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ABSTRACT

We use the dynamical Ising model, with stochastic dynamics for the coupling, in order
to try to reproduce financial markets indexes, with the coupling following an Ornstein-
Uhlenbeck process. Regarding the employed dynamics for the Ising model, we first utilize the
Metropolis algorithm, obtaining encouraging results. We later consider the more sophisticated
Wolff algorithm, which to the best of our knowledge has never been applied to financial
markets before. We find that this model is able to reproduce qualitatively, and in some cases
quantitatively, the stylized facts, previously computed for real EUR/USD currency data.
Finally, we construct a much simpler subordinated stochastic process, based on the Ising
mean-field theory, which turns out to encapsulate in a simple way most of the features of
the previously studied dynamical Ising models.
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1 Introduction

The modern trend for physicists to work on problems in finance and economics began in
the early 90s and has gained momentum ever since. The reason behind this interest in the
field may be closely related to a series of significant changes that took place in the world
of finance. First, in 1973, currencies began to be traded 24 hours a day worldwide in a
financial market called the foreign exchange market. Since that time, the volume of foreign
exchange trading has been growing at an impressive rate. Secondly, and most relevant, the
appearance of electronic trading (80s), allowing the electronic storage huge amounts of data
available for study. Such data characterized by being high-frequency, nowadays reach up to
the millisecond precision [1].

With the arrival of Physics to the world of finance, new approaches to already established
problems emerged. Most of them relied on concepts of Statistical Mechanics as tools for
the study of this large amount of data such as scaling, self-similarity, stochastic dynamics or
correlation effects, providing a deeper understanding of financial markets at various scales.
Furthermore, these concepts combined with Agent-Based models, that are commonly used
for the study of complex systems and are based in the decision of multiple agents conditioned
to a certain feedback, yield promising results [2].

Critics to these kind of approaches argue that obtaining universal laws for systems in which
their components are so different from one another (in this case human beings), relying on
theory for identical subjects (particles), seems unlikely. Although it may seem reasonable
to think that the ”microscopic equations of motion” of economic and financial markets, if
existent, won’t arise from physical models, the behaviour of the system at a macroscopic scale
can be reproduced to a considerable extent. Specifically for the case of financial markets,
the so called stylized facts have been successfully reproduced by the use of complex Agent-
Based models (for example in [16] or [17]). The concept of “stylized facts” was introduced
in macroeconomics by Khaldor (1961) [3], who isolated several statistical facts characterizing
macroeconomic growth over long periods and in several countries, and took these robust
patterns as a starting point for theoretical modelling.

Reproducing the real stylized facts of financial markets from a theoretical model is precisely
one of the most active areas of research in Econophysics and the objective of the present
work. We look at this research as an exploratory project aimed at deepening our knowledge
on financial markets while simultaneously learning new physical models with potentially
wide application. It is important to mention that most models usually contain a variety
of contributions based on financial properties, resulting in the number of parameters in the
model to escalate rapidly, which at the same time hinders the interpretation of the results.
To avoid this, we establish as an objective of our approach to stay as close to the physical
theory (in our case, the Ising model) as possible, in order to try to unambiguously link
associate each parameter in the model with its influence on the behaviour of the model.
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2 State Of The Art

The Ising model is a widely used tool in social sciences modelling, specially when studying the
imitation phenomenon between agents under the simultaneous effect of noise. For financial
markets, many generalizations of the Ising model have been used, and we just give here a
short list of works more directly related to our present approach, reference [17] contains an
exhaustive and updated review.

One of the most cited articles, which illustrates the complexity used in these models, is from
Zhou & Sornette [29]. In this model, the spin dynamics is defined through the following
equation,

si(t+ δ) = sign(F (t) + ξi(t) +K(t)
N∑
j=1

ωijsj(t)), (1)

where δ=1/N is the unit of micro time, i.e. N updates are equivalent to one macro-unit of
time. In this model, the new value of si results from the competition of three contributions.
F(t) is an external forcing term (news) and ξi(t), that is specific for each unit, would model
the investor idiosyncratic opinion. Finally, the third term is an interaction term between
units and is controlled by the amplitude K(t) (social impact). It is worth mentioning the
fact that for F(t)=0 and ξi(t) distributed according to a Logistic distribution, Eq. (1) is
equivalent to the Ising model with Glauber dynamics. It is possible to justify, based on the
economic concept of utility, that this is a reasonable model in the financial field [17], but we
will not focus on that, as there might be some arbitrariness on the definition of the utility
function [18].

Returning to the complexity of the model, in the same publication, a formula for the evolution
of the coupling term is proposed,

K(t)ωij = Ki(t) = bi + αKi(t− 1) + βr(t− 1)F (t− 1). (2)

The idiosyncratic imitation tendency bi of agent i is uniformly distributed in (0,bmax) and
frozen. The coefficient α quantifies the persistence of past influences on the present. Eqs.
(1) and (2) should make clear the potential complexity of models constructed upon the Ising
ferromagnet.

A particularly interesting case is when the coupling follows an stochastic dynamics, as men-
tioned in [22]. In that case, all units of the lattice were connected and the evolution of
the coupling was restricted in a supercritical region. In general, and unlike for the previous
model, the coupling term between spins is maintained constant while F(t) and ξi(t) are time
varying. This formulation is found in [18], and it is commonly known as the random field
Ising model.

Another interesting area of research, also arising from the Ising Model, aims to reproduce
the stylized facts by introducing non-linear modifications to the Hamiltonian [7], an approach
to some physics problems as well. The dynamics is governed by interactions which are
frustrated across different scales: while ferromagnetic couplings connect each spin to its
local neighbourhood, an additional coupling relates each spin to the global magnetization.
This new coupling is allowed to be anti-ferromagnetic. The resulting frustration causes a
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metastable dynamics with intermittency and phases of chaotic dynamics. The Hamiltonian
fo particle i is

Hi(t) =
∑
j∈n.n.

JijSj(t)− αCi(t)
N∑
j=1

Sj(t), (3)

where the sign of this new coupling Ci changes according to a certain rule. In this model,
financial returns and magnetization are related in a different way that for the first model
(the usual one, that will be defined in the project).

We now turn to models for which, unlike the previously described, the focus is on a time
varying coupling. They are characterized by usually allowing this coupling to be either
positive or negative (ferromagnetic or anti-ferromagnetic) following stochastic dynamics. An
example is found in [6], where

Jij(t) = Jξ(t) + aνij(t), (4)

with ξ(t) and νij(t) being uniformly distributed random variables in (-1,1) with no correlation
in space and time. It is relevant that for this model all spins are connected.

The last spin-based model presented, is the one developed by Bouchaud and Cont [8] and later
reformulated by Chowdhury and Stauffer [9]. We find this model interesting because it is
not focused on the individual spins but on groups of spins (clusters). In [9] clusters of linked
individuals are identified as ”coalitions” of investors; all the members of each coalition make
the same investment decision (i.e., whether to buy or to sell or not to trade). Alternatively,
each cluster may correspond, for example, to funds managed by the same portfolio manager.
This model, as the authors point out, suffers from the limitation that the distribution of the
superspins is directly tuned to a power law and it would be desirable that this distribution
emerges naturally from the dynamics. As we will explain later, one of the models we have
used fulfils this desideratum.

Finally, it is necessary to point out that all these models have had extensions/modifications
in order to reproduce more accurately the stylized facts. It should be clear by now that
reproducing all stylized facts is not a simple task starting from a physical model, what
explains that other physical approaches to financial markets have been studied. An illus-
trative example is the work of Parisi et al. (2013) [16] who used an analogy between the
dynamics of granular counterflows in the presence of bottlenecks or restrictions and financial
price formation processes. Using extensive simulations, they found that the counterflows of
simulated pedestrians through a door display most of the stylized facts observed in financial
markets when the density around the door is compared with the logarithm of the price,
although the existence of long memory for absolute returns demands the additional inclusion
of decision-making capabilities.

We end this section describing our objectives in more detail. The project will be divided
in 2 parts. In the first one, we will study the stylized facts developing a code capable of
computing them from a real time series. We consider this to be essential in order to gain
some intuition on this financial time series (which seem to have very special properties), as
well as to check the results of the models under study. Additionally, it will allow us to learn
about the implementation of mathematical tools with wide range of applications.

The second part of the project focuses on the capabilities of the Ising model, in its simplest
version, to reproduce the stylized facts using well-known methodologies in the field of Statis-
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tical Physics but that, to the best of our knowledge, have not been completely exploited in
this context. Thus, and since we can benefit from a certain level of freedom in the dynamics
of the Ising model, we will try different algorithms with a time varying coupling following a
stochastic dynamics within a certain supercritical restricted range. Specifically, we will use 2
Ising dynamics: Metropolis dynamics [20], and Wolff dynamics [19] which is much more re-
cent and solves the bottleneck of critical slowing down. The main difference between both is
that the first one acts locally while the second does it globally (by flipping clusters of spins).
We especially hope for the Wolff dynamics to provide relevant results since it is reminiscent
of the stochastic model of Bouchaud and Cont. Finally, and to conclude the second part of
t he project, we will try to describe the behaviour of these dynamics by the use of a est of
stochastic equations dependent on only 2 variables.
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3 Stylized Facts

Modelling requires the existence of some previously known properties of the system under
study, which will be used to check its correctness. In physics, these ”testing” properties
could be energy conservation and linear momentum conservation among many others. On
the other hand, financial markets behaviour lacks of these governing laws as a consequence of
its randomness (or at least they are still unknown). From the study of its statistical properties
though, it is possible to determine the existence of some Stylized Facts, i.e., empirical (and
usually qualitative) findings that are consistent across a wide range of time periods, financial
markets and assets. In this section of the project, some of the most relevant stylized facts of
the function of returns of an asset will be defined and reproduced by using real data of the
EURUSD currency pair in the foreign exchange market (forex of FX), which is by far the
largest market in the world.

3.1 Returns and Log Returns

Before proceeding further, the quantities required to study financial time series have to be
introduced. Let S(t) be the time series of the price of an asset, that is, the function which
value in a certain time t0 is the price of the asset at that same time. Then, given a certain
time lag ∆t, the return function of the asset price at ∆t is defined as[2]:

r∆t(t) =
S(t+ ∆t)− S(t)

S(t)
. (5)

Furthermore, its log return function can be defined as well in the following way

log r∆t(t) = log S(t+ ∆t)− logS(t). (6)

Also, it is important to note that when the ratio S(t + ∆t)/S(t) is close to 1 (and thus the
difference between both values is close to 0), the Taylor expansion of the function log(x),
defining x as S(t+ ∆t)/S(t), is:

log r∆t(t) = log(x) ≈ log(1) + x− 1 = r∆t(t). (7)

Thus, when the variation of the time series of the asset price is small, it is possible to work
with both definitions of the returns indistinctly.

Why do we study returns and log returns instead of the price of the asset or the variation
of that price? That is due to the problem of price scales. In finance, the scales used are
often given in units (currencies) that are themselves fluctuating in time (due to inflation,
economic growth or recession and fluctuations in the global currency market)[1]. In this
regard, returns and specially log returns are less sensitive to scale changes, since the first are
relative variations and the second are in logarithmic scale (for which a factor of 10 variation
is transformed into a variation of 1).

Since asset price data is discrete, from now on we will work with discretized time series.
Multi-period returns, that will be used shortly, are returns calculated such that the temporal
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difference between the prices taken into consideration is larger than one discrete time step
(or ∆t), i.e.

rk+n,n(n) =
S(n+ k)− S(n)

S(n)
where k > 1. (8)

From this definition we can relate multi-period returns and returns in the following way:

rk+n,n(n) =
k∏
i=1

(1 + rn+i,n+i−1)− 1. (9)

For log returns the relation becomes a sum instead of a product:

log rk+n,n(n) =
k∑
i=1

log rn+i,n+i−1. (10)

Therefore, working with log returns instead of returns has some advantages (specially when
computing multi-period returns): lower computational time and increased numerical stability
(the product of small numbers might cause arithmetic overflow). What’s more, if single-
period log returns are normally distributed, multi-period returns will be Gaussian as well
(due to the central limit theorem). Also, they are even less sensitive to scale changes for
long time horizons.

3.2 Stylized facts

As previously stated, stylized facts are empirical findings recurrent throughout assets, markets
and time periods. In this part of the project real financial data will be used in order to
directly compute the stylized facts. Finding real data with intraday frequency for free and
without missing values is almost impossible. For this reason, the employed financial series,
that will be used to reproduce the desired stylized facts, might not be as reliable as the ones
on sale. It contains 86028 hourly values of the EURUSD currency (24 data points per day,
Monday to Friday from 3/01/2001 to 23/01/2015). In Figure 1, the employed time series is
shown.

The fluctuations of the currency are about 30% of its mean value. The time series of returns
(which will be the main focus of our study) is shown in Figure 2 Furthermore, in Figure
3 the absolute value of the difference between returns and log returns is represented. As
expected it is very small, below 1% of the value of the returns in the worst case scenario.

3.2.1 Heavy Tails of The PDF of Returns

The first stylized fact is related to the distribution of returns. The probability density
function (PDF) of returns exhibits fatter tails than a Gaussian distribution with the same
mean and variance, i.e, the probability density function far from its maximum value is larger
than for Gaussian data. There is no accepted consensus about the behaviour of these tails.
They are usually fit with a power-law (f(r) ∼ 1

|r|α ), with index values ranging from 4 to 5, but

exponentially truncated power laws have also been used [10] [11], among other possibilities.
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Figure 1: EURUSD-1HOUR time series from 3/01/2001 to
23/01/2015
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Figure 2: EURUSD-1HOUR time series of returns computed accord-
ing to (5)
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Figure 3: EURUSD-1HOUR difference between returns and log re-
turns.
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To compute the PDF, each value of the time series of returns is treated as an independent
random variable. In addition, all these random variables are assumed to be identically
distributed (iid random variables). From these assumptions, the probability Px of the random
variable Xi = r(i),∀i (since they are iid) to be between x-∆L/2 and x+∆L/2 is obtained by
dividing the number of values of the time series of returns that belong to that interval, by
the total number of data points in the time series (86028). ∆L is an arbitrary value defined
as:

∆L =
max(rn+1,n(n))−min(rn+1,n(n))

# intervals
. (11)

On the other hand, Px is by definition, the integral of the probability density function fXi(x)
over the interval [x−∆L/2, x+ ∆L/2] . Using both definitions the following expression is
reached:

∫ x+∆L/2

x−∆L/2

fXi(x)dx = Px. (12)

If the interval is sufficiently small, fXi(x) can be considered to be constant in that interval,
and thus,

fXi(x)dx =
Px
∆L

. (13)

Also, asset returns are not perfectly continuous variables, since there’s a resolution above
which the value of the asset cannot be known. Therefore, when computing the PDF, ∆L
must be much bigger than the resolution of the returns.

To allow comparison between assets, returns are normalized as

rN(n) =
r(n)− r̄(n)

σr
, (14)

where σr is the standard deviation of returns and r̄(n) is the mean value of returns.

In Figure 4 the PDF for EURUSD currency has been computed using (11) and (13). Heavy
tails with power-like behaviour of index |α| = 4.2 are observed.
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Figure 4: In red dots, EURUSD-1HOUR single-period normalized
returns PDF. In blue, the associated Gaussian distribution with the
same mean and variance. In purple and green crosses, the positive
and negative tails both with |α|=4.2

To compute the value of the exponent, first we have to define where does the tail start and
where does it end. For our data, the negative tail ranges from -3 to -10 and the positive
one from 3 to 12. Once the interval is established, we apply logarithms to the PDF. Since
f(r) ∼ 1

|r|α (if the tails follow a power-law indeed),

log f(r) = −α log(|r|) + C. (15)

Then, α is obtained from a linear regression. In this case, given the good accord, no further
study involving more complex functions is required. Also, note that both tails follow the
same power-law (thus implying symmetry in the PDF).

3.2.2 Autocorrelation of returns

The autocorrelation function of changes of the logarithm of price is a fast-decaying function
usually characterized by a correlation time much shorter than a trading day (usually a few
minutes). Accurate detection of the correlation time is possible by analysing high-frequency
(intraday) data.

With the assumption that the mean value of returns and its variance are independent of time
(since r(ti)∀ti are iid), obtaining the autocorrelation function of returns from the studied data
is reduced to:

E[(r(n+ k)− r̄(n+ k)) · (r(n)− r̄(n))]

σ(k + n) · σ(n)
=

nmax−k∑
n=0

(r(n+ k)− r̄) · (r(n)− r̄)
σ2 · (nmax − k + 1)

, (16)

where nmax is the biggest temporal value in our data and k ∈ [0, nmax] (and integer since the
r(n) under study is discrete in time).
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For example, for EURUSD-1HOUR data the correlation disappears before 1 hour (Figure 5,
red curve). This means that it is almost impossible to predict the new value of the asset time
series from the previous ones, in other words, at any given time it is equally probable that
the return will be positive or negative. Otherwise, it would be easy to get rich by buying
and selling financial assets.

3.2.3 Autocorrelation of absolute returns

A second relevant stylized fact is that the correlation of the absolute value of returns disap-
pears much later than the correlation of returns. This means that high variations of returns
are likely to be followed by periods with high variations as well (without taking into account
the sign of the variations, only its magnitude) and vice versa. This phenomenon is called
volatility clustering, where volatility would be measured by the absolute value of returns.

Using (16) with the absolute value of returns function (and its corresponding mean value and
variance) the absolute returns autocorrelation function is obtained as well. In Figure 5 the
autocorrelation function of returns and absolute returns for EURUSD currency is displayed.
As expected, absolute returns show a much longer correlation (up to 7000 hours, 9-10 months)
than returns (which disappear instantaneously in comparison).
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Figure 5: In blue EURUSD-1HOUR single-period absolute returns
autocorrelation function. In red, EURUSD-1HOUR single-period re-
turns autocorrelation function. Both functions are normalized and so
have a unit initial value (not shown).

Furthermore, by plotting both functions within a smaller range (Figure 6), some periodicity
is observed for the absolute returns autocorrelation function.
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Figure 6: In blue EURUSD-1HOUR single-period absolute returns
autocorrelation function. In red EURUSD-1HOUR single-period re-
turns autocorrelation function

To study the periodicity of the autocorrelation function, we have decided to compute the
spectrum of EURUSD-1HOUR data (which is the Fourier transform of the autocorrelation
function):

Ĉ(ω) =

∫ ∞
−∞

dtC(t) exp(−iwt) = 2

∫ ∞
0

dtC(t) cos(wt), (17)

where C(t) is the autocorrelation function (recall that it is symmetrical). This spectrum can
be computed by using the numerical Fourier transform method of Lado [12], in which

Ĉ((ν − 1/2)δω) = 2δt
n∑
τ=1

C((τ − 1/2)δt) · cos(
(τ − 1/2)(ν − 1/2)π

n− 1/2
), (18)

with n an arbitrary integer, tmax the largest time for which C(t) is known, δt=tmax/(n-1/2),
δω = π/tmax and ν being an integer. Since C((τ − 1/2)δt) is unknown, it will be extracted
from spline interpolation of the autocorrelation function [13].

Results are shown in Figure 7. Three peaks are clearly observed: w=0.265 rad/h (which
corresponds to 23.71 h periodicity), w=0.795 rad/h (7.9 h periodicity) and w=1.06 rad/h
(5.93 h periodicity). The existence of these periodicities was unexpected since there was no
reference about them in all the articles we had read, but we later found that such intra-day
periodicities have already been observed in other time series [14], although using different
methodologies, which do not seem to show that the 24 h periodicity is by far the strongest
one. It turns out that the 6-hour and 8-hour periodicity can be explained by the opening
and closing times of the three major markets in different time zones (London, New York and
Japan).
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3.2.4 Scaling of Peaks

The third stylized fact of financial time series is related to the peaks of the PDFs. The
peaks for the multi-compound returns (rk+n,n) PDFs as a exhibit a power-law behaviour as
a function of k.

Typically, the exponent α of the power-law falls in the environ of -0.70 [15]. For the
EURUSD-1HOUR data the value is α=-0.57. To compute α a linear regression has been
applied to the equation:

log(PDFr=0(k)) = α log(k) + C. (19)
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Figure 8: In blue crosses, logarithm of the PDF peak values as a
function of log k. In red, logarithm of the associated power-law with
α=-0.57.

16



3.2.5 Aggregational Gaussianity

The fourth stylized fact under study is the tendency of the PDF of multi-period returns,
rk+n,n, to converge to a Gaussian distribution when k increases. This property is shown in
Figure 9. It is important to note that since the amount of real data is rather small, the
resolution of the PDF is limited.
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Figure 9: In orange crosses, EURUSD-1HOUR single-period normal-
ized returns PDF. In yellow crosses, EURUSD-1HOUR multi-period
normalized returns PDF (k=80). In blue, the associated Gaussian
distribution with the same mean and variance.

The same evolution but without semi-logarithmic scale is plotted in Figure 10.
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Figure 10: In black, EURUSD-1HOUR single-period normalized re-
turns PDF. EURUSD-1HOUR multi-period normalized returns PDF
(red k=20, green k=100). In blue, the associated Gaussian distribu-
tion with the same mean and variance.
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3.2.6 Multifractality

A fractal is mathematical set (which models certain natural phenomena) that exhibits a
repeating pattern at every scale. If the replication is exactly the same at every scale, it is
called a self-similar pattern.

This behaviour is characterised by its fractal dimension, a ratio providing a statistical index
of complexity comparing how detail in a pattern (strictly speaking, a fractal pattern) changes
with the scale at which it is measured. That is, if the pattern is described by sticks of length
L, and we reduce the unitary length” of the stick by a factor of ε the number of sticks (N)
required to describe the pattern scales like N ∝ ε−D where D is the fractal dimension.

Figure 11 displays the first 4 iterations of the Koch Snowflake. Observe that for the second
one (the star), the sticks have length L’=L/3 where L is the length of a side of the triangle.
Note that by reducing the length of the stick the resolution of the pattern is higher, and
what was a triangle becomes a star. For this reason, what was a side of the triangle (of
length 3L’) now has length 4L’ due to the change in the pattern. Then

logεN = −D =
logN

log ε
=

log 4

log 1/3
= −1.2619 (20)

Figure 11: Koch snowflake.

A multifractal system is a generalization of a fractal system in which a single exponent (the
fractal dimension) is not enough to describe it; instead, a continuous spectrum of exponents
(singularity spectrum) is needed.

Multifractality of the time series of returns can be tested by examining the ratio
<|rk+n,n|q>
<|rk+n,n|>q

for multi-period returns calculated for different k. This ratio is constant for a simple fractal
but not for a multifractal [16]. In Figure 12 these ratios are shown for different values of q
(1.5, 2, 2.5 and 3). As expected, the ratios are not constant.
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4 The Ising Model And Financial Markets

Financial markets are complex systems in which the disordering forces of asymmetric/private
information and uncertainty are in competition with the ordering force of imitation/learning
of its agents [17]. Nowadays, there exist multiple models aiming to describe the behaviour
of these systems, but finding an equilibrium between complexity and fidelity is by no means
easy. In this regard, Agent Based models (in which rational agents interact under certain
imposed rules) seem to reproduce well enough the previously stated stylized facts, but the
impact of each parameter is hard to interpret due to the large quantity of parameters used
in these models.

The Ising model on the other hand, is a rather simple physically originated model where
an order-disorder equilibrium exists. Originally, this model was used in statistical mechanics
to describe ferromagnetism, but nowadays it is used in a wide range of social and physical
problems. The Ising model consists of a large number of spins interacting within a lattice.
Each spin can only take the value +1 or -1 (depending on the direction in which it points)
and is only allowed to interact with its nearest neighbours, tending to align with them (see
Figure 13).

Therefore, it combines the effect of temperature (disordering force) and the tendency of a
physical system to reach its most stable (lowest energy) state, which for the ferromagnetic
Ising model coincides with the state in which all spins are aligned (ordering force). Thus,
it is a strong candidate to model financial markets. The Hamiltonian of the system is the
following:

Hising = −J
∑
n.n.

σiσj, (21)

where n.n. stands for nearest neighbours and J>0 (since we want to favour imitation between
spins and not the other way around) and σi is the value of the ith spin of the lattice.

Figure 13: Graphical representation of the 2D-Ising lattice. An spin
from the lattice (red spin) can only interact with the ones that are
closer to him (black spins). In 2D the number of nearest neighbours
is 4.

In this section of the project, the dynamic Ising model will be used to try to reproduce the
previously studied stylized facts of financial time series by allowing the coupling (J/KBT ) to
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follow a random motion. It is important to note that the Ising model does not have any
specific dynamics, only an established behaviour at equilibrium. For this reason, there exist
multiple possibilities to model its dynamical behaviour. We will particularly focus on the
Wolff dynamics, which has never been used in financial markets studies.

It only rests to explain how the dynamics of the Ising model can be related to price dynamics.
Consider N traders (N sites) in a social network whose links represent the communication
channels between the traders (in the Ising model only nearest neighbours are linked). The
traders buy or sell at price p(t) (t is assumed to be discrete). Each agent can either buy
(spin up, σi=+1) or sell (spin down,σi= -1) one unit of the asset. Then, asset returns are
assumed to be determined by [17],

r∆t(t) =
λ

N
·
N∑
i=1

σi, (22)

where λ will be used to normalize its value. Returns are thus proportional to the magneti-
zation or aggregated decisions of the agents. Regarding the decision of an agent to buy or
sell, there exist multiple and arbitrary ways of defining the condition to be satisfied. In this
project we will make no attempt to justify the choices taken in terms of utility functions,
etc. Instead we will focus on several dynamical algorithms well-known to the physics com-
munity and investigate to which extent they are able to mimick the stylized facts we have
just discussed.

4.1 Metropolis Algorithm

The first dynamics under study is Metropolis Dynamics. In the Metropolis algorithm spins
are selected one at a time in random order. Then, the selected spin is flipped with a
probability that depends on the variation of the energy of the system. The Metropolis
algorithm is a Markov process governed by the following Master Equation,

∂p({σi}, t)
∂t

=
∑
i 6=j

{p({σ′i})Wi′i − p({σi}, t)Wii′}, (23)

where Wii′ is the probability of transitioning from state {σi} to state {σ′i}, and P ({σi}, t)
the is the probability for the system to be at state i at time t. Starting from any initial
condition, in order for p({σi}, t→∞) to be equal to the Boltzmann weight of {σi},

P ({σi}) =
e−βH({σi})

Z
, (24)

it is sufficient that the algorithm satisfies the following conditions [21]

W ({σi} −→ {σ′i}) ≥ 0 ∀{σi}, {σ′i}, (25)

P ({σi})W ({σi} −→ {σ′i}) = P ({σ′i})W ({σ′i} −→ {σi}). (26)

Property (25) is necessary in order to ensure that all possible configurations are reachable
from any initial condition. Property (26) is called detailed balance and implies that at
equilibrium, each elementary process should be equilibrated by its reverse process.
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In the Metropolis algorithm W represents the probability of flipping the previously selected
spin and is defined in the following way

W ({σi} −→ {σ′i}) = min{1, e−β∆E}, (27)

where ∆E = E{σ′i}−E{σi}. From this definition (25) is directly accomplished. The verification
of the detailed balance condition is straightforward: if E{σ′i} ≤ E{σi}, we get

e−βE{σi}

Z
=
e
−βE{σ′

i
}

Z
· e−β(E{σi}−E{σ′i}

)
. (28)

If E{σi} ≤ E{σ′i}, then the left hand side and the right hand side of (28) are just swapped.
Finally, if both energies are equal, detailed balance is also accomplished since it is reduced
to

e−βE{σi}

Z
=
e
−βE{σ′

i
}

Z
. (29)

Once the ability of this type of dynamics to achieve equilibrium has been demonstrated,
we would like to highlight a few relevant points in what concerns the modelization of time
series. First, to decide whether a proposed update should be accepted or not, one draws
a uniformly distributed random number r ∈[0,1), and if W≤r, the new state is accepted.
Otherwise the previous configuration is maintained. Secondly, the concept of time in the
Metropolis algorithm is unclear, but at the same time, it is crucial in order to generate the
asset returns time series. In this project, each value of the time series is taken every N
iterations (being N the number of sites in the lattice), as in [22]. Finally, although spins are
chosen randomly, sequential order picking is permissible as well [23]. In the following sections
the Metropolis Algorithm, with some modifications, will be used to try to reproduce stylized
facts of asset time series.

4.1.1 Fixed T

We will first compute the returns by applying (22) to the magnetization of an 60x60 Ising
lattice, with J/KB=1 and maintaining the Temperature constant and at equilibrium. This
will serve the double purpose of re-obtaining the well-known equilibrium properties, and of
showing that it is not trivial to reproduce financial stylized facts.

It is well known that for a ferromagnetic Ising system, there exists a phase transition between
an ordered and a disordered phase for a certain value of T (called critical temperature). That
is, 〈M〉/Ntransitions from being 0 to 1 (without the existence of a magnetic field). This
transition happens when KBTC/J=2/log(1+

√
2)≈2.2692. In Figure 14 the transition is clearly

reproduced, with deviations due to the finite size of the lattice.
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Figure 14: Absolute value of mean magnetization as a function of
KBTC/J.

.

Since financial series have mean value 0 or close to it (except for financial crises), only T
greater than 2.2692 can be used (supercritical regime). The closer we work to the critical
temperature the bigger the displacement from mean equal to 0.

Results for T=2.5, and 3.5 are presented below. Both time series contain 100000 values, and
the Ising system is in equilibrium. The normalization parameter (λ in (22)) is different for
each time series. It has been chosen in such a way that the range of its price evolution is
close to the EURUSD-1HOUR. For T=2.5 λ=100 and for T=3.5 λ=10.
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Figure 15: Top, returns for T=2.5. Bottom, returns for T=3.5.
Note that for T=2.5 returns evolve more slowly than for T=3.5
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Figure 16: Top, price for T=2.5. Bottom, price for T=3.5.

In Figures 15 and 16 the time series of returns and prices are shown. It is clear that there
are no ”bursts” of volatility (present in Figure 2)) and thus fat tails are not likely to be
found.

This is confirmed in Figure 17. Also, it is relevant that multi-period returns maintain its
Gaussianity, with some deviation in the tails, Figure 18.

Furthermore, both time series show the same behaviour for the autocorrelation of absolute
returns than for the returns (Figure 19). There is a slight difference though, for T=2.5 both
autocorrelations disappear more slowly than for T=3.5. This means that the closer we are
to the critical temperature the slower the magnetization (returns) evolves. This corresponds
to the well-known critical slowing down phenomenon for the Ising Metropolis algorithm.
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Figure 17: In red crosses, PDF of normalized returns for T=2.5.
In black crosses, PDF of normalized returns for T=3.5. In blue, the
associated Gaussian with the same mean and variance.

.
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Figure 18: In red crosses, PDF of normalized multi-period returns
for T=2.5. In black crosses, PDF of normalized multi-period returns
for T=3.5. In blue, the associated Gaussian with the same mean and
variance.
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Figure 19: Top, T=2.5. In blue, autocorrelation of returns. In red,
autocorrelation of absolute returns. Bottom, same for T=3.5.

.

The scaling property of peaks of the PDF is tested at Figure 20. For T=2.5 a power-law
behaviour is indeed observed but with an exponent equal to -1.1. For T=3.5 linear regression
yields an exponent of value -0.68 but the lower the value of k, the bigger is the difference
between the power-law and the real function of the scaling.

25



k
100 101 102

P
D

F
(r

=
0
)

100

101

102

103

Figure 20: In blue, evolution of peaks for T=3.5. In orange, evolu-
tion of peaks for T=2.5. Note that the slope of the orange curve for
low k differs from the one observed for large k.
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Finally, in Figure 21 multifractality is tested. For T=3.5 the ratios increase instead of
decreasing. For T=2.5 ratios also remain constant (no multifractality).
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Figure 21: Ratio
<|rk+n,n|q>
<|rk+n,n|>q

as a function of k, for different values

of q: 1.5 (blue), 2 (orange), 2.5 (yellow), 3 (purple). Top T=2.5.
Bottom T=3.5.

.

To sum up, for constant temperature the obtained time series does not reproduce any of the
stylized facts of financial time series either for T close to the critical temperature or far from
it. Since our goal is to remain as close to the Ising model as possible, our next step will be
to simply allow for a drift of temperature along the temporal evolution, without introducing
the more usual external noise, external fields or higher order interactions.
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4.1.2 Ornstein–Uhlenbeck process

In the previous section the temperature (kBT/J to be precise) was modelled as a constant
value. Since this parameter, which is the only one present in our approach, is to encapsulate
complex interactions between brokers, together with the effect of external news, etc. it seems
more reasonable to model it as a stochastic process.

One of the most commonly used models for stochastic dynamics is the Ornstein-Uhlenbeck
(OU) process [24]. In this model, the evolution of the temperature would follow the Langevin
equation:

Ṫ = −1

τ
(T − T0) + T̂ , (30)

where T0 would represent the temperature of the model in absence of external perturbations,
τ the relaxation time of the system (how hard it is for the financial market to return to
equilibrium after a perturbation is applied to it) and T̂ would be the random component in
the evolution of the system.

Also, it is important to note that these kind of processes yield an exponential decay of the
autocorrelation function

〈T (t)T (0)〉 = 〈T (0)2〉e−
t
τ . (31)

Furthermore, OU processes are also called mean-reverse processes because of their null aver-
age. The algorithm used to simulate the OU process is found in [25] and it is based on the
numerical solution of the Langevin equation

T (t+ δt) = e
−δt
τ (T − T0) + δTG + T0, (32)

where δTG is sampled from a bivariate Gaussian distribution defined by

ρ(x, δTG) =
1

2πσxσT (1− c2
xT )1/2

· exp (− 1

2(1− c2
xT )

((
x

σx
)2 + (

δTG

σT
)2 − 2cxT

x

σx

δTG

σT
), (33)

with zero means and variances given by

σ2
x = δt

γ

τ
(2− δt

τ
(3− 4e

δt
τ + e

−2δt
τ )) (34)

σ2
T = γ(1− e

−2δt
τ ), (35)

with a correlation coefficient cxT determined by

cxT =
γ

τσTσx
(1− e

δt
τ )2. (36)

Thus, the algorithm for the OU process depends on 2 parameters, γ and τ .

To generate δTG from uniformly distributed random numbers in [0,1) we proceed as follows:

a) Generate uniform random variates in [0,1), a1 and a2.

b) Calculate g1=(−2 ln(a1))1/2 cos(2πa2) and g2=(−2 ln(a1))1/2 sin(2πa2).

c) δTG = σT (cxTg1+(1-c2
xT )1/2g2).
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After testing for multiple sets of parameters, we show several instances of a OU process in
order to gain some insight on their temporal behaviour, and of its impact on the return.

For the sake of simplicity, we only study γ = 0.25 and τ = 1000, γ = 0.25 and τ = 100,
γ = 0.40 and τ = 1000. Each time series consists of 1x106 values (time steps) and δT is
defined as 1. Also, the evolution of the temperature is restricted to the interval [2.4,4.4] with
T0=3.4. We will later see that these restrictions are crucial.

In Figures 22, 23 and 24 the temporal evolution of the temperature, returns and price (for
the first 10000 time steps) is shown for each set of parameters. The normalization factor of
returns is 100 for all cases.
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Figure 22: Temporal evolution of temperature. Top, γ = 0.25 and
τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000. Note that for smaller γ and bigger τ the evolution of T is
more smooth.

.

Note that periods with high volatility occur when the Temperature is close to the critical
value. That is to be expected since the closer T is to TC the higher |〈M〉| is, and thus, the
bigger the absolute value of returns is.

Also, note that as τ increases and γ decreases, periods of high volatility increase its duration
since the system stays close to TC (T≈2.4) longer once reached, what will result in longer
correlation of absolute returns.
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Figure 23: Temporal evolution of returns. Top, γ = 0.25 and τ =
100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and τ = 1000.
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Figure 24: Temporal evolution of price. Top, γ = 0.25 and τ = 100.
Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and τ = 1000.

.

In Figure 25 the PDFs of normalized returns are shown. For bigger γ tails are slightly
heavier (black crosses), while variations on τ seem to have a lesser impact on them. This is
due to slight variations in each simulation, but no general rule can be extract from it.

Within the range [-6,-2] and [2,6] the tails follow a power-law behaviour of exponent |α|=4.23
as in EURUSD-1HOUR (light blue crosses). Note that when |rN | > 6 tails lose their power-
law behaviour and start being exponentially truncated. It is encouraging to see that with
just a slight change in the model we are able to reproduce at least 1 stylized fact.
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Figure 25: PDF of normalized returns. In blue crosses, γ = 0.25
and τ = 100. In red crosses, γ = 0.25 and τ = 1000. In black crosses,
γ = 0.40 and τ = 1000. In light blue crosses, tails with |α|=4.23. In
dark blue, the associated Gaussian distribution.

.

The effect of the range within which the temperature evolves is shown in Figure 26. In this
case, the interval is [3.4,5.4] and T0=4.4. The range of variation of |〈M〉| for this range
of temperature is smaller than for [2.4,4.4]. For this reason, shorter and lighter tails are
expected, which is indeed what happens.
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Figure 26: PDF of normalized returns. In orange, γ = 0.25 and
τ = 1000. In blue, the associated Gaussian distribution.

.

In Figure 27 the autocorrelation functions of returns are plotted. It seems that the bigger γ
is the longer the correlation of returns lasts.
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Figure 27: Autocorrelation of returns. In blue, γ = 0.25 and τ =
100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and τ = 1000.

.

Not only that, in Figure 28 it can be seen that a larger γ causes the correlation of absolute
returns to disappear more rapidly. Taking that into account, small values of γ are preferable
in order to mimick financial time series (but it has to be big enough to allow T variations
that reach T≈2.4). Also, and as we predicted when analysing the evolution of returns, larger
τ results in a larger correlation of absolute returns (larger duration of volatility periods).
More importantly though, the model is able to reproduce another stylized fact! It is clear
that the correlation of absolute returns disappears much later than the correlation of returns
(note the difference in the time scale for both autocorrelation functions).
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Figure 28: Autocorrelation of absolute returns. In blue, γ = 0.25
and τ = 100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and
τ = 1000. Note that the horizontal scale is much larger than for the
autocorrelation of returns.

.

The scaling property of peaks is also reproduced by this model. In Figure 29 this property
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is shown for all sets of parameters. There does not seem to exist a clear dependence on the
parameters since all functions remain approximately the same. The exponent value of the
scaling is approximately -0.70 (-0.703 for black data, -0.707 for orange data and -0.714 for
blue data) which is perfectly reasonable for a financial time series.
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Figure 29: log(PDF(r=0)) as a function of log(k). In blue, γ = 0.25
and τ = 100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and
τ = 1000. In yellow, straight line of slope -0.7.

Now we turn to test aggregational Gaussianity. In Figure 30 the PDF of multi-compound
returns of k=100 (red crosses) is compared to the PDF of simple returns (for each set of
parameters). Not only it is not Gaussian but its tails are heavier than the tails of simple
returns. Aggregational Gaussianity is not accomplished by any set of parameters tested.
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Figure 30: In blue crosses, PDF of normalized simple returns. In
red crosses, PDF of normalized multi-compound returns of k=100. In
dark blue, the associated Gaussian distribution. Top, γ = 0.25 and
τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000.
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Finally, in Figure 31 multifractality is tested. It is clear that the ratios increase instead of
decreasing. Multifractality is not reproduced for any of these sets of parameters.
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Figure 31: Ratio
<|rk+n,n|q>
<|rk+n,n|>q

as a function of k, for different values

of q: 1.5 (blue), 2 (orange), 2.5 (yellow), 3 (purple). Top, γ = 0.25
and τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000.

To sum up, Metropolis dynamics combined with the OU algorithm for T represents a sub-
stantial progress to the results provided by the constant temperature model. However, there
is still room for improvement.

4.2 Wolff Algorithm

In the physics context when the Ising model is studied for large networks, the Metropolis
algorithm close to their critical points suffers from severe critical slowing down problems.
This is due to its single-site updating procedure which tends to diffuse very slowly through
the configuration space of the model [26].

Cluster algorithms are very recent in comparison to the Metropolis algorithm. They are
characterized by the updating of whole sets of sites, or clusters, at a time, and in doing this
they solve the problem of critical slowing down. Basically, they reduce the correlation of
the magnetization function close to the critical temperature, what in the context of financial
time series would solve the problem that for the OU Metropolis algorithm the correlation of
returns was too long (about 500 time steps).

In this section we will describe the Wolff algorithm [19] and show that it satisfies conditions
(25) and (26). Afterwards, we will use it with the OU algorithm to try to reproduce the
remaining stylized facts [27].

The basic idea of the algorithm will be to first built a cluster of sites according to certain
rules, and then to flip the whole cluster. The cluster will be built by the “activation” of some
of the links between two neighbouring sites, and requires that we classify the links according
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to whether they connect two sites (i and j) where the spins have the same orientation (l+),
or opposite orientations (l−).

Taking that into account, the Wolff algorithm is given by the following sequence of steps:

1. Choose (randomly) a single site of the lattice as starting point to build the cluster.

2. Consider all the links connected to that initial site; the l− links won’t be activated;
activate the l+ links with probability p+ = 1 − exp(−2Jσiσj/kBT ), possibly forming a first
cluster of sites.

3. Given the set of sites added to the cluster in the previous update (which is not the
whole cluster), consider all the links that connect those sites to sites that are still outside
the cluster; among these, activate the l+ links with probability p+, thus enlarging (updating)
the cluster.

4. Loop back to step 3 until it does not add new sites to the cluster.

5. Flip the cluster with probability equal to 1.

During the cluster construction we keep a list of cluster sites, but also a list containing
candidate sites that can still make it grow. Furthermore, note that during construction, a
certain site may be approached by the growing cluster from two or more different directions,
along different links. If that site does not get linked to the cluster on the first trial, it might
still get linked at a later time. The algorithm implies that the same link is never tried more
than once for activation, but a single site may be tried more than once if it has more than
one link able to be activated.

Regarding the way the algorithm works, it is easy to see that condition (25) is fulfilled,
since there exists a probability different of zero for the cluster to be formed (and flipped
with p=1> 0). This means that the algorithm is able to diffuse through the whole space of
possible configurations of the field, without leaving out any points or regions within it. Note
that no statement is made here about how fast it is able to diffuse.

Let us now show that this algorithm satisfies the condition of detailed balance [27]. In order
to do this, given a certain cluster, we must calculate the probability that it will be built
(since the probability of flipping it is 1). We will denote the cluster by C and the boundary
of the cluster, that is, the set of links that connect the cluster with sites outside the cluster,
by ∂C. Therefore, we have

W ({σi} −→ {σ′i}) = P (C). (37)

Now, the probability that a given cluster will be built is the product of the probabilities that
each one of its internal links will be activated, times the product of the probabilities that each
one of the links of its borders will not be activated and also multiplied by the probability of
starting the cluster at site i. Recall that all the internal links are l+ links (connect spins with
same orientation), so the probability that they will be activated is given by p+. Therefore,
its probability is equal to

∏
l+∈C p+ since each link activation is independent from others.

The calculation of the probability of stopping the cluster at ∂C is a bit more difficult since
there can be both types of links. If the link is l− then it will become a boundary link with
probability=1. On the other hand, if the link is l+ then it will become a boundary link with
probability=1-p+. Since again all links are independent from each other we have that the
probability of creating the boundary is equal to

∏
l+∈∂C(1− p+)

∏
l−∈∂C 1.
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If we consider all terms together, and being pi the probability of choosing site i (which is
1/N) we obtain:

P (C) = pi
∏
l+∈C

p+

∏
l+∈∂C

(1− p+). (38)

Now, let C’ be the cluster that goes from {σi} to {σ′i}.

P (C ′) = pi
∏
l+∈C′

p+

∏
l+∈∂C′

(1− p+) = pi
∏
l+∈C

p+

∏
l+∈∂C′

exp(
−2Jσiσj
KBT

). (39)

It has the same internal links, but the links on the boundary that were l+ now are l− and
vice versa, which also means that the product σiσj changes its sign. For this reason,∏

l+∈∂C′
exp(
−Jσiσj
KBT

) =
∏
l−∈∂C

exp(
Jσiσj
KBT

), (40)

∏
l+∈∂C

exp(
−Jσiσj
KBT

) =
∏

l−∈∂C′
exp(

Jσiσj
KBT

). (41)

Finally,

W ({σ′i} −→ {σi})
W ({σi} −→ {σ′i})

=

∏
l+∈∂C′ exp(

−2Jσiσj
KBT

)∏
l+∈∂C′ exp(

−2Jσiσj
KBT

)
=

∏
l+∈∂C′ exp(

−Jσiσj
KBT

)
∏

l+∈∂C exp(
−Jσiσj
KBT

)∏
l+∈∂C exp(

−Jσiσj
KBT

)
∏

l+∈∂C exp(
−Jσiσj
KBT

)
=∏

l+∈∂C′ exp(
−Jσiσj
KBT

)
∏

l−∈∂C exp(
Jσiσj
KBT

)∏
l−∈∂C′ exp(

Jσiσj
KBT

)
∏

l+∈∂C exp(
−Jσiσj
KBT

)
=

exp(
∑

l+,l−∈∂C
Jσiσj
KBT

)

exp(
∑

l+,l−∈∂C′
Jσiσj
KBT

)
, (42)

and, since all the links inside both clusters are the same, the difference in energy of both
configurations is directly the difference in energy in the boundary. Thus

W ({σ′i} −→ {σi})
W ({σi} −→ {σ′i})

= exp(−β(EC − EC′)) (43)

which corresponds to the ratio of Boltzmann weights. Detailed balanced is thus demonstrated.

Now we are going to apply it combined with the OU process as we did for the Metropolis
algorithm.

4.2.1 Ornstein–Uhlenbeck process

As we did for the OU Metropolis algorithm the variable kBT/J will follow an Ornstein-
Uhlenbeck process. Since for the Wolff algorithm the number of spins of the cluster is
likely to vary from one iteration of the algorithm to another, the number of iterations that
correspond to a time step again corresponds to δt=1 for the OU algorithm and will be
defined as the number of iterations required for the sum of the average number of sites of
the clusters (computed at equilibrium) to be equal to N. To do so, the average number
of sites per cluster for each value of T (with an 0.01 precision) is previously computed at
equilibrium. Then, when T=Ti, we search for the closer T with a tabulated value for the
average size of the cluster, and compute round(N/< cluster size >) Wolff iterations.
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For the Metropolis iteration the evolution of the Temperature was shown for the first 10k
iterations. Since for this model the range of evolution of T and the parameters of the OU
process will be the same, the same properties of the evolution of T are to be expected. For
this reason, in Figure 32 the whole evolution of T is shown. When representing the whole
evolution, it is even more clear that for lower τ the system changes much faster.
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Figure 32: Temperature evolution. Top, γ = 0.25 and τ = 100.
Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and τ = 1000.

The returns time series, as happened for the OU Metropolis algorithm, shows a larger
correlation (duration) of periods with high volatility as τ increases, Figure 33. It is interesting
at this point to compare with the real series of returns for EURUSD and notice the substantial
similarities.
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Figure 33: Returns time series. Top, γ = 0.25 and τ = 100. Middle,
γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and τ = 1000.

Before studying the autocorrelation of the returns and absolute returns, it is important to
make sure that fat tails are also reproduced. In Figure 34, the PDF of normalized returns is
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represented. Heavy tails of exponent |α|=4.28 are observed, without a clear dependence on
the τ and γ. We recall that a value of 4.2 is found for EURUSD-1HOUR.
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Figure 34: PDF of normalized returns. In blue crosses, γ = 0.25
and τ = 100. In red crosses, γ = 0.25 and τ = 1000. In black crosses,
γ = 0.40 and τ = 1000. In green crosses, tails with |α|=4.35. In dark
blue, the associated Gaussian distribution.

As previously stated, the Wolff algorithm has a lesser correlation between the magnetization
time series than the Metropolis algorithm, for the same number of updated spins. That is
the reason we chose this algorithm, since it should solve the excessively large correlation of
returns for the Metropolis algorithm. In Figure 35 the autocorrelation of returns is plotted,
and as for EURUSD-1HOUR data, it disappears very fast, after the first time step is almost
non existent, for all sets of parameters.
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Figure 35: Autocorrelation of returns. In blue, γ = 0.25 and τ =
100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and τ = 1000.

We have solved one of our problems, but does the large autocorrelation of absolute returns
remain? From the time series of returns it seems that it does. In Figure 36 this fact is
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confirmed. Again for larger τ and smaller γ the correlation is longer. Thus, we can safely
assume that the autocorrelation of returns strongly depends on the dynamics of the Ising
model while the autocorrelation of absolute returns strongly depends on the evolution of
temperature.
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Figure 36: Autocorrelation of absolute returns. In blue, γ = 0.25
and τ = 100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and
τ = 1000.

Regarding the scaling property of the peaks of the PDF of multi-compound returns, in Figure
37 it is clear that it follows a power-law behaviour of value -0.50, which is close to the value
observed for EURUSD-1HOUR data (-0.57).
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Figure 37: log(PDF(r=0)) as a function of log(k). In blue, γ = 0.25
and τ = 100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and
τ = 1000. In dark blue, straight line of slope -0.50.

Finally, multifractality and aggregational Gaussianity are tested (Figures 38 and 39). Al-
though none of them is properly reproduced by this model, there are slight improvements

38



in relation to the OU Metropolis algorithm. First, the tails of the PDF of normalized
multi-compound returns do not become heavier, but remain the same. Regarding multifrac-

tality, although the ratio
<|rk+n,n|q>
<|rk+n,n|>q

does not decrease, it does not increase either (it remains

constant).
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Figure 38: In blue crosses, PDF of normalized simple returns. In
red crosses, PDF of normalized multi-compound returns of k=100. In
dark blue, the associated Gaussian distribution. Top, γ = 0.25 and
τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000.
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Figure 39: Ratio
<|rk+n,n|q>
<|rk+n,n|>q

as a function of k, for different values

of q: 1.5 (blue), 2 (orange), 2.5 (yellow), 3 (purple). Top, γ = 0.25
and τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000.

Thus, this model (OU Wolff(N sites)) mimicks 4 of the stylized facts of time series of returns.
Unfortunately, up until this moment, neither aggregational Gaussianity nor multifractality
have been reproduced by any model.
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4.2.2 Variable Number of Agents for time step.

We saw in the previous section that the Wolff algorithm reproduces the same stylized facts
(with some improvements specially for the autocorrelation function) as the Metropolis algo-
rithm when the time step is defined such that N sites have renovated its decision of selling
or buying. This might not be an accurate definition of the time step since it implies that
during a time step the same number of traders decide once again whether to buy or sell. In
this section of the project, each value of the time series of returns is taken after 1 cluster
is flipped. Thus, the number of sites that take a decision vary every step, what would
correspond, in a financial scenario, to some traders not participating.

Again, results for the following 3 sets of parameters are shown: γ = 0.25 and τ = 1000,
γ = 0.25 and τ = 100, γ = 0.40 and τ = 1000. Each time series consists of 1x106 values
(time steps). T changes every time step following the OU algorithm and thus, δT is defined
as 1. Also, the evolution of temperature is restricted to the interval [2.4,4.4] with T0=3.4.

As we have done for the previous models, the time series of returns (not T since it evolves in
the same way that for the other models) will be plotted first in order to have a qualitative
understanding of some of its properties (Figure 40).
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Figure 40: Temporal evolution of returns. Top, γ = 0.25 and τ =
100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and τ = 1000.

Once again, periods with high volatility are less frequent but last longer when τ increases.
Thus, larger correlation of absolute returns is expected. The influence of γ on the longevity
of these periods is not clear from the time series of returns.

In Figure 41, the PDF of returns is plotted. Heavy tails of exponent |α|=4.35 between the
ranges [-6,2] and [2,6] are observed. Note that when |rN | > 6 the tails lose their power-law
behaviour and show signs that they might be better modelled with exponentially truncated
power laws.
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Figure 41: PDF of normalized returns. In blue crosses, γ = 0.25
and τ = 100. In red crosses, γ = 0.25 and τ = 1000. In black crosses,
γ = 0.40 and τ = 1000. In green crosses, tails with |α|=4.35. In dark
blue, the associated Gaussian distribution.

The next stylized fact under study is the autocorrelation of returns and absolute returns. In
Figure 42 the autocorrelation function of returns is shown. A slightly larger correlation of
returns in relation to the OU Wolff(N sites)/Metropolis models is observed. That is to be
expected since now each value of the time series is separated by less than N iterations of the
Metropolis algorithm.
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Figure 42: Autocorrelation of returns. In blue, γ = 0.25 and τ =
100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and τ = 1000.

In Figure 43 the autocorrelation of absolute returns is shown. Again, as τ increases and γ
decreases, a longer correlation is observed, but it disappears slightly more rapidly than for
OU Metropolis. Therefore, for the same set of parameters, the stylized facts regarding the
autocorrelation of returns and absolute returns are deteriorated for this model.
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Figure 43: Autocorrelation of absolute returns. In blue, γ = 0.25
and τ = 100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and
τ = 1000.

This is not a huge problem since we will see that the other stylized facts are weakly dependent
on both parameters (except for multifractality), and thus, both parameters can be modified
in order to achieve a higher relation between the longevity of both autocorrelations (Figure
44), which can be compared with Figure 5 for real EURUSD data.
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Figure 44: γ = 0.25 and τ = 10000. In blue, autocorrelation of
returns. In red, autocorrelation of absolute returns.

In Figure 45 the scaling property of peaks is proven although the exponent of the power-law
is a bit bigger (-0.95). Also, no dependence on the parameters τ and γ is observed.

So far, the model has been able to reproduce the same stylized facts reproduced by OU
Wolff(N sites)/Metropolis. Only the aggregational Gaussianity and multifractality properties
have been untested.
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Figure 45: log(PDF(r=0)) as a function of log(k). In blue, γ = 0.25
and τ = 100. In red, γ = 0.25 and τ = 1000. In black, γ = 0.40 and
τ = 1000. In dark blue, straight line of slope -0.95.

In Figure 46 the PDF of normalized multi-compound returns of k=100 is compared to the
PDF of normalized simple returns. The tails are shorter and closer to the Gaussian PDF for
normalized multi-compound returns, aggregational Gaussianity is achieved by this model.
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Figure 46: In blue crosses, PDF of normalized simple returns. In
red crosses, PDF of normalized multi-compound returns of k=100. In
dark blue, the associated Gaussian distribution. Top, γ = 0.25 and
τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000.

For further checking, in Figure 47 the PDF of normalized multi-compound returns (for k=20
and 100) is compared to the normalized simple returns for γ = 0.25 and τ = 1000 , in a
normal plot (not semi-logarithmic). It is clearly observed that in addition to having thinner
tails, as k increases the curvature of the PDF becomes more Gaussian, and furthermore, the
peak comes closer to the Gaussian peak. This can be compared with Figure 10 for EURUSD
data.
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of normalized multi-compound returns of k=20. In dark blue, the
associated Gaussian distribution.

Finally, multifractality is tested in Figure 48. Although the exact value of the ratios differs
from the observed for EURUSD-1HOUR data, its decreasing evolution corresponds to the
one observed in real returns time series. Recall that all ratios slightly increase when τ and
γ increase.
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Figure 48: Ratio
<|rk+n,n|q>
<|rk+n,n|>q

as a function of k, for different values

of q: 1.5 (blue), 2 (orange), 2.5 (yellow), 3 (purple). Top, γ = 0.25
and τ = 100. Middle, γ = 0.25 and τ = 1000. Bottom, γ = 0.40 and
τ = 1000.

To conclude, this model is able to better mimick financial markets behaviour. Its only
shortcomings are related to slight quantitative misadjustments for multifractality and scaling
of peaks.
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4.3 Subordinated Stochastic Process

From what we have seen, all Ising Dynamics with the Ornstein-Uhlenbeck process for T
yield similar results (specially for the tails of the PDF, peaks and autocorrelation function of
returns and absolute returns). This observed ”universality” makes us think that mean field
Ising theory may be useful [28]. For this theory, the free energy in presence of an external
field is

A =
JqN

2
m2 − kBTN log(2 cosh(βHeff )), Heff = H + Jqm, (44)

where q is the number of nearest neighbours for each site, and m = 〈σi〉. From Thermody-
namics, we have an implicit equation for the mean magnetization

M = −∂A
∂H
|T= N tanh((H + Jqm)β), (45)

which for H = 0 reduces to

m = M/N = tanh(
Jqm

kBT
). (46)

A standard analysis of its solutions shows that there exists a critical temperature (TC =
Jq/kB), below which the system displays spontaneous magnetization.

Furthermore, the magnetic susceptibility for a spin is computed as

χσi = −∂m
∂H
|T=

sech(β(H + Jqm))2

kBT − Jq sech(β(H + Jqm))2
. (47)

If T>TC the mean value of the magnetization per site, 〈m〉, equals 0. Furthermore, in the
limit H → 0,

χ = Nχσi =
N

(T − TC)kB
. (48)

On the other hand it is known generally

χ =
〈M2〉 − 〈M〉2

kBT
=
〈M2〉
kBT

. (49)

Equations 48 and 49 taken together show that, for T> TC ,

χ =
〈M2〉
kBT

=
N

(T − TC)kB
, (50)

which provides an interesting expression for 〈M2〉

〈M2〉 =
TN

T − TC
. (51)

From it, it is clear that 〈M2〉 diverges when T is close to TC in the thermodynamic limit
(N → ∞). For finite N though, it is obvious that 〈M2〉 ≤ N2. To sum up, 〈m〉 = 0 and
〈m2〉 = T

N(T−TC)
. For the model we are developing, this divergence in 〈m2〉 will be taken into

account with TC=0.
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Furthermore, we saw that for a given T and at equilibrium, the PDF of the magnetization of
the Ising system follows a Gaussian PDF. If we assume this behaviour to be true for every
Ising-based model, we reach the following PDF for magnetization when T is fixed:

f(m|T ) ∼ exp(−|T |m
2

2
) (52)

Is it justified to assume a Gaussian behaviour for the PDF? Let us consider the expansion
of the free energy close to T=TC ,

A/N = kBTC{−
T

TC
log(2) +

1

2
(1− TC

T
)m2 +

1

2
(
TC
T

)3m4}. (53)

Considering T/TC=1, and eliminating the term with no dependence on m,

A/N = kBTC{
1

2
(
T − TC
T

)m2 +
1

2
m4}. (54)

Finally, discarding the term m4 and applying Thermodynamic Fluctuation theory,

f(m|T ) ∼ exp(−βA) ∼ exp(−N(T − TC)

2T
m2), (55)

which actually justifies to assume

P (m|T ) ∼ exp(−|α| |T |m
2

2
), (56)

and if we include the parameter |α| into T, we reach (52).

Now that we have the conditional probability for m, it is possible to obtain its PDF averaged
over time evolution analytically, i.e.

f(m) =

∫
T

f(T )f(m|T )dT. (57)

If we model the temperature evolution with an Ornstein-Uhlenbeck process centred at T=0
and a certain σ

f(T ) =

√
1

2πσ2
exp(− T 2

2σ2
), (58)

f(m) becomes

f(m) =

∫ ∞
−∞

√
1

2πσ2
exp(− T 2

2σ2
)

√
|T |
2π

exp(−|T |m
2

2
)dT, (59)

or alternatively

f(m) =
1

πσ

∫ ∞
0

√
T exp(−Tm

2

2
− T 2

2σ2
)dT. (60)

Eq. (60) is the theoretical expression for the PDF of magnetization (and thus returns) of
the model. Note that it only depends on one parameter of the Ornstein-Uhlenbeck process.
We don’t need to restrict the dynamics to a range of temperatures in this model. It is
then, much simpler. In Figure 49 the theoretical PDF for σ=3 is shown, fat tails are clearly
obtained!
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Figure 49: In blue, theoretical PDF of normalized returns computed
from Eq. 60. In orange, the associated Gaussian distribution.

We now turn to a numerical analysis of the model, also for σ=3, similar to the one performed
for the dynamical Ising simulations. First, in Figure 50 the time series of returns is plotted.
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Figure 50: Time series of returns.

As expected, the PDF of returns exhibits heavier tails than asset returns time series, Figure
51. Specifically of exponent |α| = 2.8. Also, recall that its PDF is exactly the same as in
Figure 49 computed from Eq. 60.
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Figure 51: In orange crosses, PDF of normalized returns. In blue,
the associated Gaussian distribution.

Regarding the autocorrelation function of returns and absolute returns, the model perfectly
reproduces the stylized facts (Figure 52).
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Figure 52: In orange, autocorrelation function of absolute returns.
In blue, autocorrelation function of returns.

The scaling property of peaks is also reproduced by this model, with a power-law exponent
of -0.48, Figure 53. The multifractality test yields decreasing ratios although not with the
exact same curvature, Figure 54.
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Figure 53: In blue crosses, logarithm of the peaks of the PDF for multi-compound
returns as a function of log k. In red, a straight line with slope -0.47.
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Finally, the aggregational Gaussianity property of the PDF of multi-compound returns is
plotted in Figure 55, as for the OU Metropolis and OU Wolff(N sites) this phenomenon is
not fully reproduced.

From the results, it seems reasonable to assume the returns obtained from the dynamical
Ising model with coupling dynamics following an Ornstein-Uhlenbeck process behaves as a
random variable with Gaussian conditional probability density function with time varying
variance (according to an Ornstein-Uhlenbeck process). It is surprising that such a simple
model (developed from the mean field approximation although with the insight obtained from
the previous simulations) is able to reproduce qualitatively almost all the stylized facts. For
this reason, we think that by modifying a bit the conditional PDF we could even improve
the quantitative behaviour of these properties.
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5 Conclusions and Future Research

From the results obtained, it is clear that the capability for the Ising model to mimick
financial markets strongly depends on the dynamics of the coupling. When this coupling
follows an Ornstein-Uhlenbeck process, most of the stylized facts of the time series of returns
are reproduced.

Furthermore, each stylized facts seems to be strongly related with a parameter of the model.
First, the range of evolution of T modifies the behaviour of the tails of the PDF. The
reason behind this dependence is that for temperatures close to TC , higher variations in the
magnetization of the system (and thus larger returns) are more probable than for bigger T.
Thus, when the coupling varies within a certain range, the probability of obtaining a certain
value M for the magnetization, computed as

P (M) =
∑

T∈[T0−a,T0+a]

P (T )P (M |T ), (61)

increases. Secondly, the autocorrelation of returns strongly depends on the dynamics of the
Ising model, as observed when we compare its behaviour for the Metropolis algorithm and
the Wolff algorithm. Additionally, the autocorrelation of absolute returns is mainly governed
to the chosen Temperature evolution. In particular, for the Ornstein-Uhlenbeck process, a
larger autocorrelation of absolute returns is found when γ decreases and τ increases. Finally,
aggregational Gaussianity and multifractality seem to be conditioned to the variability in the
number of Agents in the model renovating its decision per time step. That could be due to
the system not being able to reach equilibrium, but further studies have to be done.

We have also developed a simpler stochastic process that allows us to understand how the
Ising model with stochastic dynamics for the coupling works. From what we observed,
for these model, the returns behave as a random variable with conditional Gaussian PDF
(PDF(r|T)) characterized by 0 mean and a variance that depends on the Temperature.

Regarding future developments to our research, there exist multiple possibilities. First,
other stochastic processes for the coupling, like the Random Telegraph, could be used. For
this model, the Temperature increases or decreases ∆ with previously defined probabilities.
Besides, a more complex model involving personal preferences or the effect of news (by
including a non-homogeneous magnetic field or a random term different for each agent) could
be implemented for the Wolff dynamics.
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