ARQUITECTURA TÈCNICA
PROJECTE DE FI DE CARRERA

ESTUDI I ANÀLISI DELS FOCS D’HABITATGE EN NÚCLIS URBANS ANTICS

Projectista/es: Lluís Albert Vilaginés Romero
Director/s: Ana Maria Lacasta
Convocatòria: Juny/Juliol 2015
RESUM

Aquest projecte final de carrera consta d’una primera part on s’analitza una sèrie de dades facilitades pels Bombers de la Generalitat de Catalunya. Amb l’ordenació, classificació i anàlisi d’aquestes s’intenta trobar algun tipus de correlació en diferents variables com podrien ser les estacions de l’any, les diferents parts del dia així com l’evolució de les temperatures mínimes anuals, etc. Seguidament s’estudia i es defineix la situació actual que es pot trobar en el Centre Històric d’algunes ciutats des de la perspectiva social, a fi d’establir si fos el cas una relació amb la pobresa energètica tan de moda en aquests últims temps.

En la part central, més teòrica, s’explica la tipologia constructiva que es localitza en els nuclis urbans antics. D’altra banda, es defineixen breument alguns conceptes bàsics relacionats amb la teoria del foc i els comportaments dels materials en relació amb aquest.

Per últim s’analitza un cas pràctic que va succeir a la població de Balaguer l’any 2014. Per dur-lo a terme s’analitza des de la formació del nucli antic, a la tipologia constructiva que el forma. Com a punt final es troba la descripció dels fets ocorreguts i les possibles millores per poder evitar en tot el possible que aquest tipus de serveis es repeteixin, i si fos el cas, que els seus efectes es puguin minimitzar al màxim.

Cal destacar que durant la redacció d’aquest projecte, analitzant diferents informes del Cos de Bombers de la Generalitat així com de la fundació MAPFRE s’ha trobat que la població amb més risc de ser víctima d’un incendi d’habitatge és el col·lectiu de gent gran i sobretot els residents en poblacions petites. És per això que es recomana que les autoritats competents en la matèria es plantegessin trobar solucions en aquest sector de la població amb un alt risc d’oblit.
Estudi i anàlisi dels focs d'habitatge en nuclis urbans antics
ÍNDICE

1 INTRODUCCIÓ... 7
2 RECOPILACIÓ DE LES DADES .. 9
 2.1 Acotación dels anys i poblacions a analitzar ... 9
3 CLASSIFICACIÓ DE LES DADES ANALITZADES... 11
 3.1 Quantificació total dels focs .. 12
 3.2 Classificació segons la localització del incendi en la ciutat ... 13
 3.3 Classificació en funció de l’època de l’any ... 14
 3.4 Classificació en funció de l’hora del dia ... 16
 3.5 Comparativa dels focs amb la mitjana de temperatures anuals .. 18
 3.6 Classificació en funció de la localització dins l’habitatge .. 20
 3.7 Conclusions de l’anàlisi de les dades classificades .. 22
4 ANÀLISI DE LA SITUACIÓ ACTUAL DES DE LA PERSPECTIVA SOCIAL... 25
 4.1 Afectació pobresa energètica ... 25
 4.2 Tipologia de la gent que l’ocupa .. 26
 4.3 Problemàtica en l’alta ocupació ... 29
 4.4 Possibles casos de Síndrome de Diògenes ... 34
5 ESTUDI GENERAL DE LA TIPOLOGIA CONSTRUCTIVA EN CENTRES HISTÒRICS 36
 5.1 Anys de construcció. Diferents modificacions i reformes .. 36
 5.2 Estat de conservació de l’edificació ... 37
 5.3 Tipologia estructural .. 38
 5.4 Patologies associades ... 47
6 CONCEPTES BÀSICS D’INCENDIS ... 52
 6.1 Conceptes físics i químics .. 52
 6.2 Anàlisi dels elements d’un incendi ... 53
 6.3 Tipus de focs .. 61
 6.4 Transmissió de la calor ... 62
 6.5 Productes de combustió .. 64
 6.6 Senyals d’un incendi ... 66
 6.7 Comportament dels materials estructurals davant d’incendis i explosions 71
7 ESTUDI DE CAS PRÀCTIC (9 de març 2004).. 80
 7.1 Ubicació o localització ... 80
 7.2 Història .. 80
 7.2.1 Balaguer l’última ciutat de la plana. Marc territorial .. 83
 7.2.2 El centre històric i el desenvolupament urbanístic de Balaguer 83
 7.2.3 La relació del Centre Històric de Balaguer amb la resta de la ciutat 85
 7.3 Descripció de la situació urbanística i socioeconòmica del barri ... 86
 7.3.1 Descripció de l’estat de conservació de l’edificació .. 86
 7.4 Descripció de la població ... 88
7.4.1 La recuperació demogràfica del centre històric.................................88
7.4.2 Una recuperació basada en l’acolliment dels nouvinguts......................88
7.5 Localització (Emplaçament) ...89
7.6 Descripció de la tipologia constructiva..90
7.7 Descripció del Servei...91
7.7.1 Accessibilitat...91
7.7.2 Descripció de l’incendi ..93
7.7.3 Informes del personal operatiu ...94
7.7.4 Hipòtesi de desenvolupament de l’incendi.......................................95
7.7.5 Factors determinants per la ràpida evolució del foc............................95
7.8 Deficiències estructurals habituals ..96
7.9 Recull de premsa sobre el servei ..98
8 PROPOSTES GENERALS I ESPECÍFIQUES PER MILLORAR EL CENTRE HISTÒRIC.......101
8.1 Regeneració física i urbanística del barri ..101
8.2 Millora de la qualitat de vida..101
8.3 Promoure la cohesió i dinamització..101
8.4 Retornar la centralitat al Centre Històric ..102
8.5 Dinamització econòmica del barri...102
8.6 Accions a realitzar específiques per part dels Ajuntaments..................102
8.7 Accions a realitzar específiques per part dels Bombers103
9 CONCLUSIONS / RECOMANACIONS..105
10 BIBLIOGRAFIA..107
AGRAÈMENTS..110
ANNEXOS
Annex 1 Fotografies
 1.1 Estat actual casc antic de Balaguer
 1.2 Focs d’habitatge
 1.3 Tipologia de vehicles Cos de Bombers
Annex 2 Plànols
 2.1 Focs al casc antic de Balaguer
 2.2 Vinculació amb la precarietat
 2.3 Classificació estacional
 2.4 Zones accés i treball autoescala
 2.5 Zones transitoris BUL
 2.6 Itinerari accés BUL
 2.7 Zones emplaçament BUP i material
Annex 3 Excels Dades Bombers
Annex 4 Enquestes
 4.1 Metodologia de l’enquesta
 4.1 Enquesta model
 4.2 Resultats de l’enquesta
 4.3 Enquestes contestades
Annex 5 Recull de premsa
Annex 6 Altres documents
ÍNDICE DE FIGURES

Figura 2.1: Imatge de Lleida. ... 9
Figura 2.2: Imatge de Balaguer ... 10
Figura 3.1: Mapa de Lleida ... 11
Figura 3.2: Mapa de Balaguer ... 12
Figura 3.3: Focs habitatge 2000/2014 ... 13
Figura 3.4: Focs habitatge 2000/2014 ... 14
Figura 3.5: Classificació en funció de l’estació de l’any Lleida ... 15
Figura 3.6: Classificació en funció de l’estació de l’any Balaguer ... 16
Figura 3.7: Classificació en funció de la franja horària Lleida en percentatge ... 17
Figura 3.8: Classificació en funció de la franja horària Balaguer en percentatge ... 17
Figura 3.9: Comparativa focs d’habitatge nuclí urbà antic de Lleida amb mitjana temperatures mínimes anuals 18
Figura 3.10: Comparativa focs d’habitatge nuclí urbà antic de Balaguer amb mitjana temperatures mínimes anuals de la Noguera ... 19
Figura 3.11: Afectació habitatge Lleida ... 21
Figura 3.12: Afectació habitatge Balaguer ... 22
Figura 3.13: Ho pots evitar ... 24
Figura 4.1: Població Centre Històric Lleida any 2013 ... 28
Figura 4.2: Població per nacionalitat Centre Històric Balaguer ... 28
Figura 5.1: Carrer la Botera cruïlla amb plaça Ollé ... 37
Figura 5.2: Imatge dels carrers de Balaguer ... 37
Figura 5.3: Fotografia de fonament per prolongació del mur ... 39
Figura 5.4: Fotografia de fonament per prolongació del mur amb ampliació per a sabata ... 40
Figura 5.5: Mur pantalla carrer Sant Joan, Balaguer ... 40
Figura 5.6: Fotografia ensorrament Carrer Cavallers Lleida ... 41
Figura 5.7: Centre Històric de Balaguer ... 42
Figura 5.8: Mur de tapia ... 42
Figura 5.9: Fotografia forjat unidireccional amb biguetes de fusta ... 44
Figura 5.10: Fotografia biguetes formigó aluminós ... 44
Figura 5.11: Imatge de la cruïlla de la plaça Mercadal de Balaguer amb carrer Botera ... 45
Figura 5.12: Fotografia escala amb volta catalana ... 46
Figura 5.13: Fotografia casc antic Balaguer, Carrer Minerva ... 48
Figura 5.14: Casc antic de Balaguer ... 49
Figura 5.15: Exemple clar d’erosió de les juntes. Casc antic Balaguer ... 50
Figura 6.1: La corba estàndard temperatura-temps ISO834 i el foc natural ... 73
Figura 6.2: Diagrama d’equilibri o de fase Fe-C (Ferro Carboni) ... 74

1 En les Figures i Taules que no apareix la Font són d’elaboració pròpia.
ÍNDEX DE TAULES

Taula 3.1: Quantificació de focs d’habitatge en les diferents ciutats..13
Taula 3.2: Localització dels focs en la ciutat de Lleida..13
Taula 3.3: Localització dels focs en la ciutat de Balaguer..14
Taula 3.4: Foc en funció de l’estació de l’any Lleida..15
Taula 3.5: Classificació en funció de l’estació de l’any Balaguer..15
Taula 3.6: Classificació en funció de la franja horària Lleida..16
Taula 3.7: Classificació en funció de la franja horària Balaguer..17
Taula 3.8: Número de foc i Mitjana de mínimes anuals de Lleida..18
Taula 3.9: Número de foc i Mitjana de mínimes anuals de Balaguer..19
Taula 3.10: Classificació del foc segons afectació habitatge Lleida..20
Taula 3.11: Classificació del foc segons afectació habitatge Balaguer..22
Taula 4.1: Població al municipi de Lleida a 30-06-2013 per nacionalitat i distribuïda per barri.................27
Taula 6.1: Classificació dels materials segons la seva reacció al foc..59
Taula 6.2: Característiques bàsiques de la resistència al foc dels materials..59
Taula 6.3: Principals focus d’ignició accidentals..61
Taula 6.4: Temperatures d’interès per a diferents materials..68
Taula 6.5: Temperatures aproximades de fusió i ignició per a materials plàstics i metàl·lics presents en una construcció..69
Taula 6.6: Color de les flames segons el material que crema..70
1 INTRODUCCIÓ

Aquest treball final de carrera neix de la preocupació generada en la feina que realitzo. En els últims anys s’han realitzat diferents serveis al Centre Històric de Balaguer i a mi, com a Bomber, juntament amb el meu col·lectiu, ens neguitem molt els serveis que realitzem en aquest indret geogràfic, en especial els relacionats amb el foc d’habitatge, com es fa palès en l’enquesta realitzada al col·lectiu2. Un dels motius és per l’alta pressió social que s’hi genera i també per la seva perillositat. En una conversa amb la professora que al final ha estat la meva tutora del projecte, vàrem parlar dels diferents estudis que es duen a terme en el laboratori del foc de l’Escola Politècnica de Catalunya, tan dels projectes que s’han realitzat a l’escola com dels que es troben en curs. Alguns dels treballs citats aquell dia varen ser els de simulació de focs, els de proteccions passives en diferents materials de construcció, etc.

Fruit d’aquelles conversacions, vàrem veure que podria ser força interessant dur a terme aquest Treball Final de Carrera ja que es donen les dues vessants per poder realitzarlo: la d’Arquitecte Tècnic i la de Bomber. Així d’aquesta manera poder intentar analitzar el perquè es produeixen, aconseguir minimitzar els seus efectes i també millorar l’extinció del foc de la manera més efectiva possible.

Un dels motius d’aquest malestar és el causat per la localització del foc. Normalment aquests incendis es produeixen en barris marginals amb una accessibilitat molt precària a causa de la mateixa urbanització de la trama de la ciutat, així com per l’estat de decadència i degradació que han patit els centres històrics de moltes ciutats de Catalunya. Normalment els serveis que tenen aquests habitatges estant molt degradats pel pas del temps i la no rehabilitació tant per part dels propietaris com de la gent que l’ocupa.

D’altra banda, la incertesa que ens produeix aquest tipus de foc al col·lectiu de bombers és causat per la rapidesa de propagació. Normalment són habitatges de façanes molt estretes amb forjats de canyissar i entrebigats de fusta. Habitualment en la majoria d’aquests edificis es dóna una sobre ocupació de persones en un mateix domicili, juntament amb el fet que, s’utilitzen sistemes de generació de la calor molt precaris com poden ser brasers. A causa d’aquests sistemes de calefacció tan limitats i els hiverns de temperatures extremes en aquesta zona de Catalunya - Terres de Lleida- en la tasca d’extinció del foc acostumem a trobar molta quantitat de roba apilada.

Després d’analitzar aquestes variables, vàrem creure oportú revisar les dades aportades pel cos de Bombers de la Generalitat per tal de poder extreure’n conclusions a fi

2 Consultar Annex 4 Enquestes
de corregir les diferents actuacions del cos, així com implementar programes per a la millora de les polítiques urbanístiques dels Ajuntaments en el casc antic. A més a més, d’aconseguir una millor conscienciació respecte al tema de la prevenció sobre les persones que viuen en aquests nuclis urbans, ja que normalment les persones que habiten en aquests nuclis de població acostumen a ser immigrants amb costums i cultures molt diferents de les nostres.

Vallfogona de Balaguer, la Noguera, Juny del 2015

Lluís Albert Vilaginés Romero
2 **RECOL·LACIÓ DE LES DADES**

Les dades recopilades per a dur a terme aquest Projecte Final de Carrera (PFC) han estat cedides pel cos de Bombers de la Generalitat de Catalunya.

En els següents punts s’analitzaran les diferents classificacions que s’han fet sobre les dades proporcionades per poder extreure’n el màxim nombre d’informació possible. Primerament s’han organitzat i ordenat les dades facilitades. En la cessió d’aquestes s’ha fet una selecció per només llistar els focs catalogats com d’habitatge. D’aquesta forma s’ha pogut acotar el punt de partida per poder analitzar la informació.

2.1 **Acotació dels anys i poblacions a analitzar**

En aquest Projecte s’analitzaran, de les dades facilitades pels Bombers, aquelles que es troben compreses entre els anys 2000 i 2014, ambos inclosos, a fi d’obtenir uns resultats actualitzats i acotats en una dècada. En el cas de voler donar continuïtat al projecte hi ha l’opció d’analitzar la resta de dades per dècades.

Amb motiu de la localització del meu lloc de treball, Parc de Bombers de Balaguer, he decidit analitzar les poblacions de Balaguer i Lleida per proximitat. D’altra banda, he decidit escollir aquestes ciutats per la facilitat en l’obtenció de la informació i per la possible utilització d’aquesta en un futur pròxim.

Les dues poblacions presenten una aparença similar respecte a la limitació del casc antic urbà. Com es pot visualitzar en les fotografies que es troben a continuació, les dues ciutats estan dividides pel riu Segre per un costat i per un petit turó per l’altre. Aquestes dues barreres naturals caracteritzen i marquen el creixement de les dues poblacions.

Figura 2.1: Imatge de Lleida
Font: Pàgina web Ajuntament de Lleida
En l’anterior fotografia es pot apreciar com per la zona baixa de la ciutat el riu Segre, en el seu pas per Lleida, genera una barrera natural i per la part alta, la Seu Vella de Lleida, ubicada en un turó, delimita la zona del casc urbà antic (Centre Històric).

Lleida és capital de província i de la comarca del Segrià. Aquesta ciutat té una població d’uns 139.809 habitants amb una densitat de 659 hab./km², sent el sisè municipi amb més població de Catalunya. La província de Lleida té 443,032 habitants amb una densitat de 36.46 hab/km².

Pel que fa a Balaguer, tal i com es pot observar en aquesta imatge, també s’hi pot veure les dues delimitacions naturals. Per un costat, el riu Segre i per l’altre la muralla de la ciutat. Aquesta durant molts anys va fer de barrera per la no expansió de la vila per la part alta.

Balaguer, històrica ciutat del Comtat d’Urgell, és la capital de la comarca de la Noguera. La Noguera és la comarca més extensa de tot el territori català. La seva capital de província, Lleida, està situada a uns 30km. Balaguer està poblada per uns 19.000 habitants, té una altitud d’uns 250m i la seva superfície ocupa uns 57,4km².
3 CLASSIFICACIÓ DE LES DADES ANALITZADES

La principal classificació que s'ha realitzat a partir de les dades obtingudes és en relació a la ubicació del foc dins del nucli urbà de la població. Per tal de facilitar la comprensió es realitzà una distinció entre el nucli urbà antic i el nucli urbà modern.

A continuació es troben dues imatges on s'especifica quin espai és el casc urbà antic i el modern de les ciutats de Lleida i de Balaguer.

Pel que fa a Lleida, la zona del Centre Històric, objecte d’estudi en aquest projecte, està formada per un total de 65 carrers, compresos entre l’accés sud a la Seu Vella, l’eix comercial, l’enllaç dels carrers Germanetes i Bisbe Torres amb la Rambla d’Aragó fins a la plaça Cervantes i el carrer Camp de Mart fins a la confluència de nou amb la Seu Vella. Vegeu aquesta delimitació en el següent mapa:

![Figura 3.1: Mapa de Lleida](Font: Pàgina web Ajuntament Lleida)

La línia vermella en el mapa delimita el casc urbà antic, aquest queda a l’interior. La resta, espai que es troba a l’exterior de la línia, es considera casc urbà modern, afores o polígon.
Estudi i anàlisi dels focs d’habitatge en nuclis urbans antics

3.1 Quantificació total dels focs

Primerament s’ha dut a terme una quantificació total dels focs anuals que es produeixen tant en la població de Balaguer com a la de Lleida. La intencionalitat d’aquesta és trobar la relació respecte a les temperatures de les dues ciutats entre els anys 2000 i 2014 a fi de poder relacionar si a major fred s’incrementen el nombre d’incendis, és a dir, més fred, més incendis.

A partir del mes d’octubre són freqüents les boires, particularment a la Plana d’Urgell i al Pla de Lleida. Aquests fenomen meteorològic té una durabilitat que pot anar de dies a setmanes. Actualment la mitjana de dies amb boira és de 52 dies. A causa de la boira, en nombroses ocasions, les temperatures tendeixen a estar sota zero en la totalitat del dia.
En la taula anterior es pot observar que a Lleida l’any que s’han produït més focs és el 2010, amb una diferència de dos focs amb el 2009, i l’any que menys l’any 2006. En canvi, a la ciutat de Balaguer, el 2001 juntament amb el 2012 van ser els anys amb un major número d’incendis, l’any 2008 ha estat l’any amb menor número de focs.

3.2 Classificació segons la localització del incendi en la ciutat

En segon lloc s’ha dut a terme una classificació de la localització dels focs produïts en la ciutat. Aquesta està dividida en cinc paràmetres: centre històric (centre urbà antic), urbà (Centre Històric modern), afores, polígon i desconeguts. S’ha optat per fer una última classificació de desconeguts atès que en les dades cedides pels Bombers no hi ha cap tipus de localització en la descripció del foc.

Primerament s’analitzarà la localització dels incendis dins de la ciutat de Lleida. A continuació es troben la taula i una gràfica resumint el contingut:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BALAGUER</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>18</td>
<td>7</td>
<td>17</td>
<td>15</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>LLEIDA</td>
<td>76</td>
<td>76</td>
<td>83</td>
<td>69</td>
<td>64</td>
<td>80</td>
<td>63</td>
<td>108</td>
<td>86</td>
<td>136</td>
<td>138</td>
<td>114</td>
<td>131</td>
<td>95</td>
<td>83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total 2000/2014 Lleida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre Històric</td>
</tr>
<tr>
<td>Urbà</td>
</tr>
<tr>
<td>Afores</td>
</tr>
<tr>
<td>Desconegut</td>
</tr>
<tr>
<td>Polígon</td>
</tr>
</tbody>
</table>

Figura 3.3: Focs habitatge 200/2014 Lleida
Tot seguit es troben recopilades les dades, mitjançant una taula i una gràfica, dels focs produïts dins de Balaguer durant els anys 2000 i 2014.

Taula 3.3: Localització dels focs en la ciutat de Balaguer

<table>
<thead>
<tr>
<th>Total 2000/2014 Balaguer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre Històric</td>
</tr>
<tr>
<td>Urbà</td>
</tr>
<tr>
<td>Afores</td>
</tr>
<tr>
<td>Desconegut</td>
</tr>
<tr>
<td>Polígon</td>
</tr>
</tbody>
</table>

Figura 3.4: Foc habitatge 2000/2014 Balaguer

Tot i que el percentatge de focs en casc urbà antic no sigui molt alt, no vol dir que no comportin una gran perillositat. Com es pot veure en les taules i els gràfics, on es troba més quantitat de focs d'habitatge és en els centres urbans moderns. Aquest fet és justificable ja que la superfície edificada és molt més gran.

3.3 Classificació en funció de l’època de l’any

Una tercera classificació que s’ha realitzat és en funció de l’època de l’any, tenint en compte les estacions anuals. (Tardor, Hivern, Primavera i Estiu). En aquesta classificació ja s’han utilitzat únicament les dades amb els focs d'habitatge en nuclis urbans antics.

A continuació es troben exposades les dades de Lleida:
Taula 3.4: Foc en funció de l’estació de l’any Lleida

<table>
<thead>
<tr>
<th>Estació any</th>
<th>Lleida Centre urbà antic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hivern</td>
<td>42</td>
</tr>
<tr>
<td>Primavera</td>
<td>46</td>
</tr>
<tr>
<td>Estiu</td>
<td>42</td>
</tr>
<tr>
<td>Tardor</td>
<td>50</td>
</tr>
</tbody>
</table>

Figura 3.5: Classificació en funció de l’estació de l’any Lleida

En la població de Lleida s’observa que la distribució és molt més uniforme, tot i tenir més focs d’habitatge en les estacions de transició com són la primavera, 26%, i la tardor, 28%. També es pot comprovar que la tardor té més focs que la resta d’estacions. Aquest fet es pot justificar ja que en aquesta època de l’any és quan els sistemes de calefacció entren en funcionament a les llars.

Taula 3.5: Classificació en funció de l’estació de l’any Balaguer

<table>
<thead>
<tr>
<th>Estació any Balaguer Centre urbà antic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hivern</td>
</tr>
<tr>
<td>Primavera</td>
</tr>
<tr>
<td>Estiu</td>
</tr>
<tr>
<td>Tardor</td>
</tr>
</tbody>
</table>
Estudi i anàlisi dels focs d’habitatge en nuclis urbans antics

16

Figura 3.6: Classificació en funció de l’estació de l’any Balaguer

En aquesta classificació s’aprecia que la quantitat més nombrosa de focs és a l’hivern, amb un 12% de diferència entre les dues èpoques de l’any que precedeixen. Aquesta desigualtat es pot associar a la temperatura que fa en aquesta zona i la precarietat dels sistemes de calefacció que tenen aquest habitatges.

3.4 Classificació en funció de l’hora del dia

Mitjançant la següent classificació es pretén esbrinar quina és la tendència que tenen a produir-se els focs al llarg del dia. S’analitza si hi ha més incidència en la part central del dia, a causa dels focs de cuines, o bé en la franja horària de nit, per culpa de diferents tipus de descuits ja siguin provocats pels sistemes de calefacció com també per algunes cigarretes mal apagades, etc...

Per poder-ho classificar s’ha dividit el dia en les següents franges: mati, de les 07:00 a les 12:00h; migdia, de les 12:00 a les 16:00h; tarda, de les 16:00 a les 20:00h; nit de les 20:00 a les 02:00h i finalment matinada de les 02:00 a les 07:00h del matí següent.

En la taula que es troba a continuació s’hi representen les dades de Lleida:

| Taula 3.6: Classificació en funció de la franja horària Lleida |
|-------------------|-------------------|
| Franja horària Lleida | |
| matí | 07:00/12:00 | 28 |
| migdia | 12:00/16:00 | 39 |
| tarda | 16:00/20:00 | 30 |
| nit | 20:00/02:00 | 64 |
| matinada| 02:00/07:00 | 19 |
Estudi i anàlisi dels focs d’habitatge en nuclis urbans antics

Figura 3.7: Classificació en funció de la franja horària Lleida en percentatge

Tot seguit es troben les dades de Balaguer respecte a la classificació del foc segons l’hora:

Taula 3.7: Classificació en funció de la franja horària Balaguer

<table>
<thead>
<tr>
<th>Franja horària Balaguer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mati 07:00/12:00</td>
<td>5</td>
</tr>
<tr>
<td>migdia 12:00/16:00</td>
<td>6</td>
</tr>
<tr>
<td>tarda 16:00/20:00</td>
<td>9</td>
</tr>
<tr>
<td>nit 20:00/02:00</td>
<td>12</td>
</tr>
<tr>
<td>Matinada 02:00/07:00</td>
<td>0</td>
</tr>
</tbody>
</table>

Figura 3.8: Classificació en funció de la franja horària Balaguer en percentatge
3.5 Comparativa dels focs amb la mitjana de temperatures anuals

En aquest apartat s'ha dut a terme una recerca de dades a la pàgina de l'IDESCAT (Institut d'estadística de Catalunya) a les estacions meteorològiques de Vallfogona de Balaguer (Noguera), per tenir referència a Balaguer i a l'estació de Raïmat (Segrià) per tenir referència a Lleida.

A continuació es troben les dades de Lleida:

Taula 3.8: Número de foc i Mitjana de mínimes anuals de Lleida

<table>
<thead>
<tr>
<th>Any</th>
<th>Número de foc</th>
<th>Mitjana mínimes anuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>76</td>
<td>8,6</td>
</tr>
<tr>
<td>2001</td>
<td>76</td>
<td>6,8</td>
</tr>
<tr>
<td>2002</td>
<td>83</td>
<td>8,6</td>
</tr>
<tr>
<td>2003</td>
<td>69</td>
<td>8,9</td>
</tr>
<tr>
<td>2004</td>
<td>64</td>
<td>8,1</td>
</tr>
<tr>
<td>2005</td>
<td>80</td>
<td>7,5</td>
</tr>
<tr>
<td>2006</td>
<td>63</td>
<td>9</td>
</tr>
<tr>
<td>2007</td>
<td>108</td>
<td>7,4</td>
</tr>
<tr>
<td>2008</td>
<td>86</td>
<td>8,1</td>
</tr>
<tr>
<td>2009</td>
<td>136</td>
<td>8,4</td>
</tr>
<tr>
<td>2010</td>
<td>138</td>
<td>7,4</td>
</tr>
<tr>
<td>2011</td>
<td>114</td>
<td>8,6</td>
</tr>
<tr>
<td>2012</td>
<td>131</td>
<td>7,8</td>
</tr>
<tr>
<td>2013</td>
<td>95</td>
<td>7,6</td>
</tr>
<tr>
<td>2014</td>
<td>83</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Figura 3.9: Comparativa focs d'habitatge nucli urbà antic de Lleida amb mitjana temperatures mínimes anuals
Tot seguit es troben les dades recopilades a la ciutat de Balaguer:

Taula 3.9: Número de foc i Mitjana de mínimes anuals de Balaguer

<table>
<thead>
<tr>
<th>Any</th>
<th>Número de foc</th>
<th>Mitjana mínimes anuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>8</td>
<td>8,4</td>
</tr>
<tr>
<td>2001</td>
<td>12</td>
<td>8,1</td>
</tr>
<tr>
<td>2002</td>
<td>5</td>
<td>8,7</td>
</tr>
<tr>
<td>2003</td>
<td>10</td>
<td>9,2</td>
</tr>
<tr>
<td>2004</td>
<td>8</td>
<td>7,9</td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>7,3</td>
</tr>
<tr>
<td>2006</td>
<td>6</td>
<td>9,1</td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>7,8</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
<td>8,4</td>
</tr>
<tr>
<td>2009</td>
<td>18</td>
<td>8,8</td>
</tr>
<tr>
<td>2010</td>
<td>7</td>
<td>7,6</td>
</tr>
<tr>
<td>2011</td>
<td>17</td>
<td>8,8</td>
</tr>
<tr>
<td>2012</td>
<td>15</td>
<td>7,7</td>
</tr>
<tr>
<td>2013</td>
<td>8</td>
<td>7,3</td>
</tr>
<tr>
<td>2014</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Figura 3.10: Comparativa focs d’habitatge nuclis urbà antic de Balaguer amb mitjana temperatures mínimes anuals de la Noguera

Figura 3.10: Comparativa focs d’habitatge nuclis urbà antic de Balaguer amb mitjana temperatures mínimes anuals de la Noguera.
Pel que fa a la ciutat de Balaguer no trobem cap correlació entre l'increment de focs i la baixada de temperatures mitjanes anuals. Podem destacar l'any 2006 ja que amb un augment de temperatura d'un grau centígrad els focs van tenir una baixada fins a 6 anuals.

3.6 Classificació en funció de la localització dins l'habitatge

En aquest apartat s'ha realitzat una classificació dels focs en les dues ciutats segons la seva localització dins de l'habitacle, intentant esbrinar si hi ha més incidència en alguna part específica d'aquest.

Segons les dades analitzades es visualitza que un dels punts més importants de concentració de focs és l'estança de la cuina. Pel que fa a la ciutat de Lleida la següent ubicació amb més focs són els dormitoris. Aquests molts cops són provocats per cigarretes mal apagades així com també per la proximitat d'aparells elèctrics d'escalfament a sofàs, cortines o bé altres materials inflamables.

A continuació es troba una taula amb les dades recollides a la ciutat de Lleida:

Taula 3.10: Classificació del foc segons afectació habitatge Lleida

<table>
<thead>
<tr>
<th>Segons afectació habitatge Lleida</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCENSOR</td>
<td>2</td>
</tr>
<tr>
<td>BALCÓ</td>
<td>3</td>
</tr>
<tr>
<td>BANY</td>
<td>1</td>
</tr>
<tr>
<td>CAIXA ESCALA</td>
<td>12</td>
</tr>
<tr>
<td>CUINA</td>
<td>26</td>
</tr>
<tr>
<td>DORMITORI</td>
<td>26</td>
</tr>
<tr>
<td>ENTRADA/PORTAL</td>
<td>5</td>
</tr>
<tr>
<td>FAÇANA</td>
<td>1</td>
</tr>
<tr>
<td>LOCAL COMERCIAL</td>
<td>9</td>
</tr>
<tr>
<td>MAL CLASSIFICAT</td>
<td>9</td>
</tr>
<tr>
<td>MENJADOR</td>
<td>6</td>
</tr>
<tr>
<td>PATI</td>
<td>8</td>
</tr>
<tr>
<td>S/i</td>
<td>50</td>
</tr>
<tr>
<td>SALA DE MAQUINES</td>
<td>5</td>
</tr>
<tr>
<td>SOTA COBERTA</td>
<td>3</td>
</tr>
<tr>
<td>TOT EL PIS</td>
<td>9</td>
</tr>
</tbody>
</table>

Com es pot veure a la taula anterior de focs classificats en funció de la localització dins de la vivenda en la ciutat de Lleida, els que predominem més són en les estàncies de la cuina així com en els dormitoris. En les dades analitzades no es troben descrites les causes del foc, però es pot suposar que en les cuines la gran majoria de vegades són produïts per
Estudi i anàlisi dels focs d’habitatge en nuclis urbans antics

descuits d’olles al foc que com a conseqüència encenen les campanes extractores de fum i per proximitat els armaris de la cuina.

Pel que fa als dormitoris es pot suposar que un nombre important dels focs que s’hi produeixen són provocats per cigarretes o bé també per aparells d’escalfament massa pròxims a materials inflamables, com podria ser mantes, cortines, butaques, etc.

També es pot veure en la taula que hi ha un gran nombre de serveis classificats sense informació (S/I). Això és a causa del fet que en l’anàlisis de les dades facilitades pels Bombers no hi havia cap tipus d’informació per poder-los classificar. Molts d’aquests focs S/I es troben en cases abandonades.
Les dades que es troben a continuació són de la ciutat de Balaguer:

Taula 3.11: Classificació del foc segons afectació habitatge Balaguer

<table>
<thead>
<tr>
<th>Segons afectació habitatge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caixa escala</td>
<td>3</td>
</tr>
<tr>
<td>Cuina</td>
<td>9</td>
</tr>
<tr>
<td>Cuina/Menjador</td>
<td>1</td>
</tr>
<tr>
<td>Menjador</td>
<td>3</td>
</tr>
<tr>
<td>Mal classificat</td>
<td>4</td>
</tr>
<tr>
<td>Sense identificació</td>
<td>8</td>
</tr>
<tr>
<td>Tot</td>
<td>3</td>
</tr>
</tbody>
</table>

A la ciutat de Balaguer es pot veure que la ubicació més freqüent és a la cuina seguida dels focs S/I. Igualment com a la ciutat de Lleida la causa més probable de l’origen dels incendis en les cuines és per descuits en olles o bé per paelles al foc i el conseqüent desencadenant a la resta de la cuina.

Figura 3.12: Afectació habitatge Balaguer

3.7 **Conclusions de l’anàlisi de les dades classificades**

Una de les primeres conclusions que es pot extreure de les dades analitzades és que una gran part dels habitatges afectats en els nuclis antics estudiats estan desocupats. La segona conclusió, però no menys important, és que molts d’aquests es podrien evitar ja que són fruit de descuits provocats, moltes vegades, per excessos de confiança. Com a tercera conclusió s’ha de comentar que no es troba en les dades analitzades informació significativa
que permeti poder millorar en les següents actuacions a realitzar, com podrien ser mals
accessos als llocs dels serveis, alguns accessos bloquejats per vehicles mal estacionats,
etc.

Cal també concluir que, pel que respecta als edificis abandonats no acostuma a
haver-hi informació de la localització del foc dins l’habitatge així com tampoc de l’affectació.
Només s’hi troba la informació de la seva ubicació (adreça). Tanmateix, molts dels focs que
es produeixen en edificis abandonats, normalment ja tapiats pels Ajuntaments perquè la
gent no pugui accedir-hi, són provocats per gent, possiblement sense sostre, que crema
materials per poder-se escalfar. Com es pot veure en l’apartat 4.1. d’aquest projecte, en els
nuclis antics analitzats és on es localitza més gran quantitat de marginació social. Un dels
motius podria ser la seva degradació, els lloguers econòmics o les possibles ocupacions
molt més assequibles.

De les dades estudiades també es pot concloure que un gran nombre de focs són
provocats per unes instal·lacions elèctriques molt precàries. Aquest fet pot ser causat per la
seva construcció, que acostuma a ser molt antiga i no està adaptada a les necessitats
actuals, o bé per una sobrecàrrega en les instal·lacions.

Una de les possibles causes de la falta d’informació es deguda a què el Bombers no
fan la investigació posterior dels incendis si és necessària sinó que la realitza el cos de
Mossos d’Esquadra. Els professionals enquestats prefereixen que l’investigació posterior
sigui feta per una comissió mixta (Ajuntament més Bombers més Mossos d’Esquadra)³.

Per part dels Bombers de la Generalitat l’any passat es va posar en marxa una
campanya de seguretat a la llar anomenada “Ho pots evitar”. Aquesta està formada per un
tríptic on s’explica els diferents punts anteriorment comentats. Segons els Bombers el 95%
daquests incendis es podrien evitar d’una manera senzilla.

³ Consultar Annex 4 Enquestes
Segons fons dels Bombers de la Generalitat l’única estadística real de la qual disposen és que la franja de població més vulnerable és la gent gran. L’any 2014 de les 14 morts en els 3.069 incendis en vivendes a Catalunya, registrats pels Bombers fins al 31 d’octubre, sis tenien més de 80 anys.
4 ANÀLISI DE LA SITUACIÓ ACTUAL DES DE LA PERSPECTIVA SOCIAL

En aquest apartat s’analitzarà l’afectació de la pobresa energètica en la societat fent referència a la tipologia de població que es troba en aquestes situacions, més en concret en els nuclis urbans de les ciutats de Lleida i Balaguer. En els últims punts s’estudiarà de forma breu la problemàtica en l’alta ocupació dels habitatges i els possibles casos de Síndrome de Diògenes en centres històrics.

4.1 Afectació pobresa energètica

Molts dels incendis que es declaren en diversos habitatges són deguts indirectament a l’anomenada “pobresa energètica”. Segons Boardman (1990, citat en ACA, 2015) quan es parla de pobresa energètica es fa referència a la “incapacitat (per a una llar) d’obtenir una quantitat adequada de serveis de l’energia pel 10% de la renda disponible”. Segons el Comitè Econòmic i Social Europeu (CESE, 2011) una opció per definir la pobresa energètica és “la dificultat o la incapacitat de mantenir l’habitatge en unes condicions adequades de temperatura així com de disposar d’altres serveis energètics essencials a un preu raonable” Aquesta definició és de caràcter general i està subjecta al canvi de la societat.

Per tant es pot dir que una llar està en situació de pobresa energètica quan és incapaç de pagar una quantitat de serveis de l’energia suficient per a la satisfacció de les seves necessitats domèstiques i/o quan es veu obligada a destinar una part excessiva dels seus ingressos a pagar la factura energètica del seu habitatge.

En l’actualitat el Cos de Bombers de la Generalitat de Catalunya es troba amb gent que es veu obligada a cremar llenya, que té una xarxa elèctrica amb sobrecàrregues, que es crea les pròpies instal·lacions de calefacció, etc. Però tots aquests fets no es poden concretar en les dades analitzades en els apartats anteriors ja que en els informes dels serveis els Bombers només posen la causa de l’incendi, i no sempre es troba en tots els informes, i són els Mossos d’Esquadra els qui realitzen l’informe pericial.

Malgrat que no existeixen dades oficials, s’estima que la pobresa energètica és la causa del 70% dels incendis domèstics. En són exemple l’incendi en un habitatge del Vendrell en què van morir quatre menors el 26 de març de l’any passat, o la parella d’ancians que van morir per inhalació de fums perquè cremaven espardenyes per escalfar-se, ja que no tenien cap altre subministrament.
En molts dels incendis domèstics trobem un patró comú: un tall de subministrament per manca de recursos que deixa a les famílies sense accés als béns de primera necessitat com la llum o la calefacció. No obstant, moltes vegades el tall de subministrament encara no s’ha produït, però el sol temor a una factura impagable també pot desencadenar situacions de risc que acaben amb accidents. En aquest sentit, són factors de risc habitual les instal·lacions elèctriques defectuoses, les preses de subministraments irregulars, sobrecàrregues d’instal·lacions i electrocucions. A aquests riscos cal sumar-hi els relacionats amb la utilització d’estufes improvisades de llenya i de gas. Aquests factors es multipliquen davant les dificultats per accedir a un habitatge digne, que obliguen a moltes famílies a l’ocupació d’immobles buits o la supervivència en situacions de molta precarietat⁴.

4.2 Tipologia de la gent que l’ocupa

En l’actualitat els Centres Històrics de les ciutats de Lleida i Balaguer són barris on s’hi troben diferents cultures, realitats socials i econòmiques. A continuació s’analitzarà la població dels Centres Històrics de forma demogràfica mostrant diferents dades poblacionals i analitzant la seva composició.

Per tal de tenir un major coneixement sobre la tipologia de població que ocupa els Centres Històrics s’ha realitzat una cerca exhaustiva de dades, en altres estudis, en fonts públiques com ara l’IDESCAT, l’INE, la pàgina web de la Paeria i la pàgina web de l’Ajuntament de Balaguer, a fi de tenir-les actualitzades. La informació que es troba a continuació s’ha intentat que sigui el més recent possible.

L’any 2012, en el Centre Històric de Lleida hi vivien 10.766 habitants. Tanmateix, existeix un elevat envelliment poblacional causat per la disminució de ciutadans dins de l’àrea. En l’actualitat les persones més grans de 64 anys representen el 30% (any 2008) de la població d’aquest barri. En aquest grup d’edat és comú que es presentin problemes com l’escassetat de rendes i recursos per un nivell de vida òptim o altres problemes derivats per l’edat.

En aquest barri s’hi diferencien dues zones clarament marcades: la part baixa té un fort caràcter comercial i la zona alta ha patit en les últimes dècades un despoblement progressiu marcat per l’envelliment i la pèrdua d’activitat econòmica. La zona alta també es caracteritza per ser un dels llocs més deficitaris de la ciutat quan a residència. Tanmateix, en

⁴ Consultar l’Annex 5 Recull de premsa
l’actualitat s’està duent a terme una renovació de la trama urbana, la recuperació i rehabilitació d’equipaments històrics i artístics, la dotació i millora d’equipaments socials, l’enfortiment de l’estructura comercial per tornar a recuperar l’activitat econòmica de la zona alta del casc antic mitjançant plans especials i projectes com el Districte Mercat del Pla entre altres.

En canvi, a la ciutat de Balaguer el nucli urbà antic es troba en total declivi. Igual que en la ciutat de Lleida, en aquest s’hi troben els lloguers més baixos de la ciutat i els pitjors edificis per a residència.

Com es pot observar en la taula que es troba a continuació, dels 21 barris que hi ha a la ciutat de Lleida, el barri que té una major concentració de persones d’origen estranger és el centre històric.

Taula 4.1 : Població al municipi de Lleida a 30-06-2013 per nacionalitat i distribuïda per barri.

Font: Butlletí Socioeconòmic de Lleida, setembre 2013

La principal font de la qual s’han extret les dades és el Padró Municipal, tanmateix, s’amaga un altre important subregistre. Si es fa referència exclusivament a la població immigrada, aquest encara s’incrementa, ja que:

- Al padró es registren les altes però en moltes ocasions qui canvia de domicili no notifica la baixa.
- Per motius de documentació, moltes de les persones nouvingudes no poden empadronar-se al barri. A més a més de la població il·legal, hi ha qui viu al barri però conserva l’empadronament a altres ciutats de l’estat.
Per tant, hi ha un bon nombre de població que no figura en les dades oficials i, al contrari, altres que sí que apareix però no hi viuen.

Segons les dades d'aquest document, es pot observar que la població immigrant en el Centre Històric de la ciutat de Lleida representa el 43,75% de la població total del barri.

![Figura 4.1: Població Centre Històric Lleida any 2013](Font: Butlletí Socioeconòmic de Lleida, setembre 2013)

A la ciutat de Balaguer, dels 16.485 habitants que hi viuen 3.647 són estrangers. Molts d'ells viuen en el nucli urbà antic degut al baix preu del lloguer dels habitatges. El Centre Històric de Balaguer ha experimentat un deteriorament físic i social força visible. A continuació es pot veure una gràfica on hi està representada la població segons la nacionalitat.

![Figura 4.2: Població per nacionalitat Centre Històric Balaguer](Font: IDESCAT. Població, per nacionalitat (2014))

L’any 2004 a Balaguer, any estudiat ja que en el cas pràctic que s’analitza en l’apartat 6 del present projecte és d’aquest mateix any, hi va haver una recuperació basada en l’acolliment de nouvinguts. El percentatge de població nascuda fora de la ciutat o de les terres de Lleida resident al centre històric representava un 50%. Dins d’aquest percentatge els estrangers ja suposaven al barri un 32% de la població empadronada.
Durant aquells anys, existia un buit generacional en l'estrat entre 40 i 64 anys. Aquest buit era fruit, en bona part, pel procés de trasllat dels balaguerins al marge esquerre del riu en els darrers anys. Com a conseqüència d'això, la població dependent (menor de 15 anys i major de 55) tenia un pes relativament important.

4.3 Problemàtica en l’alta ocupació

Una vegada analitzat el tipus de població que majoritàriament ocupa el casc antic d’ambdues ciutats, a continuació s’estudiarà la problemàtica derivada de l’alta ocupació dels habitatges.

Les cases del Centre Històric de Lleida i Balaguer fins l’actualitat es caracteritzen pel baix cost del lloguer. Com s’ha pogut comprovar en l’apartat anterior, en el dos nuclis urbans antics hi ha un percentatge molt elevat de població immigrant. Aquest fet, juntament amb el baix preu dels lloguers, pot causar una sobreocupació, massificació de l’espai o mala utilització dels habitatges, acabant sent “pisos pastera”, conseqüència directa de la pobresa econòmica.

Per tant, es pot dir que l’habitatge, per si sol, no garanteix la integració de l’individu, és més, en nombroses vegades el que acaba generant són situacions d’exclusió social, formació de guetos, etc.

Sales (2014, p.5) presenta una classificació a tenir en compte sobre les condicions d’habitatilitat que té l’espai on viu una persona, la vida social i privada que permet i el règim legal d’utilització de l’allotjament. A continuació es defineixen dos condicions de les quatre que planteja:

- Habitatge insegur: quan la persona disposa d’un espai físic on pot desenvolupar la seva vida privada però no té permís legal d’utilització de l’allotjament
- Habitatge inadequat: quan la persona viu en un espai que no reuneix les condicions adequades per l’habitabilitat. Disposa per tant d’un espai físic on pot desenvolupar la seva vida privada, amb permís legal d’utilització o ostentant-ne la propietat, però amb les incomoditats derivades del deteriorament dels equipaments.
D’altra banda, FEANTSA, Federació Europea d’Associacions Nacional que Treballen amb Sense Llar, classifica en quinze categories aquelles situacions que converteixen les persones en “sense llar”, en la majoria de casos tot i tenir un sostre⁵.

a) Sense sostre (Roofless)

1. Viure en un espai públic (sense domicili).
2. Pernoctar en un alberg, forçat a passar les hores diürnes en un espai públic.

b) Sense habitatge (Houseless)

3. Estada en centres de serveis o refugis (hostals per a sense sostre, albergs per a dones, etc.).
4. Viure en allotjaments temporals: pagats per la municipalitat, allotjaments interins (esperant assessorament), unitats d’habitatge de transició (a curt termini), etc.
5. Viure en allotjaments temporals reservats per a immigrants (sol·licitants d’asil, repatriats, etc.).
6. Viure en institucions: presons, centres d’atenció sanitària, hospitals que han de deixar en un temps definit sense tenir on anar...
7. Viure en allotjaments de suport (sense contracte legal d’arrendament).

c) Habitatge insegur

9. Viure temporalment amb familiars o amics de forma involuntària.
10. Viure sota l’amenaça de violència per part de la família o de la parella.
11. Viure en un habitatge sense títol legal (sotsarrendament).

d) Habitatge inadequat

12. Viure en una estructura temporal o barraca.
14. Viure en un habitatge no apropiat segons la legislació estatal.
15. Habitatge massificat (d’acord amb la legislació estatal).

Tot seguit es troben definides diferents situacions respecte de l’habitatge que mai no seran una llar segons Càritas (2010). Aquestes situacions són casos freqüents que es poden

⁵ Aquesta classificació es diu ETHOS (sigla que respon a la denominació anglesa de Tipologia Europea De Sense Llar i Exclusió Residencial) i permet recollir de manera desagregada les diferents situacions amb les que es pot trobar una persona amb problemàtiques relacionades amb el mal allotjament.
trobar tant en el Centre Històric de Lleida com en el de Balaguer. S’ha cregut convenient definir-les ja que aquesta tipologia ocupacional estadísticament presenta un risc més elevat de poder patir un foc d’habitatge degut a les característiques que presenten. Tanmateix, no totes estan representades en els nuclis urbans antics que s’estudia en el projecte, és a dir, se’n poden trobar a Lleida, degut a la seva magnitud com a capital de província, però no a Balaguer.

- Compartir l’habitatge

Compartir
1. “Dividir (alguna cosa) donant-ne una part a d’altres, prenen cadascú la seva part.
2. Rebre, usar, posseir, en comú.
3. Participar, per simpatia envers algú, dels seus sentiments, del seu estat d’ànim.
4. Coincidir, estar d’acord, quant a opinió, a idees, etc., amb algú.”

(*)Diccionari de l’Enciclopèdia Catalana

En aquest cas, compartir habitatge significa gaudir d’un mateix habitatge presa per varies persones i/o famílies per tal de repartir les despeses i obtenir el benefici de l’ajuda mútua.

Normalment no es tracta d’una decisió plenament lliure de l’individu, ja que es fruit d’una situació econòmica precària, per bé que sí que és volguda i triada.

- Viure a dispesa o “vivir de patrona”

Anys endarrere, viure a dispesa (mot que en castellà s’anomena “vivir de patrona”) era allotjar-se en una casa on, per un preu convingut, també es podia menjar. Es va popularitzar durant els anys 50 i 60, amb les grans onades migratòries interiors. Per als immigrants, era la forma més comuna d’establir-se durant els primers mesos (o anys) d’arribada. Més tard, moltes es reconvertiren en les pensions actualment conegudes.

Una pensió mai podrà ser una llar, ja que no és un espai propi. Tanmateix, pot arribar a ser molt més digne que d’altres formes. D’altra banda, les pensions a les que econòmicament poden recórrer les persones nouvingudes són llocs sòrdids, mal equipats, sobre ocupats i que difícilment passarien les inspeccions pertinents.
Viure en una habitació

Rellogar*
1. tr. Llogar a algú allò o part d’allò que hom té llogat.
2. Pron Fer-se estudiant d’una casa o habitació rellogada.

Sotsarrendar*
1. Donar en arrendament a un tercer allò de què hom és arrendatari.
2. Prendre en arrendament una cosa del qui n’és arrendatari.

(*)Diccionari de l’Enciclopèdia Catalana

Quan es parla de relloguer es fa referència a pagar per una part com si es tractés d’un tot. La relació que s’estableix entre el llogater i el propietari (legal o no) està marcada per un ordre jeràrquic de poder del segon vers el primer.

Ara bé, el relloguer d’habitacions que es pot trobar en el Centre Històric d’ambdues ciutats es dóna en condicions diverses, sovint al marge de la legislació. Per tant, habitualment no existeix cap contracte escrit que reguli les condicions d’ús i de preu, ja sigui perquè el propietari no ho sap; perquè sovint els habitatges no tenen cèdula d’habitabilitat; perquè tant l’arrendador com el propietari són plenament conscients que hi viuran més persones a part de qui té llogat l’habitatge, etc.

En alguns casos, els preus del lloguer no inclouen l’ús dels serveis (cuina, bany, electrodomèstics, etc.) en d’altres va tot inclòs. No hi ha normes, les regles les marca la persona que figura com a propietària de l’habitatge (encara que no ho sigui).

Problemes que genera. Utilització de diferents dependències com a dormitori.(Menjadors, rebedor, etc..)

Aquest fenomen està lligat fonamentalment a un context econòmic de crisi, de manca d’habitatge de lloguer, de falta total de xarxa familiar i social i a les diverses onades migratòries al llarg del segle XX i XXI. I quasi bé sempre és l’únic recurs que queda a les persones sense permís de residència i que han de subsistir gràcies a l’economia submergida.
- **Estar en acolliment**

Acollir *

1. *tr.* Recepció (algu que es presenta), especialment admetre'l a casa, en la nostra companyia.

(*) *Diccionari de l’Enciclopèdia Catalana*

Aquesta situació consisteix en donar allotjament de forma gratuïta i totalment altruista a persones que en tenen necessitat, bé perquè no tenen recursos econòmics, la situació administrativa resolta o per raons humanitàries.

Aquesta modalitat segons Càritas es detecta majoritàriament en dos col·lectius. D’una banda, el subsaharià i per una altra, entre els fills que ja s’havien independitzat però que retornen a casa dels pares. El que podria ser una forma de solidaritat, pot desenvolupar un fracàs personal i ser front de conflictes de convivència.

- **Barraquisme**

Barraca *

1. *URBAN* Construcció suburbial destinada a ésser habitada, feta amb materials aprofitats, d’una superfície reduïda, mancada de condicions per a l’habitabilitat i edificada generalment sobre terrenys d’altres.

(*) *Diccionari de l’Enciclopèdia Catalana*

Les barraques acostumen a ser auto-construccions aixecades en sòl que no és propi. Aquestes no tenen cap mena de relació arrendatària amb qui en té la propietat. No tenen una estructura sòlida ni fonaments, estan fetes amb materials d’enderrocs, fustes, llaunes, cartrons, plàstics, trossos d’uralita, etc.

Aquest tipus de construcció va tenir un moment d’auge a mitats del segle passat i ara torna (no amb tanta força) amb característiques noves. A part de Balaguer es pot localitzar sobretot a la zona alta del barranc. En aquesta població, la majoria de persones que hi viuen són d’ètnia gitana. Tanmateix els Serveis Socials han intervingut per tal d’evitar aquest tipus d’habitatge facilitant pisos socials.
- **Llits calents o pisos pastera**

Llit
Conjunt de matalassos, coixins, abrigalls, etc, que hom disposa sobre el suport del llit.

Calent
Amb una forta activitat.

Pastera
Barca petita i de fons pla, sense quilla. Utilitzada pels immigrants subsaharians per arribar a les costes espanyoles travessant l’Estret de Gibraltar.

(*) *Diccionari de l’Enciclopèdia Catalana*

Encara que en l’actualitat no es dóna amb tanta freqüència com anys endarrere, encara segueix existint el fenomen de llogar matalassos o sofàs a torns, per hores.

Segurament, aquesta és la màxima expressió de com una necessitat vital ha derivat en explotació (infra)humana. Les administracions locals estan fent esforços per tal d’eliminar aquesta forma d’explotació, controlant la localització d’aquest tipus de pisos, és a dir, aquells habitatges on és evident la sobre ocupació i, també prioritzant el control de les cèdules d’habitabilitat.

La zona del Centre Històric de Lleida i Balaguer pateix un alt deteriorament immobiliari i urbà, amb la conseqüent existència d’infrahabitatges, amb un mobiliari urbà degradat i amb unes xarxes de comunicació poc operatives.

4.4 Possibles casos de Síndrome de Diògenes

El Síndrome de Diògenes no s’ha de confondre amb situacions de precaritat econòmica o misèria. Una persona Diògenes, a més a més de presentar negligències en la cura de la salut, desinterès per la pròpia higiene i de la llar, l’alimentació i la seva salut, presenta clars signes d’aïllament social voluntari i rebutja qualsevol tipus d’ajuda externa. D’altra banda, viuen molt preocupats per una ruïna econòmica no real, és a dir per la pobresa imaginària, per la qual cosa acumulen tota mena d’objectes en una situació de misèria material absoluta. En aquest sentit, no és infreqüent que subjectes que habiten en cases insalubres i amb absència de comoditats, després tinguin una quantitat econòmica més que adequada.

El gran problema és que en cap cas reconeixen la seva condició de malalts o són conscients de l’excentricitat de les seves conductes.
Segons Sánchez (citat per Ruipérez, D. i Lobo, L., 2008) el Síndrome de Diògenes es pot classificar segons el seu comportament respecte l’acumulació d’objectes: el tipus actiu o recol·lector d’objectes que emmagatzema al seu domicili, i el tipus passiu, és a dir, aquell que es deixa envair per les seves pròpies escombraries. En la majoria dels casos els pacients que presenten aquesta Síndrome viuen sols.

Per a un país com Espanya, es podria considerar que el Diògenes suposa un 1,7/1.000 dels ingressos hospitalaris en persones majors de 65 anys. Altres estudis parlen d’una incidència de cinc casos per cada 10.000 majors de 60 anys. D’altra banda, entre un terç i la meitat dels afectats presenta algun grau de demència o un altre trastorn mental com l’esquizofrènia, trastorns afectius o alcoholisme (Ruipérez, D. i Lobo, L., 2008).

L’origen del Diògenes tampoc està massa clar. Alguns especialistes apunten al fet que aquesta condició no és un simple trastorn associat a l’edat sinó al grau avançat d’una altra dolència que ja existia abans d’arribar a la vellesa.

Finalment, és important establir les característiques clínicas més comunes del síndrome, definides per Gándara i altres. Segons aquest autor, el Síndrome de Diògenes es produeix com a conseqüència de la interrelació de tres tipus de factors:

- Soledat: inicialment condicionada per les circumstàncies, però posteriorment buscada o desitjada voluntàriament.
- Diferents trets de personalitat previs: que impliquen tendència a l'aïllament, dificultats d'adaptació social, rebuig de les relacions humanes, etc.
- Factors estressants propis de la edat tardana: dificultats econòmiques, mort de familiars, rebuig familiar, marginació social, etc.
5 ESTUDI GENERAL DE LA TIPOLOGIA CONSTRUCTIVA EN CENTRES HISTÒRICS

En aquest apartat es farà un anàlisi de la tipologia constructiva que es pot trobar a la població de Balaguer, però que fàcilment seria comparable amb la ciutat de Lleida, Cervera, etc. o bé amb molts d’altres centres històrics de Catalunya.

5.1 Anys de construcció. Diferents modificacions i reformes

La ciutat de Balaguer va néixer, probablement, durant el segle VIII al barri del Pla d’Almatà. Allí s’edificà una primera muralla que protegia l’indret. Urbanísticament Balaguer va tenir un creixement al segle X amb la construcció del castell de la Suda o Formós i els barris del Pla (actual Firal) i del Torrent (actual centre Històric de la ciutat). Per protegir els nous barris es construí una nova muralla a base de grans carreus de pedra sorrenca.

Un altre punt d’inflexió en el creixement de la ciutat es produí al segle XIV durant el període del comtat d’Urgell: per un decret del comte-rei Alfons III, emès l’any 1333 i a instàncies de la Paeria, s’ordenava a tots els jueus de la ciutat viure junts en un nou barri que s’havia de construir al sud de la muralla de la ciutat, a l’altra banda del Mercadal. Així doncs, en algun moment entre els anys 1337 i 1390, la ciutat inicià grans obres de fortificació en què s’edificà una nova muralla que seguïa el traçat de l’anterior mur andalusí i que englobava la nova jueïria dins la ciutat. També influí en la remodelació de les defenses de la ciutat l’aparició en les guerres dels ginyrs de pòlvora que donarien lloc a la moderna artilleria i que havien fet quedar obsoleta la muralla andalusí.

L’any 1413 l’obra ja estava acabada, com ho confirma el relat del setge del rei Ferran I d’Antequera, i funcionà efectivament en les successives guerres fins a la seva utilització com a zona d’observació durant la Guerra Civil Espanyola, de 1936-1939.

Al llarg dels anys, des dels iniciis de la creació de la ciutat sobre la zona de l’altiplà d’Almatà, aquesta ha anat variant degut a les diferents invasions del territori pels diferents pobles que l’han ocupat ja sigui pels àrabs o bé pels diferents moviments migratoris que s’han produït fins l’actualitat.

El fet de tenir el riu com a frontera natural ha fet que les diferents guerres duressin en aquest lloc més del normal, provocant una destrucció més important. Això ha provocat que les variacions en les tipologies constructives hagin estat molt dinàmiques però també a la vegada en alguna època molt precàries per falta de recursos.
5.2 Estat de conservació de l’edificació

El edificis del Centre històric de Balaguer es troben en un estat de progressiu deteriorament atès que els edificis existents majoritàriament han estat ocupats, en els darrers anys, per una població envellida i, a mesura que aquesta població ha anat desapareixent, els edificis s’han anat clausurant sense que s’hagi produït una nova ocupació dels mateixos. Tot i que cal destacar la nova tipologia de població que ocupa aquest nucli, la majoria són immigrants amb pocs recursos que aprofiten els baixos lloguers deguts a la degradació del barri per poder instal·lar-s’hi.

Figura 5.1: Carrer la Botera cruïlla amb plaça Ollé

Figura 5.2: Imatge dels carrers de Balaguer
En la fotografia es pot apreciar una clara degradació en les cobertes de diferents habitatges situats en la zona alta del centre històric.

Per altra banda, i donat que a les noves zones de Balaguer els terrenys i les edificacions disposen d'unes millors condicions d'accessibilitat, xarxes de serveis i assolellada, també s'ha anat produint un progressiu trasllat de la població cap a les noves zones a l'altra vora del riu. Aquests dos fets han provocat que gran quantitat dels edificis de la zona d'estudi es trobin tancats i sense utilitzar i conseqüentment amb una manca d'inversió per part dels propietaris i hereus davant el progressiu deteriorament que provoca l'abandó d'aquests edificis. El Nuclí Antic de Balaguer ha jugat un paper molt important en l'assentament de la majoria de la població nouvinguda els darrers anys. La degradació de la zona, producte del mal estat dels edificis i la seva estructura, ha fet que molts dels habitants autòctons hagin emigrat de la zona, disminuint així els preus dels habitatges, els quals esdevenen de fàcil accés pels immigrants. La gran majoria provenents del continent Africà.

5.3 Tipologia estructural

Tots els edificis tenen característiques constructives similars, per tractar-se d'edificacions de la mateixa antiquitat. Si bé la seva distribució interior i els límits de les propietats s'han vist alterats al llarg dels anys, interposant-se, en alguns casos unes dins les altres a diferents alçades. Per qüestions pròpies de l'època de cedir dret d'habitació, cessió de part de l'edifici per dificultats econòmiques de les famílies residents etc..

Els edificis han estat construïts amb els materials i tècniques propis de la seva època, o sigui parets de pedra i totxo massís. Les construccions annexes o auxiliars destinades a corrals o magatzems són de construcció més senzilla, parets de tapia o de toves. Bigues mestres de fusta, forjats de bigues de fusta, canyís i teula àrab, si bé n'hi ha que són terrat tipus a la catalana, i alguna amb elements de fibrociment.

Gran nombre de les edificacions actualment es consideren en mal estat i algunes parts amb perill d'ensorrament. Cal tenir en compte que no fa pas gaire que encara moltes d'elles estaven en ús com a habitatges, això vol dir que tenen un estat de conservació ara per ara considerat més aviat insalubre i estructuralment de mala qualitat.

Una de les característiques de dóna una forma molt particular als cascs antics és que les façanes dels habitatges acostumen a ser molt estretes amb unes distàncies màximes de uns 6m aproximadament.

La primera divisió que es pot realitzar és en la seva capacitat portant. Es dividiran els elements portants (amb funció estructural) i els elements no portants.
1.-Elements portants.

1.1-Fonaments.

La majoria dels fonaments en l’arquitectura tradicional consisteixen en la prolongació del mur amb la mateixa secció, fins a trobar el substrat amb les condicions de resistència adients. Habitualment els fonaments només s’endinsen un parell de pams en el terreny per tal d’evitar els terrenys més superficials i flonjos. Els fonaments solen ser fets de paredat amb morter de calç molt ben aparellat per tal de conferir monolitisme a l’element.

![Figura 5.3: Fotografia de fonament per prolongació del mur](Font: Internet)

En les construccions més antigues també es pot trobar la no existència de fonaments ja que algunes d’aquestes cases estaven recolzades directament sobre la pedra. D’altra banda, com que les alçades de les cases en els seus inicis no eren molt altes tampoc era molt necessari l’existència d’aquests.

En les cases que es pot trobar fonaments es troben en molt poca profunditat (superficials) i amb una qualitat del formigó molt baixa. Aquests poden ser de sabates correngudes o bé també de sabates aïllades.

Les sabates de fonamentació consisteixen en un eixamplament del mur per tal d’augmentar la superfície de contacte amb el terreny i reduir-ne la tensió. En l’arquitectura tradicional, on encara no estaven desenvolupades les teories de càlcul estructural ni de resistència de materials, s’utilitzaven les sabates de fonamentació segons l’experiència del saber local. Normalment s’utilitzaven carreus o pedres grans amb morter de calç per les
capes més profundes i un paredat igual que el del mur per a les capes superiors del fonament.

Figura 5.4: Fotografia de fonament per prolongació del mur amb ampliació per a sabata

Font: Internet

En alguna casa es pot trobar fonaments més profunds com podrien ser pilots o micro-pilots així com també murs pantalla, però aquest ja són per diferents estintolaments que s’han realitzat degut que els fonaments iniciais eren molt precaris. La funció d’aquest sempre ha estat reforçar els ja existents. D’altra banda, es poden trobar en edificacions noves dins dels centres històrics. Un exemple seria el pilots profunds que poden ser utilitzats per no lesionar edificacions Adams amb cellers o bé soterranis.

Figura 5.5: Mur pantalla carrer Sant Joan, Balaguer
1.2-Estructures Verticals.

Pel que respecta a les estructures verticals es troben dividides en dos parts: els elements puntuals o els elements lineals. També és possible trobar la combinació dels dos sistemes.

Elements puntuals.

Aquest tipus d’elements es troben moltes vegades com a reforç degut a modificacions en les estructures ja sigui per ampliacions o bé per reforços estructurals. El tipus de material que es pot trobar d’origen serien els pilars de fusta així com els pilars de fàbrica de ceràmica.

Es poden trobar pilars de diferents tipus de materials. Els principals serien el ceràmics però no cal descartar cap tipus de material diferent com podria ser els de formigó així com també l’acer.

En la següent fotografia es pot veure com per fer una ampliació en un local comercial per un canvi d’ús s’utilitza materials com l’acer per reforçar l’estructura ja existent. Ja sigui en els elements verticals puntuals (pilar) com en els elements horitzontal (forjats).

Figura 5.6: Fotografia ensorrament Carrer Cavallers Lleida

Font: Bombers Generalitat de Catalunya
Elements lineals.

Els principals elements serien el murs de càrrega. Aquests es poden trobar tant amb cercol o bé sense. Cal destacar les parets mestres que són construïdes amb murs massissos com poden ser de tapia o bé d’un conglomerat o argamassa per callosos de pedra i ceràmica i morter de guix viu que li proporcionen una extraordinària duresa a les mateixes. Les casuístiques fruit de les posteriors ampliacions i reformes ja és una altra cosa. En general aquestes obres posteriors estan fetes amb parets de totxana (ceràmica).

Figura 5.7: Centre Històric de Balaguer
Font: Internet

En la imatge es pot apreciar un mixt de materials utilitzats. Com s’ha dit anteriorment moltes vegades són el resultat de reforços, possibles modificacions o bé rehabilitacions.

Figura 5.8: Mur de tapia
Font: Internet
El mur de tàpia és una de les tècniques constructives més utilitzades en la història de l’edificació. Hi és present des de les primeres civilitzacions fins als temps actuals en diferents àmbits geogràfics.

El mur de tàpia consisteix en la formació d’un mur utilitzant gairebé només la terra. Són murs de grans dimensions amb gruixos superiors als 70 cms, i per executar-los s’utilitza la tapiera, un encofrat que sol tenir al voltant d’uns 80 cms d’alçada per 2 mts de llargada. Quan la tapiera està preparada s’aboca la terra en tongades d’uns 10 cms i amb el maçó – una peça de fusta amb un cap- s’hi dóna la compacitat necessària.

La terra per a fer un mur de tàpia ha de ser lleugerament argilosa, per tal de que tingui cohesió, i amb una mica de graves – terra gravosa segons el lèxic tradicional- per tal de que tingui més resistència a la tracció i a l’esforç tallant.

Els murs de tàpia se solen col·locar sobre sòcols de fonamentació de paredat, per tal d’evitar la humitat del terreny per capil·laritat, i es protegeixen de la pluja amb grans ràfecs.

Els murs de tova són murs fets també de terra, però on primer s’han fet les toves amb terra i palla. Després es col·loquen en un motlle i es deixen assecar al sol. Un cop hi ha les toves la paret es construeix aparellant les toves com una fàbrica de maó. Com a element aglomerant normalment s’utilitza el mateix fang. Per evitar els mateixos problemes de capil·laritat i inclemències meteorològiques que en els murs de tàpia, el mur de tova s’ha de col·locar damunt d’un sòcol de fonamentació de paredat i amb grans ràfecs. Els murs de terra, sigui tàpia o tova solen trobar-se en terrenys on per l’escassa presència de pedres no és possible de fer un mur de paredat.

1.2- Estructures Horitzontals.

Com a estructures horitzontals només es descriuran els forjats unidireccionals, ja que les estructures que es poden trobar amb forjats bidireccionals es localitzen en edificis de molt nova construcció, projectats amb l’afany de recuperar el centre històric de la ciutat. Un clar exemple seria la construcció dels jutjats de Balaguer així com l’edifici de la Palla va cara.

Forjats Unidireccionals.

Aquests es poden trobar amb xapa de compressió o bé sense. També poden estar recolzats en jàsseres o murs de càrrega.

Els principals forjats són de bigues de fusta i revoltons de guix, així com canyís. Però com també en els elements estructurals horitzontals es pot trobar una barreja de materials emprats ja sigui com a reforços degut a degradacions dels materials primaris o bé també per
reformes o canvis d'ús dels habitatges. Això es pot observar clarament en la foto anterior amb el pilar d'acer.

Figura 5.9: Fotografia forjat unidireccional amb biguetes de fusta

Pel que respecta als forjats unidireccionals de formigó, en especial als de biguetes auto-resistents, els podem trobar en els compostos de formigó aluminós. Moltes vegades degut a noves construccions en l’època de la utilització d’aquest tipus de material. O bé en reformes realitzades com a millora dels habitatges, o també com ampliacions de les mateixes. Els anomenarem en l’apartat de patologies.

Figura 5.10: Foto biguetes formigó aluminós
També podem trobar forjats unidireccionals composats per biguetes d’acer o bé amb forjats col·laborats (Com a reforç, canvi d’ús, etc..). Així com també de bigueta ceràmica encara que per la zona no es molt comú.

Estructura Tradicional (Cohesiva)

En aquest apartat es defineix el que serien els arcs i les voltes. Les voltes en aquesta tipologia d’edificis es poden visualitzar en els cellers dels habitatges. Pel que respecta a la zona de Balaguer es localitzen més cap a la zona baixa, ja que en la zona alta el tema cellers està més limitat atès que les cases estan ubicades a la falda del torrent. Pel que fa als arcs es troben en moltes construccions en les obertures de façanes per crear accessos a les cases. Així com a les diferents zones porxades. Un clar exemple seria la porxada que envolta tota la plaça Mercadal, eix vertebrador del Centre Històric.

Figura 5.11: Imatge de la cruïlla de la plaça Mercadal de Balaguer amb carrer Botera

2. Elements no Portants

En aquest apartat relacionat a elements auxiliars, tot i que no gens menys important, caldria destacar per sobre de tot un element estructural no portant com serien les escales.

En aquest tipus d’edificació moltes vegades s’hi troba la típica escala de volta catalana. Ens troben en moltes edificacions la no continuïtat de l’escala en les diferents plantes, cosa que significa que aquesta pot arribar perfectament a un passadís o rebedor a la planta primera però, per accedir a la planta segona, aquesta arranca d’una part totalment
oposada a la que arriba. Això en el moment de treballar els Bombers genera molta confusió i desorientació.

Figura 5.12: Fotografia escala amb volta catalana

Font: Internet

També cal esmentar tots els elements compartidors com serien els envans interiors. En el nostre entorn el concepte envà, entès com a mur de secció petita per separar espais, no apareix fins a finals dels segle XIX a les cases de veïns més urbanes, o bé en cases entre mitgeres de ciutats i pobles.

Envans de rajola o maó

Es tracta d’un envà de maó posat de cantell i a trencajunts aparellat sovint amb pasta de guix. L’envà sol ser de maó massís de 4 cm, i tot i la seva esveltesa pot arribar a tenir alçades considerables. Sempre va revestit de morter de calç o de guix.

Doble envà de rajola

Algunes vegades, en construccions senzilles de principis del segle XX, hi ha façanes amb funcions inclús estructurals, fetes a base de dos envans de maó massís posats de cantell i a trencajunts, separats per una càmera d’aire. Per donar més rigidesa al conjunt, aquests dos envans es lligaven aparellant entre peça i peça maons iguals col·locats perpendicularment que anaven d’un envà a l’altre.
Així com també elements decoratius que ens puguem trobar. Tot i que en aquest tipus d’edificació els elements decoratius no són molt presents.

5.4 Patologies associades

Les tècniques constructives poden tenir patologies degudes al pas del temps, canvis de les sol·licituds pel qual va ser dissenyades, canvis en el terreny, inclemències meteorològiques, etc. Cada patologia específica presenta unes lesions i uns símptomes com a conseqüència d’una causa concreta.

A continuació es classificarán les patologies en tres grans grups. Tanmateix, només s’analitzaran les patologies en les tipologies estructurals de construcció tradicional, ja que són les que es poden trobar amb major facilitat en els Centres Històrics de les ciutats estudiades. Es descriuran les patologies que es poden trobar i no es farà referència a les possibles intervencions.

a) Fonaments
b) Parets estructurals
c) Forjats i sostres

a) Patologies dels fonaments

Els assentaments diferencials, els desploms, la inclinació de forjats, les fissures o esquerdes en murs són símptomes de patologies en la fonamentació. Una deformació o moviment en el fonament es trasllada als murs, que com no tenen resistència a la tracció, es fissuren. Aquí és on l’experiència i formació ens ajudarà a distingir les diferents lesions i escollir la millor intervenció, així com a establir mesures preventives com apuntalar, o desallotjar. Les fissures o esquerdes segueixen la forma parabòlica dels arcs de descàrrega. Aquestes esquerdes apareixen en les parts més febles del mur, que solen ser les obertures (finestres i portes), i segueixen el mateix patró tant en la part central d’un mur com en un extrem.

En primer lloc s’haurà de precisar si la fissura és viva, i per tant, si encara hi ha moviment, o si és històrica i el moviment ha cessat. Podem fer les comprovacions amb la col·locació de testimonis a les fissures i fent un seguiment constant per tal de verificar-ne els moviments. S’ha de tenir present la magnitud de les lesions, ja que hi ha moviments tolerables per les edificacions, i en canvi lesions que poden posar en perill l’estabilitat de l’edificació.
Causa: Les principals causes de les patologies en la fonamentació es poden classificar en tres grups temàtics:

- **Fonamentació insuficient:** L’eliminació de pilars o murs comporta l’augment de les càrregues, així com determinats canvis d’ús en l’edifici. També pot venir causada per una mala qualitat dels materials com la insuficient trava, pedres soltes, etc.

- **Desconeixement del lloc:** Podem trobar terrenys agressius, com ara terrenys amb presència de guixos que ataquen els formigons o morters. També la falta d’homogeneïtat del terreny pot comportar deformacions diferents.

- **Alteracions del sòl provocades per canvis realitzats durant la vida útil de l’edificació com ara excavacions al seu entorn, vibracions en terrenys propers o lloses de fonamentació pròximes.**

 b) Patologies en parets estructurals

 En aquest apartat es parlarà només de les parets de tàpia, ja que són unes de les parets mestres que es troba amb més quantitat. També es pot trobar un mixt de materials de construcció a causa de reformes, reforços o bé canvis d’ús.

 Tapia esclovellada:

 Desprengiment de la cara exterior del mur de tapia, corresponent a la crosta del mur. Lesió important ja que el morter de calç exterior protegeix el mur de tapia, i sense aquesta protecció la degradació es produeix de manera més ràpida. És una de les patologies que trobem més freqüentment ja que no s’hi ha realitzat cap tipus de manteniment al llarg dels anys.

Figura 5.13: Fotografia casc antic Balaguer, Carrer Minerva
Causa: Les causes són els agents atmosfèrics: pluja, vent. En funció del temps transcorregut des del principi de l’erosió la lesió serà més important, i pot arribar a afectar a la pròpia estabilitat.

Aixafament del mur de tàpia:

Els murs de tàpia han de tenir una amplada mínima de 50 cm per tal de ser estables, i per tant, el pes que han de suportar bàsicament consisteix en el pes propi de les plantes superiors. Quan hi ha una disminució de la capacitat portant del mur, aquest es torna engrunadís, hi ha l’aparició d’esquerdes horitzontals en el punt més feble, i d’esquerdes en forma d’arcs de descàrrega a les plantes superiors. Cal anar en compte ja que a vegades, en rehabilitacions inadequades, es col·loca un nou mur davant del mur de tàpia, el qual no millora res i només amaga les patologies.

Causa: La humitat del terreny puja pel mur degut a la capil·laritat, i afecta al mur de tàpia generalment fins a una alçada de 2 metres. El mur de tàpia humit té menys capacitat de suportar tensions, i per tant hi ha una disminució de la seva resistència.

Erosió de les juntres:

Aquesta patologia es pot veure molt clarament en el que seria la muralla ja que aquesta algun cop té les funcions de paret de tancament i d’altres de paret mestra o de càrrega. Es pot veure en la foto anterior.

Consisteix en la pèrdua del material aglomerant d’un mur, sigui el mur de terra, pedra o maó. Normalment es produeix a la cara exterior del mur, per ser més exposada i amb
morters pobres de calç o de fang. És una patologia greu per la pèrdua de secció i resistència del mur i la pèrdua de lligada amb altres murs.

Causa: Les inclemències meteorològiques en són la principal causa d’aquesta patologia. La pluja combinada amb les glaçades van esquerdant i trencant el morter fent que en vagi disminuint la secció. Aquest fenomen en la plana de Lleida es força freqüent com s’ha mencionat anteriorment. El vent i la contaminació també poden accelerar la patologia.

![Figura 5.15: Exemple clar d’erosió de les juntes. Casc antic Balaguer](image)

Podríem enumerar molts més tipus de patologies associades amb aquesta tipologia constructiva, però com que el centre d’interès d’aquest projecte no és aquesta branca, solament se n’ha fet una petita pinzellada per tenir-les en compte.

c) Forjats i sostres

La principal tipologia constructiva que ens trobem en les construccions tradicionals dels Centres Històrics serien les de bigues de fusta i encanyissat així com també bigues de fusta i revoltó de rajola. Més noves ja serien les de bigues metàl·liques i revoltó de rajola, però no per això menys freqüents.

Es podria enumerar tots els atacs que pateix la fusta (Corcs, tèrmits, fongs) però en aquest apartat no es farà ja que com anteriorment s’ha mencionat només es realitzarà una petita pinzellada de les patologies més remarcables.
Excessiva fletxa de les bigues de fusta:

Excessiva deformació del forjat de bigues de fusta. Deformació de la biga en el seu punt central a causa del moment flector. La fusta és un material on es poden visualitzar les deformacions permetent actuar-hi abans que no sigui massa tard, fet que no succeeix en les estructures metàl·liques. Aquest tipus de patologia seria el que trobem més freqüentment.

Causa: L'excessiva fletxa de les bigues pot ser provocada per l'augment del pes que ha de suportar el forjat. La deformació de les bigues de fusta també pot ser deguda a la seva pèrdua de capacitat portant per la presència d'insectes xilòfags o per la putrefacció produïda pels fongs.

Oxidació de l'estructura metàl·lica:

Oxidació de l'estructura, aparició de rovell. En lesions més avançades pot haver-hi exfoliacions i disminució de la secció dels perfils. Cal tenir en compte que el metall oxidat pot augmentar deu vegades el seu volum afectant els elements del seu entorn. En cas de lesió important, la pèrdua de capacitat portant de l'estructura pot posar en risc la seva estabilitat.

Causa: La humitat provinent del mur o de la condensació de l'aire interior produeix l'oxidació de l'estructura metàl·lica. Si l'oxidació avança, hi ha una disminució de la secció dels perfils i la conseqüent pèrdua de capacitat portant. S'ha d'intentar evitar de totes el contacte del ferro amb el guix, el ferro s'oxida al reaccionar amb els sulfats de guix.
6 CONCEPTES BÀSICS D’INCENDIS

En aquest apartat s’han descrit breument les nocions bàsiques respecte al tema principal del projecte per tal de facilitar-ne la comprensió i la lectura.

Si el lector vol ampliar aquesta informació en la bibliografia pot trobar un gran nombre de referències.

6.1 Conceptes físics i químics

La major part dels textos que han estat extrets dels apunts de l’Escola de Bombers de la Generalitat de Catalunya (actualment Institut de Seguretat Pública de Catalunya)

La combustió

El terme combustió fa referència a la reacció d’oxidació que va acompanyada d’un despreniment d’energia. En les reaccions químiques d’oxidació-reducció hi ha un bescanvi d’electrons entre un oxidant, que els guanya, i un reductor, que els perd. Per tant, hi ha d’haver un oxidant i un agent reductor perquè tingui lloc una reacció d’oxidació-reducció.

L’aire és l’agent oxidant més comú tanmateix, existeixen altres substàncies que poden actuar com a oxidants, alguns exemples el nitrat sòtic o el clorat potàssic.

Comburent i combustible

En una reacció de combustió l’agent oxidant s’anomena comburent i l’agent reductor s’anomena combustible. Les reaccions que tenen lloc entre tots dos s’anomenen combustions.

Energies de reacció

Perquè es produeixi una reacció de combustió cal que els reactius (comburent i combustible) es trobin en unes condicions favorables per reaccionar. L’energia necessària per a l’incendi de la reacció s’anomena energia d’activació i és subministrada per les fonts d’ignició.

El calor de reacció és l’energia que es guanya o perd quan hi ha una reacció. En una reacció endotèrmica, els productes que es formen contenen més energia que els reactius. A fi que la reacció continuï, cal una aportació constant d’energia.

En una reacció exotèrmica, els productes que es formen contenen menys energia que els reactius. Aquesta energia pot desprendre’s de diferents formes, però acostuma a ser en forma de calor. Quan la quantitat d’energia que es desprèn en una reacció és molt elevada, hi ha emissió de radiació lluminosa o flames.
Una part de l’energia alliberada a l’ambient en una reacció exotèrmica provoca els efectes tèrmics derivats de l’incendi; la resta aporta l’energia d’activació necessària perquè el procés continuï.

6.2 Anàlisi dels elements d’un incendi

Tetraedre del foc

Encara que els focs són molt complexos, es poden representar mitjançant un triangle on cada costat representa un dels tres factors essencials per produir un foc: combustible, oxidant i energia.

Aquesta representació, acceptada des de fa temps, no considerava les reaccions en cadena. Actualment, aquest s’ha considerat com un quart factor i s’utilitza una nova representació en forma de tetraedre.

La raó per fer servir un tetraedre i no un quadrat és que cada un dels quatre elements és directament adjacent i connecta amb cada un dels altres tres. Si desapareix algun dels quatre elements, el tetraedre queda incomplet i el resultat és l’extinció.

Combustible

Es defineix combustible com qualsevol substància que pot cremar, és a dir, que es pot combinar amb un oxidant en una reacció ràpida i exotèrmica. Com a exemples es poden citar els compostos següents:

- carbó
- monòxid de carboni
- molts compostos que són rics en carboni i hidrogen
- elements no metàl·lics fàcilment oxidables com el sofre i el fòsfor
- materials que continguin cel·lulosa com fusta, tèxtils, etc.
- metalls com l’alumini, magnesi, titani i zirconi
- metalls alcalins com sodi, potassi, etc.

Perillositat d’un combustible pel que fa a la seva possible igníció

No totes les substàncies presenten la mateixa perillositat pel que fa al seu potencial d’iniciar un incendi. És ben conegut que alguns líquids inflamables, com la gasolina o la acetona, poden generar fàcilment un incendi si no es manipulen amb molta cura, mentre que altres, com el gasoil, suposen un risc molt menor. Aquest fet depèn de diferents factors, els més importants dels quals són:
- la concentració del combustible en la seva mescla amb el combutent;
- la temperatura mínima en què el combustible emet prou quantitat de vapor per arribar a aquesta concentració. Energia d’activació que cal aportar a la mescla perquè s’iniciï el procés i s’acompleixi la reacció en cadena.

Aquests factors poden ser analitzats fent servir les constants físiques de cada combustible. Les més importants són:

Límits d’inflamabilitat

La mescla d’un gas o d’un vapor inflamable amb un oxidant (també en fase vapor) només pot reaccionar si es troba dins d’un interval determinat de concentracions. Els límits d’aquest interval s’anomenen límits d’inflamabilitat i es coneixen com a límit superior d’inflamabilitat (LSI) i límit inferior d’inflamabilitat (LII) respectivament. Per sota del LII, la mescla és massa pobra en combustible per cremar, i per sobre del LSI és massa pobra en oxidant.

A la bibliografia americana, se solen anomenar límits d’explosibilitat. Ambdues denominacions són sinònimes ja que el fet que la mescla s’inflami o exploti depèn d’altres circumstàncies, però no de la concentració.

Temperatura d’inflamació

És la temperatura mínima necessària per tal que una substància combustible emeti la quantitat de vapor suficient per formar una barreja amb aire que estigui dins els límits d’inflamabilitat, de manera que la presència d’una font d’ignició permeti l’inici de la combustió. A la temperatura d’inflamació, la mescla cremarà només breument ja que no es generarà vapor suficient per mantenir la flama, excepte en el cas que es mantingui la presència de la font d’ignició. Aquest terme acostuma a aparèixer a la bibliografia anglesa amb el nom flash-point.

Punt d’ignició

Existeix una altra temperatura particular, és aquella en què un combustible emet vapors amb velocitat suficient per afavorir la combustió continuada. Aquesta temperatura s’anomena punt d’ignició i acostuma a estar uns graus per sobre del punt d’inflamació.

Temperatura d’autoignició

És la temperatura mínima necessària per tal que una substància pugui iniciar la combustió en presència d’aire, sense l’aportació d’una font d’ignició.
Perillositat d’un combustible pel que fa a l’energia i als productes emesos en la combustió.

Els factors més importants que contribueixen a la perilessitat d’un combustible en flames són:

- **Piròlisi:** Descomposició química dels compostos orgànics per acció exclusivament de el calor.
- **Poder calorífic:** És la quantitat de calor que emet una substància quan s’oxida completament per donar diòxid de carboni a l’aigua.
- **Toxicitat dels productes de combustió:** En un incendi, a causa dels processos de piròlisi que sovint s’hi produeixen, així com a la mateixa combustió, es poden generar substàncies tòxiques. Algunes de les més habituals són el monòxid i el diòxid de carboni, el cianur d’hidrogen, l’amoníac, el clor d’hidrogen, el diòxid de sofre o l’acroleïna. Aquest fet pot dificultar l’extinció de l’incendi.
- **Velocitat de combustió:** És una mesura de la quantitat de combustible consumida per unitat de temps i per unitat de superfície. Aquesta velocitat serà més gran com menor sigui l’estat d’agregació del combustible, és a dir un sòlid tindrà sempre una velocitat de combustió menor que un líquid i aquest menor que un gas.
- **Velocitat de propagació de la flama:** En un combustible és la mesura de la velocitat amb la qual les flames es propaguen a través de la seva superfície i indica la capacitat d’extensió i propagació d’un foc; generalment s’aplica als sòlids utilitzats per a fer revestiments.
- **Densitat:** És la massa dividida per unitat de volum d’una substància, en el sistema internacional es mesura en kg/m³.
- **Densitat relativa:** La densitat relativa expressa la relació entre la densitat d’una substància i la densitat de referència. Per a substàncies gasoses s’utilitza la densitat de referència de l’aire sec i per a substàncies sòlides o líquides s’utilitza la massa específica de l’aigua. Quan la densitat relativa d’un gas o vapor és inferior a la unitat voldrà dir que el gas o vapor és més lleuger que l’aire; si la densitat relativa és superior a la unitat, el gas o vapor pesa més que l’aire.

Aquesta característica és important, ja que a partir del coneixement previ de les densitats dels gasos emesos podrem dissenyar la detecció i la ventilació: en funció de la densitat de vapor, els gasos inflamables es desplacen cap a terra i nivells inferiors com el gas natural, o cap al sostre i nivells superiors com el butà.

Quan augmenta la temperatura d’un gas, la densitat disminueix i, per aquesta raó, els productes reescalfats de la combustió pugen a les capes altres de la zona on es troben.
- **Calor específica:** El calor específica es defineix com la quantitat de calor necessària per incrementar un grau la temperatura d’un gram de qualsevol material.
- **Conductibilitat tèrmica**: Un material pot ser més o menys conductor de el calor, és a dir, que aquesta es transmeti més o menys ràpidament per un cos, en una espessor i superfície determinades. La conductibilitat tèrmica d’un material és la capacitat que aquest material presenta per transmetre el calor. Si un material és bon conductor de la calor, transmet calor amb risc de produir un incendi. Si un material és mal conductor tèrmic, acumularà el calor i, si és combustible, s’inflamarà.

- **Dilatació tèrmica**: Quan augmenta la temperatura d’un cos, en qualsevol estat en què es trobi, tendeix a dilatar-se. La dilatació és l’augment de volum que es produeix en un cos per efecte de el calor; disminueix la densitat i se separan les molècules que el formen. Si augmenta la temperatura en un recipient que conté un gas i aquest es troba confinat en un espai de volum definit, no pot dilatar-se o augmentar el volum. La pressió que exerceix damunt les paret augmenta i, si la força d’aquesta pressió és massa elevada, pot provocar una explosió del recipient. Els sòlids i líquids també tendeixen a dilatar-se i augmentar el volum quan augmenta llur temperatura. Aquesta dilatació serà més o menys important depenent de la temperatura i la natura del cos.

Per calcular la magnitud de l’augment de volum motivat per l’increment de temperatura, definim els coeficients de dilatació següents:

- el coeficient de dilatació lineal és l’allargament que experimenta un cos per unitat de longitud en augmentar la temperatura 1ºC;
- el coeficient de dilatació superficial és l’augment de superfície que experimenta un cos per unitat de superfície en augmentar la temperatura 1ºC;
- el coeficient de dilatació cúbica és l’augment de volum que experimenta un cos per unitat de volum en augmentar la temperatura 1ºC.

Quan s’obté el valor del coeficient de dilatació lineal, es poden determinar els coeficients de dilatació superficial i cúbica, de magnituds dues i tres vegades superiors a la lineal. El coeficient de la dilatació de tots els líquids augmenta amb la temperatura, excepte l’aigua. La màxima densitat d’aquest líquid correspon a la temperatura de 4ºC i a partir d’aquí es dilata, tant si augmenta com si disminueix la temperatura.

Aquest fenomen és molt important i s’ha de tenir en compte en fer servir materials per a la construcció i el disseny d’estructures. Per exemple, quan es construeix una gran superfície de formigó que podria veure’s afectada per la temperatura, cal proveir-la de juntes de dilatació (per exemple, els ponts).

En el transcurs d’un incendi es produeixen forts augments de temperatura, per això el fenomen de la dilatació hi té un paper important.

Per exemple, en l’estructura d’edificis sinistrats s’observa que les armadures metàl·liques, d’una espessor normalment elevada, estan torçades. En edificis de formigó
armat es troben greument malmesos perquè les armadures d’acer, insuficientment protegides, s’han dilatat.

Això no obstant, l’acer que es troba en aquesta forma és incombustible i les temperatures a què s’arriba en el transcurs dels incendis són insuficients per fondre’l. Però a causa del seu elevat coeficient de dilatació, cal protegir aquest acer mitjançant recobriments que l’aïllin tèrmicament i, per tant, que impedeixin que el calor el dilati i es modifiqui l’estructura.

- **Resistència mecànica dels sòlids:** La resistència mecànica d’un sòlid a la pressió, flexió, torsió… varia amb la temperatura. S’ha comprovat que l’acer perd ràpidament les seves propietats mecàniques de resistència quan la temperatura sobrepassa els 500º C.

El formigó prestat és fràgil quan hi ha una gran elevació de la temperatura, ja que la capa de formigó que recobreix les estructures metàl·liques no té prou gruix per fer d’aïllant tèrmic, les parts metàl·liques que constitueixen l’armadura, sotmeses normalment a tensions superiors que el formigó armat, pateixen deformacions i trencaments a causa de la calor.

Comportament dels materials davant el foc

El comportament dels materials davant del foc es pot estudiar des de dos punts de vista diferents: en relació amb la forma activa o al foc, o en relació amb la forma passiva o de resistència al foc.

Reacció al foc

La reacció al foc és la inflamabilitat que un material pot aportar a l’inici, propagació i desenvolupament d’un incendi. Mitjançant aquest concepte pot estudiar-se la contribució de diferents materials a un foc, i el risc i perillositat que representen. Amb aquesta finalitat, s’ha classificat els materials d’acord amb la norma UNE-EN 13501 en set classes que es completen amb una classificació complementària segons l’opacitat dels fums i/o la caiguda de gotes o partícules inflamades.
Taula 6.1: Classificació dels materials segons la seva reacció al foc

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions

<table>
<thead>
<tr>
<th>Euroclasses</th>
<th>Classes complementaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 NO COMBUSTIBLES</td>
<td>Sense contribució al foc</td>
</tr>
<tr>
<td>A2 COMBUSTIBLE</td>
<td>Contribució molt limitada al foc</td>
</tr>
<tr>
<td>B</td>
<td>Segons la velocitat i quantitat d’emissió:</td>
</tr>
<tr>
<td>C</td>
<td>s1 baixa</td>
</tr>
<tr>
<td>D</td>
<td>s2 mitjana</td>
</tr>
<tr>
<td>E</td>
<td>s3 alta</td>
</tr>
<tr>
<td>F SENSE CLASSIFICAR</td>
<td>Sense comportament determinat</td>
</tr>
</tbody>
</table>

Exemple de classificació: B-S2,d1 es correspon amb un producte de construcció amb una contribució molt limitada al foc, producció mitjana de fums i producció limitada de gotes. Hi ha classificacions específiques per a productes específics:

- per a terres, sufix FL: BFL
- per a cobertes, sufix ROOF: BROOF
- d’aïllament tèrmic en elements lineals, sufix L: BL-s2,d1

Resistència al foc

La resistència al foc és la capacitat d’un element de construcció per a conservar durant un temps determinat la funció portant que li sigui exigible, així com la integritat i/o aïllament tèrmic en els termes específics que l’assaig normalitzat corresponen.

Taula 6.2: Característiques bàsiques de la resistència al foc dels materials

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitat portant. Capacitat de suportar càrregues sota l’exposició al foc, sense perdre l’estabilitat estructural.</td>
<td>Integritat. Capacitat de suportar l’exposició al foc en una cara, sense que hi hagi pas de flames o gasos calents que puguin propagar l’incendi a la cara no exposada.</td>
<td>Aïllant tèrmic. Capacitat de suportar l’exposició al foc en una cara, sense que hi hagi propagació per transferència de calor a la cara no exposada.</td>
<td></td>
</tr>
</tbody>
</table>
La classificació està determinada pel temps, en minuts, que un element constructiu manté una o diverses de les esmentades característiques, sota l’acció de la corba d’incendis normalitzada (ISO 834). Així un element es pot classificar com a: R-30, EI-3’, REI-30... Tots els casos ens assenyalen que manté les característiques indicades durant trenta minuts, en l’assaig normalitzat.

Existeix una classificació complementària més complexa, que valua aspectes com: emissió de calor, resistència a l’impacte, estanquitat al pas dels fums... així com una sèrie de sufixos específics de funció de la col·locació de l’element i del sentit en el qual conté aquesta característica, volum de fuges, activació automàtica o manual, etc.

Comburent

Un comburent és qualsevol agent oxidant capaç d’oxidar un combustible mitjançant una reacció ràpida i exòtèrmica. No obstant això, ja que l’oxigen és l’agent oxidant més comú, el terme comburent s’aplica a mescles gasoses en què l’oxigen es troba en una proporció suficient perquè s’hi iniciï i desenvolupi la combustió. Per aquesta raó, l’aire amb un contingut aproximat d’un 21% en volum d’oxigen, és el comburent més comú a tots els focs i incendis.

Com és ric en oxigen és el comburent en qüestió, més fàcil serà iniciar la combustió. Si es comparen les característiques d’inflamabilitat dels gasos i vapors més comuns (acetona, butà, gasolina, propà...) en una mescla d’aire o d’oxigen es pot comprovar que la temperatura d’inflamació i l’energia mínima d’inflamació disminueixen i el rang dels límits d’inflamabilitat augmenta (Petit i Poyard, 2004, p.24).

Algunes substàncies químiques desprenen oxigen en determinades condicions. Es tracta, d’agents oxidants i la seva presència pot provocar la combustió en absència d’aire; d’altres productes, com ara la nitrocel·lulosa, cremen sense que calgui la presència d’aire, ja que contenen oxigen a la mateixa estructura molecular.

Per tal que es porti a terme la combustió, en processos normals, cal que hi hagi una mínima proporció d’oxigen a l’ambient. Aquesta proporció mínima es determina a través de l’assaig de l’ànxerí crític d’oxigen.

Energia d’activació

Com ja s’ha indicat, energia d’activació és la mínima energia que necessiten els reactius perquè s’iniciï una reacció.
Aquesta energia és aportada en la combustió per les fonts d’ignició. Aquestes poden produir la ignició si aporten prou energia per fer que la temperatura del combustible o una zona d’aquest augmenti per sobre de la seva temperatura d’autoignició.

Les diferents formes d’aportació d’energia es poden agrupar en:

- Fonts d’alta temperatura, extensió i llarga durada: flames. Aquests focus són els més perillosos ja que provoquen, pràcticament sempre, l'inici i el desenvolupament de l’incendi.
- Fonts d’alta temperatura, petita extensió i curta durada: espurnes. Poden superar la temperatura d’autoignició i fer que la combustió arribi a propagar-se (és el cas dels gasos, vapors i pols en suspensió aèria) o no (el cas de la fusta).
- Fonts de baixa temperatura, amb independència de l’extensió i la durada: superfícies calentes. Quan la temperatura de la superfície és inferior a la temperatura d’autoignició del combustible no es produeix inflamació.

Taula 6.3: Principals focus d’ignició accidentals

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions

<table>
<thead>
<tr>
<th>Fonts naturals</th>
<th>Fonts elèctriques</th>
<th>Flama oberta</th>
<th>Fonts mecàniques</th>
<th>Treballs de soldadura i tall</th>
<th>Fonts químiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llamps</td>
<td>Curtcircuits</td>
<td>Encenedors</td>
<td>Espurnes d’eines mecàniques</td>
<td>Flames</td>
<td>Reaccions exotèrmiques</td>
</tr>
<tr>
<td>Sol</td>
<td>Espurnes i arcs</td>
<td>Llumins</td>
<td>Conducció de calor</td>
<td>Conducció de calor</td>
<td>Fermentacions i descomposicions naturals</td>
</tr>
<tr>
<td>Càrregues estàtiques</td>
<td>Espelmes</td>
<td>Fregaments</td>
<td>Espurnes</td>
<td>Elèctodes</td>
<td>Dilucions</td>
</tr>
<tr>
<td>Sobrecàrregues</td>
<td>Forns</td>
<td>Impactes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reescalfaments</td>
<td>Cremadors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reacció en cadena

La combustió és un fenomen complex durant el qual apareixen moltes reaccions químiques en cadena. Fins als anys cinquanta, el triangle de foc explicava perfectament el fenomen de la combustió. Arran de fer servir els agents extintors per a l’aeronàutica (tetraclorur de carboni), es va observar que aquests extingien el foc sense incidir en cap dels costats del triangle i es va passar a utilitzar el que s’anomena el tetraedre del foc.

La inhibició química es produeix quan determinats compostos intermedis tenen molta afinitat per combinar-se amb l’agent extintor i formen un producte estable que no continua la reacció, no es desprèn calor i la combustió no progressa.
6.3 Tipus de focs

Els focs es poden classificar de dues maneres:

- segons el tipus de combustible
- segons el tipus de radiació lluminosa produïda (flama o incandescència)

Segons el tipus de combustible

D’acord amb la normativa europea, segons el tipus de combustible afectat, els focs es classifiquen en:

- focs de tipus A: sòlids
- focs de tipus B: líquids
- focs de tipus C: gasos
- focs de tipus D: especials (metalls)
- focs de tipus F: olis i greixos d’aparells de cuina

Segons el tipus de combustió

El procés de combustió pot tenir lloc de dues maneres:

- amb flama (s’hi inclouen les explosions)
- sense flama (s’hi inclouen les incandescències i les brases d’incandescència profunda).

La combustió amb flama s’associa amb velocitat de combustió relativament altes, expressades en termes d’alliberament d’energia tèrmica.

Aproximadament, les dues terceres parts de la calor alliberada passen a l’ambient del voltant en forma de flux calorífic de convecció, i una tercera part ho fa en forma de flux calorífic de radiació.

Els líquids i els gasos inflamables sempre cremen amb la mateixa flama. La velocitat de combustió dels gasos és molt ràpida i, per tant, en molts casos donen lloc a una explosió. La major part dels plàstics sòlids poden considerar-se líquids inflamables solidificats i, com a tals, es fonen abans de la combustió quan hi ha prou realimentació tèrmica. La característica comuna de tots aquests combustibles és que es vaporitzen i s’ajunten amb l’oxigen abans de la combustió.

La combustió sense flama es dóna en algunes substàncies en què la combustió comença amb flama i passa de forma gradual a la fase sense flama. Al final s’extingeix la flama i continua la combustió residual sense flama.
Alguns exemples de combustió sense flama són la del carboni pur i la d’alguns metalls fàcilment oxidables com per exemple: magnesi, alumini, zirconi, urani, sodi, potassi, etc.

Aquests darrers cremen a temperatures característicament altes, que oscil·len entre 1500 i 2000º C.

6.4 Transmissió de la calor

La calor o energia tèrmica es transmet per tres mecanismes diferents: conducció, convecció i radiació.

Conducció

Si es col·loca un extrem d’una barra metàl·lica en una flama i es sosté per l’altre extrem amb la mà, s’observarà que aquest últim extrem es va escalfant encara que no està en contacte directe amb la flama. Diem que la calor arriba a l’extrem fred de la barra per conducció a través de la substància que la forma. Les molècules de l’extrem calent augmenten la violència amb que vibreren, si augmenta la temperatura d’aquest extrem. Quan les molècules xoquen amb les veïnes, que es mouen més lentament, comparteixen amb elles part de l’energia cinètica i aquesta es transmet cap a l’extrem més allunyat de la flama. En definitiva, les molècules mantenen la seva posició inicial, però l’energia de l’agitació tèrmica es transmet d’una a l’altra a través de la barra.

És un fet conegut que els metalls són bons conductors de l’electricitat i també bons conductors de la calor. L’aptitud dels metalls per conduir el corrent elèctric s’explica pel fet que en el seu interior hi ha electrons lliures, és a dir, electrons separats dels àtoms de què procedeixen. Els electrons lliures també prenen part en la propagació de calor i són la causa que els metalls siguin tan bons conductors; en efecte, de la mateixa manera que les molècules, els electrons lliures participen en la transmissió d’energia tèrmica de les parts més calentes a les més fredes del metall.

La conducció de la calor únicament pot tenir lloc quan les diverses parts del cos es troben a temperatures diferents, i la direcció del flux de calor és sempre des dels punts de més temperatura als de menys. A vegades es fa servir una definició d’igualtat de temperatures basada en el fenomen del flux calorífic. Quan la calor passa d’un cosa un altre cos i ambdós estan en contacte, la temperatura del primer és, per definició, més alta que la del segon; si no passa la calor de l’un a l’altre, les temperatures són iguals.

La transmissió de calor per conducció és imprescindible la presència de matèria, ja que la calor es transmet, per conducció, mitjançant les vibracions de la matèria. Un alt grau
de disgregació de la matèria comporta dificultat per a la transmissió de la calor per conduction. La conducció és millor en els sòlids que en els líquids, i ens líquids que en els gasos; en el buit absolut no hi ha conducció de calor.

Convecció

S’anomena convecció la propagació de calor d’un lloc a un altre amb el moviment real de la substància calenta. Són exemples de convecció l’estufa d’aire calent i el sistema de calefacció d’aigua calenta. Si la substància és obligada a moure’s a través del funcionament d’un ventilador o d’una bomba, el procés s’anomena convecció forçada.

La teoria matemàtica de la convecció de calor és molt complicada i, a diferència de la de la conducció, no s’expressa amb una equació senzilla. La raó d’aquesta complexitat és la varietat de factors que intervenen en la pèrdua o el guany de calor d’una superfície a una temperatura en contacte amb un fluid a una temperatura diferent.

Radiació

Quan pensem la mà en contacte directe amb un radiador de calefacció d’aigua calenta o vapor, notarem la calor que arriba per conducció a través de les parets del radiador. Si mantenim la mà a sobre del radiador, però sense tocar-lo, la calor arriba a la nostra mà per convecció cap amunt pels corrents d’aire. Si col·loquem la mà lateralment al radiador, s’escalfarà tot i que no se situa en la trajectòria dels corrents convectius. L’energia ara ens arriba per radiació.

La radiació és l’emissió continuada d’energia des de la superfície de qualsevol cos. Aquesta energia, anomenada radiant, es troba en forma d’ones electromagnètiques que es propaguen a la velocitat de la llum i es transmeten a través del buit o de l’aire. Les ones són absorbides pels cossos que no són transparents a elles, com la superfície de la mà o les parets de l’habitació, i l’energia és transformada en calor.

L’energia radiant emesa per una superfície per unitat de temps i per unitat d’àrea depèn de la natura de la superfície i de la seva temperatura. Si la temperatura és baixa la radiació per unitat de temps és petita i l’energia radiant és, principalment, de longitud d’ona altra. Quan augmenta la temperatura, la radiació per segon augmenta molt ràpidament.

La quantitat de calor que rep un cos per radiació és directament proporcional a la quarta potència de la temperatura del cos radiant i inversament proporcional al quadrat de la distància que els separa.
6.5 Productes de combustió

Els productes de combustió es divideixen en quatre categories: gasos de combustió, flames, calor i fums.

Gasos de combustió

Si la concentració d’aire és suficient i la combustió completa, el carboni present en la major part de materials combustibles dóna lloc, en cremar, al diòxid de carboni (CO2). Però si la concentració d’aire és baixa, es produeix monòxid de carboni (CO). En general, excepte quan prèviament s’ha produït una mescla d’aire combustible, la concentració d’aire a la zona acostuma a ser baixa.

Aquests dos, juntament amb el vapor d’aigua, formen el conjunt de gasos més abundants en els incendis, però hi ha una sèrie de compostos que habitualment es troben als focs, com amoníac, anhíbrid sulfurós, àcid cianhídric, òxids de nitrogen, fosgè i àcid clorhídric. El tipus de gas que es forma depèn de molts factors com la composició química del combustible, la quantitat d’oxigen disponible i la temperatura a què arriba. S’ha demostrat que el nombre de morts provocades per inhalació de gasos o aire calent és molt més comú que el total de morts causades per la suma de la resta d’agents. La toxicitat d’aquests gasos depèn de la composició, de la concentració, de la durada d’exposició i de l’estat físic de la persona.

Alguns d’aquests gasos, com l’àcid clorhídric, són corrosius i afecten no únicament les persones sinó també els materials.

Flames

Quan la combustió és produeix en una atmosfera amb concentració normal d’oxigen, acostuma a anar acompanyada duna radiació lluminosa o flames.

La flama és una zona de gasos incandescents visibles al voltant de la superfície del material en combustió. La flama no és més que gasos calents i partícules incandescents, i, si el combustible que crema és sòlid o líquid, la presència de flames indica l’emissió de gasos o vapors a causa de la calor.

La combustió completa de materials orgànics genera flames quasi incolores i el color que es demostra en la majoria dels casos acostuma a estar relacionat amb la presència de partícules sòlides, generalment de carboni, que cremen en el si dels mateixos materials. No obstant això, les flames d’alguns compostos són de diferents colors.
El color de la flama depèn, a banda de la composició química del combustible, de la quantitat d’oxigen. Si la proporció d’oxigen és alta, les flames són de color groc lluminós i són oxidants, i si és baixa, són de color blau, reductores i més energètiques.

Hi ha alguns casos de combustions sense flama: la radiació lluminosa emesa en aquesta situació es coneix com incandescència o brases. És d’alta longitud d’ona i es troba a la zona del roig i de l’infraroig, per tant, de menor energia.

L’exposició directa a les flames produeix cremades a les persones i danys materials, perquè la flama propagar el foc per irradiació de la calor.

Calor

De tots els productes de la combustió la calor és la principal responsable de la propagació del foc.

La calor és una forma d’energia de les molècules en moviment constant en el si de la matèria. Aquestes molècules xoquen constantment entre elles. Com més gran és l’energia cinètica de les molècules, més gran és la violència dels xocs entre elles i la calor despresa. De la mateixa manera que la temperatura d’un cos que tingués les seves molècules en un estat de repòs absolut seria el zero absolut (0ºK o -273,16º C), en augmentar l’energia cinètica de les molècules, els xocs les separa i per efecte la pujada de temperatura el cos es dilata.

La temperatura és el resultat de l’estat tèrmic dels cossos, és a dir, del grau de fred o de calor.

La temperatura és una magnitud que expressa el grau d’escalfament dels cossos. La calor despresa per un cos, com hem dit, seria nul·la si les seves molècules quedessin en perfecte estat de repòs. Per això, atribuïm a aquest estat el zero absolut. La calor emesa en un incendi i l’elevació de temperatura que comporta provoca danys a les persones i als béns materials. L’exposició a l’aire calent pot causar directament deshidratació, esgotament, bloqueig de les vies respiratòries i cremades.

La calor intensifica el ritme cardíac. Quan la seva intensitat depassa el llindar de tolerància humana és mortal. L’exposició d’una persona a temperatures entre 60º i 70 ºC durant uns minuts li causarà la mort.

Els elements de construcció veuen afectades les seves propietats mecàniques i, fins i tot, la composició química a causa de la calor.
Fum

El fum està format per petites partícules sòlides cremades parcialment, per vapor condensat, en suspensió a l’aire, i gasos de la combustió. La calor, el volum i la quantitat d’aquestes partícules determinen el gruix del fum. El vapor d’aigua condensat també espesseix el fum.

El principal perill del fum és que impedeix la visió. El fum pot ocultar senyals i vies d’evacuació i generar confusió i pànic, sobretot en zones desconegudes.

A més, el fum irrita les mucoses, principalment les dels ulls i les de les vies respiratòries, i això contribueix a augmentar el pànic.

Quan la proporcio de fum, aire calent i gasos és elevada i, per tant, la proporció d’oxigen és baixa arribem a l’asfíxia i després la inconsciència i, fins i tot, a la mort.

En els incendis, el fum també pot causar danys materials molt importants. Els fums calents tenen tendència a ocupar els espais que hi ha a les parts més altes. Una possible forma d’entendre el seu desplaçament és imaginar el local invertit i pensar què faria un líquid, com l’aigua per exemple, en aquesta situació, quan els fums estan força calents aquesta és una bona aproximació.

6.6 Senyals d’un incendi

Zona circumdant i exterior de l’edifici.

Les zones exteriors d’un edifici que ha sofert un incendi poden presentar senyals a tenir en compte. Si es detecten, per exemple, elements no habituals en finestres que impedeixin la visió pot indicar la voluntat de retardar la detecció de l’incendi. Els senyals i nivells de sutge indiquen a quins punts ha afectat l’incendi.

Parets i sostres

Les façanes i parets deformades són indicatiu que han sofert l’acció del foc i la calor. Una bona manera d’observar-les és de costat per poder apreciar aquestes possibles deformacions.

Les esquerdes horitzontals, generalment a sobre d’obertures com portes o finestres, presenten un perill superior a les verticals. Molts d’aquests efectes sobre les parets són com a conseqüència de la dilatació i contracció de les bigues.
Zones de més calor

En parets, sostres i pilars les zones més afectades per la calor seran les que presentin més decoloració o destrucció. Les estructures metàl·liques de color gris blavós clar han rebut més temperatura que les que han agafat color d’òxid.

Zones fredes

El sutge es diposita sobre les zones fredes i és per això que com més negre sigui la zona, més freda haurà estat.

Temperatura ambient de les diferents zones

L’observació de materials amb senyals de fusió permet identificar zones que han assolit diferents temperatures. Si un material s’ha fos totalment vol dir que, com a mínim, ha estat exposat a la seva temperatura de fusió, però no se sap la temperatura màxima que ha suportat.

Taula 6.4: Temperatures d’interès per a diferents materials

<table>
<thead>
<tr>
<th>T (ºC)</th>
<th>Senyal</th>
</tr>
</thead>
<tbody>
<tr>
<td>200/300</td>
<td>Fonen els plàstics habituals</td>
</tr>
<tr>
<td>230</td>
<td>Fon l’estany</td>
</tr>
<tr>
<td>325</td>
<td>Fon el plom</td>
</tr>
<tr>
<td>400</td>
<td>Fon el zenc</td>
</tr>
<tr>
<td>540</td>
<td>L’acer perd el 50% de resistència</td>
</tr>
<tr>
<td>660</td>
<td>Fon l’alumini</td>
</tr>
<tr>
<td>760</td>
<td>El vidre s’estova</td>
</tr>
<tr>
<td>900</td>
<td>Fon el llautó</td>
</tr>
<tr>
<td>960</td>
<td>Fon la plata</td>
</tr>
<tr>
<td>1000</td>
<td>Fon el bronze</td>
</tr>
<tr>
<td>1080</td>
<td>Fon el bronze</td>
</tr>
<tr>
<td>1200</td>
<td>Fon el ferro colat</td>
</tr>
<tr>
<td>1350/1500</td>
<td>Fon el vidre</td>
</tr>
<tr>
<td>1500</td>
<td>Fon l’acer</td>
</tr>
<tr>
<td>1600</td>
<td>Fon la sorra</td>
</tr>
<tr>
<td>1875</td>
<td>Fon el crom</td>
</tr>
</tbody>
</table>

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions
Taula 6.5: Temperatures aproximades de fusió i ignició per a materials plàstics i metàl·lics presents en una construcció

<table>
<thead>
<tr>
<th>Metall</th>
<th>Punt de fusió</th>
<th>Plàstic</th>
<th>Punt de fusió</th>
<th>Ignició</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumini</td>
<td>660º</td>
<td>AÇB</td>
<td>88-125º</td>
<td>416º</td>
</tr>
<tr>
<td>Coure</td>
<td>1080º</td>
<td>Acril·lics</td>
<td>91-125º</td>
<td>560º</td>
</tr>
<tr>
<td>Plom</td>
<td>327º</td>
<td>Cel·lulosos</td>
<td>49-121º</td>
<td>475-540º</td>
</tr>
<tr>
<td>Zinc</td>
<td>419º</td>
<td>Nilons</td>
<td>160-275º</td>
<td>424-532º</td>
</tr>
<tr>
<td>Aliatge d'alumini</td>
<td>600º</td>
<td>Policarbonat</td>
<td>140-150º</td>
<td>580º</td>
</tr>
<tr>
<td>Antimoni</td>
<td>630º</td>
<td>Polièsters</td>
<td>220-268º</td>
<td>432-488º</td>
</tr>
<tr>
<td>Bronze</td>
<td>1000º</td>
<td>Polietilè bd</td>
<td>107-124º</td>
<td>349º</td>
</tr>
<tr>
<td>Ferro colat</td>
<td>1200-1350º</td>
<td>Polietilè ad</td>
<td>122-137º</td>
<td>349º</td>
</tr>
<tr>
<td>Níquel</td>
<td>1450º</td>
<td>Polipropilè</td>
<td>158-168º</td>
<td>570º</td>
</tr>
<tr>
<td>Cobalt</td>
<td>1490º</td>
<td>Poliestirè</td>
<td>100-120º</td>
<td>488-496º</td>
</tr>
<tr>
<td>Acer</td>
<td>1100-1600º</td>
<td>Poliuretà</td>
<td>85-121º</td>
<td>416º</td>
</tr>
<tr>
<td>Plati</td>
<td>1770º</td>
<td>PTFE</td>
<td>327º</td>
<td>530º</td>
</tr>
<tr>
<td>Titani</td>
<td>1670º</td>
<td>Polivinildenclor</td>
<td>212º</td>
<td>454º</td>
</tr>
<tr>
<td>Crom</td>
<td>1900º</td>
<td>PVC</td>
<td>75-110º</td>
<td>435-557º</td>
</tr>
<tr>
<td>Tungstè</td>
<td>3410º</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dilatacions

Quan una biga o paret rep els efectes de la calor es dilata més per la zona que en rep la part convexa produïda per la dilatació serà, per tant, la que ha rebut calor de forma més intensa i, segurament, la primera a rebre l’impacte de l’incendi, la qual cosa indica la direcció del foc en aquella zona.

A més, en passar de 540 ºC aproximadament, l’acer perd el 50% de resistència; si a això li sumem el pes dels forjats que suporten les bigues, ens trobem que en cas d’un incendi les bigues es pugin deformar.

Els dipòsits o elements pesants suportats per peus metàl·lics cauen del cantó del foc, en quedar debilitats, primer, els suports més pròxims a l’avanç de l’incendi.

Les dilatacions que pateixen els plàstics, metalls o vidres (extintors, bombetes...) indiquen també la procedència de la calor.

a) A 550 ºC les bigues s’allarguen.

b) A 650 ºC l’acer perd el 60% de la seva resistència.

c) A 825 ºC una estructura metàl·lica pot col·lapsar-se.

Calor i intensitat de les flames i els fums

Els colors de les flames proporcionen indicis sobre els materials que es cremen i de la intensitat (temperatura) del foc.
Igual que els colors de les flames, el color del fum ajuda a determinar el material que crema.

Taula 6.6: Color de les flames segons el material que crema
Font: Pascual (1998); Phillips i McFadden (1984)

<table>
<thead>
<tr>
<th>Color de les flames</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groc</td>
<td>Combustible ordinari material de classe A, com roba, fusta i paper.</td>
</tr>
<tr>
<td>Taronja</td>
<td>Combustibles ordinaris en els estàdis finals de la combustió</td>
</tr>
<tr>
<td>Vermell</td>
<td>Líquids inflamables, líquids combustibles i subproductes dels hidrocarburs.</td>
</tr>
<tr>
<td>Blanc</td>
<td>Metalls com per exemple el magnesi.</td>
</tr>
<tr>
<td>Verd</td>
<td>Coure i nitrats.</td>
</tr>
<tr>
<td>Blau</td>
<td>Alcohol i gas natural amb una mescla apropiada d’aire.</td>
</tr>
</tbody>
</table>

Carbonització

Moltes superfícies es descomponen amb la calor d’un incendi; per exemple, les superfícies de fusta es carbonitzen i canvien d’aspecte i color. Aquest grau de carbonització i decoloració es pot comparar amb les zones adjacents per investigar com ha evolucionat l’incendi.

En gairebé tots els focs d’incendis és probable trobar fusta carbonitzada. La fusta exposada a elevades temperatures experimenta una descomposició química que allibera gasos, vapor d’aigua, així com diferents productes de la combustió en forma de fum. A mesura que es forma la fusta carbonitzada, el material s’encongeix, s’esquerda i es corba.

Abans de la carbonització, l’aigua interna de la fusta ha de ser totalment eliminada en fase de vapor, per això, es necessita una gran quantitat d’energia. Una vegada la fusta està seca i escalfada a temperatures pròximes als 280 ºC, comença espontàniament a descompondre’s, i podreix carbó, vapor d’aigua i compostos químics més complexos. Aquests procés de descomposició espontani, o carbonització, continua fins que queda només el residu carbonitzat anomenat carbó vegetal.

La velocitat de penetració del foc a la fusta es pot considerar que va de 0,5 a 0,8 mm/min, segons els assajos de laboratori. El foc real, però, pot cremar amb més o menys intensitat depenent de les condicions reals d’un incendi, el tipus de fusta, orientació de la veta, grau d’humitat i altres variables que fan que els valors de laboratori no s’ajustin totalment a la realitat. S’ha de tenir, per tant, en compte totes les variables possibles que poden afectar la rapidesa i intensitat de la combustió. Segons dades empíriques es pot establir una relació entre la profunditat de l’escletxa de la carbonització i el temps que la fusta ha estat exposada al foc (Font, 1992):

- d) fusta tova (pi): 0,83 mm/min
- e) fusta de duresa mitjana: 0,67 mm/min
f) fusta dura (roure): 0,53 mm/min

Posició dels objectes

Es poden utilitzar certes marques per a tractar de situar la posició dels objectes durant l’incendi.

Un objecte que obstaculitzi el recorregut de l’energia calorífica crearà una ombra de calor sobre l’objecte que estigui protegint (paret, sostre, un altre objecte, etc.). L’objecte pot ser sòlid o líquid, combustible o no combustible.

Les ombres de calor poden ser de gran ajuda per a determinar l’origen de l’incendi. Quan un objecte impedeix que els productes de la combustió es dipositin sobre un altre o impedeixin que aquest es crequi crearà una marca de protecció o zona protegida. El concepte de marca de protecció està molt lligat al d’ombra de calor i de la mateixa manera serà de gran ajuda per a determinar l’origen de l’incendi. Si durant les tasques d’extinció s’ha hagut d’apartar objectes o mobiliari, les marques de protecció serviran per saber on estaven els mobles originàriament. Les marques de protecció i les marques de calor poden ser gran utilitat per a determinar quina era la posició inicial d’aquests.

Trobar eines o estris fora del seu lloc d’ús habitual, representa una situació anòmala en la qual cal incidir.

Presència d’accelerants

En molts incendis intencionats s’utilitzen líquids fàcilment inflamables que n’acceleren el desenvolupament i la velocitat de propagació, a causa del seu alt poder calorífic. Alguns dels senyals indicatius de l’ús d’accelerants són els següents:

- L’incendi s’ha propagat cap avall per escales i rampes quan generalment ho faria cap amunt.
- Els danys de la combustió són més forts al terra que al sostre.
- Senyals de fum i foc uniformes a les parets circumdants. El combustible normal produeix taques de fum i senyals de calor diferents i són més fortes en unes parets que en d’altres.
- En els terres apareixen àrees irregulars, generalment de forma ovalada, d’igual dany en tota la seva superfície, que coincideix amb el toll d’accelerant que ocupava abans de cremar.
- Si s’observen objectes que s’han fos completament, la temperatura de fusió dels quals no ha estat possible d’assolir-se amb la càrrega de foc habitual d’aquella zona, pot indicar l’ús d’accelerants.
- Si es troben materials d’alt punt de fusió en nivells baixos pot ser causat per l’ús d’accelerants ja que els combustibles sòlids no aporten suficient calor per a assolir la temperatura de fusió necessària, a nivell de terra o pròxim al terra.
- El fum del gasoli deixa un tacte untuós sobre vidres i superfícies llises.

6.7 Comportament dels materials estructurals davant d’incendis i explosions

L’estudi de la resistència al foc dels materials estructurals moderns s’inicia a Alemanya en la dècada de 1880, amb uns assajos de murs d’obra de fàbrica, i queda finalment consolidat amb els extensos assajos de columnes de fosa de ferro efectuals per Underwriters Laboratory (1917-1918) als Estats Units (Shuob, 1961), amb la utilització d’una corba temperatura-temps que difereix ben poc de les emprades actualment. Els resultats obtinguts demostraven que la majoria de columnes someses simultàniament a foc i amb la càrrega d’utilització, col·lapsaven a una temperatura mitjana de 538 ºC a la seva superfície, equivalent a l’arrodoniment mnemònic de 1000 ºF (Gilvary, 1997).

Es evident que, ni la temperatura superficial de l’element resistent ni tampoc les corbes estàndard temperatura-temps són representatives de l’incendi real, però han esdevingut una referència consolidada a la normativa. Curiosament és un error conceptual que encara persisteix en alguns codis de caire prescriptiu.

Des del principi, la recerca científica va estar orientada a la resistència de les construccions i les estructures per a gaudir d’un temps prudencial destinat a l’evacuació de les persones i a la intervenció dels serveis d’extinció. Alternativament a aquest plantejament, la investigació d’incendis i explosions ha de treballar amb la realitat física del fenomen i no seguir la metodología basada en el projecte d’estructures segures que preconitzen les normatives.

La gràfica següent pot ajudar a aclarir alguns d’aquests conceptes. La corba discontínua representa el foc estàndard ISO834, utilitzat com a referència internacional en els assajos de laboratori i en els càlculs dels codis prescriptius. Aquesta representació difereix de la realitat d’un foc natural ja que no preveu la fase inicial de desenvolupament de l’incendi anterior al punt d’inflamació (conflagració sobtada o flashover) representada a la corba vermella. La corba ISO834 tampoc preveu l’augment ràpid de la temperatura que pot trobar-se en certs tipus d’incendis i, finalment, la temperatura creix monotònicament de forma indefinida en el temps, sense considerar la possibilitat que s’acabi el combustible o hi hagi una intervenció dels serveis d’extinció (Marimon, 2007).
Figura 6.1: La corba estàndard temperatura-temps ISO834 i el foc natural

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions

Comportament termomecànic de l’acer

Les propietats de l’acer varien àmpliament i depenen molt de l’aliatge. Malgrat això, els acers que podem trobar habitualment en l’escenari d’un incendi són els emprats en la construcció d’estructures i maquinària convencional; així doncs, el que es descriu a continuació és de total utilitat.

En el diagrama d’equilibri o de fase Fe-C (ferro-carboni) es pot observar que la temperatura d’austenització – es a dir, la temperatura en què un acer es transforma en austenita d’estructura cristal·lína – comença a 900°C per al cas d’un ferro pur (0% de carboni) i, quan té afegit carboni, la temperatura decau a un mínim de 724°C per al cas d’un acer eutèctic (només 0.83% per pes de carboni). Altrament, quan s’aproxima a un 2.1% de carboni la temperatura d’austenització puja una altra vegada fins a 1130%.
La temperatura més baixa per començar la fusió d’un acer al carboni convencional és de 1130°C. Aquesta és una dada important a retenir durant la investigació d’incendis ja que l’acer mai es convertirà en líquid per sota d’aquesta temperatura. El ferro pur es comença a fondre a 192°C i és completament líquid quan arriba als 1539°C. L’acer amb un 2,1% de carboni en pes comença a fondre a 1130⁰ i està completament fos quan arriba als 1315°C. D’altra banda, l’acer amb més d’un 2,1% de carboni ja no és acer, és l’anomenat ferro colat.

Figura 6.2: Diagrama d’equilibri o de fase Fe-C (Ferro Carboni)

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions

Figura 6.3: Calor específica de l’acer en funció de la temperatura

Font: SSEDTA, 2001
No obstant això, l’acer també pot experimentar deformacions importants a altra temperatura si està sotmès a sol·licitacions mecàniques, i sense que hagi assolit encara la temperatura mínima de fusió anterior de 1130ºC. La figura següent mostra el diagrama tensió-deformació d’un acer convencional de construcció S235, tensió de límit elàstic 235 N/mm² a 20ºC, segons la temperatura existent durant un assaig normalitzat a tracció. S’observa una disminució de la tensió del límit elàstic efectiu, fet que significa una reducció de la capacitat resistent del material, però també una disminució del mòdul d’elasticitat longitudinal, que es tradueix en un major deformabilitat de l’estructura a altres temperatures i una major sensibilitat als afectes d’instabilitat (vinclament en els pilar i bolcada lateral en les bigues).

És a dir, durant la investigació de l’incendi, la constatació d’una gran deformació de l’estructura metàl·lica no protegida no implica necessàriament que s’hagin assolit unes altes temperatures. A la figura que es troba a continuació s’observen uns perfils metàl·lics molt deformats, bàsicament per la disminució del mòdul d’elasticitat.

A la normativa europea UNE EN 1993-1-2 es troben aquestes reduccions quantificades de forma percentual i, per tant, són directament utilitzables en la investigació d’incendis per a totes les qualitats dels acers de construcció.

Comportament termomecànico del formigó armat

A causa de la seva conductivitat tèrmica baixa i que usualment les peces són de gran massa, per tant de gran inèrcia tèrmica, el formigó s’utilitza freqüentment com a element compartimentador, és a dir, per assolir l’acompliment dels criteris normatius (El, estanquitat i aïllament tèrmic respectivament).

Tanmateix, el formigó en massa pot ser danyat per l’acció al foc, bàsicament pels seus dos punts febles:

- Baixa resistència a les tensions de tracció. La problemàtica es resol a temperatura ambient mitjançant la utilització de les armadures d’acer convenientment distribuïdes en les zones traccionades de la peça. És l’anomenat formigó armat.
- El fenomen de l’esclatament o *spalling* del formigó.

Fins a aproximadament 300ºC, el formigó sofreix una expansió tèrmica normal. Curiosament la dilatació de l’acer té pràcticament un valor semblant i això assegura la dilatació solidària del compost formigó armat sense lliscaments relatius. Cal destacar que el lliscament relatiu per dilatació tèrmica incompatible no és un mode rellevant de fallida en situació d’incendi.
Fins aproximadament 500°C, els canvis estructurals essencials són deguts a la carbonització. El formigó exposat fins a 500°C es considera normalment resistent. A 573°C, el quars sofreix una expansió ràpida a causa de la transició de fase, i a 900°C la calcita comença a disminuir a causa de la descomposició. Entre 450°C i 550°C l’hidrat de ciment es descompon i produeix òxid de calci. El carbonat de calci es descompon a aproximadament 600°C. Finalment, durant el procés de refredament la rehidratació de l’àcid de calci pot provocar expansions. El formigó dels edificis que havien tingut un incendi i quedaven romanents en servei durant uns quants anys mostren un grau extens de carbonització.

A més, durant l’incendi el formigó està exposat a uns gasos líquids que poden ser perjudicials, entre altres les sals i els àcids que resulten quan es combinen els gasos amb l’aigua.

Figura 6.4: Disminució percentual de la resistència a compressió del formigó en funció de la temperatura
Font: (SSEDTA, 2001)

Figura 6.5: Important disminució de la resistència a compressió del formigó després d’una exposició a 700°C durant un incendi
Font: SSEDTA, 2001
El fenomen de l’esclatament o *spalling* del formigó

És una ruptura neta, habitualment identificada perquè no té el dipòsit de negre de fum ja que succeeix en una fase avançada de l’incendi. En algun cas es pot arribar a confondre amb una esquerda de retracció de refredament si és de poca extensió. El fenomen és comú a altres materials de construcció que tenen una resposta fràgil, com les peces ceràmiques o l’obra de fàbrica.

És un fenomen que encara és objecte de recerca (Guerrero, 2009) però sembla que hi ha coincidència a atribuir-lo a la coexistència de dues causes independents:

a) Aparició de tensions de tracció en el formigó provocades pel gradient important de temperatures durant el període d’escalfament o refredament ràpid de la peça. És a dir, pot estar associat als incendis de desenvolupament ràpid.

b) Aparició de tensions de tracció en el formigó a conseqüència de les pressions internes que genera el vapor procedent de l’aigua retinguda dins del formigó. El canvi de fase líquid-vapor de l’aigua succeeix a temperatures relativament baixes dins el material, com a referència molt coneguda entorn a 100 ºC a la pressió atmosfèrica. Així, com que els formigons joves tenen un contingut alt d’aigua retinguda, són més sensibles al fenomen de l’esclatament.

És un fenomen de gran perillositat per als serveis d’extinció, ja que deixa al descobert les armadures d’acer (vegeu les figures següents), que queden directament exposades a l’acció del foc. Això pot provocar un esfondrament sobtat de l’estructura sense unes deformacions prèvies que adverteixin del col·lapse imminent. De cara a la investigació d’incendis, la detecció del fenomen de l’esclatament del formigó no aporta una informació rellevant respecte a les temperatures màximes assolides durant l’incendi, ja que, com s’ha comentat, aquest pot succeir a temperatures relativament baixes. En canvi, podria ser indicatiu d’un incendi de desenvolupament ràpid provocat per una càrrega de foc elevada en el recinte i/o l’existència d’accelerants.

El fenomen de l’esclatament es pot fer extensiu a altres materials de construcció amb comportament fràgil, per exemple, l’obra de fàbrica ceràmica utilitzada a les parets de càrrega o de compartimentació.
Comportament termomecànic de l’obra de fàbrica

El comportament ordinari dels murs d’obra de fàbrica difereix radicalment entre les fases inicials d’un incendi i les posteriors. En efecte, el mur experimenta al començament de l’incendi un moviment vers l’exterior. Això està provocat per tres factors, habitualment concomitants:

- La dilatació pròpia del mur no és uniforme; la cara calenta es dilata més que la cara freda, en provoca un allargament longitudinal diferencial entre ambdues i l’acumulació dels allargaments longitudinals acaba donant un gir i moviment vers l’exterior;
- La mateixa intervenció dels serveis d’extinció agreuja l’anterior diferència de temperatures entre la cara externa i interna del mur;
- La dilatació longitudinal de l’estructura per augment de temperatura, on es troba normalment lligat el mur excepte si és de càrrega i/o està mecànicament aïllat, provoca l’arrossegament del mur vers l’exterior.

La caiguda del mur vers l’exterior és un fenomen molt perillós per als serveis d’extinció i ha provocat històricament accidents molt greus.

L’observació de l’obra de fàbrica pot aportar informació addicional sobre el desenvolupament de l’incendi atenent als efectes següents:

- desperfectes presents a la seva superfície o petits esclataments;
- pèrdua de la capacitat de sectorització davant de l’incendi, motivada per dos explicacions independents:
 - per l’aparició d’esquerdes que propaguen les flames o gasos calents (pèrdua del criteri E), o
 - perquè no ha pogut aïllar tèrmicament els dos sectors o zones (pèrdua del criteri I).
Figura 6.6: Comportament ordinari dels murs durant la fase inicial d’un incendi

Font: Grup de Recerca sobre Investigació d’Incendis i Explosions (2010), La investigació d’Incendis i Explosions

Normativament això representaria que a la cara fresa del mur s’assoleix una temperatura generalitzada de 140 ºC o, de forma localitzada, de 180 ºC, i que aquests valors justificarien la propagació de l’incendi per temperatura.

És important verificar la pèrdua dels criteris E i/o I, que no s’interpreti erròniament com si hi hagués dos focus d’incendi.

Comportament termomecànic de la fusta

La fusta té una combustió que comença als 100 ºC amb l’evaporació del vapor d’aigua i l’assecat de la peça. A continuació, entre 100 ºC i 270 ºC es desprenen gasos i es produeix alguna combustió. És entre 250 ºC i 350 ºC quan s’inicia la combustió viva amb una reacció de tipus exòtèrmica.

La fusta pot ser l’element combustible d’un incendi quan parlem d’una indústria o un magatzem dedicat a la fusta i els seus derivats, però difícilment una biga o un pilar de fusta és l’origen del foc. Així, la fusta esdevé a la investigació d’incendis com una prova testimonial del seu desenvolupament. La penetració de la carbonització dins el material és indicativa de la severitat de l’incendi i de la duració en el temps.

El foc afecta l’exterior de la fusta formant una crosta típica que recorda la pell d’un cocodril, mentre que interiorment la fusta resta intacta, tal com s’aprecia a la figura següent. Precisament aquesta crosta de fusta carbonitzada fa de material aïllant i proporciona un retard temporal a l’acció del foc. És a dir, la velocitat de carbonització disminueix a mesura que avança la carbonització del material, encara que de forma pràctica s’adopti un valor mitjà.
En els llibres clàssics d’investigació d’incendis nord-americans es parla àmpliament de la resposta de la fusta. Cal fer dues precisions sobre aquesta qüestió: en primer lloc no hi ha una utilització massiva de la fusta com a material de construcció a Catalunya i, en segon lloc els tipus de fusta emprats són diferents. Dificilment trobarem una construcció feta íntegrament en fusta (estructura, paviment i recobriments) i, per tant, les metodologies i conclusions no són directament extrapolables (AWC, 2008).

Les inclusions metàl·liques dins la fusta

La conductivitat tèrmica és molt més alta a l’acer que a la fusta. Així, les inclusions metàl·liques a les bigues i els pilars estructurals; claus, cargols i passadors no protegits, constitueixen una entrada directa de calor a l’interior de l’element. També, les inclusions metàl·liques a les portes, les manetes i les frontisses no protegides alteren el mapa d’isotermes i provoquen una entrada localitzada de calor que pot alterar la missió de compartimentació de l’element i que faci que s’obri o caigui. La hipòtesi de porta inicialment oberta cal ser analitzada convenientment dins la investigació d’acord amb aquestes possibilitats.

Comportament termomecànric de l’alumini i el magnesi

Considerats materials <<avançats>> per la seva lleugeresa, resistència mecànica, estabilitat davant de la corrosió i propietats elèctriques, s’apliquen cada cop més en altres sectors, més enllà de l’aeronàutic i l’elèctric. És per aquesta raó que s’han inclòs dins aquest apartat, tot i que no són materials gaire emprats en la construcció d’estructures com ho poden ser els mencionats en els capítols anteriors.

Malgrat que en els incendis normals no es sol arribar a les temperatures perilloses, cal fer esment del risc potencial que hi ha si s’assoleixen determinades temperatures. Cremen amb una flama blanca molt brillant, pels 3000 ºC i 3900 ºC que assoleixen, respectivament, l’alumini i el magnesi.

Perquè la combustió sigui estable, cal que el material superi, com a mínim, la temperatura de fusió, condició difícil de complir en peces de cert gruix. Els encenalls i la pols d’alumini o magnesi són potencialment més perillosos, perquè faciliten l’aparició de punts calents.

S’està estudiant la casuística que pot arribar a convertir-los en accelerants d’algun tipus d’incendi particular, combinat amb tensió elèctrica. Els arcs elèctrics de curtcircuit poden assolir de 6000 ºC a 20000 ºC, mentre dura el pas del corrent elèctric, abans de l’actuació de les proteccions.
7 ESTUDI DE CAS PRÀCTIC (9 de març 2004)

7.1 Ubicació o localització

En aquest punt s'analitza el servei que es va realitzar el dia 9 de Març del 2004. Aquest és localitza dins del nucli antic de Balaguer. Més concretament en el carrer Torrent numero 28.

Figura 7.1: Plànol província de Lleida

7.2 Història

La situació estratègica de la ciutat de Balaguer i el seu territori, com a porta del Prepirineu i dominant el pas del riu Segre, ha fet que des de la Prehistòria l'home hi hagi instal·lat els seus campaments i poblats. El tossal del castell Formós ja estava ocupat a començaments del primer mil·lenni abans de Crist, ilergetes i romans va còrrer per aquests
territoris, on coneixem assentaments com els del tossal de Mormur o les vil·les romanes de les Franqueses i l'Hostal Nou.

Però la fundació de la ciutat de Balaguer vingué de la mà dels contingents àrabs i berbers que durant la primera meitat del segle VIII arribaren a la zona del Segre. En l'altiplà conegut com "Almatà", paraula àrab que significa "la plana", s'hi instal·là un campament militar on s'hostatjavien els exèrcits preparats per fer incursions a la Septimània a través del riu.

Figura 7.2: Imatge de Balaguer

Font: Internet

Aquell primitiu campament es convertí, a final del segle IX, amb l'estabilització de la frontera entre al-Andalús i els comtats feudals, en una pròspera medina que s'abastia de les fèrtils terres que l'envoltaven, mercès a la construcció d'una àmplia xarxa de sèquies i braçals. L'any 897 es començà a construir el castell de Balaguer, que a mitjans del segle XI, sota el mandat del rei Yusuf al-Muzaффar de la nissaga dels Banu Hud, es convertí en un esplendorós palau.

La desintegració del Califat de Córdova i la inestabilitat política que això va suposar, va ser aprofitada pels comtes feudals per iniciar la conquesta de les riques terres i ciutats andalusines i a més, en el cas de Balaguer, l'expulsió dels seus habitants. La ciutat fou conquerida pel comte Ermengol VI l'any 1105, i així incorporada definitivament al comtat d'Urgell.

A aquesta nissaga comtal es deu la lenta repoblació de la ciutat, la creació dels òrgans municipals de govern, la concessió de privilegis, mercats i fires i la construcció d'alguns dels monuments més emblemàtics de Balaguer.
La casa d’Urgell des del seu origen, passà per mans de diverses famílies, fins que a 1314, el casal de Barcelona entrà a dirigir els afers del comtat. A aquest fet es deu l’estreta relació dels comtes – reis amb Balaguer: Alfons el Benigne fou comte d’Urgell abans de la seva entronització, i el seu fill Pere III el Cerimoniós nasqué al castell Formós de la ciutat.

L’any 1412, en morir el rei Martí l’Humà sense descendència, el comte Jaume II d’Urgell era candidat al tron de la corona catalano-aragonesa. La decisió que prengué el tribunal reunit a Casp, donà la raó a Ferran d’Antequera candidat de la casa de Trastàmara. El comte d’Urgell es sublevà contra el nou rei i inicià una guerra que acabà amb l’empresonament del comte, la destrucció del castell de Balaguer i la dissolució del comtat. A partir del segle XV la ciutat es convertí en senyoriu del primogènit del rei.

Balaguer continuava essent una ciutat eminentment agrària, dedicada als productes d’horta, els cereals, la vinya i el cultiu del cànem i el lli. Les diferents guerres d’època moderna suposaren en molts cops l’àmplia destrucció dels habitatges i monuments i la utilització dels edificis públics i religiosos com a presons, hospitals o casernes militars, destruint-ne en molts casos el patrimoni artístic i moble.
Així i tot, la ciutat s’anà reconstruint i es mantingué dins les muralles fins a mitjans del segle XX, quan s’inicià l’eixample de la ciutat, envaint les hortes del marge esquerre del riu Segre.

7.2.1 Balaguer l’última ciutat de la plana. Marc territorial

Balaguer és la ciutat situada més al nord de la Plana de l’ Urgell, just en el punt on el riu Segre es prou ample per que s’hi pugui desenvolupar una ciutat sobre el riu. Més amunt l’encaixament del riu fa desaparèixer la plana i els nuclis més septentrionals formen part ja de les primeres estivacions dels Pirineus.

Les ciutats de Balaguer, Lleida i Tàrrega son les ciutats situades en la meitat nord d’aquesta plana partida per l’eix de la carretera nacional II.

En tant que el límit de llevant de la plana és la corba del Canal d’Urgell, el límit de ponent, és el propi Segre, ja que el seu marge dret queda molt més aixecat formant un altiplà que obligarà a una formació de les ciutats en terrasses per nivells, tal i com succeeix a la ciutat de Balaguer.

Les Muralles de Balaguer, Santa Maria, el castell Formós i el Sant Crist són els monuments que identifiquen la ciutat per estar precisament construïdes sobre la terrassa superior que ha definit la seva topografia. Elements referents de la ciutat i de territori que es troben dins o l’entorn de l’àrea objecte del projecte.

7.2.2 El centre històric i el desenvolupament urbanístic de Balaguer

En la construcció del centre històric de Balaguer es poden identificar cinc períodes ben diferenciats, que es corresponen amb opcions molt determinants en la formació urbana:

La Ciutat Àrab. El castell i les dues ciutats(897-1105)

És el període de formació de la ciutat àrab, a partir d’un primer emplaçament en el castell com a lloc defensat en tot el seu perímetre per espadats naturals i en el Pla d’Almatà, ben defensat també de forma natural amb un primer assentament àrab probablement de caràcter militar i emmurallat, que no arriba a consolidar-se, abandonant la població aquest pla per situar-se en la vessant sud del Castell al llarg del torrent i en el petit pla de la seva desembocadura vora el riu.

La Ciutat cristiano-jueva. L’eixample del Mercadal(1105-1600)

En aquest període es distingeixen dues etapes: una primera etapa fins l’any 1335, on des de l’expulsió dels àrabs, la ciutat es reconstrueix sobre ella mateixa, consolidant els
edificis i carrers que han conservat el caràcter àrab de la ciutat primitiva; i una segona etapa, marcada per la creació de l’Eixample del Mercadal fora muralles a partir de l’expulsió l’any 1333 dels jueus que passen a urbanitzar el pla vora el riu, al sud del torrent de la Botera, deixant un espai molt gran, l’actual plaça Mercadal, entre la muralla i els nous carrers del Call i finalment efectuant una nova extensió de la muralla per a defensar el nou barri o call situat al sud de la vila.

La colmatació de la ciutat dins les muralles (1600-1850)

És en aquest període que es construeix el paisatge urbà del Balaguer antic actual amb els seus espais més representatius: Plaça Mercadal, carrers Major i d’Avall, Plaça Sant Salvador i carrer del Torrent. L’edificació es consolida en planta i alçats i la construcció del nou ajuntament a la Plaça Mercadal fa que aquest espai públic es configuri com el nou centre de la ciutat antiga.

El trencament de les Muralles per les carreteres(1850-1939)

Des de mitjans del segle XIX s’inicia la formació del que podríem denominar Balaguer nou, amb la creació i construcció de noves infraestructures territorials. Seran les carreteres a Tàrrega, Tremp i Castelló de Farfanya les que afectaran directament la ciutat reclosa dins les muralles, obrint-la cap al riu i plantejant l’extensió de la vila cap al Sud sobre la prolongació dels dos carrers existents al carrer Barrinou i el carrer Miracle. També s’efectua l’obertura de la plaça Mercadal cap a la carretera que passa al cantó del riu Segre en la seva marge dreta, carrer la Banqueta i portalet. En aquest període s’implanten els serveis urbans de sanejament, aigua potable, i posteriorment enllumenat públic.

El salt del riu. L’eixample(1939-2004)

En aquest període es produeixen els canvis urbanístics més importants: l’Eixample, ordenat dins d’una xarxa de carrers projectats, i el creixement marginal del Secà.

Com a conseqüència d’aquests dos grans creixements, La ciutat vella, on no és realitzar cap operació urbanística important, juga dos papers successius ben diferenciats:

Un primer període, el de creixement de l’eixample, fins els anys 70 en que la ciutat vella manté i consolida el seu paper comercial i administratiu, augmentant les seves característiques de centralitat paral·lelament al creixement del conjunt de la ciutat.

És a partir dels anys 70 en que l’eixample ja té un paper important, que el centre perd la seva capacitat de formació, i s’intensifica consecuentment la seva degradació, tant
comercial, com residencial i també dels usos i els serveis públics. Es a partir d’aquest moment en que s’inicia i formula el problema del centre de la ciutat.

Els dos moments en que el territori ha pesat més en la construcció de la mateixa ciutat són el seu inici i a mitjans del segle XIX.

En el seu inici per la localització de lloc estratègic en funció dels grans elements territorials: el riu Segre, les defenses naturals dels desnivells topogràfics que dominen els passos del riu, i la fixació de la xarxa de camins configuren els components per al desenvolupament de la futura ciutat.

A mitjans del segle XIX quan es construeixen els grans elements de infraestructura com el Canal, els ferrocarrils amb la localització de l’estació fora de les muralles, i les noves carreteres, aquestes intervenen com elements inductors de les reformes urbanes, remodelant tot el sistema d’accessos a la ciutat emmurallada i provocant l’expansió de la ciutat fora de les muralles que es el primer pas per a que a mitjans del segle passat es produeixi el salt de la ciutat al marge esquerre del Segre.

Amb la consolidació urbanística del marge esquerre s’inicia un procés de fugida de llars i activitat del centre i marge dret vers les noves àrees d’eixample al marge esquerre. L’abandonament de l’àrea comporta també la progressiva degradació de la fàbrica urbana que va acompanyada de processos de marginació social dels nous i vells habitants.

El que durant segles fou la centralitat urbana més important d’un ampli territori és avui un espai que presenta degradació urbanística, regressió funcional i certs processos de marginació social.

7.2.3 La relació del Centre Històric de Balaguer amb la resta de la ciutat

De ponent alevant l’orografia explica que la ciutat tingui tres parts ben diferenciades:

- l’altiplà sobre el riu
- les torrenteres i una petita franja de plana en el marge de la dreta del riu
- l’amplia plana del marge esquerre del riu Segre.

El Centre Històric de formació àrab, està situat en la part de topografia més complexa, ocupant les torrenteres i una petita franja plana a la vora del riu en el seu marge dret.
Així en l’observació de la ciutat es pot distingir perfectament el Balaguer Vell situat a redós de les torrenteres que desaigüen damunt del Segre, amb una trama densa i amb forts pendants, el Balaguer Nou situat a la plana de l’altre costat del riu, i el Balaguer del secà situat en l’altiplà superior, tots dos construïts sobre terrenys plans que permeten traçats rectilinis i ordenacions de mancances regulars.

L’orografia també intervé clarament en la relació del centre amb la resta de Balaguer, ja que la seva disposició adossada al desnivell existent entre l’altiplà i el riu i a redós de les torrenteres, i a la vora del riu Segre fa que la seva situació i relació amb la resta de la ciutat sigui molt difícil i es configuri un nucli difícilment penetrable a diferència d’altres centres històrics que permeten una circulació perimetral en aquest cas gairebé impossible. Aquesta configuració accentua el seu caràcter de reducte tancat amb cul de sac i afavoreix el seu abandonament, degradació i marginació.

Com a resultat, tenim una ciutat amb dos marges amb dinàmiques divergents, i amb una evident manca de relació entre les dues realitats. El riu funciona com una barrera entre els dos marges; i això es així no tant per la manca de connexió viària (ponts i passarel·les) sinó més per les mancances (equipaments, activitats econòmiques,...) i dèficits(condicions d’urbanització, condicions d’habitabilitat i seguretat) del Centre Històric. Però la redinamització del barri passa per canviar la imatge i les connotacions negatives que s’associen al Centre.

7.3 Descripció de la situació urbanística i socioeconòmica del barri

7.3.1 Descripció de l’estat de conservació de l’edificació

Estructures de les edificacions febles suportades per parets de càrrega

L’existència d’un parcel·lar molt fragmentat, fruit de l’origen de la ciutat, amb predomini de parcel·les de molt reduïdes dimensions, de gran profunditat i poc front de façana, fa que l’estructura de l’edificació estigui bàsicament formada per parets de càrrega i sostres amb elements resistentes lineals recolzats en aquestes.

L’edificació del barri es caracteritza per l’escassa qualitat dels materials

Aquesta és una característica pròpia de l’entorn i del nivell econòmic de la població en la que la seva activitat era principalment l’agricultura. Així les parets de càrrega estan constituïdes bàsicament per l’anomenada “paredassa” formada per un aglomerat de pedres irregulares, còdols de riu, calç i altres materials propis de l’entorn amb un arrebossat exterior,
Estudi i anàlisi dels focs d’habitatge en nuclis urbans antics

i els sostres estan formats per bigues i elements resistentes lineals de fusta i revoltons de guix.

Aquests materials precisen d’un manteniment adequat per a la seva conservació, per garantir l’estabilitat estructural de l’edificació i la seva durabilitat.

Un parc degradat en el que no s’hi ha invertit

És per aquesta característica constructiva juntament amb l’abandó sofert de l’àrea per la fugida de llars i activitat del centre i marge dret vers les noves àrees d’eixemple, que l’edificació a partir dels anys setanta ha sofert una progressiva degradació que ha dut a l’actual estat del parc edificatori en aquesta àrea.

Actualment, són pocs els immobles que poden considerar-se en bon estat de conservació, el que indica una escassa dinàmica d’operacions de rehabilitació i substitució de l’edificació un 40% dels edificis del centre històric poden considerar-se en ruïna física. La causa d’aquest estat de l’edificació es sense cap dubte la falta de manteniment de la fàbrica constructiva o un manteniment inadequat per part dels nous ocupants del centre.

Problemes d’habitatilitat i adequació funcional de l’edificació

Aquestes consideracions únicament s’efectuen des del punt de vista de seguretat estructural i durabilitat, ja que aquestes condicions encara s’agreugen si considerem el nivell d’habitabilitat o l’adequació funcional dels edificis a les necessitats actuals de la població.

L’estructura parcel·laria existent, de minsa superfície i molt fragmentada, més de la meitat de les parcel·les no arriben als 70 m2, dificulta en gran manera l’establiment d’edificacions de grans dimensions, i per tant predomina les edificacions de propietat vertical sobre les edificacions residencials de propietat horitzontal. Així podem trobar en la major part dels immobles que els edificis es corresponen a habitatges unifamiliars que es desenvolupen en tres o més plantes, amb una peça màxim o dos per planta.

L’orografia o topografia d’aquesta àrea, amb grans desnivells d’un carrer respecte a l’altre fa que moltes de les plantes que constitueixen aquestes edificacions estiguin semi soterrades. És a dir, que només disposen d’una façana davantera sense façana posterior i per tant sense ventilació posterior, cosa que empobreix enormement les condicions d’habitabilitat d’aquests habitatges. Igualment en dificulta la climatització i pot representar problemes per a la prevenció del foc.

A totes aquestes circumstancies hem d’afegir el fort pendent dels carrers i la seva escassa amplada que fa molt difícil l’accessibilitat rodada a l’interior del casc antic, impedint
fins i tot l’accés dels serveis bàsics com són les ambulàncies, la recollida d’escombraries, bombers, i l’accés adaptat de les persones amb mobilitat reduïda. L’elevada altura de les edificacions combinada amb l’estretor dels carrers fa que l’asseoleament dels habitatges sigui sovint insuficient.

L’estructura vertical de la propietat i la tipologia dominant al barri impossibiliten la presencia d’edificis amb ascensor, amb l’excepció dels pocs construïts els darrers anys de propietat horitzontal.

7.4 Descripció de la població

7.4.1 La recuperació demogràfica del centre històric

Després de més de dues dècades de pèrdues de població, el centre històric va iniciar durant els anys noranta un període de lleu recuperació demogràfica. Les darreres dades d’explotació del padró municipal d’habitants (maig 2004, any on s’estudia el cas pràctic). Registren un total de 2446 habitants xifra que representa el 16,3 % del total de Balaguer. (Segons estudi de pla de Barris fet per l’ajuntament de Balaguer) (Font Idescat).

7.4.2 Una recuperació basada en l’acolliment dels nouvinguts

Aquesta recuperació demogràfica ha estat possible gracies a les aportacions dels nouvinguts. El percentatge de població nascuda fora de la ciutat o de les terres de Lleida es força important al Centre històric, un 50 %. Dins d’aquest percentatge destaca l’aportació dels estrangers, que ja suposen al barri un 32% de la població empadronada, xifra que seria superior si es poguessin obtenir xifres de la població no empadronada. Cal apuntar que es precisament l’aportació dels estrangers el que ha portat el increment de la població del barri dels darrers anys. El centre històric de Balaguer s’ha convertit al llarg dels darrers anys la porta d’entrada i d’acollida de la majoria de la població estrangera que s’ha instal·lat a la ciutat.
7.5 Localització (Emplaçament)

La localització d’aquest servei és al carrer del Torrent numero 28, de la població de Balaguer, situat en el vell mig del Centre Històric. El punt vermell de la fotografia següent identifica la localització de l’incendi.

Figura 7.4: Situació del Centre Històric de Balaguer
Font: Google Earth

Figura 7.5: Emplaçament. Carrer del Torrent, 28
7.6 Descripció de la tipologia constructiva

Ens trobem davant d'una construcció tradicional típica de la zona, formada de Planta Baixa més dos plantes superiors. En aquesta zona del Centre Històric la tipologia constructiva es molt semblant en totes les construccions. Aquesta està realitzada amb forjats unidireccionals recolzats en parets de càrrega amb façanes molt estretes.

Les parets de càrrega moltes cops són construïdes amb tàpia o bé amb pedra o totxo massís. Normalment les parets de tàpia les trobem més en les construccions annexes o auxiliars destinades a corrals o magatzems. Analitzant els diferents enderrocs que s'han realitzat a la zona per similitud constructiva s'intueix que és paret de tapia. La construcció dels forjats unidireccionals és amb bigues de fusta recolzades a les parets de càrrega de tàpia i estan construïts amb canyís i revoltons de guix. La coberta es la típica de bigues de fusta, llates de fusta i teula àrab.

Figura 7.6: Visió panoràmica de la casa del cas pràctic
7.7 Descripció del Servei

Aquest servei es va produir el dia 9 de Març del 2004. L'hora d'entrada de l'avis als Bombers de Balaguer va ser a les 20:32 hores.

7.7.1 Accessibilitat

L'accessibilitat en aquest servei és lleugerament complicada. Tenim dos possibles accessos. Un seria pel barranc dels rucs i travessar la porta que hi ha a la muralla. En segon lloc hi ha l'accés per la plaça Sant Salvador. En aquest servei es va utilitzar aquest de la plaça sant Salvador. Uns del inconvenients que ens podem trobar es que l'accessibilitat estigui limitada ja que hi ha vehicles mal estacionats. Cal destacar que alguns del vehicles que disposa bombers com pot ser l'autoescala(Fotografia en annexes) no poden accedir al lloc, ja que el carrer és molt estret. Ara en l'actualitat just d'avant aquest habitatge es van realitzar una sèrie d'enderrocs per generar l'espai per una plaça. Però aquest espai en la data que es va realitzar el servei no existia.
Figura 7.8: Imatge carrer Torrent des de la Plaça Sant Salvador

Aquest seria l’accés al carrer Torrent des de la Plaça Sant Salvador (vist des de el carrer Torrent). Com s’aprecia es força habitual en aquesta zona que hi hagi vehicles mal estacionats, que obstaculitzen l’accés dels vehicles del cos de Bombers al casc antic.

Figura 7.9: Fotografia Plaça Sant Salvador direcció carrer Torrent
Aquesta seria la vista des de la Plaça Sant Salvador cap al carrer Torrent. També s'aprecia el bloqueig dels accessos degut a vehicles mal estacionats.

7.7.2 Descripció de l'incendi

Per tal de descriure l'incendi, ens basarem en les dades recollides per el Control Central de la RELL (Regió emergències de Lleida).

A les 20:32h Control Central de la REMLL rep l'avís de foc d'habitatge en un edifici de diverses plantes en el nucli antic de Balaguer. L'avís via Mossos d’Esquadra. S’activen 3 parcs de Bombers i el cap de guàrdia i sots-cap de guàrdia.

La informació és que el foc està molt desenvolupat en la totalitat de l'habitatge i que possiblement hi ha persones atrapades.

Els vehicles de Bombers Balaguer surten en molts pocs minuts. Tot just encarar la carretera d'accés a Balaguer, ja divisen les flames i la columna de fum que és molt notable. Tot i que la sortida dels Bombers de Balaguer és de 4 efectius, aquesta es veu reforçada ja que en el moment de l’entrada de l’avís hi havia més bombers practicant esport al parc, però sense estar de guàrdia. D’aquesta manera la sortida es reforça amb 2 vehicles més. Es tracta d’un vehicle de salvament un BUP i un BRP. El total de Bombers que realitzen la primera sortida és de vuit. El primer vehicle que surt demana més efectius i també l’autoescala. Aquesta serà activada del parc de Tàrrega. També s’activarà el parc de Mollerussa.

A les 20:37 el primer vehicle és al lloc del servei. La informació que passa a Control Central és que crema molt. Que l’afectació és a la totalitat de l’edifici. El foc es troba en una fase molt avançada. Les flames surten per les finestres de la primera i segona planta. Així com també per la coberta.

Una de les coses que remarquen molt els Bombers que varen arribar en la primera actuació al servei és que la pressió social era molt alta. Indiquen que hi havia més de cent persones al carrer.

És decideix fer un atac amb dos línies d’aigua. La primera intentarà entrar per la porta principal i la segona entrarà pel balcó amb l’ajuda d’una escala. L’extinció és molt ràpida ja que el mateix efecte xemeneia que provoca que l’evolució del foc sigui molt ràpida també ajuda en el moment de l’extinció. Aquest es dona per extingit sobre les 21:10. A partir d’aquest moment la principal preocupació per part dels Bombers és la possibilitat de col·lapse de l’estructura en els treballs de recerca de les víctimes.

Una vegada extingit el foc s’inicia la recerca de les víctimes. Aquesta és realitzada amb binomis de dos Bombers. Les dues primeres son localitzades molt ràpidament, amagades sota un llit. La tercera costa molt més de trobar-la tot i que aquesta es localitza a la zona de l’escala.

Es dona per finalitzat el servei a les 00:27. El vehicles tomen als seus parcs respectius. Tot i així a les 07:28 del dia següent es torna al lloc del servei a remullar uns caps de biga que encara fumegen. Durant tot el dia següent es faran viatges per anar controlant aquest caps de biga perquè no evolucionin a més.

Al lloc dels fets es va traslladar un equip de psicòlegs de la Creu Roja de Barcelona per tal de donar suport al col·lectiu de Bombers que havia treballat en l’extinció de l’incendi, essent una dels primers casos que es duia a terme aquesta actuació.

7.7.3 Informes del personal operatiu

No es té autorització de Bombers de la Generalitat per fer públics els informes ja que respon a la política de privacitat del Cos malgrat no existeixi en el moment actual cap investigació en curs.

De totes maneres i a grans trets, dels informes se n’extrau que:

En el moment d’arribada dels bombers, l’incendi afectava a la totalitat del edifici sobretot la planta primera on les flames sortien per les finestres. Això vol dir que la temperatura a l’interior de l’habitatge era molt elevada, superior als 400ºC, moment en el qual se sap que comencen a cremar el fums generats per la combustió. Tot sembla indicar que l’avis per part de les persones afectades no va ser suficientment ràpid, els fets semblen indicar que ells mateixos varen intentar extingir el foc amb els seus propis mitjans.

També es va observar que a la planta baixa hi ha un gran acopi de llenya possiblement per ser utilitzada com a combustible de l’estufa de la primera planta.
7.7.4HIPÒTESI DE DESENVELUPAMENT DE L’INCENDI

No es disposa de la informació de la investigació realitzada per el Cos de Bombers de la Generalitat de Catalunya ni tampoc de la Brigada d’Investigació Criminal dels Mossos d’Esquadra. Per tant, no es desenvoluparà cap tipus d’hipòtesi en aquest apartat.

7.7.5FACTORS DETERMINANTS PER LA RÀPIDA EVOLUCIÓ DEL FOC

Tots els Bombers amb els que s’ha parlat sobre l’incendi en qüestió durant la execució d’aquest projecte, remarquen la ràpida evolució que va tenir el foc en el servei del carrer Torrent número 28. El foc va tenir una velocitat de propagació molt alta. El comentari entre els Bombers que van formar part de la primera sortida al servei va ser: “tot just sortir del parc ja es veien les flames que sortien per sobre la teulada”. Aquest fet es pot atribuir l’anomenat “Efecte Xemeneia.

Un dels factors en que tots coincideixen és que la càrrega de foc va ser molt alta. Això va provocar que l’incendi fos d’una gran magnitud. Aquest fet va donar lloc al col·lapse de la coberta de l’habitatge. Sumat amb la poca estanqueït dels tancaments (en algun lloc la no existència d’aquests), va generar una aportació de comburent molt alta, i com a conseqüència l’efecte xemeneia esmentat.

Un dels primers consells que els Bombers donen en cas d’incendi és aconseguir mantenir-lo aïllat o estancat en una sola habitació. Això s’aconsegueix tancant totes les obertures (portes, finestres, etc.). En aquest cas, la precarietat o l’absència d’aquests tancaments va provocar que la propagació de l’incendi en l’interior de l’habitatge fos molt més ràpida, provocant el col·lapse de la coberta donant lloc a un creixement encara més ràpid de l’incendi.

Un segon punt que s’ha de tenir en compte es el fet que en el moment de l’extinció de l’incendi per part dels Bombers, no varen poder utilitzar l’autoescala per poder accedir a l’habitatge per algun altre lloc que no fos l’entrada principal. Potser atacant l’incendi des de la coberta o bé des d’una obertura de façana, l’extinció hagués estat molt més efectiva. Però en la localització de l’habitatge que s’estudia, l’autoescala no hi va poder accedir ja que les dimensions del carrer no ho permeten. Es parla en present ja que en l’actualitat l’accés per l’autoescala en aquest carrer i en moltes altres vies del Centre Històric no és possible.

Com a tercer i últim que es contempla en aquest projecte a l’hora de l’extinció d’aquest tipus d’incendi és la dificultat en l’orientació dins d’aquest model d’habitacles. Primerament enumerar la falta de continuïtat de l’escala. Aquesta arranca de la planta baixa arribant en la planta primera però no continua en el mateix replà cap a la segona planta, sinó
que moltes vegades aquesta té la continuïtat en una altra estància de l’habitatge, sense cap tipus de lògica.

En els habitatges actuals és una cosa que es dóna per suposada i es tracta l’escala com un cos únic i agrupat dins la caixa d’aquesta. Per tant, en la tipologia constructiva que s’analitza, la disposició de l’escala a l’hora d’orientar-se genera un plus de dificultat als professionals que intervenen en l’extinció.

D’altra banda, també dóna certa dificultat d’orientació la distribució d’aquest model d’habitatges ja que l’interior i els límits de les propietats s’han vist alterats al llarg dels anys, interposant-se en algunes ocasions unes cases dins les altres a diferents alçades.

Alguns dels motius d’aquests fets són per qüestions pròpies de l’època, cedir drets d’habitació, cessió de par de l’edifici per dificultats econòmiques de les famílies residents. Això donava lloc a l’annexió d’habitacions d’un habitatge a l’habitatge veí.

Aquest fet també genera força confusió i desorientació en el moment de l’extinció de l’incendi. Moltes d’aquestes habitacions no tenen cap tipus de ventilació i moltes vegades per poder accedir-hi tenen algun esgraó que encara complica més el seu accés sense visibilitat. Aquest tipus de distribució tant pel que respecta a l’escala com a les habitacions annexades a cases veïnes dóna la sensació de laberint. No només és un problema amb el qual s’hi troben els Bombers sinó que també afecta a les persones que l’ocupen en el moment de realitzar l’evacuació. Aquest fet es veu agreujat per un altre factor propi dels incendis, el fum.

7.8 Deficiències estructurals habituals

La tipologia estructural d’aquests habitatges acostuma a tenir algunes característiques comunes que agreugen i compliquen l’estabilitat i la resistència de l’estructura davant una situació de foc.

Malgrat que aquests habitatges tipus que no solen tenir grans llums, sí que és cert que hi ha algunes característiques que fan que en cas d’incendi la resistència dels sostres sigui escassa i de greus conseqüències en cas de fallada estructural, a continuació enumerarem algunes d’aquestes característiques:

1. En molts casos s’observa unes tipologies en les quals les llums dels sostres van de paret mitgera a paret mitgera, amb unes llums habituals de 4 a 5 metres, molts d’aquests sostres solen ser de bigues de fusta, i el seu estat no acostuma a ser
gaire bo, deteriorats per l'efecte del temps, de les humitats, corcs i tèrmitis, la seva resposta davant el foc queda minvada ja d'inici, no cal dir que gairebé sempre estan exempts de qualsevol protecció addicional que millori la resposta al foc.

2. Moltes vegades les sobrecàrregues que han de suportar són excessives i inadequades, les mancances en aquests habitatges i el desconeixement dels propietaris fan que a poc a poc se sobrecarreguin determinades zones d'aquests sostres i aquests treballin per sobre dels límits d’ús que haurien de fer-ho, amb les possibles conseqüències ràpides i nefastes en cas d'incendi.

3. Reforços sense criteri; de vegades en alguns d'aquests habitatges i trobem algun reforç estructural puntual amb bigueta metàl·lica tipus IPN, normalment sense cap tipus de protecció al foc, moltes vegades mal executada i mal dimensionada. Evidentment la seva resposta tampoc sol ser l’adecuada.

4. Reformes interiors que modifiquen l’estat de càrregues dels habitatges i en varien la distribució de càrregues; sovint molts propietaris fan petites reformes que en aparença semblen de poca importància però que tenen una certa rellevància. Eliminar alguns tàbics que en aparença no són estructurals però que en cases velles han acabat adquirint alguna petita funció estructural o de trava, o bé a l'inrevés, afegir tàbics i per tant, sobrecàrregues en punts totalment inadequats del sostre existent, amb el conseqüent afebliment de les respostes d’aquest.

5. El recolzament de molts d’aquests sostres a les pares mitgeres és de vegades precari, solen ser pares de tàpia en mal estat, solen ser irregulares i de construcció molt heterogènia i per tant, amb diferents resistències, sovint estan deteriorades pel pas del temps i les humitats per capil·laritat força habituals en alguns d’aquests habitatges, i a més amb el factor agreujant que moltes d’aquestes pares són compartides, i la mala conservació o ús per part d’un veí perjudica l’altre sense aquest ni tan sols saber-ho.
Estudi i anàlisi dels focs d'habitatge en nuclis urbans antics

7.9 Recull de premesa sobre el servei

Tresnis de només de la família muren al incendi de la seva casa en Balaguer

Andreu Robinsone

Tribunals

Condenat a la pena capital John Mohamed, el francotirador de Washington

Figura 7.10: Recull premsa: Tres nens muren al incendi de la seva casa a Balaguer

Font: La Vanguardia, dimecres 10 de Març del 2004

OPORTUNIDAD DE INVERSIÓN

- Vacaciones y viajes a lugares exóticos
- Inversiones en bienes raíces
- Inversiones en acciones de empresas emergentes

09 457 484 41 / info@inversiones.com

SUCESOS

Las llamas se propagaron con tal rapidez que los bomberos no pudieron hacer nada por los niños, a pesar de que sólo tardaron cinco minutos en llegar.

SUCESOS

Detenido el joven que se había fugado a Holanda tras la muerte de Ronny Tapia

BERCÉN HEREDIA

Barcelona. — Días los investigadores que han ocupado el piso de la casa de la familia Tapia, en Barcelona, han advertido que la casa es una cachonda, que es un sitio de esparcimiento nocturno.

Un joven de 23 años de la localidad, que se había fugado a Holanda tras la muerte de Ronny Tapia, ha sido detenido por los investigadores. La casa de la familia Tapia es una cachonda, que es un sitio de esparcimiento nocturno.

El joven que se había fugado a Holanda tras la muerte de Ronny Tapia, ha sido detenido por los investigadores. La casa de la familia Tapia es una cachonda, que es un sitio de esparcimiento nocturno.

Un caso con diez arreos

Los investigadores dicen que el caso Ronny se centrará en el joven que se fugó a Holanda tras la muerte de Ronny Tapia. La casa es una cachonda, que es un sitio de esparcimiento nocturno.

El joven que se había fugado a Holanda tras la muerte de Ronny Tapia, ha sido detenido por los investigadores. La casa de la familia Tapia es una cachonda, que es un sitio de esparcimiento nocturno.

SUCESOS

Detenido el joven que se había fugado a Holanda tras la muerte de Ronny Tapia

BERCÉN HEREDIA

Barcelona. — Días los investigadores que han ocupado el piso de la casa de la familia Tapia, en Barcelona, han advertido que la casa es una cachonda, que es un sitio de esparcimiento nocturno.

Un joven de 23 años de la localidad, que se había fugado a Holanda tras la muerte de Ronny Tapia, ha sido detenido por los investigadores. La casa de la familia Tapia es una cachonda, que es un sitio de esparcimiento nocturno.

Un caso con diez arreos

Los investigadores dicen que el caso Ronny se centrará en el joven que se fugó a Holanda tras la muerte de Ronny Tapia. La casa es una cachonda, que es un sitio de esparcimiento nocturno.

Figura 7.10: Recull premsa: Tres nens muren al incendi de la seva casa a Balaguer

Font: La Vanguardia, dimecres 10 de Març del 2004

OPORTUNIDAD DE INVERSIÓN

- Vacaciones y viajes a lugares exóticos
- Inversiones en bienes raíces
- Inversiones en acciones de empresas emergentes

09 457 484 41 / info@inversiones.com
La estructura de la casa hizo imposible salvar del fuego a los niños de Balaguer

SUCESSOS

- De los tres pequeños fallecidos, la niña entró en la casa cuando ya se había iniciado el fuego al escuchar los gritos de su hermano.

JANER BECÉ

BALAGUERN – Brian, Zaira y Adrián no tuvieron oportunidad de escapar del fuego que consumió su vieja casa del barrio en Balaguer. Muriendo atrapados en una “ Chimenea”, el diseño y estructura de la vivienda es la que explicó el incendio convertir esa casa en una auténoma cárcel. La estructura plana del inmueble hizo que las llamas se propagaran con gran rapidez y también que el primero no pudiera regresar por su hijo.

“El no podíamos intentar salvar,” afirmó un vecino del distrito de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Ay, no podíamos ayudar a nadie,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Si no podíamos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.

“Adal no podemos escoger entre vivir o muerto,” afirmó un vecino de la Avenida de Cristal de Balaguer, que vive en casa teniendo en cuenta la familia de tres hermanos.
Figura 7.12: Recull premsa: Un miler d’adéus
Font: La Vanguardia, dimecres 12 de Març del 2004
8 PROPOSTES GENERALS I ESPECÍFIQUES PER MILLORAR EL CENTRE HISTÒRIC

8.1 Regeneració física i urbanística del barri

Alguns dels problemes més importants del Centre Històric de Balaguer estan relacionats amb les seves característiques físiques. El gruix més important de propostes hauran d’anar dirigides a donar resposta a les principals problemàtiques físiques i urbanístiques del barri: l’estat de la fàbrica urbana, els problems d’accessibilitat que planteja i l’estat general de la urbanització. Caldrà doncs:

1. Facilitar la rehabilitació o substitució de l’edificació
2. Millorar l’accessibilitat rodada i peatonal.
3. Renovar i millorar les infraestructures i serveis urbans.
4. Dignificar i reurbanitzar de l’espai públic i viari del centre.

8.2 Millora de la qualitat de vida

Una de les potencialitats del barri, a diferència d’altres centres històrics, es que aquest és un centre viu, un espai habitat. El Centre presenta, però, certes rígideses i dèficits estructurals sobre els que cal incidir per tal de garantir una millor qualitat de vida als seus residents. Cal dotar al Centre d’aquelles característiques i qualitats que facin la “vida” més fàcil:

1. Millorar les condicions d’habitabilitat
2. Facilitar l’aparcament vinculat amb l’habitatge
3. Facilitar la mobilitat i connectivitat interna.
4. Dotar d’adecuades condicions de seguretat el centre.
5. Millorar les condicions d’assolellament

8.3 Promoure la cohesió i dinamització

L’existència d’un nombrós col·lectiu d’ètnia gitana i immigrants extracomunitaris, el baix nivell d’estudis de la població, la presència d’un important nombre de llars configurades per dones grans que viuen soles i els notables nivells d’atur configuren un divers panorama sociodemogràfic amb una característica comuna: els problemes d’integració socioeconòmica i riscos d’exclusió social. La lluita contra aquests factors i la promoció de la cohesió social han de ser les claus del Projecte Integral en el Centre Històric. En aquesta línia conflueixen diversos projectes urbanístics i programes socials i econòmics que s’apunten en el capítol de les estratègies.
1. Creació d’espais de trobada i intercanvi per promoure la integració.
2. Implantació de serveis específics de barri.
3. Augmentar el nivell de formació de la població com a eina i mitja per una millor inserció en el mercat laboral.
4. Augmentar la capacitat auto organitzativa de la població.

8.4 Retornar la centralitat al Centre Històric

La pèrdua d’activitat econòmica, especialment la comercial, la manca de serveis i equipaments potents, són algunes de les raons que expliquen la pèrdua de “centralitat” i dinamisme del barri.

Factors agreujats per problemes d’accessibilitat i dificultat en la mobilitat, així com pels problemes de “imatge” que la resta dels ciutadans tenen del barri. Cal incidir en tots aquests factors per a retornar la “centralitat” al Centre Històric. En aquesta línia van alguns dels objectius específics i les estratègies i accions que els despleguen.

1. Implantació d’equipaments i serveis que generin “centralitat”.
2. Difondre els valors i atractius del centre històric.
3. Fomentar les activitats d’abast ciutadà i comarcal en el centre històric.
4. Fomentar la utilització de l’espai públic i dels nous equipaments del centre per la resta de ciutadans del municipi.

8.5 Dinamització econòmica del barri

Amb independència de la influencia que sobre l’activitat econòmica pot suposar la implantació d’equipaments potents i activitats d’abast ciutadà i comarcal, cal endegar polítiques específiques per fomentar, orientar i reactivar l’activitat econòmica en el Centre. En aquesta línia van els objectius específics i les estratègies i accions que es proposen.

1. Retornar la potencialitat i centralitat comercial del barri
2. Promoure els serveis i les activitats turístiques en el centre
3. Incentivar la implantació d’establiments de restauració, cafeteria i hoteleria
4. Introduir mecanismes i instruments per a la dinamització econòmica.

8.6 Accions a realitzar específiques per part dels Ajuntaments

És molt important en aquest nucli antics tenir la permeabilitat dels accessos el màxim de neta possible. Això es pot aconseguir amb una major presència policial sobre el terreny, o bé fent un treball de conscienciació molt important sobre la població que l’ocupa.
Si aquesta permeabilitat desapareix juga un punt molt important encontra en el moment de donar resposta per part dels Bombers. La instal·lació que es té que realitzar pot arribar a ser més del doble. Amb tot el temps de demora que això implica. Una solució molt fàcil seria la col·locació en l’entrada d’aquest barris de valises retràctils. Molts ajuntaments en col·loquen, però alguns altes en son una mica escèptics.

Evitar la degradació d’aquest barris en tot el possible. Des de el punt de vista constructiu. Si es necessari fer intervencions periòdiques en els habitatges per evitar la degradació en poden generar.

Tancar tots els habitatges des-ocupats. Perquè aquest no puguin ser ocupats de manera il·legal i la gran majoria de vagades de forma precària.

Emprendre diferents línies de prevenció. Ja sigui en els nens petits a les escoles, com a la gent més gran a través de les entitats socials que treballen en aquests barris. Ja que elles tenen una forma molt fàcil de poder accedir aquest tipus de col·lectius més marginats amb un alt risc d’exclusió social.

Una altra solució més innovadora encara que no menys útil, seria la col·locació de codis QR en l’entrada de les cases on ens donés diferent informació. Com per exemple tipus d’estructura, distribució interior, etc.. Amb un simple smart phone o be una tauleta tàctil es podria llegir molt fàcilment i donar molta informació per la millora del servei.

8.7 Accions a realitzar específiques per part dels Bombers

Una de les coses més important per part dels Bombers seria el coneixement molt exhaustiu dels nuclis antics. Els seus accessos, les seves limitacions de transit, així com també els diferents carrers de nul accés.

Es podrien generar unes fitxes per carrers, marcant amb molta importància els accessos. Ja sigui per la part alta o bé per la part baixa d’aquests. També marcar els diferents carrers que no tenen cap tipus d’accés i quin és el millor punt d’aproximació.

També el fet generar actuacions de prevenció dirigides a la població que ocupa aquests tipus de barris seria molt important. Cal destacar que des de el parc de Bombers de Balaguer aquestes activitats de prevenció es van iniciar després d’aquest servei del 2004. Les accions varen ser donar classes de prevenció a les escoles. Aquest va ser un treball pioner a Catalunya.

També seria un bon punt de millora en aquest tipus de serveis el fet de disposar en els parcs de referència diferents tipus de material que ajudessin en la millora en el moment de desenvolupar aquest tipus de serveis. Un exemple molt clar seria la càmera tèrmica. Es una eina d’un preu elevat però si es pugues tenir com a material de primera sortida ajudaria
molt en poder-se desplaçar amb més comoditat per aquest tipus d'habitatge amb caràcter laberíntic.
9 CONCLUSIONS / RECOMANACIONS

En aquest penúltim apartat del Projecte es descriuran les conclusions que s’han pogut extreure al llarg de la redacció i formulació d’aquest.

Durant la composició del projecte s’ha pogut veure que existeixen una sèrie de factors els quals no s’hi pot fer front i que s’han d’acceptar. L’orografia on estan ubicats els Centres Històrics, la climatologia adversa i extrema en les estacions més fredes i la gent que els habita amb les seves costums i tradicions portades dels seus països d’origen.

Però hi ha tot una seguit de mecanismes on es pot incidir de forma activa per millorar diferents paràmetres que estan al nostre abast. Alguns dels quals poden ser: la creació d’ordenances municipals per part dels Ajuntaments per millorar un punt molt important com és la permeabilitat dels accessos. D’altra banda, aquestes institucions també podrien realitzar una inversió d’urgència per mantenir uns mínims d’habitabilitat i salubritat en la totalitat del centre històric. Per part del Cos de Bombers, el coneixement del territori de forma molt exhaustiva (accessibilitat, punts d’aigua, zones de risc, etc.) trepitjant el terreny amb molta assiduïtat així com també tenir tota una sèrie de fitxes i cartografia molt acurada i actualitzada.

Una altra conclusió que s’ha pogut extreure, de vital importància, és l’execució de plans de prevenció específica en aquest nucli de població, amb la finalitat d’aconseguir un canvi de mentalitat de les persones que els afecta. Un paràmetre d’una alta rellevància seria potenciar al màxim el concepte d’evacuació d’aquesta tipologia d’edificis i la priorització del primer avís als serveis d’emergències.

És necessari introduir la idea de la gratuïtat dels serveis d’emergència en els serveis que realitzen i que tampoc és demana la documentació pel que respecta a les persones en situació irregular. Així com també cal remarcar la existència del Cos de Bombers ja que molts d’aquest nous vinguts en els seus països d’origen aquests serveis d’emergència poden no existir.

Per l’entorn, la climatologia, la demografia, la tipologia constructiva... la clau d’una ràpida intervenció en cas de foc és una detecció precoç que doni l’alarma ràpidament per avançar l’actuació dels serveis d’emergència.

De cara a futures actuacions seria idoni fer un pas més endavant en l’actuació post-incendi. Es recomana realitzar uns breus càlculs simplificats o incluso generar unes fitxes per poder realitzar unes inspeccions visuals de forma àgil de l’habitatge, amb l’objectiu de garantir l’estabilitat de l’estructura d’aquest d’una forma ràpida i concisa.
Per concloure amb el Projecte, considero que com a tècnic i com a bomber crec que aquest treball recull la informació necessària per fer un pas més a l'hora d'unificar tots els actors implicats, i així poder minimitzar aquest tipus de serveis i els seus efectes negatius que genera.
10 BIBLIOGRAFIA

WEBGRAFIA

IDESCAT (2014) Població, per lloc de naixement. [En línia] [Consultat el 15 d’Abril de 2015]. Disponible a: http://www.idescat.cat/emex/?id=250404#h20
METEOLLEIDA. (03/01/2015) *Resumen climático 2014 en Lleida Ciudad.* [En línia] [Consultat el 8 de Maig de 2015]. Disponible a:

Moisés, J. (31/12/2014) *Millora urbana del centre històric de Lleida.* Territori. Observatori de projectes i debats territorials de Catalunya. [En línia] [Consultat el 15 de Maig de 2015]. Disponible a:

Pla Territorial Ponent. (2006) 3. *L’àmbit del Pla.* Memòria 3.1. GENCAT [En línia] [Consultat el 8 de Maig de 2015]. Disponible a:
http://territori.gencat.cat/web/content/home/01_departament/plans/plans_territorials/plans_territoriais_partials/aprovats/ptp_de_ponent_terres_de_lleida/documentacio_i_planols/03_ambit.pdf
AGRAÏMENTS

Durant l’elaboració d’aquest projecte diferents persones m’han ajudat de forma desinteressada i amb molta gratitud per la seva part. M’agradaria nombrar un per un, però això generarà una llista interminable. Faré diferents mencions a nivell grupal perquè aquesta part del projecte no acabi sent la més extensa de totes.

Primerament m’agradaria agrair la participació per part dels Bombers de Balaguer. En tot moment la seva disposició en l’ajuda de l’execució del projecte ha estat incondicional. Donant idees, explicant experiències, responent enquestes, etc...

També cal mencionar l’ajuda per diferents tècnics de Bombers de la RELL. En especial nombrar al Eduard Martínez, Joan Torrent i Santi Jené. També enumerar diferents tècnics de Bombers de Cerdanyola, com el Sebastià Massagué, Carles Noguera i el Jordi Bosch.

Altra menció important és l’empresa Biosca i concretament un dels seus tècnics, Oscar Gonzalez en la facilitació de fotografies i informació per l’elaboració del projecte.

Sense descuidar-me de la família que en tot moment m’ha ajudat a tirar endavant el projecte. En especial la meva germaneta Marta ajudant en la maquetació del projecte, la meva cosina Olga i la paciència de la meva dona.

També m’agradaria nombrar un company d’Universitat. Xavi Creus, que ha estat el que en tot moment ha fet que no desistis en elaborar el projecte i que no l’abandonés ja que era la meva última convocatòria. Que el camí que vàrem iniciar entre les parets d’aquesta universitat ens acompanyi al llarg de la nostra vida.

Finalment, no puc obviar agrair a la meva tutora, l’Ana Lacasta, la seva disponibilitat als meus horaris i calendaris, que han sigut molt complicats per motius laborals.

7 Regió d’Emergències de Lleida