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Abstract

We present a numerical formulation to compute optical parameters in a turbulent air flow. The
basic numerical formulation is a large eddy simulation (LES) of the incompressible Navier-Stokes
equations, which are approximated using a finite element method. From the time evolution of the
flow parameters we describe how to compute statistics of the flow variables and, from them, the
parameters that determine the quality of the visibility. The methodology is applied to estimate the
optical quality around telescope enclosures.

1 Introduction

In spite of its impact in some applications, the problem of estimating the optical properties in a turbulent
flow is not particularly popular in the computational fluid dynamics (CFD) community. An example
where this problem is of paramount importance is in the determination of the location where large
telescope facilities have to be built. The purpose of this paper is precisely to explain the problem and to
propose a numerical formulation to approximate it.

The location for the construction of a telescope depends on several factors, some of them of logistic
nature (such as the ease of construction or the scientific andpolitical environment) and others, obvi-
ously, directly relevant to the quality of the astronomicalobservation. Among the latter, periods of good
visibility (without clouds), weather conditions or the proximity to the Equator (leading to the so called
sky quality) have an obvious impact. However, at least as important as those are the optical properties
of the environment where the telescope enclosure is placed,primarily determined by the aerodynamic
behavior of this enclosure.

The effect of the air dynamics around the telescope buildingon the visibility is due to the wave
nature of light. Light rays, as the visible portion of the electromagnetic spectrum, travel at the light
speed and with a wavelength between 400 and 800 nanometers inthe vacuum. However, when they
enter a transparent medium, such as the earth atmosphere, they decrease their speed, therefore changing
their wavelength (the frequency is kept). The ratio betweenthe speed of light in the vacuum and in a
medium is the so called refractive index of this medium, thatwe will denote as usual byn.

For a single beam of light, if this beam is not orthogonal to the medium interface, refraction occurs.
In a medium in which the refractive index changes from point to point, the direction of the beam of light
suffers continuous changes. However, the problem arises when different light rays forming a wavefront
enter a medium with variable refractive index. The variability of this index causes the different rays to
refract in a different way, thus leading to wavefront distortion and a deterioration of the quality of the
visibility.

The problem thus is the variability of the refractive index in the atmosphere rather than the refractive
index itself. Here is where turbulence comes into the picture. Turbulence fluctuations, particularly in
temperature, induce fluctuations in the refractive index that lead to visibility deterioration.

A first and classical approach to determine the feasibility of a certain site as a telescope location
has been to quantify turbulence in the region, usually by experimental means. Classical turbulence
parameters, such as the integral length, turbulence intensity or turbulence energy spectra have proved
to be useful to assess the quality of a site to build a telescope. However, arguments derived from this
information are merely qualitative, giving for granted that the higher the turbulence effects, the lower
the visibility quality.

That CFD may play a role in this problem is obvious from what has been explained. The idea would
simply be to replace experimental data by results of numerical simulations. In fact, the qualitative
link between turbulence and optical quality led the International Center for Numerical Methods in
Engineering (CIMNE) to participate in several projects related to the aerodynamic analysis of telescope
buildings in collaboration with the Astrophysical Institute of the Canary Islands (IAC). In particular,
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CIMNE has been involved in the aerodynamic analysis of the GTC telescope [12] and in the ELT
project from the European Commission [10], as well as in the analysis of the ATST project of a solar
telescope [1]. In this last case we have considered the possibility to go further, and to quantify the effect
of turbulence in the visibility quality rather than simply computing the turbulence parameters.

In the astrophysical community, optical quality is measured, among other parameters, by the so
called Fried parameterr0 and the Greenwood frequencyfG (see [3, 24, 26] for background in the
optical concepts to be used). Roughly speaking, the former corresponds to the diameter of a circle
where the mean distortion expected of a light wavefront is 1 radian, whereas the latter gives an idea of
the temporal frequency at which refraction varies. Both areessential in adaptive optics in astronomy.
They are used to design segmented telescopes (the size of thesegments being determined by the Fried
parameter) and their actuators in typical active control systems of these devices.

The question is whetherr0 and fG can be computed or not. If one assumes that the air flow is
fully turbulent, the answer is positive. For length scales in the inertial range of the Kolmogorov energy
cascade, it turns out that these parameters can be expressedin terms of the structure function of the
refractive index and, under an isotropy assumption, by the square of the so called constant of structure,
C2

n . This is, therefore, the scalar field that needs to be computed which, according to the previous
discussion, must be related to the turbulence fluctuations.This dependence can be finally expressed as a
relationship betweenC2

n and the mean pressure and the constant of structure of the temperature, which,
in turn, depends on the gradients of the mean temperature andmean velocities. The conclusion is thus
clear: If we are able to compute mean flow quantities (pressure, temperature and velocity) in a fully
developed turbulent flow, we will be able to estimate the constant of structure of the refractive index
and, from integration along the optical path of the light beam, the Fried parameter and the Greenwood
frequency. These parameters need to be computed for all directions of observation of interest.

The model we use, based on the calculation ofr0 andfG to determine the optical quality, is certainly
not the most sophisticated one. However,this is the model used in practiceby optical engineers to design
large telescopes, and this is why we have adopted it. Severalgeneralizations are nevertheless possible.
In [19] the authors describe the treatment of statistical parameters that permit to model the light beam
propagation through turbulent flows. The flow behavior assumed in this reference corresponds to a
compressible flow. The requirements of a numerical simulation for this model targeting optical quality
are presented in [20]. A more elaborated physical model is also presented in [29] and extended in [28],
where also turbulent flows are numerically modeled. In this case, boundary layer compressible flows are
simulated, a situation relatively far from our interest in engineering applications for the astrophysical
community. Moreover, the fluctuations of the refractive index in this case are associated to density
fluctuations, whereas in our case temperature fluctuations are responsible of the pointwise and time
variations of the refractive index, as it has been said.

Once the model to compute the optical parameters is established (and accepted) the success depends
on the CFD simulation to obtain mean flow quantities. However, now they are needed not only to es-
tablish a mere qualitative indication of the optical quality, but to compute a quantitative measure of this
quality. The first and essential point to consider is that allthe expressions to be used are derived under
the assumption that the flow lies within the inertial range. The classical statistical temporal and spatial
correlations between velocity components, pressure and temperature need to apply. This excludes from
the very beginning the use of RANS (Reynolds averaged Navier-Stokes) models and restricts the alter-
natives to, at least, LES (large eddy simulation) formulations. Precisely a LES formulation is what we
will use to account for the subgrid effects on the flow.

As basic numerical formulation for the aerodynamic problemwe have used a stabilized finite ele-
ment method for the spatial discretization together with a second order time integration scheme. The
Smagorinsky model has been used as LES formulation, even though richer dynamics and still gen-
uine turbulent behavior are obtained if the stabilization alone is let to act as turbulence model. Both
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the numerical formulation and the LES model are described inSection 2. Once the flow variables are
computed and time averaged, the square of the constant of structure of the refractive index can be ob-
tained. From these results one may now compute the Fried parameter and the Greenwood frequency by
integration of functions that depend onCn along different optical paths corresponding to the directions
of observation of interest. A detailed description of how toperform these calculations is presented in
Section 3.

As an example of application of the strategy presented, we have applied it to the ATST telescope
mentioned earlier in Section 4. We believe this example may serve to understand the potential of CFD
in the field of the optical environmental quality, which in the case of telescopes is crucial to select the
site of these scientific installations. Some concluding remarks close the paper in Section 5.

2 The aerodynamic problem

2.1 Problem statement

In this section we shall consider the flow problem for an incompressible fluid taking into account the
coupling of the Navier-Stokes equations with the heat transport equation through Boussinesq’s assump-
tion, as well as a nonlinear viscosity dependence on the velocity gradient invariants through Smagorin-
sky’s LES model. Some comments will be made later on about thepossibility to avoid turbulence
modeling and to rely only on the numerical formulation.

The equations describing the problem are

∂tu + (u · ∇)u − 2∇ · [νε(u)] + ∇p+ βgϑ = f , (1)

∇ · u = 0, (2)

∂tϑ+ (u · ∇)ϑ−∇ · (κ∇ϑ) = 0, (3)

to be solved inΩ× (0, tfin), whereΩ ⊂ R
3 is the computational domain and[0, tfin] is the time interval

to be considered. In (1)-(3),u denotes the velocity field,p is the kinematic pressure (i.e., the pressure
divided by the density),ϑ is the temperature,ν is the total kinematic viscosity (physical plus turbulent),
ε(u) is the symmetrical part of the velocity gradient,β is the thermal expansion coefficient,g is the
gravity acceleration vector,f is the vector of body forces, andκ is the total thermal diffusivity (that is,
the physical plus turbulent thermal conductivity divided by the heat capacity). The densityρ0 is assumed
constant to obtain equations (1)-(3). In the numerical example of Section 4, all these properties have
been taken as those corresponding to air in normal conditions.

The force vectorf in (1) contains the reference buoyancy forces from Boussinesq’s assumption,
that is

f = g(1 + βϑ0).

In this equation,ϑ0 is the reference temperature from which buoyancy forces arecomputed.
Smagorinsky’s turbulence model has been employed in the numerical simulations (see, e.g. [22, 25,

9] for background). This model is tight to the numerical discretization in space of the flow equations,
which in our case is performed using the finite element method. The turbulent kinematic viscosity
associated to this model is

νtur = ρ−1
0 ch2 [ε(u) : ε(u)]1/2 ,

wherec is a constant, usually taken asc = 0.01, the colon stands for the double contraction of second
order tensors andh is the length of the element of the finite element discretization described later where
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the turbulent kinematic viscosity is to be computed. The total viscosity will beν = νmol + νtur, νmol

being the molecular viscosity.
Concerning the turbulent thermal diffusivity, it is taken of the form

κtur = Prturνtur, (4)

wherePrtur is the turbulent Prandtl number, taken asPrtur = 1 in the numerical example. The total
thermal diffusivity will beκ = κmol + κtur, κmol being the molecular thermal diffusivity.

In order to write the boundary conditions for equations (1)-(3), consider the boundaryΓ = ∂Ω
split into sets of disjoint components asΓ = Γdv ∪ Γnv ∪ Γmv and also asΓ = Γdt ∪ Γnt, whereΓdv

andΓdt are the parts of the boundary with Dirichlet type boundary conditions for the velocity and the
temperature, respectively, andΓnv andΓnt are those where Neumann type conditions are prescribed.
Mixed boundary conditions for the velocity are fixed onΓmv. If the Cauchy stress tensor (divided by
the density) is written asσ = −pI + 2νε(u), the exterior normal to∂Ω is n, and prescribed values are
represented by an overbar, the boundary conditions to be considered are

u(x, t) = ū(x, t) on Γdv, (5)

n · σ(x, t) = 0 on Γnv, (6)

n · u(x, t) = 0 and n · σ(x, t)|tang = t̄ on Γmv, (7)

ϑ(x, t) = ϑ̄(x, t) on Γdt, (8)

κn · ∇ϑ(x, t) = 0 on Γnt, (9)

for t ∈ (0, tfin). In (7), n · σ(x, t)|tang denotes the component of the stress vectorn · σ(x, t) tangent
to ∂Ω andt̄ is the stress resulting from the standard wall law (see for example [22])

t̄ = −ρ0
U2
∗

|u|
u,

whereU∗ is the solution of the nonlinear equation

|u|

U∗

=
1

K
log

(

U∗∆

ν

)

+ C,

with K = 0.41 (von Kármán constant),C = 5.5 and where∆ is the distance from the wall at which
the velocity is evaluated.

To close the problem, initial conditions have to be appendedto equations (1)-(3) and the boundary
conditions (5)-(9). They are of the formu(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x) for x ∈ Ω, whereu0(x) is
a given initial velocity andϑ0(x) a given initial temperature.

In the numerical simulations of the telescope building,Γdv corresponds to the inflow part of the
boundary of the computational domain, where the wind velocity is prescribed to a certain value of
interest and with a given direction, whereasΓnv is the outflow boundary. The surfaceΓmv corresponds
to both the ground surface and the building surface.

2.2 Finite element approximation

In order to discretize in space problem (1)-(3), let{Ωe} be a finite element partition of the domainΩ,
with index e ranging from 1 to the number of elementsnel. We denote with a subscripth the finite
element approximation to the unknown functions, and byvh, qh andψh the velocity, pressure and
temperature test functions associated to{Ωe}, respectively.

5



A very important point is that we are interested inusing equal interpolation for all the unknowns
(velocity, pressure and temperature). Therefore, all the finite element spaces are assumed to be built up
using the standard continuous interpolation functions. Inparticular, all the numerical simulations have
been carried out using meshes of linear tetrahedra.

In order to overcome the numerical problems of the standard Galerkin method, a stabilized finite
element formulation is applied. This formulation is presented in [6]. It is based on the subgrid scale
concept introduced in [15], although when linear elements are used it reduces to the Galerkin/least-
squares method described for example in [11] (see also [27]). We apply this stabilized formulation
together with a finite difference approximation in time. Thebottom line of the method is to test the
continuous equations by the standard Galerkin test functions plus perturbations that depend on the
operator representing the differential equation being solved. In our case, this operator corresponds to
the linearized form of the Navier-Stokes equations (1)-(2)and the heat equation (3). In this case, the
method consists of findinguh, ph andϑh such that

∫

Ω

vh · ru1 dx +

∫

Ω

2ε(vh) : νε(uh) dx −

∫

Ω

ph∇ · vh dx

+

nel
∑

e=1

∫

Ωe

ζu1 · (ru1 + ru2) dx +

nel
∑

e=1

∫

Ωe

ζu2 rp dx

=

nel
∑

e=1

∫

Ωe

(vh + ζu1) · f dx +

∫

Γmv

vh · t̄ dΓ,

∫

Ω

qhrp dx +

nel
∑

e=1

∫

Ωe

ζp · (ru1 + ru2) dx =

nel
∑

e=1

∫

Ωe

ζp · f dx,

∫

Ω

ψh · rϑ1 dx +

∫

Ω

κ∇ψh · ∇ϑh dx +

nel
∑

e=1

∫

Ωe

ζϑ (rϑ1 + rϑ2) dx = 0,

for all test functionsvh, qh andψh, where

ru1 := ∂tuh + gβϑh + (uh · ∇)uh, (10)

ru2 := −2∇ · [νε(uh)] + ∇ph, (11)

rp := ∇ · uh, (12)

rϑ1 := ∂tϑh + (uh · ∇)ϑh, (13)

rϑ2 := −∇ · (κ∇ϑh) , (14)

the functionsζu1, ζu2 andζp are computed within each element as

ζu1 = τu {(uh · ∇)vh + 2∇ · [νε(vh)]} , (15)

ζu2 = τp∇ · vh, (16)

ζp = τu∇qh, (17)

ζϑ = τϑ [(uh · ∇)ψh + ∇ · (κ∇ψh)] , (18)

and the parametersτu, τp andτϑ are also computed element-wise as (see [6])

τu =

[

4ν

h2
+

2|uh|

h

]

−1

,

τp = 4ν + 2|uh|h,

τϑ =

[

4κ

h2
+

2|uh|

h

]

−1

,
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whereh is the element size for linear elements and half of it for quadratics.
From (15)-(18) it is observed that these terms are preciselythe adjoints of the (linearized) operators

of the differential equations to be solved applied to the test functions (observe the signs of the viscous
term in (15) and of the diffusive term in (18)). This method corresponds to the algebraic version of
the subgrid scale approach ([15]) and circumventsall the stability problems of the Galerkin method. In
particular, in this case it is possible to use equal velocitypressure interpolations, that is, we are not tight
to the satisfaction of the inf-sup stability condition.

A controversial issue is whether the stabilized formulation presented is able to act as a turbulence
model, that is to say, if the Smagorinsky viscosity can be turned off. This possibility is advocated in
[8, 2]. Even though our numerical simulations have been performed using the Smagorinsky model,
some runs without it have provided good results with richer dynamics.

2.3 Some implementation issues

Apart from a more or less standard iterative procedure to deal with the different nonlinearities, the basic
numerical formulation presented above has been implemented using some features which will not be
detailed here. These are:

• Time integration can be performed with any finite differencescheme. In particular, the example
of Section 4 has been simulated using the second order Crank-Nicolson method.

• Nodal based implementation [5]. This implementation is based on an a priori calculation of the
integrals appearing in the formulation and then the construction of the matrix and right-hand-side
vector of the final algebraic system to be solved. After appropriate approximations, this matrix
and this vector can be constructed directly for each nodal point, without the need to loop over
the elements and thus making the calculations much faster. In order to be able to do this, all the
variables have to be defined at the nodes of the finite element mesh, not on the elements. This is
also so for the stabilization parameters of the formulation.

• Block-iterative coupling to segregate the velocity-pressure and temperature calculations [4]. A
single iterative loop is used to deal both with the nonlinearities of the problem and with the
temperature coupling with the Navier-Stokes equations.

• Predictor corrector scheme [7]. The pressure segregation is inspired in fractional step schemes,
although the converged solution corresponds to that of a monolithic time integration.

The reader is referred to the references indicated in each item for details.

3 Optical parameters

In this section we introduce the parameters that allow us to measure the quality of the seeing of a site,
and we also describe their numerical approximation in the context of the finite element formulation for
the flow equations presented above.

3.1 Physical background

The optical parameters we are interested in are the Fried parameter and the Greenwood frequency. In
fact, they are both obtained from integration of a function of the structure constant of the refractive
index along an optical path. Let us start describing the problem and leave for the next subsection its
approximation (see [24] for more details).
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Let n(x, t) be the refractive index of a medium. Optical quality dependson spatial and temporal
variability of this parameter, basically due to temperature and humidity fluctuations. In particular, we
are interested in the structure function ofn, defined as

Dn(x,x′) = 〈[n(x, t) − n(x′, t)]2〉. (19)

Here,〈·〉 denotes the ensemble average. However, under the ergodicity assumption we will replace it, in
(19) and below, by the time average over a time window of period T , large enough to makeDn(x,x′)
(almost) time independent. Likewise, we will assume isotropic turbulence, so thatDn depends only on
r := |x − x′|, not onx′. This dependence will be written asDn(x, r). Moreover, if we assume further
that 1/r belongs to the inertial range of the Kolmogorov spectrum, itcan be shown by dimensional
analysis that (see [26])

Dn(x, r) = C2
n(x)r2/3, (20)

whereCn(x) is the constant of structure ofn. See also [30] for a discussion about the limits of this
approximation. Given a pointx ∈ Ω, let us consider a beam of light arriving tox with the direction
given by a unit vectorl. The propagation of the light beam is taken to be rectilineous, using the so-called
near field approximation(see [24]) usually used to describe the propagation of lightbeams arriving at
a telescope. To integrate along this beam of light, we may consider itstarting fromrather thanarriving
to x, and parametrize it asx + sl, with s ∈ [0,∞). Having introduced this notation, the optical path
lengthδl and the phase fluctuationϕl can be computed as

δl(x, t) =

∫

∞

0

n(x + sl, t)ds, ϕl(x, t) =
2π

λ

∫

∞

0

n(x + sl, t)ds, (21)

whereλ is the wavelength of the wavefront of the light beam. Note that subscriptl refers to the direction
of the light beam.

To obtain the variability ofϕl (and therefore the relative change in the wave phase) its structure
function is needed. It is given by

Dϕl
(x, ξ) = 〈[ϕl(x, t) − ϕl(x + ξ, t)]2〉,

whereξ = |ξ|. Making use of (21) and (20) it can be shown that (see [24])

Dϕl
(x, ξ) = 2.91

(

2π

λ

)2

ξ5/3

∫

∞

0

C2
n(x + sl)ds.

This expression can be written in terms of theFried parameterr0 as

Dϕl
(x, ξ) = 6.88

(

ξ

r0

)5/3

,

where

r0 = r0(l;x) =

(

16.6

λ2

∫

∞

0

C2
n(x + sl)ds

)

−3/5

. (22)

Note that once again we have made explicit the dependence ofr0 on the spatial point and the light beam
direction. Obviously, it also depends on the wavelength of the light wave,λ.
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The importance ofr0 is due to the fact the mean-square distortion of a wavefront over a circle of
areaA and diameterd centered at a pointx, normal tol, parametrized byx + y and given by

σ2
1 = σ2

1(l;x) =
4

πd2

∫

A
〈[ϕl(x + y, t) − ϕ0,l(x, t)]

2〉dy,

ϕ0,l(x, t) :=
4

πd2

∫

A
ϕl(x + y, t)dy,

can be shown to be (see [24])

σ2
1 = 1.03

(

d

r0

)5/3

.

Thus, ifd = r0 the root-mean-square (RMS) distortion is approximately 1 radian.
The Fried parameterr0 is essential in adaptive optics. In the case of telescopes itallows to determine

the number of segments into which a segmented mirror has to besplit, or the distance between actuators
for a continuous deformable mirror, by prescribing an admissible RMS distortion of a wavefront [3]. But
the design of their actuators is also based on the so calledGreenwood frequency, which is an indication
of how fast the atmosphere is changing and defines the bandwidth of the servo control for an adaptive
optics system. This frequency is defined as

fG = 0.43
Vwind

r0
(23)

whereVwind is a weighted mean wind velocity defined as

Vwind = Vwind(l;x) =

(

∫

∞

0
〈|u|〉5/3C2

n(x + sl)ds
∫

∞

0
C2

n(x + sl)ds

)3/5

. (24)

The problem of computingr0 andfG is reduced to the problem of computing the structure function
of the refractive index,Cn, and then computing the integrals in (22) and (24). In turn, this structure
function can be related to the structure function of the temperature, the humidity and their joint structure
parameter (see [21]). However, we will consider the humidity effects negligible. Thus, if we write the
temperature dependence ofn asn = n(ϑ), we have

Cn =
dn

dϑ
Cϑ,

whereCϑ is the structure function of the temperature. Assuming pressure equilibrium it is found
that [26]

Cn =
79 × 10−6

〈ϑ〉2
〈p〉Cϑ, (25)

wherep is assumed to be measured in millibars andϑ is the absolute temperature. Here and below,ϑ,
p andu denote the solution of the continuous problemwithoutusing a LES model, that is to say, with
νtur = 0, κtur = 0 in (1)-(3).

In view of (25), the problem is to computeCϑ. Once again in the inertial range of the Kolmogorov
spectrum and assuming the temperature to be a passive quantity, it can be shown that (see [24])

C2
ϑ = a2χε−1/3, (26)
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wherea is an empirical value called Obukhov-Corrsin constant (see[14, 31] for extensions and a dis-
cussion about Obukhov-Corrsin constants and on the validity of this approximation). In (26),χ denotes
the mean thermal diffusive dissipation andε the mean dissipation of kinetic energy of the flow. These
parameters are given by

χ := κmol〈|∇ϑ|
2〉, ε := νmol〈|ε(u)|2〉. (27)

The problem is now closed: using (27) in (26) and the result back in (25) we have an expression to
computeCn in terms of the flow variablesu, p, ϑ at each point.

The question now is how to apply this development in the context of a LES simulation and, more
precisely, using the flow variablesuh, ph, ϑh resulting from the finite element approximation of a
LES model as described in the previous section. The first point to consider is that filtered unknowns
appearing in a LES model need to maintain the mean of the original variables.Assumingthis to hold
also for their finite element approximation we have that

〈u〉 ≈ 〈uh〉, 〈p〉 ≈ 〈ph〉, 〈ϑ〉 ≈ 〈ϑh〉. (28)

The second point is that the dissipation of the continuous problem is approximately equal to the dissi-
pation of the LES approximation using the effective turbulent thermal diffusion, in the case of the heat
dissipation, or effective turbulent kinematic viscosity,in the case of the mechanical dissipation. This
is in fact the main requirement posed by Lilly to LES models [17, 22], and the key feature for their
design [9]. Moreover, it is also shown in [13] that the numerical formulation presented in Section 2
introduces also a mechanical numerical dissipation proportional to the viscous dissipation. This leads
us to assume that

κmol〈|∇ϑ|
2〉 ≈ κtur〈|∇ϑh|

2〉, νmol〈|ε(u)|2〉 ≈ νtur〈|ε(uh)|2〉. (29)

Using approximations (28) and (29) in (26) and inserting theresult in (25) it is found that

Cn = 79 × 10−6〈ϑh〉
−2 〈ph〉 a ν

1/3
tur 〈|∇ϑh|

2〉1/2〈|ε(uh)|2〉−1/6, (30)

where we have assumed thatPrtur = 1 in (4). Equation (30) is the expression we were looking for.
It allows us to compute the structure function of the refractive index in terms of the flow variables
resulting from a LES numerical simulation. Using this expression in (22) and in (24), also replacingu
by uh in this last case, the Fried parameter and the Greenwood frequency can be computed. We present
next the algorithm to compute the integrals in (22) and (24).

3.2 Numerical strategy

Expression (30) allows us to compute the structure constantof the refractive index at each node of
the finite element mesh introduced in Section 2 to approximate the flow equations. The only remark
is that the derivatives ofuh appearing inε(uh) and the derivatives ofϑh appearing in∇ϑh will be
discontinuous, usually computed at the numerical integration points. They can be approximated by
continuous functions by using a classicalL2 projection. To simplify the exposition, we will assume that
this approximation is done, although it is not necessary (and in fact we have not used it in the numerical
example).

Equations (22) and (24), with the continuous functions approximated by finite element functions
defined at the nodes of the finite element mesh, imply an integral along the light beam. Therefore, our
concern now is to compute integrals of the form

I(l;x) =

∫

∞

0

Fh(x + sl)ds, (31)

10



where the finite element functionFh(x) is an approximation toC2
n in the case of (22) and the denom-

inator in (24) and an approximation to〈|u|〉5/3C2
n in the case of the numerator in (24). Note thatFh

would be discontinuous across interelement boundaries ifε(uh) and∇ϑh are not approximated by
continuous functions.

First of all, it is obvious that the computational domain is finite. For simplicity, let us assume that
the upper boundary ofΩ is the planez = Z, z being the vertical coordinate. LetS = S(l;x) be the
distance from a pointx to ∂Ω in the direction of vectorl and let alsoγ be the angle betweenl and the
vertical axes, so thats = s(z) = sec γ(z − Z) + S (see Figure 1).

Figure 1: Notation for the integrals in (32)

Considering only pointsx ∈ Ω such that the light beam crosses the planez = Z, we may split the
integral in (31) as

I(l;x) =

∫ S

0

Fh(x + sl)ds+ sec γ

∫

∞

Z
Fh(x + s(z)l)dz. (32)

The first term in the right-hand-side of this expression is what needs to be computed numerically. The
second term is considered to be known from empirical data. Infact, in the caseFh(x) ≈ 〈|u|〉5/3C2

n

it is assumed that the mean velocity is constant forz > Z, so that what is needed is only
∫

∞

Z C2
ndz.

Values for this number can be found for example in [23].
Let us explain how to compute the first integral in (32). We assume in the description of the follow-

ing algorithm that the elements used are linear tetrahedra.The steps to be performed are the following:

• (Pre-process) Determine the element domains{e1, ..., enbeam
} ∈ {1, 2, ..., nel} crossed by the

light beam:

. Given a pointx ∈ Ω determine the elemente1 to which it belongs. This can be done by
looping over the elements and checking for which element thenatural coordinates ofx
belong to the parent domain (see [18], for example). See Figure 2.

. Find the intersectiony of the line passing byx with directionl with the boundary of ele-
mente1.

. Determine the elemente2 to which pointy belongs.

. Find the intersectiony′ of the line passing byy with direction l with the boundary of
elemente2.

. Proceed until exiting the computational domain. We denoteyi, y′

i the points obtained fol-
lowing this process in elementei, i = 2, ..., nbeam.

11



• (Pre-process) Locate the arc coordinatessei,j for j = 1, ..., nint within eachei, i = 1, ..., nbeam,
of the integration points and determine the weightswei,j of the numerical integration rule:

∫ S

0

Fh(x + sl)ds ≈

nbeam
∑

i=1

nint
∑

j=1

wei,jFh(x + sei,jl). (33)

Any numerical integration rule can be used. The arc coordinates can be found transforming the
integration pathy′

i − yi (or y′

1 −x in the case of elemente1) within each element (see Figure 2)
to the reference interval of the particular integration rule. For example, for the Gauss-Legendre
rule used in the numerical simulation of the following section, if sei,0 is the arc coordinate of
pointyi for elementei,

sei,j = sei,0 +
1

2
(1 + ηj)|y

′

i − yi|, wei,j =
1

2
|y′

i − yi|ωj , j = 1, ..., nint,

whereηj andωj are the coordinates and weights of thej-th integration point in the interval
[−1, 1].

• (Post-process) Once the LES simulation has finished, obtainthe nodal values of the time averaged
flow variables and, from them, the nodal values ofFh(x) (if derivatives are not approximated by
continuous functions,Fh will be discontinuous).

• (Post-process) Interpolate from the nodes of each element to the numerical integration points and
perform the numerical integral (33).

Figure 2: Line integration within an element. The crosses denote the numerical integration points.

4 An example of application

In this section we present an application of the numerical strategy described in the previous sections
to the calculation of the Fried parameter and Greenwood frequency around a telescope. The example
to be shown corresponds to the project of a solar telescope, the Advanced Technology Solar Telescope
(ATST) [1], in which study the Astrophysical Institute of the Canary Islands has been involved. The
results to be presented do not correspond to a real situation, but to a preliminary analysis to determine
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the convenience of the project. Their purpose is not an exactquantitative analysis of the problem, but a
qualitative demonstration of the possibilities of the formulation proposed herein.

The physical properties used in the numerical approximation of (1)-(3) are those of air at normal
conditions.

The site to be analyzed is located in the observatory ofEl Roque de los Muchachos, in the La
Palma island of the Canary archipelago. Figure 3 shows a general view of the site with the surface finite
element mesh used to discretize what we will call thelargecomputational domain. This domain is used
for a preliminary simulation used to determine the boundaryconditions of a more detailed calculation.
The region of the island analyzed has10 × 7.6 km2 and a height of 1400 m above the sea level. A
semisphere of radius 14.2 km is the computational domain (see Figure 3). The mesh used has only
9.2 × 104 linear tetrahedral elements. Steady-state calculations (understood as a Reynolds averaged
Navier-Stokes simulations) have been performed with different wind directions and wind intensities,
considered representative of the site. In the following, only results corresponding to a uniform wind of 4
m/s coming from the west will be considered. In upper atmospheric layers, this wind is not perturbed,
while near the ground its direction and speed are altered by the terrain geometry and buildings. The
velocity of 4 m/s is imposed as boundary condition at the inflow nodes of the spherical computational
domain mentioned.

Figure 3: General view and detail of the large scale computational domain

Results obtained for the large computational region are used as boundary conditions for the small
scale domain where the simulations will be actually carriedout, now introducing the ATST telescope
as well as the other existing buildings hosting telescopes.Only results for one of the sites analyzed will
be shown. The extension of the small computational domain has 1217000 m2 and it is discretized using
a mesh of3.2 × 106 linear tetrahedral elements (see Figure 4). It correspondsto a sphere of diameter
28450 m, the minimum distance from the telescope to the boundary being 12500 m.

As it has been mentioned, velocity boundary conditions for the small scale domain are obtained
from the large scale domain. Standard interpolation between meshes is used. Concerning the tempera-
ture, we have assumed a near ground temperature profile in thevertical coordinatez of the form

T = T0 − Tdec

log z − log zh
logH − log zh

, z ≥ zh. (34)

We have taken the rugosity parameterzh = 0.02 m, the temperature atz = zh asT0 = 12 ◦C, and
the temperature decreaseTdec = 4 ◦C for H = 6 m. See [16] for a motivation and discussion about
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Figure 4: General view of the small scale computational domain and mesh around the ATST telescope

this type of logarithmic laws. When the slope∂T/∂z of the curve given by (34) is−0.0065 we replace
it by a linear law that yields a decrease of 6.5◦C each km. Likewise,T = T0 = 12 has been chosen
for 0 ≤ z ≤ zh. These data correspond to the mean temperatures on the ground during winter and the
measured temperature difference between 0 and 6 m (4◦C). The temperature distribution obtained is
prescribed on the ground and at the upper boundary of the computational domain and it is used as initial
condition for the nodes of the rest of the computational domain.

Results of the numerical simulation of the aerodynamic problem are shown in Figures 5 to 8. These
results have been shown on two vertical plane sections, one along the middle of the telescope building
and crossing the auxiliary building (see Figure 4) and the other perpendicular to the former, also passing
through the middle of the telescope building. It is worth noting that turbulence is formed around the
building on the side opposite to the wind.

Once the flow variables have been computed, we may proceed to compute the distribution of the
structure constant of the refractive index ,C2

n, using expression (30). Results are shown in Figure 9. It
is known that typical values ofC2

n are10−14 m−2/3 close to the ground and10−17 m−2/3 at 10 km
height. This is the order of magnitude of the values we have computed, except for points very close to
the surfaces, where high fluctuations of velocity and temperature lead to larger values ofC2

n.
The last step is to compute the Fried parameterr0 and the Greenwood frequencyfG using the

methodology explained in the previous Section. First, let us note that the pre-process steps in the algo-
rithm described there yield a set of elements crossed by a light beam as the one shown in Figure 10.

The results obtained for different directions of the light beam (that is to say, different vectorsl)
are given in Table 1. These directions are expressed in termsof the azimuth and the zenital angle from
an observation point located at the middle of the telescope building and on the dome surface, close to
where the main mirror of the telescope should be placed. Despite the position of the sun on the sky
is restricted to the ecliptic and, consequently, a solar telescope like ATST will only observe in those
directions, we present the results for all azimuthal anglesfor completeness.

The third column in Table 1 gives the first term in (32) whenFh = C2
n, whereas the fourth gives the

total integral, with the second contribution obtained from[23]. The Fried parameter forλ = 500 nm is
given in the fifth column. It is known for example that typicalvalues ofr0 (for λ = 900 nm) at good
sites are of the order of 20–40 cm (during daylight, as in our case), so that our results have the correct
order of magnitude. From tables similar to Table 1 computed from different heights (not from the dome
surface) it can also be shown thatr0 decreases rapidly with height, as it should be expected.
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Figure 5: Mean pressure contours along a longitudinal and a transverse cut
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Figure 6: Contours of the norm of the mean velocity along a longitudinal and a transverse cut
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Figure 7: Mean velocity vectors along a longitudinal and a transverse cut
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Figure 8: Mean temperature contours along a longitudinal and a transverse cut
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Figure 9: Contours ofC2
n along a longitudinal and a transverse cut
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Figure 10: Elements crossed by a light beam

The sixth and seventh columns are preliminary results to compute fG, whose values are given
in the last column. Again, the order of magnitude obtained iscorrect. Despite turbulence is mainly
concentrated on the part of the building not facing the wind,the results show that there is no dependence
of r0 with the azimuthal angle.Vwind, however, is minimum in a direction parallel to the wind (azimuth
values of 90◦ and 270◦), leading to smaller Greenwood frequencies.

A thorough validation of our numerical model would imply an experimental campaign to obtain the
values of the optical parameters and check whether they correspond or not to the numerical predictions.
Being this not feasible, our confidence in the results relieson the fact that the values reported in Table 1
are in accordance with values computed experimentally for other telescopes that have been built in the
Roque de los Muchachos.

5 Concluding remarks

The purpose of this paper has been to present a numerical formulation to compute the optical parameters
in a turbulent flow. It hasnot been our intention to show quantitatively correct calculations, but to
demonstrate that it is possible to estimate the optical quality of a site by numerical simulation of the
aerodynamic field. Both the finite element formulation to compute the flow variables and the numerical
strategy to compute the optical parameters have been described, the latter with some detail since, to
our knowledge, such formulations have not been reported in the numerical literature for incompressible
flows. We hope that our contribution in this paper has been to propose a numerical simulation framework
to apply a well established model to compute optical parameters that is being used currently in the
design of telescopes.

There are of course many issues of our approach that could be debated. The reliability of the numer-
ical results is essentially based on the capability of thenumerical implementationof the LES model to
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Azimuth Zenital
∫ S
0
C2

nds
∫

∞

0
C2

nds r0 (m)
∫ S
0
〈|uh|

5/3〉C2
nds Vwind (m/s) fG (Hz)

angle ×1012 ×1012 ×1011

0◦ 0◦ 2.35 2.63 0.0452 1.47 3.01 28.63
0◦ 30◦ 3.58 3.90 0.0356 2.63 3.31 39.95
45◦ 30◦ 3.18 3.50 0.0381 1.96 2.98 33.70
90◦ 30◦ 2.60 2.93 0.0424 1.37 2.71 27.54
135◦ 30◦ 2.65 2.98 0.0419 1.86 3.22 33.03
180◦ 30◦ 3.32 3.65 0.0371 2.95 3.70 42.92
225◦ 30◦ 2.56 2.88 0.0427 1.06 2.35 23.62
270◦ 30◦ 2.68 3.01 0.0417 9.81 2.18 22.46
315◦ 30◦ 2.66 2.98 0.0419 1.19 2.45 25.18
0◦ 60◦ 5.31 5.87 0.0279 3.41 3.05 47.02
45◦ 60◦ 4.70 5.26 0.0298 2.34 2.62 37.84
90◦ 60◦ 5.19 5.75 0.0282 2.03 2.26 34.49
135◦ 60◦ 4.41 4.97 0.0308 2.07 2.53 35.30
180◦ 60◦ 5.59 6.15 0.0271 4.06 3.29 52.09
225◦ 60◦ 4.25 4.81 0.0314 1.81 2.39 32.65
270◦ 60◦ 4.82 5.38 0.0294 1.26 1.78 26.04
315◦ 60◦ 4.14 4.70 0.0319 6.99 1.37 18.47

Table 1: Results for the optical parameters. Azimuths are measured clockwise from the North.

really satisfy the design conditions (28) and (29). We have used the standard Smagorinsky LES model,
with well known virtues and limitations. What we need in order to compute the structure constant of
the temperature are the dissipations given by (27), and it isobvious that thenumerical dissipation will
interact with the one provided by the LES model. How important is this interaction is a point of discus-
sion (see [25, 13]). In any case, changing the expression of the thermal and the mechanical dissipations
would not alter our general approach.

As in most computational fluid dynamics simulations, even ifthe exact results computed have a
limited validity, what is certainly reliable is the qualitative behavior predicted and the use of the nu-
merical results forcomparison purposes. In particular, we believe that the approach presented hereis a
valuable tool to compare the optical quality of different sites, for example to choose the location of a
telescope facility as in the application we have presented.
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