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Abstract

We present a numerical formulation to compute optical patans in a turbulent air flow. The
basic numerical formulation is a large eddy simulation (LB&he incompressible Navier-Stokes
equations, which are approximated using a finite elemenhodet-rom the time evolution of the
flow parameters we describe how to compute statistics of tve ariables and, from them, the
parameters that determine the quality of the visibilityeThethodology is applied to estimate the
optical quality around telescope enclosures.

1 Introduction

In spite of its impact in some applications, the problem tihesting the optical properties in a turbulent
flow is not particularly popular in the computational fluidndynics (CFD) community. An example
where this problem is of paramount importance is in the ddteation of the location where large
telescope facilities have to be built. The purpose of thigepas precisely to explain the problem and to
propose a numerical formulation to approximate it.

The location for the construction of a telescope depend®weeral factors, some of them of logistic
nature (such as the ease of construction or the scientifigalitical environment) and others, obvi-
ously, directly relevant to the quality of the astronomigbservation. Among the latter, periods of good
visibility (without clouds), weather conditions or the gnmity to the Equator (leading to the so called
sky quality) have an obvious impact. However, at least a®iapt as those are the optical properties
of the environment where the telescope enclosure is plgecedarily determined by the aerodynamic
behavior of this enclosure.

The effect of the air dynamics around the telescope buildinghe visibility is due to the wave
nature of light. Light rays, as the visible portion of theattemagnetic spectrum, travel at the light
speed and with a wavelength between 400 and 800 nanomettrs iracuum. However, when they
enter a transparent medium, such as the earth atmospleyeldtrease their speed, therefore changing
their wavelength (the frequency is kept). The ratio betwienspeed of light in the vacuum and in a
medium is the so called refractive index of this medium, #awill denote as usual by.

For a single beam of light, if this beam is not orthogonal ®1tiedium interface, refraction occurs.
In a medium in which the refractive index changes from pairidint, the direction of the beam of light
suffers continuous changes. However, the problem arises @ifferent light rays forming a wavefront
enter a medium with variable refractive index. The variapdf this index causes the different rays to
refract in a different way, thus leading to wavefront distor and a deterioration of the quality of the
visibility.

The problem thus is the variability of the refractive indexhe atmosphere rather than the refractive
index itself. Here is where turbulence comes into the péctdiurbulence fluctuations, particularly in
temperature, induce fluctuations in the refractive indet kbad to visibility deterioration.

A first and classical approach to determine the feasibilfta oertain site as a telescope location
has been to quantify turbulence in the region, usually byegrpental means. Classical turbulence
parameters, such as the integral length, turbulence ikgemrsturbulence energy spectra have proved
to be useful to assess the quality of a site to build a telesddpwever, arguments derived from this
information are merely qualitative, giving for grantedttkize higher the turbulence effects, the lower
the visibility quality.

That CFD may play a role in this problem is obvious from what been explained. The idea would
simply be to replace experimental data by results of nuraksgnulations. In fact, the qualitative
link between turbulence and optical quality led the Intéoreal Center for Numerical Methods in
Engineering (CIMNE) to participate in several projectatet] to the aerodynamic analysis of telescope
buildings in collaboration with the Astrophysical Instiduof the Canary Islands (IAC). In particular,



CIMNE has been involved in the aerodynamic analysis of theC@dlescope [12] and in the ELT
project from the European Commission [10], as well as in thedysis of the ATST project of a solar
telescope [1]. In this last case we have considered thelplitysio go further, and to quantify the effect
of turbulence in the visibility quality rather than simplgraputing the turbulence parameters.

In the astrophysical community, optical quality is meadymmong other parameters, by the so
called Fried parametet; and the Greenwood frequendy; (see [3, 24, 26] for background in the
optical concepts to be used). Roughly speaking, the forramesponds to the diameter of a circle
where the mean distortion expected of a light wavefront iadian, whereas the latter gives an idea of
the temporal frequency at which refraction varies. Bothemsential in adaptive optics in astronomy.
They are used to design segmented telescopes (the sizessghents being determined by the Fried
parameter) and their actuators in typical active contretesyis of these devices.

The question is whethety and f; can be computed or not. If one assumes that the air flow is
fully turbulent, the answer is positive. For length scatethie inertial range of the Kolmogorov energy
cascade, it turns out that these parameters can be expiiasseths of the structure function of the
refractive index and, under an isotropy assumption, by qoei®e of the so called constant of structure,
Cfl . This is, therefore, the scalar field that needs to be cordpuwtsch, according to the previous
discussion, must be related to the turbulence fluctuatibinis.dependence can be finally expressed as a
relationship betwee@’? and the mean pressure and the constant of structure of tipetatare, which,
in turn, depends on the gradients of the mean temperaturenead velocities. The conclusion is thus
clear: If we are able to compute mean flow quantities (pressemperature and velocity) in a fully
developed turbulent flow, we will be able to estimate the tamtsof structure of the refractive index
and, from integration along the optical path of the lightrinethe Fried parameter and the Greenwood
frequency. These parameters need to be computed for aitidime of observation of interest.

The model we use, based on the calculationy@nd f to determine the optical quality, is certainly
not the most sophisticated one. Howekis is the model used in practity optical engineers to design
large telescopes, and this is why we have adopted it. Seyengralizations are nevertheless possible.
In [19] the authors describe the treatment of statisticedumeters that permit to model the light beam
propagation through turbulent flows. The flow behavior assliim this reference corresponds to a
compressible flow. The requirements of a numerical sinudafibr this model targeting optical quality
are presented in [20]. A more elaborated physical modekis ptesented in [29] and extended in [28],
where also turbulent flows are numerically modeled. In thiseg boundary layer compressible flows are
simulated, a situation relatively far from our interest mganeering applications for the astrophysical
community. Moreover, the fluctuations of the refractiveexrdn this case are associated to density
fluctuations, whereas in our case temperature fluctuationsesponsible of the pointwise and time
variations of the refractive index, as it has been said.

Once the model to compute the optical parameters is estatli@nd accepted) the success depends
on the CFD simulation to obtain mean flow quantities. Howemew they are needed not only to es-
tablish a mere qualitative indication of the optical qualidut to compute a quantitative measure of this
quality. The first and essential point to consider is thatredlexpressions to be used are derived under
the assumption that the flow lies within the inertial ranglee Tlassical statistical temporal and spatial
correlations between velocity components, pressure anggeature need to apply. This excludes from
the very beginning the use of RANS (Reynolds averaged N&tigkes) models and restricts the alter-
natives to, at least, LES (large eddy simulation) formoladi Precisely a LES formulation is what we
will use to account for the subgrid effects on the flow.

As basic numerical formulation for the aerodynamic probleenhave used a stabilized finite ele-
ment method for the spatial discretization together witleeoad order time integration scheme. The
Smagorinsky model has been used as LES formulation, evemgtthocher dynamics and still gen-
uine turbulent behavior are obtained if the stabilizatitona is let to act as turbulence model. Both



the numerical formulation and the LES model are describeseiction 2. Once the flow variables are
computed and time averaged, the square of the constanuofist of the refractive index can be ob-
tained. From these results one may now compute the Frietheéeaand the Greenwood frequency by
integration of functions that depend 6h, along different optical paths corresponding to the dimei

of observation of interest. A detailed description of howptaform these calculations is presented in
Section 3.

As an example of application of the strategy presented, we hpplied it to the ATST telescope
mentioned earlier in Section 4. We believe this example neayesto understand the potential of CFD
in the field of the optical environmental quality, which irethase of telescopes is crucial to select the
site of these scientific installations. Some concludingars close the paper in Section 5.

2 The aerodynamic problem

2.1 Problem statement

In this section we shall consider the flow problem for an inpogssible fluid taking into account the
coupling of the Navier-Stokes equations with the heat frartequation through Boussinesq's assump-
tion, as well as a nonlinear viscosity dependence on theiglgradient invariants through Smagorin-
sky's LES model. Some comments will be made later on aboupdssibility to avoid turbulence
modeling and to rely only on the numerical formulation.

The equations describing the problem are

du+ (u-V)u—2V-[ve(u)] + Vp + BgV = f, 1)
V.ou=0, )
09 + (u - V)9 — V- (kV9) = 0, (3)

to be solved i x (0, tg, ), whereQ C R3 is the computational domain af@ ¢, is the time interval
to be considered. In (1)-(3) denotes the velocity fielgs is the kinematic pressure (i.e., the pressure
divided by the density)y is the temperature; is the total kinematic viscosity (physical plus turbulgnt)
e(u) is the symmetrical part of the velocity gradiepts the thermal expansion coefficiegt,is the
gravity acceleration vectoyf, is the vector of body forces, andis the total thermal diffusivity (that is,
the physical plus turbulent thermal conductivity dividgdhe heat capacity). The densjiyis assumed
constant to obtain equations (1)-(3). In the numerical garof Section 4, all these properties have
been taken as those corresponding to air in normal condition

The force vectorf in (1) contains the reference buoyancy forces from Bousgiseassumption,
that is

f =91+ Bdo).

In this equationy is the reference temperature from which buoyancy forces@rguted.

Smagorinsky’s turbulence model has been employed in therigah simulations (see, e.g. [22, 25,
9] for background). This model is tight to the numerical digization in space of the flow equations,
which in our case is performed using the finite element metfde turbulent kinematic viscosity
associated to this model is

Vir = py e [e(u) s e(w)]'2,

wherec is a constant, usually taken as= 0.01, the colon stands for the double contraction of second
order tensors ankl is the length of the element of the finite element discretiradlescribed later where
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the turbulent kinematic viscosity is to be computed. Thalteiscosity will ber = viel + Viur, Vol
being the molecular viscosity.
Concerning the turbulent thermal diffusivity, it is takefttoe form

Ktur = Priurltur, (4)

wherePry,, is the turbulent Prandtl number, takenfas,, = 1 in the numerical example. The total
thermal diffusivity will bex = kol + Kturs Kmol D€ING the molecular thermal diffusivity.

In order to write the boundary conditions for equations (@)-consider the boundaly = 09
split into sets of disjoint components Bs= I'y, U T, U Ty, and also ag' = T'q, U Ty, wherel'y,
andIl'y; are the parts of the boundary with Dirichlet type boundamditions for the velocity and the
temperature, respectively, afy, andI',; are those where Neumann type conditions are prescribed.
Mixed boundary conditions for the velocity are fixed BR,. If the Cauchy stress tensor (divided by
the density) is written as = —pI + 2ve(u), the exterior normal to<2 is n, and prescribed values are
represented by an overbar, the boundary conditions to b&demed are

( t) = (w t) on Ty, (5)
o(x,t)= on 'y, (6)
u(z,t) =0 and n - o (x,t)|tang =t ON Ty, (7)

19( t) =9(x,t) on Ly, (8)
kn-Vi(x,t) =0 on Ty, 9)

fort € (0,tgn). In (7),n - o(x,1)|tang denotes the component of the stress veator (x,t) tangent
to 00 andt is the stress resulting from the standard wall law (see fampte [22])
2
t= _p(]%llw
|ul

whereU. is the solution of the nonlinear equation

lu| 1 U.A
e R |
i I og ” + C,

with K = 0.41 (von Karman constant),’ = 5.5 and whereA is the distance from the wall at which
the velocity is evaluated.

To close the problem, initial conditions have to be apperndezfjuations (1)-(3) and the boundary
conditions (5)-(9). They are of the form(z, 0) = u’(z), ¥(x, 0) = ¥°(z) for x € Q, whereu’(z) is
a given initial velocity and’(z) a given initial temperature.

In the numerical simulations of the telescope buildifg, corresponds to the inflow part of the
boundary of the computational domain, where the wind véfois prescribed to a certain value of
interest and with a given direction, wherdgg, is the outflow boundary. The surfafg,, corresponds
to both the ground surface and the building surface.

2.2 Finite element approximation

In order to discretize in space problem (1)-(3),{€&} be a finite element partition of the domd&n
with index e ranging from 1 to the number of elements. We denote with a subscrigt the finite
element approximation to the unknown functions, andvly ¢;, and,, the velocity, pressure and
temperature test functions associated(®5}, respectively.



A very important point is that we are interesteduising equal interpolation for all the unknowns
(velocity, pressure and temperature). Therefore, all thitefelement spaces are assumed to be built up
using the standard continuous interpolation functiongdrticular, all the numerical simulations have
been carried out using meshes of linear tetrahedra.

In order to overcome the numerical problems of the standaérién method, a stabilized finite
element formulation is applied. This formulation is prasenin [6]. It is based on the subgrid scale
concept introduced in [15], although when linear elemenésused it reduces to the Galerkin/least-
squares method described for example in [11] (see also.[278)apply this stabilized formulation
together with a finite difference approximation in time. Twtom line of the method is to test the
continuous equations by the standard Galerkin test fumetidus perturbations that depend on the
operator representing the differential equation beingesbl In our case, this operator corresponds to
the linearized form of the Navier-Stokes equations (1)ai2) the heat equation (3). In this case, the
method consists of findingy,, p, andd, such that

/'vh ruldw—i—/Qs('vh) Vs(uh)da:—/ prV - v dx
Q Q
Nel Tlel
+Z/ Cour - (Ty1 +702) dm—l—Z/ Cuarpde

Tel

—Z/ (vp, +Cu1) fdac—i—/ vy, - tdl,

mv

el Tlel
/hrpdac—i—z Cp (Pu1 + Tu2) dw—Z/C - fdx,

Tel

L on-rnde+ [ wvu, Vonda+ 3 [ Gl tr) dw=0

for all test functionsv;,, g5, andv;,, where

1= Oyup, + gB0h + (up - V)up, (10)

Ty 1= —2V - [ve(up)] + Vpp, (11)

rp =V - uy, (12)

ro1 1= Opp + (up - V)0p, (13)

r9o = —V - (kVI}), (14)

the functions(,,;, (.2 and¢,, are computed within each element as

Cui = Tu{(un - V)vr +2V - [ve(vp)]}, (15)

Cuz = TpV - vy, (16)

¢p = 7uVan, 17)

Co =Ty [(un - V) + V- (V)] (18)

and the parameters,, 7, andry are also computed element-wise as (see [6])

1—-1

N -41/ Q‘Uh‘
Ty = h2 A >
Tp = 4y + 2|uh|h
4k 2]t
Ty = 2 7 )
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whereh is the element size for linear elements and half of it for gaacs.

From (15)-(18) it is observed that these terms are prectbelndjoints of the (linearized) operators
of the differential equations to be solved applied to théfigsctions (observe the signs of the viscous
term in (15) and of the diffusive term in (18)). This methodresponds to the algebraic version of
the subgrid scale approach ([15]) and circumvetitshe stability problems of the Galerkin method. In
particular, in this case it is possible to use equal velquigssure interpolations, that is, we are not tight
to the satisfaction of the inf-sup stability condition.

A controversial issue is whether the stabilized formulatiwesented is able to act as a turbulence
model, that is to say, if the Smagorinsky viscosity can baddroff. This possibility is advocated in
[8, 2]. Even though our numerical simulations have beenoperéd using the Smagorinsky model,
some runs without it have provided good results with richaragnics.

2.3 Some implementation issues

Apart from a more or less standard iterative procedure tbwiigiathe different nonlinearities, the basic
numerical formulation presented above has been implemargig some features which will not be
detailed here. These are:

e Time integration can be performed with any finite differescbeme. In particular, the example
of Section 4 has been simulated using the second order @¥eokson method.

e Nodal based implementation [5]. This implementation iselblagn an a priori calculation of the
integrals appearing in the formulation and then the congtm of the matrix and right-hand-side
vector of the final algebraic system to be solved. After appate approximations, this matrix
and this vector can be constructed directly for each nodait paithout the need to loop over
the elements and thus making the calculations much fasterder to be able to do this, all the
variables have to be defined at the nodes of the finite elemesthmot on the elements. This is
also so for the stabilization parameters of the formulation

¢ Block-iterative coupling to segregate the velocity-ptessand temperature calculations [4]. A
single iterative loop is used to deal both with the nonliitesr of the problem and with the
temperature coupling with the Navier-Stokes equations.

e Predictor corrector scheme [7]. The pressure segregatiorspired in fractional step schemes,
although the converged solution corresponds to that of aofitbic time integration.

The reader is referred to the references indicated in eaghfir details.

3 Optical parameters

In this section we introduce the parameters that allow usdasure the quality of the seeing of a site,
and we also describe their numerical approximation in theeoa of the finite element formulation for
the flow equations presented above.

3.1 Physical background

The optical parameters we are interested in are the Friexhnger and the Greenwood frequency. In
fact, they are both obtained from integration of a functidrthe structure constant of the refractive
index along an optical path. Let us start describing the lproband leave for the next subsection its
approximation (see [24] for more details).



Let n(x,t) be the refractive index of a medium. Optical quality depeodspatial and temporal
variability of this parameter, basically due to temperatand humidity fluctuations. In particular, we
are interested in the structure functionmgfdefined as

Dy(x,a') = (In(@,t) - n(a, )]2). (19)

Here,(-) denotes the ensemble average. However, under the ergaBsitmption we will replace it, in
(19) and below, by the time average over a time window of pEfiplarge enough to mak®,,(x, x')
(almost) time independent. Likewise, we will assume igaitraurbulence, so thab,, depends only on
r := | — &’|, not ona’. This dependence will be written &%, (x, r). Moreover, if we assume further
that 1/r belongs to the inertial range of the Kolmogorov spectruntait be shown by dimensional
analysis that (see [26])

Dy (z,7) = C2(x)r?/3, (20)

whereC,(x) is the constant of structure af See also [30] for a discussion about the limits of this
approximation. Given a point € €, let us consider a beam of light arriving #owith the direction
given by a unit vectot. The propagation of the light beam is taken to be rectiliseasing the so-called
near field approximatiorisee [24]) usually used to describe the propagation of bglams arriving at
atelescope. To integrate along this beam of light, we magidenitstarting fromrather thararriving

to x, and parametrize it a8 + sl, with s € [0, c0). Having introduced this notation, the optical path
lengthd; and the phase fluctuatiasy can be computed as

o 2 o
oz, t) = / n(x + sl t)ds, ¢z, t)= Tﬂ/ n(x + sl, t)ds, (22)
0 0

where) is the wavelength of the wavefront of the light beam. Note sliscript refers to the direction
of the light beam.

To obtain the variability ofp; (and therefore the relative change in the wave phase) iistate
function is needed. It is given by

Dlpl(m>§) = <[§0l($7t) - (pl(w + €,t)]2>,

where¢ = |£|. Making use of (21) and (20) it can be shown that (see [24])

Dy, (z,€) = 291( >§5/3/ C2(x + sl)ds.

This expression can be written in terms of #réed parameten, as

¢ 5/3
Dy, (z,€) = 6.88 <—> ,

7o

where

1 —3/5
ro=ro(l;x) = (66/ C%(x + sl)d ) . (22)

Note that once again we have made explicit the dependengeoafthe spatial point and the light beam
direction. Obviously, it also depends on the wavelengttheflight wave \.



The importance of is due to the fact the mean-square distortion of a wavefreet a circle of
areaA and diameter! centered at a point, normal tol, parametrized by + y and given by

7t = otltie) = =5 [ e +9.0 = euifa ]y,

4
vo,(x,t) := pr) /ASOl(iU +y,t)dy,

d 5/3
0? =1.03 (7) .
0

Thus, ifd = rq the root-mean-square (RMS) distortion is approximatelgdian.

The Fried parametey, is essential in adaptive optics. In the case of telescopdigits to determine
the number of segments into which a segmented mirror hasdplibeor the distance between actuators
for a continuous deformable mirror, by prescribing an adible RMS distortion of a wavefront [3]. But
the design of their actuators is also based on the so dalleenwood frequengwhich is an indication
of how fast the atmosphere is changing and defines the batidefidhe servo control for an adaptive
optics system. This frequency is defined as

can be shown to be (see [24])

Vwin
fa= 0'43r—0d (23)

whereV,ing IS a weighted mean wind velocity defined as

2 ul)BC2 (@ + sl)ds>3/5 o

Voind = Vaina(h; ) = ( [ C2(a + sl)ds

The problem of computingy and f is reduced to the problem of computing the structure functio
of the refractive index(,,, and then computing the integrals in (22) and (24). In tunig structure
function can be related to the structure function of the terature, the humidity and their joint structure
parameter (see [21]). However, we will consider the humidifects negligible. Thus, if we write the
temperature dependencerofsn = n(J), we have

dn
C, = —Cy,
do - ?
where Cy is the structure function of the temperature. Assuming ques equilibrium it is found

that [26]

_ 79x 1076

O ="y

(p) Oy, (25)
wherep is assumed to be measured in millibars @nd the absolute temperature. Here and beldw,
p andu denote the solution of the continuous problesthout using a LES model, that is to say, with
Vtar = 0, Ktur = 010 (1)-(3).

In view of (25), the problem is to comput&;. Once again in the inertial range of the Kolmogorov
spectrum and assuming the temperature to be a passivetguidictin be shown that (see [24])

C% = a?ye 13, (26)



wherea is an empirical value called Obukhov-Corrsin constant {$de31] for extensions and a dis-
cussion about Obukhov-Corrsin constants and on the wabidithis approximation). In (26)y denotes
the mean thermal diffusive dissipation anthe mean dissipation of kinetic energy of the flow. These
parameters are given by

X = fim01<|V19\2>, €= Vm01<\€(u)\2>. (27)

The problem is now closed: using (27) in (26) and the resutkba (25) we have an expression to
computeC), in terms of the flow variables, p, 1} at each point.

The question now is how to apply this development in the cdrdéa LES simulation and, more
precisely, using the flow variables;, p,, ¥, resulting from the finite element approximation of a
LES model as described in the previous section. The firsttgoinsonsider is that filtered unknowns
appearing in a LES model need to maintain the mean of thenatigiariables Assuminghis to hold
also for their finite element approximation we have that

() = (up), (p) = (pn), (V) = (Un). (28)

The second point is that the dissipation of the continuooblpm is approximately equal to the dissi-
pation of the LES approximation using the effective turbtiidnermal diffusion, in the case of the heat
dissipation, or effective turbulent kinematic viscosity,the case of the mechanical dissipation. This
is in fact the main requirement posed by Lilly to LES model$,[22], and the key feature for their
design [9]. Moreover, it is also shown in [13] that the nuroakiformulation presented in Section 2
introduces also a mechanical numerical dissipation prajpoal to the viscous dissipatiof his leads
us to assume that

’imol<|vw2> ~ ’itur<|VI9h|2>7 Vmol(‘s(u)‘2> ~ Vtur(‘s(uh)|2>~ (29)
Using approximations (28) and (29) in (26) and insertingré®ailt in (25) it is found that
Co =79 % 1075(04) 2 (pr) a vy (VI [*) /2 (e (up)[2) /S, (30)

where we have assumed tHat;,,, = 1 in (4). Equation (30) is the expression we were looking for.
It allows us to compute the structure function of the refv@ctndex in terms of the flow variables
resulting from a LES numerical simulation. Using this exgsien in (22) and in (24), also replacing

by u, in this last case, the Fried parameter and the Greenwoodédney can be computed. We present
next the algorithm to compute the integrals in (22) and (24).

3.2 Numerical strategy

Expression (30) allows us to compute the structure consthtiie refractive index at each node of
the finite element mesh introduced in Section 2 to approxnta flow equations. The only remark
is that the derivatives ofi;, appearing ire(u;) and the derivatives of;, appearing invVd, will be
discontinuous, usually computed at the numerical intégnapoints. They can be approximated by
continuous functions by using a classiéal projection. To simplify the exposition, we will assume that
this approximation is done, although it is not necessarg {(afact we have not used it in the numerical
example).

Equations (22) and (24), with the continuous functions apipnated by finite element functions
defined at the nodes of the finite element mesh, imply an iatedong the light beam. Therefore, our
concern now is to compute integrals of the form

I(l;z) = /OOO Fy(x + sl)ds, (31)
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where the finite element functiofy, (x) is an approximation t@’2 in the case of (22) and the denom-
inator in (24) and an approximation {¢u|)>/3C?2 in the case of the numerator in (24). Note tit
would be discontinuous across interelement boundaries$uf,) and Vi, are not approximated by
continuous functions.

First of all, it is obvious that the computational domain rsté. For simplicity, let us assume that
the upper boundary d® is the planez = Z, z being the vertical coordinate. Lét = S(I; x) be the
distance from a point to 02 in the direction of vectot and let alsoy be the angle betwednand the
vertical axes, so that= s(z) = secy(z — Z) + S (see Figure 1).

. Y
=7
Q
L'/ six)
X

Figure 1: Notation for the integrals in (32)

Considering only pointa: € €2 such that the light beam crosses the plane Z, we may split the
integral in (31) as

S [
I(l;x) = / Fy(x + sl)ds + secv/ Fp(x + s(2)l)dz. (32)
0 Z
The first term in the right-hand-side of this expression isiwteeds to be computed numerically. The
second term is considered to be known from empirical datéadn in the casé), (z) ~ (ju|)*/3C?

it is assumed that the mean velocity is constantzfor Z, so that what is needed is onﬁgo Cﬁdz.
Values for this number can be found for example in [23].

Let us explain how to compute the first integral in (32). Wauass in the description of the follow-

ing algorithm that the elements used are linear tetrahdth@asteps to be performed are the following:

e (Pre-process) Determine the element domdins...,e,, ..} € {1,2,...,ne} crossed by the
light beam:

> Given a pointez € 2 determine the elemert to which it belongs. This can be done by
looping over the elements and checking for which elementnétteral coordinates aof
belong to the parent domain (see [18], for example). Sea&igu

> Find the intersectiony of the line passing byt with directionl with the boundary of ele-
mente; .

> Determine the elememt to which pointy belongs.

> Find the intersectiony’ of the line passing by with direction with the boundary of
elemente,.

> Proceed until exiting the computational domain. We dengtey’ the points obtained fol-
lowing this process in element, i = 2, ..., Npeam-

11



o (Pre-process) Locate the arc coordinatgs for j = 1, ..., niy; Within eache;, @ = 1, ..., npeam,
of the integration points and determine the weights; of the numerical integration rule:

Npeam Mint

S
/ Fp(x + sl)ds ~ Z Zweiijh(ac + S, 40). (33)
0

i=1 j=1

Any numerical integration rule can be used. The arc cooté@aan be found transforming the
integration pathy; — y, (or y; — « in the case of element) within each element (see Figure 2)
to the reference interval of the particular integratiorerdtor example, for the Gauss-Legendre
rule used in the numerical simulation of the following sewtiif s., o is the arc coordinate of
pointy, for elemente;,

1 1 )
Se;,j = Se;i0 + 5(1 + "7])|y; - yz|7 We;,j = §|y; - yz|wj7 J = 17 .-y Nint,
wheren; andw; are the coordinates and weights of tji¢th integration point in the interval
[—1,1].

e (Post-process) Once the LES simulation has finished, othtainodal values of the time averaged
flow variables and, from them, the nodal valuegpfx) (if derivatives are not approximated by
continuous functionsk}, will be discontinuous).

e (Post-process) Interpolate from the nodes of each elerod¢iné tnumerical integration points and
perform the numerical integral (33).

Figure 2: Line integration within an element. The crossewtiethe numerical integration points.

4 An example of application

In this section we present an application of the numericakey described in the previous sections
to the calculation of the Fried parameter and Greenwoodi&ecy around a telescope. The example
to be shown corresponds to the project of a solar teleschpéddvanced Technology Solar Telescope
(ATST) [1], in which study the Astrophysical Institute ofefCanary Islands has been involved. The
results to be presented do not correspond to a real sitydiinrio a preliminary analysis to determine
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the convenience of the project. Their purpose is not an ejattitative analysis of the problem, but a
qualitative demonstration of the possibilities of the fafation proposed herein.

The physical properties used in the numerical approximaio(1)-(3) are those of air at normal
conditions.

The site to be analyzed is located in the observatorfEloRoque de los Muchachos the La
Palma island of the Canary archipelago. Figure 3 shows aglenew of the site with the surface finite
element mesh used to discretize what we will calllirge computational domain. This domain is used
for a preliminary simulation used to determine the boundanyditions of a more detailed calculation.
The region of the island analyzed h&s x 7.6 km? and a height of 1400 m above the sea level. A
semisphere of radius 14.2 km is the computational domaia Esgure 3). The mesh used has only
9.2 x 10 linear tetrahedral elements. Steady-state calculationdefstood as a Reynolds averaged
Navier-Stokes simulations) have been performed with iffe wind directions and wind intensities,
considered representative of the site. In the followindy o@sults corresponding to a uniform wind of 4
m/s coming from the west will be considered. In upper atmespHayers, this wind is not perturbed,
while near the ground its direction and speed are alteredhéyerrain geometry and buildings. The
velocity of 4 m/s is imposed as boundary condition at the wihmdes of the spherical computational
domain mentioned.

Figure 3: General view and detail of the large scale comjmutakt domain

Results obtained for the large computational region ard aseboundary conditions for the small
scale domain where the simulations will be actually cardat now introducing the ATST telescope
as well as the other existing buildings hosting telescopedy results for one of the sites analyzed will
be shown. The extension of the small computational domairiBa7000 rhand it is discretized using
a mesh of3.2 x 10° linear tetrahedral elements (see Figure 4). It corresptmdssphere of diameter
28450 m, the minimum distance from the telescope to the kayraking 12500 m.

As it has been mentioned, velocity boundary conditions lier 4mall scale domain are obtained
from the large scale domain. Standard interpolation batweeshes is used. Concerning the tempera-
ture, we have assumed a near ground temperature profile Vrettieal coordinate: of the form

log z — log zp,

T =T — Tqec Z 2 Zp. (34)

log H — log 21,

We have taken the rugosity parametgr= 0.02 m, the temperature at = z, as7, = 12 °C, and
the temperature decrea%g,. = 4 °C for H = 6 m. See [16] for a motivation and discussion about
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Figure 4: General view of the small scale computational doraad mesh around the ATST telescope

this type of logarithmic laws. When the slop&’/0z of the curve given by (34) is-0.0065 we replace

it by a linear law that yields a decrease of 8(5 each km. Likewise]" = Ty = 12 has been chosen
for 0 < z < z;,. These data correspond to the mean temperatures on thedgtating winter and the
measured temperature difference between 0 and 6 HY4The temperature distribution obtained is
prescribed on the ground and at the upper boundary of the watigmal domain and it is used as initial
condition for the nodes of the rest of the computational doma

Results of the numerical simulation of the aerodynamic lgmbare shown in Figures 5to 8. These
results have been shown on two vertical plane sections, long the middle of the telescope building
and crossing the auxiliary building (see Figure 4) and thegperpendicular to the former, also passing
through the middle of the telescope building. It is worthimgtthat turbulence is formed around the
building on the side opposite to the wind.

Once the flow variables have been computed, we may proceeashipute the distribution of the
structure constant of the refractive index2, using expression (30). Results are shown in Figure 9. It
is known that typical values af’? are 10~ * m~2/3 close to the ground anth~'7 m~2/3 at 10 km
height. This is the order of magnitude of the values we haveptded, except for points very close to
the surfaces, where high fluctuations of velocity and teapee lead to larger values 6£.

The last step is to compute the Fried parameteand the Greenwood frequendgy; using the
methodology explained in the previous Section. First, $ehote that the pre-process steps in the algo-
rithm described there yield a set of elements crossed byhabigam as the one shown in Figure 10.

The results obtained for different directions of the liglelain (that is to say, different vectols
are given in Table 1. These directions are expressed in tefthe azimuth and the zenital angle from
an observation point located at the middle of the telescaildibg and on the dome surface, close to
where the main mirror of the telescope should be placed. ilzedpe position of the sun on the sky
is restricted to the ecliptic and, consequently, a solastape like ATST will only observe in those
directions, we present the results for all azimuthal anfylesompleteness.

The third column in Table 1 gives the first term in (32) whién= C2, whereas the fourth gives the
total integral, with the second contribution obtained fr{28]. The Fried parameter for = 500 nm is
given in the fifth column. It is known for example that typicallues ofry (for A = 900 nm) at good
sites are of the order of 20—40 cm (during daylight, as in @seg, so that our results have the correct
order of magnitude. From tables similar to Table 1 computechfdifferent heights (not from the dome
surface) it can also be shown thgtdecreases rapidly with height, as it should be expected.
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Figure 10: Elements crossed by a light beam

The sixth and seventh columns are preliminary results topcenf;, whose values are given
in the last column. Again, the order of magnitude obtainedaisect. Despite turbulence is mainly
concentrated on the part of the building not facing the wihd results show that there is no dependence
of ro with the azimuthal anglé/,;,q, however, is minimum in a direction parallel to the wind (aath
values of 90 and 270), leading to smaller Greenwood frequencies.

A thorough validation of our numerical model would imply aqperimental campaign to obtain the
values of the optical parameters and check whether theggmond or not to the numerical predictions.
Being this not feasible, our confidence in the results reliethe fact that the values reported in Table 1
are in accordance with values computed experimentally thogrdelescopes that have been built in the
Roque de los Muchachos.

5 Concluding remarks

The purpose of this paper has been to present a numericallfatron to compute the optical parameters
in a turbulent flow. It hasiot been our intention to show quantitatively correct caldafet, but to
demonstrate that it is possible to estimate the opticalityuall a site by numerical simulation of the
aerodynamic field. Both the finite element formulation to poe the flow variables and the numerical
strategy to compute the optical parameters have been bedcthe latter with some detail since, to
our knowledge, such formulations have not been reportdaeimtimerical literature for incompressible
flows. We hope that our contribution in this paper has beendpgse a numerical simulation framework
to apply a well established model to compute optical parareghat is being used currently in the
design of telescopes.

There are of course many issues of our approach that couleldzeatl. The reliability of the numer-
ical results is essentially based on the capability ofrthmerical implementationf the LES model to
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Azimuth | Zenital | [7 C2ds | [ C2ds | 7o (m) | [ ([unP/?)C2ds | Vigna (MIS) | f& (H2)
angle | x10'2 x 1012 x 101
0° 0° 2.35 2.63 | 0.0452 1.47 3.01 28.63
0° 30° 3.58 3.90 | 0.0356 2.63 3.31 39.95
45° 30° 3.18 350 |0.0381 1.96 2.98 33.70
90° 30° 2.60 2.93 | 0.0424 1.37 2.71 2754
135 30° 2.65 2.98 | 0.0419 1.86 3.22 33.03
180° 30° 3.32 3.65 | 0.0371 2.95 3.70 42.92
225 30° 2.56 2.88 | 0.0427 1.06 2.35 23.62
270° 30° 2.68 3.01 | 0.0417 9.81 2.18 22.46
315 30° 2.66 2.98 | 0.0419 1.19 2.45 25.18
0° 60° 5.31 5.87 | 0.0279 3.41 3.05 47.02
45° 60° 4.70 5.26 | 0.0298 2.34 2.62 37.84
90° 60° 5.19 5.75 | 0.0282 2.03 2.26 34.49
135 60° 4.41 4.97 |0.0308 2.07 2.53 35.30
180° 60° 5.59 6.15 | 0.0271 4.06 3.29 52.09
225 60° 4.25 481 | 0.0314 1.81 2.39 32.65
270° 60° 4.82 538 | 0.0294 1.26 1.78 26.04
315 60° 4.14 470 | 0.0319 6.99 1.37 18.47

Table 1: Results for the optical parameters. Azimuths arasomed clockwise from the North.

really satisfy the design conditions (28) and (29). We haaduthe standard Smagorinsky LES model,
with well known virtues and limitations. What we need in artle compute the structure constant of
the temperature are the dissipations given by (27), anditvious that thewumerical dissipation will
interact with the one provided by the LES modi&bw important is this interaction is a point of discus-
sion (see [25, 13]). In any case, changing the expressidmedhermal and the mechanical dissipations
would not alter our general approach.

As in most computational fluid dynamics simulations, eveth#d exact results computed have a
limited validity, what is certainly reliable is the qualitee behavior predicted and the use of the nu-
merical results focomparison purposes$n particular, we believe that the approach presentedibere
valuable tool to compare the optical quality of differertesj for example to choose the location of a
telescope facility as in the application we have presented.
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