cp

(x) > 0 the example belongs to class +1 and if ⇡

x

i,j

cp

(x) < 0 belongs to -1 (by

convention, the normal vector that defines the hyperplane ~n

j

always points to class +1).

With this CBPs optimization, a very simple method with a clear geometric and struc-

tural meaning is obtained. It allows to deal automatically with non-linearities in the

boundary. As a consequence, it does not need to alter the metric of the space with the

use of Kernels, removing then the necessity of selecting and tuning them.

Due to the simplicity of this model, extensions from it are easy to devise for dealing with

current machine learning problems. That is what this research is about, to extend this

notion of Characteristic Boundary Points to the Support Vector Machine formulation

and explore its possibilities.

2.3 Stochastic Gradient Descent for on-line learning Sup-

port Vector Machines

The idea of having an on-line formulation of a method is basically when the model

is trained dynamically from a high flow of data points that will only be seen once.
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Subsequently, they are used only once so the model has to re-adapt with every new

training instance that is received. Thus, a choice has to be done to considered this new

data point and if so, then the model is re-learned. The testing in on-line learning is

performed as usual by querying the current learned model.

The frequent way of formulating any method in on-line version is taking advantage of

the Stochastic Gradient Descent optimization method.

The Gradient Descent consists in the fact that if a real-valued function F(x) is defined

and it is di↵erentiable in a certain neighbourhood of a point x0, then F(x) will decrease

fastest if going from this point x0 in the direction of the negative gradient. In this way,

the local minimum of the function will be reached. Thus, the Gradient Descent method

is an incremental optimization that begins with and initial guess ↵0 and then there is

an updating of the parameters,

↵

t+1 = ↵

t

� ⌘r
↵

L(F (x)) (2.11)

if a loss function L(F (x)) and the model F (x) =
P

M

i=1 ↵

i

h

i

(x) are considered. If instead

one takes steps proportional to the positive of the gradient, the procedure would be a

Gradient Ascent since it will approach the local maximum. The method is also known

as steepest descent, or the method of steepest descent.

Figure 2.8: Gradient Descent

That leads us then to Stochastic Gradient Descent [6], a gradient descent optimization

method for minimizing an objective function that is written as a sum of di↵erentiable

functions.

The main idea for this approximation is that in this stochastic modelling there is noise of

some kind in the gradient. If sequential steps of the instant gradient are added, they will
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accumulate to finally follow the appropriate direction. Following this iterative process,

the gradient will eventually converge to the desired solution.

In this case, the objective function would be decomposed as

F(↵) =
i=1X

N

f

i

(↵) (2.12)

where the parameter ↵ is to be estimated and where typically each summing function

f

i

is associated with the i-th observation in the data set (used for training).

To sum up, Stochastic Gradient Descent helps to minimize a function that needs to be

trained dynamically since the number of data is huge. As previously seen it is called

on-line learning [7]. In the contrary, the usual model training with more limited datasets

is called batch learning [8].

In the particular case of the Support Vector Machines, they can also be reformulated to

on-line learning with the introduction, previous mentioned, of the Stochastic Gradient

Descent. Both primal on-line formulation [9] and Kernel on-line formulation of SVMs

have already been formulated and studied [10], and in this work we will be centred in

the use of the Radial Basis Function (RBF) Kernel [11][12]. Recalling the formulation

(2.3) of the Kernel Support Vector Machines the goal is to derive its on-line version.

minimize
(↵)

↵

T · K
ij

· ↵ + �

P
i

⇠

i

subject to y

i

(↵T · k
X

(x
i

)) � 1� ⇠

T

i

⇠

i

� 0

In stochastic gradient descent the weights are updated taking into account the instan-

taneous gradient, as we can see:

rf(↵) = �↵ +

8
<

:
�y

i

k

X

(x
i

) if y

i

· ↵
t

k

X

(x
i

)T  1

0 otherwise

(2.13)

Thus the ↵ updating formulation (2.11) will result as the following:
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↵

t+1 = ↵

t

+

8
>>><

>>>:

+⌘ (y
i

k

X

(x
i

)� �↵

t

) if y

i

· ↵
t

k

X

(x
i

)T  1

�⌘ · �↵

t

otherwise

(2.14)

where the learning rate is defined as ⌘ = 1/�t and � refers to the trade-o↵ between the

supports and the boundary.

Data: X � � num iterations
Result: X

model

↵

for t from 1 to num iterations do
x

i

 rand(X, 1) pick a single data point at random
if t = 1 at the first iteration then

X

model

 x

i

initialization of the model
↵

t

 y(x
i

) initialization of ↵

else
k

X

(x
i

) = GramMatrix(X
model

, x

i

, �) computation of the Kernel
if y(x

i

) · ↵
t

· k(x
i

)T

< 1 if it is a support vector then
↵

t+1 =
�
1� 1

t

�
↵

t

+ y(x
i

) · k
X

(x
i

)/(� · t) updating of ↵

if x is not in X

model

then
X

model

 x

i

include data point in the model
↵

t+1  y(x
i

)/�t include this support in the model
end

else
↵

t+1 =
�
1� 1

t

�
↵

t

updating of ↵

end
end

end
Algorithm 1: On-line SVM

The pseudo-code of the previous formulation Algorithm 1 will have the structure of

initialization and then the updating of ↵ according to formula (2.14) a specified number

of times or iterations num iterations.

In the initialization, an instance x

i

of the train data X is included in the model as it is

empty at the beginning, and its corresponding ↵ is set to its label. After that in each

iteration a new data point x

i

is evaluated and included in the model if it corresponds a

support vector that the model still does not have. When this new instance is included

in the model, a new ↵ will be included as well but in this case would be the label plus

the learning rate: ⌘ · y(x
i

) = y(x
i

)/�t.
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Methodology

In this chapter, the fusion between the SVM formulation and the CBPs is introduced.

First, we centre our attention in the batch algorithm of SVM for a posteriori on-line re-

formulation of this new formulated SVM-CBP. The properties of the obtained model are

studied in detail. In particular, this will give rise to a good criterion that allows the au-

tomatic tuning of the RBF Kernel parameter in the training step without compromising

the generalization performance.

3.1 Introducing CBP in SVM formulation

To have an introductory idea of how the CBP should be implemented in the SVM first

of all we focus in the reformulation of the Primal SVM. Hence, we may confirm the

contribution of the CBP as a counterpart to the maximization of the margin in SVM.

This would lead us to the implementation of the CBP in the Kernel formulation of SVM

(in particular RBF Kernel).

In the first place, let us recall the original formulation (2.2) of the SVM.

minimize
(w,⇠

i

)

1
2 ||w||2 +

P
i

⇠

i

subject to y

i

(wT · x
i

) � 1� ⇠

i

⇠

i

� 0

15



Chapter 3. Methodology 16

The main idea of the reformulation is to replace the regularization term (the norm
1
2 ||w||2) in the equation by a term that takes into account the CBP. In the separable case,

we want the hyperplane of the classification boundary to cross all of the Characteristic

Boundary Points. To do so, first we have to force this condition by adding the constraint

w

T · z
j

= 0 to the formulation, with w as the normal vector of the hyperplane and zj

defined as the Characteristic Boundary Points of the problem. The formulation will

result in
minimize

(⇠
i

)

P
i

⇠

i

subject to y

i

(wT · x
i

) � 1� ⇠

i

w

T · z
j

= 0

⇠

i

� 0

where as mentioned the z

j

are the corresponding CBP of the total group of CBPs Z and

x

i

are the instances of the dataset X.

In the non-separable case, the CBPs do not explicitly define the points in the space

where the boundary must cross. However, their density is reated to that same concept.

Thus, we want the solution that stands as close as possible to all the CBPs. We can

proceed in the same way that SVM handles the constraint violation, introducing a new

slack variable that we will designate as ⇣

j

so the formulation will be the following:

minimize
(⇠

i

,⇣

j

)

P
i

⇠ +
P

j

⇣

j

subject to y

i

(wT · x
i

) � 1� ⇠

i

�⇣

j

 w

T · z
j

 ⇣

j

⇠

i

� 0

⇣

i

� 0

Rearranging the terms, we can rewrite the previous minimization to include the CBP

constraint that would be equivalent as applying the norm to the same term,

minimize
(w,⇠

i

)

P
i

max(0, 1� y

i

w

T

x

i

) + �

P
j

||wT

z

j

||2
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so the whole algorithm formulation will be rewritten as:

minimize
(w,⇠

i

)
�

P
j

||wT

z

j

||2 +
P

i

⇠

i

subject to y

i

(wT · x
i

) � 1� ⇠

i

⇠

i

� 0

(3.1)

In order to extend this formulation to the Kernel case, we may replace the linear

boundary by the general function formulation in the Reproducing Kernel Hilbert Space

(RKHS):

f(x) = w

T

k

X

(x
i

)

Including this change a non-linear classification can also be done. The constraint will

be maintained, reformulated to hold the RKHS

y

i

(↵T · k
X

(x
i

)) � 1� ⇠

T

i

with k

X

(x
i

) denoting the RBF Kernel between the whole training dataset X, and x

i

just a simple data point from that set.

In addition, the matrix C

ij

will also be computed to consider the inner products between

the train data points x

i

2 X and the CBP z

i

2 Z obtained from this train data, and for

the RBF Kernel will be expressed as

C

ij

= k(x
i

, z

j

) = e

�
||x

i

�z

j

||2

2�

2 8x
i

2 X, 8z
j

2 Z

(3.2)

Using the CBPs instead of the usual Kernel gram matrix forces the final boundary to pass

through or as close to the CBP points as possible. But maintaining the minimization

constraint the same as the Kernel SVM we will still consider the classification among

the data to have as less error as possible.

And with this optimization the problem becomes

minimize
(↵,⇠

i

)
||↵ · C

ij

||2 + �

P
i

⇠

i

subject to y

i

(↵T · k
X

(x
i

) � 1� ⇠

T

i

⇠

i

� 0

(3.3)
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where the term of the norm ||↵ · C
ij

||2 is the same as the distance of the CBP to the

classification boundary, for this reason we want to minimize it as much as possible. The

constraint of the formulation will remain the same as we still want to be able to classify

the data making use of the support vectors restriction. Denote that the terminology has

been changed for the normal vector to the hyperplane from w to ↵ to di↵erentiate the

new formulation from the previous.

3.2 Study of SVM with CBP batch formulation

Once this Kernel SVM with the CBP addition has been implemented, we need to perform

an accurate analysis of its functioning. With the present model, in the same way as the

Kernel SVM, there are two parameters to tune: the � from the RBF Kernel and the �

of the SVM error.

At a start, we proceed to do a more detail study about the tuning parameters. In the

first case, maintaining the � fixed and just checking di↵erent values of the � parameter

will allow us to understand more its behaviour.

Taking a look at Figure 3.1, for small values of � the model tends to be more complex (the

same than for the SVM), but in this case the separation boundary tends to approach the

CBP, as we can see in subfigures (a) and (b). On the other hand, with bigger values, the

model is less complex and the bound that forces the approach to the CBP is less strong,

although is passes near it does not need to go through them, we can see that in subfigures

(e) and (d). We may obtain similar results for di↵erent datasets. This behaviour was in

fact intuitively anticipated by the new formulated model of SVM-CBP.

Next, we will focus on the study of each of the formulation terms separately. To do so,

we will train our model for di↵erent � values, maintaining the � fixed, and computing

the terms of the minimization separately for each corresponding � value checked. In

addition, the train and test accuracies are be computed as well.

The first term of our formulation ||↵ · C
ij

||2 is represented in the Figure 3.2 where it is

computed for each � value and then plot. We will be calling this term the norm’s term.

The norm’s plot highlights a high peek in the norm a between the � range 0.7-0.8, and

there is another peek but much lower around the 0.3 value.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Plots of the SVM with CBP model with di↵erent � values: 0.01, 0.06,
0.11, 0.41, 0.66 and 0.96, where the green dots correspond to the CBP

Figure 3.2: Plot of the norm term for di↵erent �

Continuing with the minimization terms, we focus in the error term that is �

P
i

⇠

i

.

Observing the Figure 3.3 we notice two abrupt increases that coincide around the �

values previously mentioned in the norm’s plot. In a greater scale, we can conclude that

at some point the error term starts to grow and at the end more or less stabilizes, it

may indicate that the zone of a lower complexity model has been reached.

Regarding the accuracies, train Figure 3.4 and test Figure 3.5, we can see that the first

one has a diminishing tendency while the other has a slightly growing tendency for small

� values and at the end the opposite happens (it diminishes in certain degree). But if we
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Figure 3.3: Plot of the error term for di↵erent �

Figure 3.4: Plot of the training accuracy for di↵erent �

Figure 3.5: Plot of the test accuracy for di↵erent �

take a closer look, it is easy to see that the train accuracy starts more or less constant

and when arrives near the � value of 0.7 it grows more abruptly and then stabilizes.

The same abrupt diminution is observed in the case of the test accuracy and around the

very same � value.

As previously observed in the norm’s plot 3.2, the highest peek was found around the

0.7-0.8 values, that gives us an idea of a correlation between the di↵erent plots, the norm
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term and the rest regarding the area surrounding the peek in the norm.

Checking the same for other toy problems, separable and non-separable, we observe a

similar behaviour of each of the values studied in this section. We may take this peek

criteria to choose an appropriate near-the-optimal value for the � parameter, to make

it automatically tuned a posteriori.

We have been talking about this hypothetical Norm’s peek, referring to the peek with

the highest value, but in the first plot 3.2 there are two di↵erentiate peeks that can

be observed, although one is much lower than the one that interests us. To solve this

ambiguity, the regularization of the norm is a must. This regularization is defined as the

sum of the current calculated norm and a percentage of the previous norm, the norm

calculated from the previous � value checked

norm

�

t

= norm

�

t

+ 0.9 · norm

�

t�1 (3.4)

in our case we chose to add a 90% of the previous norm value, which means that it is

very regularizing, the norm graph will be much smoother.

Adding the regularization into the formulation with the same parameter selection (�)

and the same datasets the new results can be seen in Figure 3.6 (while for the other

terms the plots would be the same as the previous).

Figure 3.6: Plot of the regularized norm for di↵erent �

After the norm regularization, we can observe that indeed the graphs are smoother

and with a very di↵erentiate peek in both cases. This peek corresponds to the same �

value as the peeks observed for the non-regularized case, so the correspondence with the

non-regularized norm is maintained.
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Continuing with criteria verification we study in deep a new toy problem, non-separable

in this case, computing the CBP from the training set as shown in Figure 3.7. From

these toy datasets we will compute once again all terms and plot them now in the same

scale to see more in detail the correspondences between them.

Figure 3.7: Characteristic Boundary Points in green of the toy problem

If we plot together all the same components we have studied in the previous part,

arranging them in the same scale we obtain Figure 3.8 where the norm’s peek is also

present. The peek is in position �=0.225, the error grows once this � value is passed,

the train accuracy diminishes, and we can see a grow in the test accuracy at that point.

It is a similar behaviour that for the first toy dataset studied.

Figure 3.8: Plot of the minimization terms and train,test accuracies

Finally, if we take this norm’s peek value corresponding to �=0.225 and plot the sepa-

ration boundary obtained as well as the data points we will have Figure 3.9.
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Figure 3.9: Representation of the separation boundary obtained by selecting the
optimal � according to the norm’s peek criteria

Therefore, this Norm’s peek seems to be a good indicator of the optimal � parameter

from the RBF Kernel. From these observations, we conclude that this might be the

intuition we were looking for, that the optimal value of the � would be the one corre-

sponding to this Norm’s peek as the final boundary described is very acceptable, with

no over-fitting in this case that is the main problem of the Support Vector Machines.

For the previous cases we have studied the behaviour of the norm’s term of the formula-

tion given di↵erent values of � while maintaining the other parameter always constant

set to the values �=1. However, we need to make sure that once this optimal � is found,

the tuning of the other parameter � can be performed directly assuring that we can

obtain the best combination of both.

Figure 3.10: Plot of the norm term for di↵erent �
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Figure 3.11: Plot of the error term for di↵erent �

Thus, using the previous toy datasets we fix the � to the optimal value obtained and

then we compute the model for di↵erent � values in a wide range to draw a separate

plot for every again for the norm, error and train and test accuracies.

If we look carefully at Figure 3.10, we can observe no noticeable peeks in the plot

corresponding to the norm term. These plots are obtained with a fixed value of � =

0.225, that is the optimal result from the previous � optimization. In the case of the

error component of the minimization, Figure 3.11, di↵erent peeks are observed but no

apparent relation is found with the norm component.

Figure 3.12: Plot of the training accuracy for di↵erent �

The train accuracy in Figure 3.12 is just constant in this case and the test accuracy

Figure 3.13 is very constant as well but with small irregularities. In both cases there

is no clear dependency with the norm so there seems to be no relation such as the

norm-sigma relation.
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Figure 3.13: Plot of the test accuracy for di↵erent �

3.3 SVM with CBP online formulation

In order to adapt the previous formulation to have an on-line algorithm we need to

proceed in the same way as with the ordinary SVM formulation and take use of the

stochastic gradient descent.

The function we want to minimize in this case is

f(↵) = �||↵C

ij

||2 +
X

i

⇠

i

so its gradient rf(↵) = r(||↵C

ij

||2 +
P

i

⇠

i

) would be the same in the second term

as the SVMs on-line in formula (2.3), while the first term would be r(||↵C

ij

||2) =

r(↵T

C

T

ij

C

ij

↵) = C

T

ij

C

ij

↵

Finally, the updating of the ↵ will have the following form,

↵

t+1 =

8
>>><

>>>:

⇣
1� k

X

(z
i

)T

k

X

(z
i

)
t

⌘
↵

t

+ (y
i

· k
X

(x
i

))/�t if y

i

· ↵
t

· k
X

(x
i

)T  1

�
1� 1

t

�
↵

t

otherwise

(3.5)

where k

X

(x
i

) and k

X

(z
i

) correspond respectively to the vector of the Kernel of the model

data points with a new instance of a train point x

i

and of a new CBP z

i

.
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Data: X Z � � num iterations

Result: X

model

↵

for t from 1 to num iterations do
x

i

 rand(X, 1) pick a single data point at random

z

j

 rand(Z, 1) pick a single CBP at random

if t = 1 at the first iteration then
X

model

 x

i

initialization of the model

↵

t

 y(x
i

) initialization of ↵

else
k

X

(x
i

) = GramMatrix(X
model

, x

i

, �) Kernel with train point

k

X

(z
j

) = GramMatrix(X
model

, z

i

, �) Kernel with CBP

if y(x
i

) · ↵
t

· k
X

(x
i

)T

< 1 if it is a support vector then

↵

t+1 =
⇣
1� k

X

(z
j

)T

k

X

(z
j

)
t

⌘
↵

t

+ y(x
i

) · k
X

(x
i

)/(� · t) updating of the ↵

if x

i

is not in X

model

then
X

model

 x

i

include data point in the model

↵

t+1  y(x
i

)/�t include this support in the model

end

else
↵

t+1 =
�
1� 1

t

�
↵

t

updating of the ↵

end

end

end

Algorithm 2: On-line SVM with CBP

The pseudo-algorithm of the new found on-line formulation of SVM with CBP Algorithm

2 will be similar than the previous of SVM Algorithm 1, in the first iteration t = 1 with an

initialization of the model X

model

with a train instance x

i

and ↵ with its label y(x
i

), and

including the posterior supports if not already in the model if the constraint is satisfied

with an ↵ as the label plus the learning rate. Otherwise ↵ just updates according to

formula (3.5).

In the case of this on-line version of the SVM-CBP model, the CBP are not computed at

every run of the model. Otherwise, they are obtained from an outside source of CBP so

there are two outside sources of information: the data X and the CBP corresponding to

Z. Assuming that, we expect in this case to obtain an speed up in the training process

of the new model respect to the usual SVM formulation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.14: Toy dataset table plot with �=[0.05,0.1,0.5] and �=[0.01,1,10]
Each column corresponds to a di↵erent value of � increasing from left to right, while

for each row the � is constant increasing from up to down.

Carrying on with the optimization, with this first algorithm we did the same kind of

tests as for its batch version to determine if we can extract a similar conclusion from

the behaviour of the norm’s term. The objective is to automatize the � optimization so

that the previous algorithm has to be modified to consider that. But before, we need

to understand better the role that the parameters � and � play in this formulation,

therefore a previous study of them has been performed.

The algorithm has been evaluated for di↵erent values of � and � as we can see according

to Figure 3.14. With a smaller � the complexity of the model grows as seen in subfigures

(a), (d) and (g). The opposite happens when � is higher: the model tends to be less

complex, observe subfigures (c), (f) and (i). The plots with intermediate sigma (b), (e)

and (h) have moderate complexity and the boundary follows the CBP although it does

pass through them.
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In the same way, the other parameter � is being studied and, as mentioned, acts as

a trade-o↵ between the CBP and the support vectors. In the formulation, the � is

dividing the support vector’s term so with a bigger value we expect to see how the

CBPs’ term gains weight and the boundary approaches them. In these plots, the green

dots correspond to the CBP of the training set and then each class is represented with

the train and test points in blue, red and light-blue, pink respectively.

In the previous table it is a bit di�cult to observe the di↵erences between di↵erent

lambdas, for this reason a new table of plots only with � parameters is computed as

well, as we can see in Figure 3.15.

(a) (b) (c)

(d) (e) (f)

Figure 3.15: E↵ect of � parameter in boundary with �=[0.0001,0.001,0.01,0.1,1,10]
increasing from left to right and the other parameter fixed to value � = 0.1

With bigger � the boundary gets closer to the CBPs, but there is a moment when � is

huge enough to make the supports term really small, negligible. For these values there

is no significant variation in the results with di↵erent � values. We can see that there is

no much di↵erence between the subplots of higher � values (e) and (f). For small values

such as (a) and (b) the boundary does not approach as much to the CBPs as for higher

values.

Next, we proceed to evaluate the norm component of the formulation in a similar way as

for the batch version. Firstly, we will compute the norm value for several configurations
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trained with di↵erent � values. This method is not ”purely” on-line but is only used to

check if the behaviour obtained in this new model coincides with the batch formulation,

as the � is not being changed in the algorithm iterations since is fixed before.

The norm term that in this case will be

||↵k

X

(z
j

)||2 = ↵

T ·k
X

(z
j

)T

k

X

(z
j

) · ↵

and it will indicate us when to pick an optimal value for �.

Following with the study of the minimization, the norm plot together with its gradient

and the accuracies is extracted as done in the batch version in Figure 3.16. In addition,

we also want to determine if we can use the same or a similar criteria to the previous

batch formulation studied.

Figure 3.16: In blue the plot of the norm term, in green the gradient of the norm,
red and yellow the plots of train and test accuracy respectively. All plots are versus

parameter � of the RBF.

According to our expectation, a peek in the norm is obtained what corresponds to a

good value of �=0.06, obtaining an adequate train and test accuracies. Taking a look

at Figure 3.17 of the data points and the boundary obtained of the optimal solution,

in e↵ect the boundary passes through or near the CBPs and a good classification is

obtained.
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Figure 3.17: The green points correspond to the CBPs, and the points to both classes
+1,-1 with the train (light-blue, pink) and test (blue, red)

3.4 Automatic � hyperparameter tuning

Given the fact that an on-line learning formulation has been deduced from the new

method that includes the CBP into Support Vector Machines and that an acceptable

criteria for the � selection has been found, we can proceed to automatize this tuning for

the �, so it will be included in the on-line algorithm itself.

With the already proven appearance of the norm’s peek, the objective now it to include

the sigma in a way so that it will change with the number of iterations of the model

to be its best value selected and finally finish the training to let the model converge

with that selected value. Therefore, two di↵erentiate steps in this modelling would

be needed: a Burn-out period where every 1000 iterations the � will be changed in a

specified decreasing value, and once the best value is found the model will be trained

for some more iterations (in this case 5000) to converge, that would be the second step.

Thus, the automatic train of � parameter needs to follow a progressive decrease starting

from �=1 since the datasets are previously normalized. Then, as mentioned every 1000

iterations the Kernel parameter will be computed according to

� = 2⇢ (3.6)

with ⇢ = ⇢� �⇢, where �⇢ is the decreasing step. As we want this parameter to decrease

from 1 to 0, but 0 is not a valid value for �, we will explore the range [0.01� 1]. The ⇢
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will be given them by the logarithm of the previous range: log2(0.01) and log2(1) = 0

since 20 = 1, so the range is now [log2(0.01), 0]

Considering the transformation to a more friendly like base logarithm, the next formula

is used for this purpose:

log

b

(a) =
log(a)
log(b)

Finally, the decreasing step of ⇢ is computed as

�⇢ =
(log2(0.01)� log2(1))

num

�

=
log2(0.01)� 0

num

�

=
log(0.01)
log(2)

/num

�

and will be given by the number of values of � we want to check in the algorithm, always

having in mind that a training of 1000 iterations is considered for every value.

Then, the algorithm we had for our model has to be changed to allow this formulated

automatic � optimization. It will result in Algorithm 3, when at the beginning the

number of iterations for every � and the values of � checked need to be decided.

In our case, the chosen values are 15 for �, updated every 1000 iterations. The beginning

� is set to 1 and the ⇢ is set to ⇢ = �⇢.

As mentioned, every 1000 iterations the norm value will be checked and stored, then

the � will be updated as in formulation (3.6) according to the ⇢ updating. Then,

when the number of iterations reaches the total of �

iterations

= num

�

· num

period

, the

corresponding � value for the norm’s peek will be set and then the model will be trained

with this optimal value until the number of total iterations num iterations is reached.
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So constraint is that num iterations is bigger than �

iterations

.

Data: X Z � � num iterations

Result: X

model

↵

Initialization

num

�

= 15, num

period

= 1000, � = 1

�

iterations

= num

�

· num

period

�⇢ = log(0.01)
log(2) /num

sigma

⇢ = ��⇢

for t from 1 to num iterations do
x

i

 rand(X, 1) pick a single data point at random

z

j

 rand(Z, 1) pick a single CBP at random

if t = 1 at the first iteration then
X

model

 x

i

initialization of the model

↵

t

 y(x
i

) initialization of ↵

else
k

X

(x
i

) = GramMatrix(X
model

, x

i

, �) Kernel with train point

k

X

(z
j

) = GramMatrix(X
model

, z

i

, �) Kernel with CBP

if y(x
i

) · ↵
t

· k
X

(x
i

)0 < 1 if it is a support vector then

↵

t+1 =
⇣
1� k

X

(z
j

)T

k

X

(z
j

)
t

⌘
↵

t

+ y(x
i

) · k
X

(x
i

)/(� · t) updating of the ↵

if x

i

is not in X

model

then
X

model

 x

i

include data point in the model

↵

t+1  y(x
i

)/�t include this support in the model

end

else
↵

t+1 =
�
1� 1

t

�
↵

t

updating of the ↵

end

if t%num

period

== 0 and t < �

iterations

then
norm

t

= ||↵k

X

(z
j

)||2 norm computation

if norm

t

< norm

t�1 and norm

t�2 < norm

t�1 then
�

peek

 � selecting � of the peek

end

⇢ = ⇢� �⇢

� = 2⇢ updating of the �

else if t == �

iterations

then
�  �

peek

to train with found optimal �

peek

end

end

Algorithm 3: On-line SVM with CBP with � automation
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For automatic tuning of �, the results are of the same type: a norm peek indicates a

good candidate for the value of the � parameter, with high train and test accuracies as

well as a an adequate classification boundary.

Figure 3.18: In blue the plot of the norm term, in green the gradient of the norm,
red and yellow the plots of train and test accuracy respectively. All plots are versus

parameter � of RBF.

Thus, similar test performed with more complex dataset need to be performed in order

to assure the validation of this criteria adopted. A more complex dataset is the Banana,

a non-separable problem with more data points with which the same norm profile is plot

Figure 3.18. The optimal value obtain is �=0.025 and we can see that its correspondence

to a plot of the data with a good classification boundary, that passes near the regions

where CBP are found, Figure 3.19.

Figure 3.19: The green points correspond to the CBP, and the points to both classes
+1,-1 with the train (light-blue, pink) and test (blue, red)
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Testing the same for other complex datasets and in those cases good results are obtained

too; observing the Figures 3.20 and 3.21 we will soon notice this fact, with an optimal

value of �=0.045, the boundary is defined by those support vectors that are close to the

CBP within a certain measure.

Figure 3.20: In blue the plot of the norm term, in green the gradient of the norm,
red and yellow the plots of train and test accuracy respectively. All plots are versus

parameter � of RBF.

Figure 3.21: The green points correspond to the CBP, and the points to both classes
+1,-1 with the train (light-blue, pink) and test (blue, red)

We can see that the norm’s peek corresponds again to an optimal value of the parameter

� but the peek is just a reference, as we diminish the � the peek indicates from where

we can start to pick an optimal value. For this reason, we do not take the value cor-

responding to the peek, instead the next value of sigma is taken, from which we notice

that the norm is diminishing. In other words, when we realise that the previous norm
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value was bigger than the present value with an abrupt descent, that will indicate us we

passed this norm peek and so we take the � value at that moment.

This optimal � value gives us as well a good train and test accuracy results, obtaining

a complex model but without being over-fitted.

Figure 3.22: WhoSaCus dataset

Finally, last tests to be done before continuing with the experiments to corroborate the

picked criteria are to be done with a real dataset, which means more complexity with

more than two attributes, as seen in the example Figure 3.22

A value of �=0.032 is picked according to this Norm’s peek rule. We can observe that

this value is related to a high train and test accuracies, that proves that the deduced

rule also works for more complex kind of problems.

As a conclusion to this chapter, the introduction of the CBP in the SVM formulation

seems to give extra-knowledge about the optimal classification boundary that can be

used as a measure of choosing a good criterion for the automatic tuning of the � from

the Radial Basis Function Kernel when used in the Support Vector Machines.



Chapter 4

Experiments

This chapter is dedicated to the final results from our model testing. It is divided in two

parts: the batch and the on-line formulation, in each case evaluating the performance

of the new model SVM-CBP in relation to the SVMs.

4.1 Datasets

We used 10 real datasets from UCI [13] machine learning repository to evaluate our

models, in Table 4.1 we have more details of its characteristics. The datasets are obtained

from real world problems, they possess multiple multivariate attributes (nominal, real,

integer...) with di↵erent number of instances and dimension for each case and from

di↵erent areas.

dataset # inst # attr charct miss? area
AustrCred 690 14 categorical,integer,real yes financial
BankAu 1372 5 real N/A computer
Fertility 100 9 real N/A life
Ionosphere 351 34 integer,real no physical
LiverDisorders 345 7 categorical,integer,real no life
Pima 768 8 integer,real yes life
QSARbio 1005 12 integer,real N/A N/A
Statlog 270 13 categorical,real no life
SPECTheart 267 22 categorical no life
WhoSaCus 440 7 integer N/A business

Table 4.1: Datasets used for the evaluation SVM-CBP and comparison with SVM

36
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4.2 Metrics

We used to measures to evaluate the performance of our models and to do a comparison

between them.

Performance

In order to evaluate the performance of the models studied the model accuracy is com-

puted. It is the number of correct predicted values against the total number of values

to predict, what is the same as the number of True-Positives (TP) plus the number

of True-Negatives (TN) divided by the total number of instances. Translated to the

formula:

Accuracy =
TP + TN

TP + FP + TN + FN

=
correctly predicted labels

total labels

(4.1)

Computational time

The run time of the machine for the algorithm tested is measured for a better evaluation

of the models. For this work the algorithms have been developed in Matlab R2013a [14]

platform.

Time improvement

In order to measure the improvement in time of one method over the other a simple

percentage will be used,

%improvement = 100 · (t
S

� t

C

)
t

S

(4.2)

where we consider t

S

as the running time of the SVM and t

C

the running time of the

SVM-CBP.
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4.3 Methods

We will proceed to run the experiments with the newly formulated method SVM-CBP,

first in batch version following with the on-line formulation.

As a bench mark we will use the SVM formulation with RBF Kernel, in this way we

will be able to compare both models with the results obtained from each of them.

4.4 Configuration settings

Regarding the experiments of the batch version, the configuration settings for both

tested models are the same, except for the � parameter that is found automatically with

the SVM-CBP model.

� = [0.05, 0.2, 0.5, 0.75, 1]

� = [0.01, 0.1, 1, 10, 100, 1000]

For the case of the on-line experiments, we have to add an additional configuration

setting corresponding to the number of iterations that we set in both cases to the same

number. The rest of parameters we check the values of (again the � values are only used

for the usual SVM):

iter = 20000

� = [0.01, 0.1, 0.25, 0.5, 1];

� = [0.001, 0.01, 0.1, 1]

As introduced in the previous section, for the case of the SVM-CBP formulation the �

is found automatically and 15 values are checked inside iterations of the on-line training

with the updating rule � = 2⇢.
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4.5 Validation methodology and statistical significance

Validation methodology

Following with the assumptions made in the previous section, we now want to verify

that this automatic tuning of � can be performed and that good results equivalent to

the SVM are obtained.

Previously to the cross-validation, the dataset would be split to leave 80% of the data

to do the cross-validation while the remaining 20% will be used to the posterior testing

of the validated model.

A comparison of our model with the usual SVM with RBF Kernel will be performed to

confirm that the results are equivalent, performing 5-fold cross validation [15] with the

same folds for both models. Each fold divided in the way that 80% of the data would

be for training and the remaining 20% will be left for the validation process.

In other words, the data is split in three parts: train, validation and test, with 5 di↵erent

splits for every train-validation combination for the cross-validation process.

As explained in the past section, six � values and five � are checked in the batch

experiments while for the on-line case the numbers would be four and five. This means

a total of 6 times 5 configurations of the batch SVM while we will have 4 times 5 for

the on-line tests. Regarding the other model tested, as we are only selecting folds per �

value there are only 6 and 4 configurations to test for the batch and on-line SVM-CBP

model cross-validation.

Thus, � is fixed and then validated with 5-folds so then the � value is optimised and

obtained automatically in the case of the SVM-CBP for this particular �. Once all � have

been checked, the corresponding value in addition to the optimised � that have the best

validation accuracy will be picked as the best set of parameters of the model regarding

the dataset trained. After this cross-validation is done, the model is again trained and

tested for the set of parameters previously chosen and the final test accuracy is obtained

from the remaining 20% of the data split at the beginning.
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Wilcoxon signed-rank test

The Wilcoxon signed-rank test [16][17] is a non-parametric statistical hypothesis test

used when comparing two related samples, using the median of a single column of num-

bers against a hypothetical median, to check if their mean ranks di↵er (it is a paired

di↵erence test). It can be used as an alternative to the paired Student’s t-test, t-test for

matched pairs, or the t-test for dependent samples when the data cannot be assumed to

be normally distributed.

The Wilcoxon signed-rank test is not the same as the Wilcoxon rank-sum test [18],

although both are non-parametric and involve summation of ranks the second one com-

pares two paired or matched groups instead.

The method uses the Wilcoxon test statistic W that is computed as the sum of the

positive ranks.

There are few assumptions made for performing this kind of test:

• Data is paired and comes from the same population.

• Each pair is chosen randomly and independently.

• The data is measured at least on an ordinal scale (cannot be nominal).

With this assumptions, and considering the simple size as N (number of pairs) and the

measurements as x

1
i

, x

2
i

with i = 1, ..., N , the steps to compute the Wilcoxon signed rank

test are the following

1. Calculate how fare each value is from the hypothetical median.

|x2
i

� x

1
i

| , sign(x2
i

� x

1
i

)

2. Ignore values that exactly equal the hypothetical value |x2
i

� x

1
i

| = 0. Call the

number of remaining values N

r

.

3. Order these distances, from the smallest absolute di↵erence to the largest absolute

di↵erence |x2
i

� x

1
i

|.

4. Rank the pairs, with the smallest as 1 and the rank denoted as R

i

.
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5. Sum the positive ranks.

6. Sum the negative ranks.

7. Add the two sums together, the so-called sum of signed ranks: absolute value of

the sum of the signed ranks

W =
N

rX

i=1

R

(+)
i

=

�����

N

rX

i=1

sign(x2
i

� x

1
i

) · R
i

�����

Unlike most test statistics, smaller values of W are less likely under the null hypothesis.

Once we have computed the test statistic W , we need to calculate the p-value in order to

accept or discard the null hypothesis.The null hypothesis is that the median di↵erence

between pairs of observations is zero. Before performing the test a threshold value is

chosen, called the significance level of the test, traditionally 5% or 1% and denoted as

↵.

The p-value is a number between 0 and 1 and interpreted in the following way:

• A small p-value (< ↵) indicates strong evidence against the null hypothesis, so

you reject the null hypothesis.

• A large p-value (> ↵) indicates weak evidence against the null hypothesis, so you

fail to reject the null hypothesis.

Finally, p-value very close to the cut-o↵ (↵) are considered to be marginal (could go

either way).

The advantage with Wilcoxon Signed Rank Test is that it neither depends on the form

of the parent distribution nor on its parameters. It does not require any assumptions

about the shape of the distribution.

For this reason, this test is often used as an alternative to t-test’s whenever the data

cannot be assumed to be normally distributed. Even if the normality assumption holds,

it has been shown that the e�ciency of this test compared to t-test is almost 95%.
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4.6 Batch formulation results

In this first section, the experimental results corresponding to the batch formulation of

the SVM-CBP are shown, as well as the results computed from the usual SVM batch

formulation with RBF Kernel. In Table 4.2 we have the resulting accuracy of the testing,

the � and � parameters obtained from the tuning of the model and the total time of a

run of the algorithm including the cross-validation.

dataset test � � time (s) model
AustrCred 69.57 0.1 0.1 23922 SVM-CBP

71.74 0.05 0.01 28020 SVM
BankAu 93.80 0.1 0.01 37375 SVM-CBP

94.53 0.05 0.01 81688 SVM
Fertility 75.00 0.1 0.1 91 SVM-CBP

75.00 0.05 0.01 311 SVM
Ionosphere 91.43 0.1 0.01 3434 SVM-CBP

81.43 0.05 0.01 4604 SVM
LiverDisorders 68.12 0.1 0.1 4084 SVM-CBP

63.77 0.05 0.01 7686 SVM
Pima 61.04 0.1 0.1 15298 SVM-CBP

64.29 0.05 0.01 36853 SVM
QSARbio 83.41 0.1 1 45207 SVM-CBP

82.47 0.05 0.01 67234 SVM
SPECTheart 69.81 0.1 0.01 7951 SVM-CBP

69.81 0.05 0.01 4346 SVM
StatlogHeart 74.07 0.1 0.1 12080 SVM-CBP

61.11 0.05 0.01 4335 SVM
WhoSaCus 78.41 0.1 100 6356 SVM-CBP

84.09 0.05 0.01 12823 SVM

Table 4.2: Results of evaluation SVM-CBP and comparison with SVM (batch version)

Observing the table, we can see that the testing results obtained from the new SVM

model with the CBP are equivalent to those of the usual SVM as their test accuracies

are similar for most of the datasets. The values of the parameters are near, for the �

of the RBF Kernel they are really close but with regard to � they di↵er much more in

some cases.

To take a more detail look into the results we will plot the resulting values obtained

where each of the axes would be one of both models we have tested in this work.

Taking a look now at Figure 4.1, We can observe that the values are situated following

the diagonal, the only two datasets that seem to be more distant are the Statlog and
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Figure 4.1: Representation of the test accuracies obtained from running both batch
algorithms SVM and SVM-CBP for every dataset.

Ionosphere but not in a great measure. This would indicate us, as the previous case,

the similarity of the results obtained with a possible similitude in the prediction (the

similitude between the models).

However, we can notice that when the results of the SVM-CBP are surpassing the ones

of the SVM their di↵erence is greater than for the opposite case. For example, the

biggest di↵erence would be for the case of StatlogHeart that is around 14%, while for

the opposite case WhoSaCus it would be no bigger than a 6%, a bit less than half of

the previous.

Right after, we focus on the computational time of the models. In the first Figure 4.2 the

total time is represented considering the total of both models. Logically, the datasets

with more instances tend to require the more time that those less large. In general, the

SVM method seems to be more time consuming than for the SVM-CBP. Regarding the

Fertility dataset its run time is di↵erent others of magnitude smaller than the rest, at

least of one order of magnitude if we compare it to the Ionosphere but for much more

regarding the rest.

Notwithstanding each dataset characteristics, we centre our attention in the possible

improvement in time with the formulation of the new model SVM-CBP. To be able to
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Figure 4.2: Representation of the computational time needed for di↵erent datasets
and for the algorithms SVM and SVM-CBP in the batch case.

compare better both models’ computational time we plot the percentage of improvement

from the first respect to the second, in Figure 4.3. For the majority of cases there is

an improvement bigger than the 50% for the first four. But in the worst of the cases,

there is a huge increase in time for the new model SVM-CBP and coincides that those

datasets are of a high dimension.

Figure 4.3: Representation of the improvement in time for every dataset regarding
the SVM-CBP in comparison to the SVM, in the batch case.

The possible reason for this di↵erence is that in the batch version, the CBP are computed

in the training step which is time consuming. For the on-line version the CBP would be

given and we expect to see better results regarding the time complexity of the models.
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4.7 On-line formulation results

Continuing with the experimental results, in Table 4.3 are shown the train, validation,

test accuracies from the on-line algorithms and the corresponding �,� parameters from

the grid search of the cross-validation (in the case of SVM-CBP the � is found automat-

ically, following the Norm’s peek criteria). The total time to carry on the experiment

specific for each dataset is shown as well in the table.

dataset test � � time (s) model
AustrCred 63.04 0.03 1 157541 SVM-CBP

63.04 0.01 0.1 356881 SVM
BankAu 90.51 0.03 0.01 299993 SVM-CBP

92.34 0.01 0.001 361902 SVM
Fertility 75.00 0.22 0.1 26967 SVM-CBP

80.00 1 0.01 51703 SVM
Ionosphere 85.71 0.40 0.001 22213 SVM-CBP

82.86 0.25 0.01 10745 SVM
LiverDisorders 62.32 0.05 0.01 72035 SVM-CBP

63.77 0.1 0.01 236053 SVM
Pima 62.99 0.22 0.1 69634 SVM-CBP

64.94 0.1 0.1 123962 SVM
QSARbio 69.67 0.29 0.01 234925 SVM-CBP

78.20 0.01 0.01 374030 SVM
SPECTheart 75.47 0.54 1 61285 SVM-CBP

75.47 0.5 0.1 171848 SVM
StatlogHeart 66.67 0.03 0.01 27475 SVM-CBP

70.37 0.25 0.001 51404 SVM
WhoSaCus 84.09 0.16 1 83255 SVM-CBP

92.05 0.1 1 285817 SVM

Table 4.3: Results of evaluation SVM-CBP and comparison with SVM online

Once again, we see a similarity between the accuracy results from both methods as they

result to be very close. On the other hand, the amount of time spent to obtain these

results is smaller for the SVM-CBP model in the majority of the cases (excluding the

Ionosphere dataset), than the time to do the cross-validation and posterior testing of

the SVM.

Di↵erently, for some datasets the optimal value for the parameters are similar or even

the same in specific cases, in particular of � parameter. Regarding the � the values tend

to be close but in some cases the is a palpable di↵erence.

Continuing with Figure 4.4, the diagonal tendency is described with values close to each

other with a di↵erence smaller than a 10%. This clearly may confirm the first intuition
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Figure 4.4: Representation of the test accuracies obtained from running both on-line
algorithms SVM and SVM-CBP for every dataset

that the predictive power of both models is in some way similar, as observed in the case

of the Batch formulation of the same models.

Figure 4.5: Representation of the computational time needed for di↵erent datasets
and for the algorithms SVM and SVM-CBP in the on-line case.

Focusing in the total computation time, as it was anticipated, its quantity is strongly
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dependent to the characteristics of the dataset as more time is needed for bigger quan-

tities of data instances in the same measure as the complexity of the problem. Saying

so, observing the total computation time needed for each model in Figure 4.5 there is a

clear evidence of that the time of SVM exceeds the SVM in nearly all cases.

To see a much clearer evidence of the reduction in time with the SVM-CBP deduced

model, percentage plot of the improvement in time can be seen in Figure 4.6. For all

datasets, with the exception of the Ionosphere, there is an improvement in the time

computation superior to 20% which is a very good result. Even for half of the datasets

this improvement also surpasses the 40% that would mean nearly reduction of one order

in computational time.

Figure 4.6: Representation of the improvement in time for every dataset regarding
the SVM-CBP in comparison to the SVM, in the on-line case.

There is a huge di↵erence observed regarding the Ionosphere dataset, in this case the

SVM-CBP computational time is much larger, it doubles the SVMs time. The possible

reason for this fact is that this dataset in particular is the one that has the major

number of dimensions, as the SVM-CBP methodology needs of the computation of an

extra Kernel for the CBP that is k

X

(z
j

). Thus, the mentioned computation is an extra

cost that the SVMs do not have and it may a↵ect the total time when the dimensions

of the dataset are high.

Nevertheless, considering that for the SVM on-line version 5 values for � are checked

in relation to the 15 values checked for the SVM-CBP model we can say that this time

improvement is more relevant, as it allows a wider range of � values without the need

of having the cross-validation folders of � for this new algorithm.
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Computing the Wilcoxon rank test, the corresponding p-values obtained are shown in

Table 4.4 for a value of ↵=0.05 regarding the significance.

Batch Online
p 0.6406 0.0547
h 0 0

Table 4.4: 5% significance level

As exemplified in the previous table, it fails to reject the null hypothesis that the median

di↵erence between pairs of observations is zero. That would mean that we cannot tell

whether one model is significantly di↵erent, and in conclusion, better or worse than the

other.



Conclusions

In this master thesis a research of a new classification methodology have been carried

out combining the knowledge from two machine learning models: the Support Vector

Machines and the Optimized Geometric Ensembles. Extracting the concept of Charac-

teristic Boundary Points from the second method and reformulating the SVMs in order

to cope with them, a new algorithm has been proved to work for the same kind of tasks

able to be performed by the other two methods. This innovative classification method-

ology has been called SVM with CBP. This new formulation has been proven by the

notorious similarity of the results to the SVM.

The Characteristic Boundary Points are obtained from the dataset according to the

first procedure of the OGE, and when introduced in the SVM formulation generate a

gain of knowledge of the boundary that is translated in a peek of the norm term of

the formulation. This peek has been checked to be a good indication of the range from

which an optimal value of the Kernel parameter � can be picked. This fact, led us to

the finding of a criteria using this norm peek to automatize this parameter selection.

The criteria was checked and then used in the final evaluation (cross-validation) of the

new model formulated in batch and on-line version, and then compared to those of the

usual SVM formulation.

As seen in the experimental section, the results obtained are comparable for both models

so we can say that the predictive power of the new model SVM-CBP is similar to the

well known SVM, with the advantage of having an automation of the Kernel parameter

selection that for the on-line formulation is translated in a reduction of time with more

� values checked.

Thus we can say this methodology may be an advance of the SVM models improving

in one of its main drawbacks: the tuning of Kernel parameters. This new process

is carried out without having the over-fitting problem, that is also one of the majors

SVMs concerns.
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Future work

In this same line of research, a deeper study of this methodology may be needed to fully

understand its possibilities and behaviour. For instance, other Kernel definitions could

be explored as well in a similar way that the Radial Basis Function Kernel has been

studied.

On the other hand, an examination of similar systems to improve the tuning stage of

the SVM is a still open channel of investigation.

In addition, the inclusion of the Characteristic Boundary Points in other kinds of similar

methodologies could be a possible further study.
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