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1.  Introduction 

1.1  State of the Art 

Masonry structures currently constitute a very large part of the existing built environment. They include a 

large amount of common but still-in-use buildings as well as outstanding cultural heritage structures. Masonry 

buildings are comprised of structural members such as load bearing walls, pillars and vaults composed of single 
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or multiple brick or stone masonry leaves with possible interior rubble infills.  An accurate structural analysis of 

such buildings is important as a way to verify their capacity against gravity loads and horizontal actions such as 

wind and earthquake. However, the structural analysis of masonry buildings faces significant challenges due to 

the complex behavior of masonry which stems from its composite character, the influence of the geometric 

arrangement of units and the fact that most utilized mortars only provide a weak bond between units.  One of the 

consequences of the composite nature of masonry is found in its anisotropic mechanical response. Another 

emerging consequence is the difficulty of predicting the average masonry mechanical properties, such as, in 

particular, the masonry compressive strength and the Young’s modulus, from the properties of the constituent 

materials. Even when the elastic properties of the constituent materials are known, it is difficult to derive the 

elastic properties of the composite without resorting to sophisticated analysis tools. Furthermore, results for one 

masonry typology may not be readily suitable for the evaluation of the properties of another. Therefore, the 

development of simple tools for the derivation of the orthotropic elastic properties of a variety of masonry 

typologies based on the elastic properties of their constituent materials, while maintaining a single analysis 

methodology throughout, constitutes a sound framework for the further development of analysis tools based on 

the detailed micro-modeling approach. 

Masonry structures composed of periodically repeating patterns may be simplified in order to facilitate their 

analysis. In this sense, it is possible to calculate the elastic and strength properties of masonry structures through 

the analysis of a geometrically repeating part. This part may be further simplified by taking into account 

symmetry arising from geometrical and loading conditions. 

A number of analytical and numerical models has been proposed for the analysis of masonry periodic unit 

cells using a variety of methods. These have been employed for the derivation of the elastic and inelastic 

properties of masonry composites as a result of the interaction of their two phases: units and mortar. The cells 

are analyzed considering appropriate boundary conditions, kinematic compatibilities and stress equilibrium in 

order to derive the strains and stress state in the cell for different loading conditions. Nonlinear properties may 

be derived from the iterative solution of the problem under the assumptions of plasticity or damage models for 

the behavior of the materials in the cell. 
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Through these computations in the micro- or meso-scale it is possible to calculate the orthotropic behavior 

of the masonry composite in the macro-scale, arising from the geometrical arrangement of the two phases in the 

cell. Elastic [1–4] and strength properties [5–8] of the composite for in-plane and out-of-plane load conditions 

have been calculated using such techniques. Research has extended from the study of periodic masonries to non-

periodic masonries [7,9]. 

Methods for the analysis of masonry cells using analytical methods have been proposed, mostly focusing on 

the analysis of stack bond and running bond masonry wall typologies [4,10,11]. Finite element representations 

of masonry unit cells have also been proposed [12] in which the interaction of the two phases, the resulting 

stress and strains in the cell and the nonlinear behavior of the materials may be accurately represented. This 

approach has also been adopted for the verification of the accuracy of analytical models, such as the ones 

already described, the production of in-plane strength domain curves for masonry membranes and the execution 

of two-scale analyses. However, FE calculations may require time for the creation of the models and high 

computational effort. A comparison of analytical model and FE model results may be found in [3]. 

A micromechanical approach for the analysis of periodically reinforced composites, according to which a 

repeating cell of the composite is discretized into sub-cells with different properties and arranged in a regular 

grid, has been proposed in the past [13]. Equilibrium and compatibility conditions are assembled in a set of 

closed form expressions and can be solved in a single analysis step for the derivation of, for example, the 

average elastic properties of the composite. The benefit of this approach is its computational efficiency and 

relative simplicity. Masonry periodic unit cells, seen as regular arrangements of square or cubic sub-cells with 

different material properties, can be analyzed using the same approach. Adaptations of this method, capable of 

providing closed form expressions for the elastic properties of stack and running bond masonry, have been 

proposed [14,15]. 

Masonry analyzed in this manner is usually idealized as an infinitely thin or infinitely thick membrane, 

these assumptions being accordingly equivalent to a plane stress and plane strain approach. However, the 

existence of transversal joints, gaps or other discontinuities, which result in non-constant geometric structure 

along the depth of the masonry, render these two approaches fundamentally not accurate. Analysis of the unit 
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cell taking into account these discontinuities must consider the actual finite thickness and actual geometry of the 

masonry structure. 

Computations on cells where the actual finite thickness of the masonry is considered allow for a  more 

accurate representation of out-of-plane stresses, which, while only marginally affecting the initial elastic 

stiffness, may strongly influence the compressive strength of the composite [16]. However, since it is intended 

to apply the models proposed here in nonlinear analysis in a following paper, it is deemed necessary to include a 

realistic representation of the out-off-plane stresses using three-dimensional models for linear elastic analysis as 

well. With this type of models, the true thickness of the masonry may be easily taken into account in finite 

element calculations. 

Through computations on periodic unit cells it is possible to make fairly accurate predictions of the 

compressive and tensile strength and the elastic moduli of masonry. Such techniques may be, therefore, used for 

two-scale modeling of masonry walls [17–21]. 

1.2  Objectives 

The purpose of this paper is to present a simple analytical calculation method for the derivation of the 

elastic characteristics of masonry structures. The method is based on the analysis of masonry periodic unit cells, 

the smallest repeating geometrical entity representative of the overall masonry geometric pattern, in an attempt 

to derive masonry composite orthotropic macro-properties from material and geometrical micro-properties. The 

micro properties considered are those of the units, the mortar and the infill. Structural members allowing this 

type of modelling include single- and multi-leaf walls and pillar-like structures. These properties are to be 

determined for normal and shear loading. The models are formulated based on three-dimensional elasticity in 

order to include the influence of out-of-plane stresses on the response. 

These macro-properties may be used for the analysis of large walls and other structures in full multi-scale 

models or may be used to provide the information needed for analysis with orthotropic material models, such as 

the Hill, Rankine-Hill or the Hoffmann criteria. The computational cost associated with FE analysis of cells in 

two-scale analyses is still relatively high, especially when the analyses are carried out on cells in a three-

dimensional configuration. Analytical models for the analysis of the cells present an advantageous, in terms of 
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computational cost, alternative. Finally, the low computational cost of such analytical models makes the 

production of large databases of results undemanding. 

The verification of the model is performed through a comparison against a FE result benchmark following a 

parametric investigation. A comparison is also carried out with a range of results from the existing inventory of 

experimental data. 

This study includes the analysis of various masonry wall geometrical typologies: single leaf stack bond, 

single-leaf running bond, double-leaf Flemish bond and three-leaf walls with a running bond outer leaf. In the 

last case, the infill constitutes a third material phase, with different mechanical properties from the units and 

mortar normally considered in such analyses. These masonry typologies, and especially the last three, represent 

a significant portion of existing and new structures, with the available research focusing primarily, if not 

entirely, on running rather than Flemish bond structures. Three-leaf walls with rubble infill are also commonly 

encountered both in large structures and common buildings. Stack bond pillars are commonly used as specimens 

for experimental investigation, therefore a large body of experimental work exists dealing with their elasticity 

and strength properties. English bond prisms are similarly used for experimental investigation purposes as well 

as in structural practice. The study focuses on masonries characterized by units with an elastic stiffness higher 

than that of the mortar. However, the applicability of the model is examined through an analysis of experimental 

case studies with a wide range of properties. It has been noted that there is a lack of experimental results 

concerning the horizontal and transversal Young’s moduli, the shear moduli and the Poisson’s ratios of masonry 

in experimental cases which include also a detailed mechanical characterization of the units and mortar. This 

lack of experimental results has been compensated by using finite element results as benchmark cases. 

2.  Overview of the Models 

2.1  Derivation of Wall Periodic Unit Cells 

The derivation of the periodic unit cell is accomplished through the identification of the repeating pattern in 

the structure and its subsequent simplification due to symmetry conditions. The four masonry typologies 

studied, in order of complexity, are stack bond, running bond, Flemish bond and three-leaf masonry with a 
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running bond outer leaf and infill. The derivation patterns for the masonry wall typologies considered in this 

work are shown in Figure 1.  

Stack bond and running bond walls are single leaf structures with no variation of the geometry along the 

thickness. Flemish bond walls include a thin transversal joint and the units are oriented as either header or 

stretcher blocks, meaning that for the largest portion of the wall the geometry changes along the thickness. 

Three-leaf walls are composed of outer leaves of any type and an interior leaf whose thickness may be larger 

than that of the outer leaves.  

Increase in the geometrical complexity of the composite results in an increase in the size of the repeating 

pattern and, therefore, of the unit cell. In stack bond and running bond masonry the layout of the masonry does 

not change through the thickness and all units are identically oriented, while in Flemish bond masonry the mid-

thickness is characterized by a transversal mortar joint and intersecting header units. 

The anisotropic behavior of the masonry composite is the result of the geometrical arrangement of 

components, which are here considered isotropic, although the orthotropic behavior of bricks may be 

implemented with only minor alterations in the model. The infill is also considered macroscopically isotropic 

and is normally more deformable than the outer leaf. 

2.2  Derivation of Pillar Periodic Unit cells 

The periodic unit cells for pillar-like structures are derived similarly to the wall typologies. Two different 

structural types are considered: stack bond prisms and English bond pillars. The derivation of the cells is shown 

in Figure 2. 

2.3  Discretization of the Derived Cells 

The analytical model for the analysis of masonry periodic unit cells is based on the discretization of the cell 

in structural parts, the modeling of their interaction in terms of deformation and stress distribution and 

equilibrium under external loads. The equilibrium problem will be primarily solved for three normal stress 

components, σxx, σyy and σzz and six shear stress components, σxy, σxz, σyx, σyz, σzx and σzy in order to obtain the 

elastic properties of the cells in the three orthogonal directions dictated by the geometric arrangement of the 

masonry. 
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The discretization of the periodic unit cells is done as illustrated in Figure 3. It results in each cell being 

discretized into cuboid parts of units, bed joints, head joints, transversal joints, cross joints and infill. 

Specifically: the stack bond cell is discretized into one stretcher unit, one bed joint, one head joint and one cross 

joint part; the running bond cell is discretized into four stretcher unit, one bed, two head and two cross joint 

parts; the Flemish bond cell is discretized into four header unit, six stretcher unit, three bed joint, four head 

joint, seven cross joint and six transversal joint parts; the three-leaf cell is discretized similarly to the way the 

running bond cell with the addition of nine transversal joint parts representing the infill. The stack bond pillar is 

discretized into a unit part and a mortar part arranged in a layered pattern and the English bond pillar is 

discretized into four unit parts, one bed joint part two head joint parts and four cross joint parts. 

The orthogonal discretization carried out separates the cell into parts allocated in an orthogonal grid, with 

each part belonging in one horizontal, one vertical and one transversal strip of cuboid parts.  As a result, the 

stack bond cell is divided into two horizontal, two vertical and two transversal strips, the running bond cell into 

three horizontal, three vertical and six transversal strips and the Flemish bond cell into six horizontal, ten 

vertical and fifteen transversal strips. The type of the loading applied on the cell and its orientation compared to 

the orthogonal grid dictates the assumptions made for the elastic analysis of the cell, which are based on the 

strains to which each strip is subjected.  The proposed discretization of mortar joints and units allows for 

simplified assumptions in the formulations of the model. The final discretization scheme is show in Figure 3. 

3.  Development of the Analytical Model 

3.1  General Assumptions and Equations 

The deformation of the cell faces, and, therefore, the total strain of the cell, depends on the loading applied. 

Application of normal stress results only in normal global cell strains and the application of shear stress results 

only in shear global cell strains. This means that under normal stress the total deformation of all strips, or the 

average strain of each one, is equal in the three principal directions. 

Under the application of normal stress, either only normal or both normal and shear stresses may arise in the 

cuboid parts. In turn, under the application of shear stress, only shear stresses of the same geometrical 

orientation arise in the cuboid parts. All stresses and strains are assumed constant in the cuboid parts. For linear 
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elastic analysis, the units and the mortar are modeled as three-dimensional isotropic continua. Perfect bond is 

considered at the unit-mortar interface for the linear elastic computations performed here, so that all deformation 

of the cell is accounted for in the units, mortar and infill. 

Isotropic linear elasticity stress-strain relations in three dimensions apply for every cuboid component under 

normal and shear stress. This includes the units, the mortar and the infill. These relations are expressed as: 

  , , , ,ii n ii n n jj n kk n nn
E E        (1) 

  , , 1ij n ij n n nE     (2) 

where the sub-index n refers to the identifier of the cuboid,  σii and εii are the applied normal stress and 

calculated normal strain along axis i, σij and εij are the shear stress and strain in plane ij, En is the Young’s 

modulus and νn is the Poisson’s ratio.  

When a cuboid with dimensions iD  and jD  is subjected to a shear stress ij  the contribution of the shear 

deformation of the cuboid ij

id  to its normal deformation in the direction i is taken as being half the displacement 

at its top due to the shear stress. Therefore, it is defined as 

  
,

2

jij

i ij n

D
d   (3) 

The three Young’s moduli for each cell configuration are calculated by use of the equation 

 ,c i ii iiE    (4) 

  The Poisson’s ratios are determined by the equation 

 ,c ij jj ii     (5) 

The three shear moduli for each cell configuration are calculated by use of the equation: 

  , 2c ij ij ijG    (6) 
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The x, y and z axes in the model correspond to the horizontal, vertical and transversal directions. The 

transversal direction is normal to the face of the walls and the vertical direction is parallel to the axis of the 

pillars. The total strain in each of the three directions and the three resulting planes depends on the type of cell. 

The cuboid parts are designated by a set of initials. Throughout all the cases these are: u for units in general, 

s and d for stretcher and header units respectively where both are present (such as the Flemish bond case), h for 

head joints, c for cross joints, b for bed joints and t for transversal joints. Infill is designated as i. Dimensions are 

designated according to their orientation: l corresponds to a horizontal length, h to a vertical height and t to a 

transversal thickness. The dimension symbols are finally suffixed u, m or i for units, mortar and infill 

respectively, meaning that hu is the unit height, hm is the thickness of the bed joint, lu is the unit length, lm is the 

thickness of the head joint, tu is the width of the unit, tm is the thickness of the transversal joint and ti is the 

transversal thickness of the infill. 

Figure 4 illustrates the discretization of the single leaf wall cells along with the naming convention for each 

component in detail. The discretization of the multi leaf walls is shown in Figure 5 and that of the pillars in 

Figure 6. 

Normal stress equilibrium equations are formed according to 

 , 0ii n n ii

n

A A    (7) 

while shear stress equilibrium equations are formed according to 

 , 0ij n n ij

n

A A    (8) 

where A is the total cross sectional area of the cell and An is the cross sectional area of cuboid n in direction 

i. 

All normal and shear stress equilibriums at the faces or cross sections of the cell assure global equilibrium 

of internal and external stress. External stresses are averaged over the surface of the cell, meaning that there may 

exist a mismatch between the external average stress and the stress of an individual cuboid. 
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3.2  Stack Bond Wall 

3.2.1 Cell Subjected to Normal Stress 

Due to the simple geometrical layout of the cell, which does not include complex geometrical interlocking 

of mortar joints and units, shear stress components are disregarded for applied normal stress. 

Normal strain conformity is assumed as follows: 

 , , , ,zz h zz u zz c zz b       

 , ,xx h xx c 
 

 , ,xx u xx b 
 (9) 

 , ,yy h yy u   

 , ,yy c yy b   

The above strain conformity relations assume equal out-of-plane strains for all cuboids and equal in-plane 

strains for parallel cuboids in a given direction. 

Horizontal normal stress equilibrium conditions at the right and left face of the cell are as follows: 

 
  , ,2 2 2 2xx u m xx u u xx b mh h h h    

 (10) 

   , ,2 2 2 2xx u m xx h u xx c mh h h h      

Vertical normal stress equilibrium conditions at the top and bottom faces of the cell are as follows: 

   , ,2 2 2 2yy m u yy h m yy u ul l l l      (11) 

   , ,2 2 2 2yy m u yy c m yy b ul l l l      

Transversal normal stress equilibrium at the front face of the cell is as follows: 
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  

, , , ,

2 2 2 2

2 2 2 2 2 2 2 2

zz m u m u

zz h m u zz u u u zz c m m zz b u m

l l h h

l h l h l h l h



   

  

      
 (12) 

The normal strains of the entire cell along the three axes can be calculated as  

    , ,2 2 2 2xx xx h m xx u u m ul l l l      

    , ,2 2 2 2yy yy h u yy c m u mh h h h      (13) 

 ,zz zz h   

3.2.2 Cell Subjected to Shear Stress 

For xy shear it is assumed that 

 , ,xy h xy u   (14) 

 , ,xy c xy b   

The shear stress equilibrium conditions at the top and right faces of the cell are as follows: 

   , ,2 2 2 2xy m u xy h m xy u ul l l l      

   , ,2 2 2 2xy u m xy u u xy b mh h h h      (15) 

The cell shear strain can be calculated as  

    , ,2 2 2 2xy xy c m xy h u m uh h h h      (16) 

For xz shear it is assumed that 

 , ,xz u xz b   

 , ,xz c xz h xz     (17) 
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Shear stress equilibrium at the right face of the cell is as follows: 

   , ,2 2 2 2xz m u xz b m xz u uh h h h      (18) 

The cell shear strain is equal to 

    , ,2 2 2 2xz xz u u xz h m u ml l l l      (19) 

For yz strain it is assumed that 

 , ,yz h yz u   

 , ,yz c yz b   (20) 

Shear stress equilibrium at the front and top faces of the cell is as follows: 

 
  

, , , ,

2 2 2 2

2 2 2 2 2 2 2 2

yz m u m u

yz h m u yz u u u yz c m m yz b u m

l l h h

l h l h l h l h



   

  

      
 (21) 

   , ,2 2 2 2yz m u yz h m yz u ul l l l      

The cell shear strain is equal to: 

    , ,2 2 2 2yz yz u u yz b m u mh h h h      (22) 

3.3  Running Bond Wall 

3.3.1 Cell Subjected to Normal Stress 

The geometrical interlocking of the units and the mortar requires that the in plane shear stresses be taken 

into account for normal stress loading conditions. Therefore, apart from the three components of normal stress 

for each cuboid component, the xy shear stress and strains also have been included for the formulation of the 

system of equations. In turn, the compatibility conditions take into account the shear deformation of the cuboids, 

primarily those of the bed and cross joints, for applied loads in the horizontal direction. The resulting shear 

stresses are negligible for loading in the vertical and transversal directions. 
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The horizontal normal stress equilibrium conditions at the left face and at a cross section across the middle 

of the cell are expressed as follows: 

   , 2 , ,2 2xx m u xx u u xx c m xx h uh h h h h        (23) 

   , 1 , , 12 2xx m u xx u u xx b m xx u uh h h h h        

The vertical normal stress equilibrium conditions at the top face and at a cross section across the middle of 

the cell are as follows: 

    , , 1 , 22 2 2 2 2 2yy m u yy h m yy u u m yy u ml l l l l l         (24) 

    , , ,2 2 2 2 2 2yy m u yy c m yy b u m yy c ml l l l l l         

The transversal normal stress equilibrium condition at the front face of the cell is as follows: 

 
  

     , , 1 , 2 , ,

2 2

2 2 2 2 2 2 2 2

zz m u u m

u zz h m zz u u m zz u m m zz c m zz b u m

h h l l

h l l l l h l l l



    

  

     
 (25) 

The shear stress equilibrium conditions at the top face and at a cross section across the middle of the cell are 

as follows: 

  , , 1 , 22 2 2 2 0xy h m xy u u m xy u ml l l l       (26) 

  , , ,2 2 2 2 0xy c m xy b u m xy c ml l l l       

Deformation compatibility of the cuboids, considering both normal and shear deformation along the 

horizontal axis and only normal deformation along the vertical and transversal axis, is as follows: 

 , , 1 , 2 , ,zz h zz u zz u zz c zz b         

 , , 1 , 2yy h yy u yy u     
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 , ,yy c yy b   (27) 

 , ,xx h xx c   

 , 1 ,xx u xx b   

 

    

    

, , 1 , 2 , , 1 , 2

, , , ,

2 2 2 2 4

2 2 2 2 2 2

xx h m xx u u m xx u m xy h xy u xy u u

xx c m xx b u m xy c xy b m

l l l l h

l l l h

     

   

      

   

 

The following assumptions are made about the normal and shear stress distribution in the cell: 

 , 1 , 2xx u xx u   (28) 

 , 1 , 2 ,xy u xy u xy h     

These assumptions, coupled with the global shear stress equations for the cell results in zero shear stresses 

for the units and head joint. They also result in identical horizontal effective stresses for the u1 and u2 cuboids, 

which represent the unit. This invalidates the partition of the unit into two parts, but the distinction is 

meaningful for non-linear analysis, where the two unit parts may sustain different degrees of damage. 

The normal strains of the entire cell along the three axes are equal to 

       , , 1 , 2 , , 1 , 22 2 2 2 4 2 2xx xx h m xx u u m xx u m xy h xy u xy u u m ul l l l h l l               

    , , , 22 2yy yy h u yy c m yy u u u mh h h h h        (29) 

 ,zz zz h   

3.3.2 Cell Subjected to Shear Stress 

For xy shear it is assumed that 

 , , 1 , 2xy h xy u xy u     (30) 
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 , ,xy c xy b   

The shear stress equilibrium conditions at a horizontal cross section and a vertical cross section at the 

middle of the cell are as follows: 

    , , , ,2 2 2 2 2 2xy u m xy c m xy b u m xy c ml l l l l l         (31) 

   , 1 , , 12 2xy u m xy u u xy b m xy u uh h h h h        

The cell shear strain is equal to 

    , , , 22 2xy xy h u xy c m xy u u u mh h h h h        (32) 

For xz shear it is assumed that 

 , 1 ,xz u xz b   

 , 1 , 2xz u xz u   (33) 

 , , 2xz c xz u   

The stress equilibrium conditions at the front and left face and at a cross section at the center of the cell are 

as follows: 

 
  

     , , 1 , 2 , ,

2 2

2 2 2 2 2 2 2 2

xz m u u m

u xz h m xz u u m xz u m m xz c m xz b u m

h h l l

h l l l l h l l l



    

  

     
 

 
  , , , 22 2xz m u xz h u xz c m xz u uh h h h h      

 (34) 

 
  , 1 , , 12 2xz m u xz u u xz b m xz u uh h h h h      

 

The cell shear strain is equal to 

     , , 1 , 22 2 2 2 2 2xz xy h m xy u u m xy u m u ml l l l l l         (35) 



 16 

For yz shear it is assumed that 

 , , 1 , 2yz h yz u yz u     (36) 

 , ,yz c yz b   

Shear stress equilibriums at the top and front faces of the cell are as follows: 

    , , 1 , 22 2 2 2 2 2yz u m yz h m yz u u m yz u ml l l l l l         (37) 

 
  

     , , 1 , 2 , ,

2 2

2 2 2 2 2 2 2 2

yz m u u m

u yz h m yz u u m yz u m m yz c m yz b u m

h h l l

h l l l l h l l l



    

  

     
 

The cell shear strain is equal to 

    , , , 22 2yz yz h u yz c m yz u u u mh h h h h        (38) 

3.4  Flemish Bond Wall 

3.4.1 Cell Subjected to Normal Stress 

As in the running bond cell model, the in-plane shear deformation of the bed joint is taken into account for 

normal stress loading. The transfer of stress across the transversal joint is also taken into account without, 

however, considering the effects of shear stress in other planes. Also, as in the case of the running bond cell, 

shear stresses are negligible for vertical and transversal applied normal stress. 

The horizontal normal stress equilibrium conditions at the left face and at two cross sections along the 

length of the cell are as follows: 

 
  

   , 1 , 1 , 3 , 2 , 2 , 3

2

/ 2 / 2 / 2 / 2 2

xx u m u m

xx d u xx b m xx s u u xx d u xx c m xx t u m

h h t t

h h h t h h h t



     

  

    
 

 
  

   , 1 , 1 , 2 , 2 , 3 , 2

2

/ 2 / 2 / 2 / 2 2

xx u m u m

xx h u xx c m xx s u u xx h u xx c m xx t u m

h h t t

h h h t h h h t



     

  

    
 (39) 
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  

   , 1 , 2 , 1 , 1 , 4 , 1

2

/ 2 / 2 / 2 / 2 2

xx u m u m

xx s u xx b m xx s u u xx t u xx c m xx t u m

h h t t

h h h t h h h t



     

  

    
 

The vertical normal stress equilibrium conditions at the top face and at a cross section across the middle of 

the cell are as follows: 

 

  

  

  

, 1 , 1 , 1 , 2 , 3

, 2 , 2 , 1 , 2 , 3

2 2 2

2 2 2 2

2 2 2 2 2

yy u m u m u

yy d u yy h m yy s u m u yy s m yy s u u

yy d u yy h m yy t u m u yy t m yy t u m

t t t l l

t l l l t l t t

t l l l t l t t



    

    

   

      

     

 (40) 

 

  

  

  

, 1 , 1 , 2 , 1 , 1

, 2 , 3 , 4 , 3 , 2

2 2 2

2 2 2 2

2 2 2 2 2

yy u m u m u

yy b u yy c m yy b u m u yy c m yy b u u

yy c u yy c m yy c u m u yy c m yy c u m

t t t l l

t l l l t l t t

t l l l t l t t



    

    

   

      

     

 

The transversal normal stress equilibrium conditions at the front face and at a cross section across the 

middle of the cell are as follows: 

 

  

  

  

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 2

2 2

2 2 2 2

2 2 2

zz u m u m u

zz d u zz h m zz s u m u zz s m zz s u u

zz b u zz c m zz b u m u m

h h t l l

t l l l t l t h

t l l l t h



    

  

   

      

   

 (41) 

 

  

  

  

, 2 , 2 , 1 , 2 , 3

, 2 , 3 , 4

2 2

2 2 2 2

2 2 2

zz u m u m u

zz d u zz h m zz t u m u zz t m zz t u u

zz c u zz c m zz c u m u m

h h t l l

t l l l t l t h

t l l l t h



    

  

   

      

   

 

The shear stress equilibrium conditions at the top face and at a vertical cross section across the middle of the 

cell are as follows: 

 
  

  

, 1 , 1 , 1 , 2 , 3

, 2 , 2 , 1 , 2 , 3

2 2 2 2

2 2 2 2 2 0

xy d u xy h m xy s u m u xy s m xy s u u

xy d u xy h m xy t u m u xy t m xy t u m

t l l l t l t t

t l l l t l t t

    

    

      

      
 (42) 

 
  

  

, 1 , 1 , 2 , 1 , 1

, 2 , 3 , 4 , 3 , 2

2 2 2 2

2 2 2 2 2 0

xy b u xy c m xy b u m u xy c m xy b u u

xy c u xy c m xy c u m u xy c m xy c u m

t l l l t l t t

t l l l t l t t

    

    

      

      
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Deformation compatibility of the cuboids, considering both normal and shear deformation along the 

horizontal axis and only normal deformation along the vertical and transversal axes, is as follows: 

 

 

 
 

 

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 1 , 2 , 3

, 2 , 2 , 1 , 2 , 3

, 2 , 2 , 1 , 2 , 3

2 2 2 2

4

2 2 2 2

4

xx d u xx h m xx s u m u xx s m xx s u

xy d xy h xy s xy s xy s u

xx d u xx h m xx t u m u xx t m xx t u

xy d xy h xy t xy t xy t u

t l l l t l t

h

t l l l t l t

h

    

    

    

    

      

    

      

   

 (43) 

 

 

 
 

 

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 2 , 1 , 1

, 1 , 1 , 2 , 1 , 1

2 2 2 2

4

2 2 2 2

2

xx d u xx h m xx s u m u xx s m xx s u

xy d xy h xy s xy s xy s u

xx b u xx c m xx b u m u xx c m xx b u

xy b xy c xy b xy c xy b m

t l l l t l t

h

t l l l t l t

h

    

    

    

    

      

    

      

   

 

 

 

 
 

 

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 1 , 2 , 3

, 2 , 3 , 4 , 3 , 2

, 2 , 3 , 4 , 3 , 2

2 2 2 2

4

2 2 2 2

2

xx d u xx h m xx s u m u xx s m xx s u

xy d xy h xy s xy s xy s u

xx c u xx c m xx c u m u xx c m xx c u

xy c xy c xy c xy c xy c m

t l l l t l t

h

t l l l t l t

h

    

    

    

    

      

    

      

   

 

 , 1 , 2 , 1 , 22 2zz d u zz d m zz b u zz c mt t t t       

 , 1 , 2 , 3 , 32 2zz d u zz d m zz s u zz t mt t t t       

 , 1 , 2 , 1 , 22 2zz d u zz d m zz h u zz h mt t t t       

 , 1 , 2 , 1 , 32 2zz d u zz d m zz c u zz c mt t t t       

 , 1 , 2 , 2 , 22 2zz d u zz d m zz s u zz t mt t t t       

 , 1 , 2 , 1 , 12 2zz d u zz d m zz s u zz t mt t t t       

 , 1 , 2 , 2 , 42 2zz d u zz d m zz b u zz c mt t t t       

 , 1 , 2 , 1xx b xx c xx d     
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 , 3 , 3xx s xx t   

 , 1 , 3 , 1 , 2xx c xx c xx h xx h       

 , 2 , 2xx s xx t   

 , 1 , 1 , 2xx s xx t xx b     

 , 2 , 4xx b xx c   

 , 1 , 1 , 1 , 2 , 3 , 2 , 2 , 1 , 2 , 3yy d yy h yy s yy s yy s yy d yy h yy t yy t yy t                   

 , 1 , 1 , 2 , 2 , 3 , 4yy b yy c yy b yy c yy c yy c           

 , 1 , 2 , 3zz s zz s zz s     

 , 1 , 1zz d zz h   

 , 1 , 2xy d xy d   

 , 1 , 2xy h xy h   

 , 1 , 1xy s xy t   

 , 2 , 2xy s xy t   

 , 3 , 3xy s xy t   

 , 1 , 2xy b xy c   

 , 1 , 3xy c xy c   
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The following assumptions are made about the normal stress distribution in the cell: 

 , 1 , 3zz c zz c   

 , 2 , 4zz b zz c   

 , 1 , 2zz d zz d   (44) 

 , 1 , 1zz s zz t   

 , 2 , 2zz s zz t   

 , 3 , 3zz s zz t   

The above set of equations assumes that the transversal normal stress is equal for the cuboids of the two 

leaves of masonry, be they unit or mortar. They also, again, lead to equal effective transversal stresses in the 

different cuboids comprising a single header brick. Damaged stresses in non-linear analysis, however, are 

different. For the shear stresses it is assumed that 

 , 1 , 2 , 3 , 1 , 1xy s xy s xy s xy h xy d         (45) 

 , 1 , 2xy b xy b   

The normal strains of the entire cell along the three axes are equal to: 

  

 
 

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 1 , 2 , 3

2 2 2 2
2 2

4

xx

xx d u xx h m xx s u m u xx s m xx s u

u m u

xy d xy h xy s xy s xy s u

t l l l t l t
l l t

h



    

    



       
   
    
 

 

    , 1 , 1 , 32 2yy yy d u yy b m yy s u u mh h h h h        (46) 

    , 1 , 2 2 2zz zz d u zz d m u mt t t t      
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3.4.2 Cell Subjected to Shear Stress 

For xy shear it is assumed that: 

 , 1 , 1 , 1 , 2 , 3 , 2 , 2 , 1 , 2 , 3xy d xy h xy s xy s xy s xy d xy h xy t xy t xy t                   (47) 

 , 1 , 1 , 2 , 2 , 3 , 4xy b xy c xy b xy c xy c xy c           

The shear stress equilibrium condition at the left face and at a cross-section along the mid height of the cell 

are as follows: 

 

  

   , 1 , 1 , 3 , 2 , 2 , 3

/ 2

2 2 2 2 2

xy u m u m

xy d u xy b m xy s u u xy d u xy c m xy t u m

t t h h

h h h t h h h t



     

  

    
 

 

  

  

  

, 1 , 1 , 2 , 1 , 1

, 2 , 3 , 4 , 3 , 2

2 2 2

2 2 2 2

2 2 2 2 2

xy u m u m u

xy b u xy c m xy b u m u xy c m xy b u u

xy c u xy c m xy c u m u xy c m xy c u m

t t l l t

t l l l t l t t

t l l l t l t t



    

    

   

      

     

 (48) 

The cell shear strain is equal to 

    , 1 , 1 , 32 2xy xy d u xy b m xy s u u mh h h h h        (49) 

For xz shear it is assumed that 

 , 1 , 1 , 2 , 3 , 1 , 1 , 2xz d xz s xz s xz s xz b xz c xz b             (50) 

 ,h2 , 1 , 2 , 3 , 2 , 3 , 4xz xz t xz t xz t xz c xz c xz c             

The shear stress equilibrium conditions at the front face, transversal section at the middle, the left face and a 

vertical section along the middle of the cell are as follows: 

 

  

  

  

, 1 , 1 , 1 , 2 , 3

, 1 , 1 , 2 , 1 , 1

2 2

2 2 2 2

2 2

2 2

2

22 2

xz u m u

xz d u xz h m xz s u m u xz s m xz s u

xz b u xz c m xz b u m u xz c m xz b u

u m

u

m

l l t

t l l l t l t

t l l l t

h

h

l t

h

h



    

    

  

     

     



  
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  

  

  

, 2 , 2 , 1 , 2 , 3

, 2 ,c3 , 4 ,c3 ,c2

2 2

2 2 2 2

2

2 2

2

2 2 2 2

xz u m u

xz d u xz h m xz t u m u xz t m xz t u

xz c u xz m xz c u m u xz m xz u

u m

u

m

l l t

t l l l t l t

t l l l

h

l

h

ht

h

t



    

    

  

     

   



 

 (51) 

 
  

   , 1 , 1 , 3 , 2 , 2 , 3

2

2 2 2 2 2

xz u m u m

xz d u xz b m xz s u u xz d u xz c m xz t u m

t t h h

h h h t h h h t



     

  

    
 

 
  

   , 1 , 2 , 1 , 1 , 4 , 1

2

2 2 2 2 2

xz u m u m

xz s u xz b m xz s u u xz t u xz c m xz t u m

t t h h

h h h t h h h t



     

  

    
 

The cell shear strain is equal to:  

     , 1 , 1 , 1 ,s2 ,s32 2 2 2 2 2xz xz d u xz h m xz s u m u xz m xz u u m ut l l l t l t l l t               (52) 

For yz shear it is assumed that: 

 , 1 , 1 , 1 , 2 , 3 , 2 , 2 , 1 , 2 , 3yz d yz h yz s yz s yz s yz d yz h yz t yz t yz t                   (53) 

 , 1 , 1 , 2 , 2 , 3 , 4yz b yz c yz b yz c yz c yz c           

The shear stress equilibrium conditions at the front face and a horizontal cross section at the middle of the 

cell follows: 

 

  
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

    

    

  

     

     



  (54) 

 

  

  

  

, 1 , 1 , 2 , 1 , 1

, 2 , 3 , 4 , 3 , 2

2 2 2

2 2 2 2

2 2 2 2 2

yz u m u m u

yz b u yz c m yz b u m u yz c m yz b u u

yz c u yz c m yz c u m u yz c m yz c u m

t t t l l

t l l l t l t t

t l l l t l t t



    

    

   

      

     

 

The cell shear strain is equal to 
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    , 3 , 1 , 12 2yz yz s u yz b m yz d u u mh h h h h        (55) 

3.5  Three Leaf Wall 

3.5.1 Cell Subjected to Normal Stress 

The three leaf-model retains the set of assumptions made for the running bond model, which still apply to 

the outer masonry leaf. A number of further assumptions are made for the infill and the stress equilibrium 

conditions are modified to accommodate the new geometrical entities. 

The horizontal normal stress equilibrium conditions at the left face and at a cross section across the middle 

of the cell are as follows: 

 
  

   , 2 , , , 3 , 4 , 1

2

2 2 2 2 2

xx m u u i

xx u u xx c m xx h u u xx i u xx i m xx i u i

h h t t

h h h t h h h t



     

  

    
 (56) 

 
  

   , 1 , , 1 , 2 , 5 , 2

2

2 2 2 2 2

xx m u u i

xx u u xx b m xx u u u xx i u xx i m xx i u i

h h t t

h h h t h h h t



     

  

    
 

The vertical normal stress equilibrium conditions at the top face and at a cross section across the middle of 

the cell are as follows: 

  

     , , 1 , 2 , 1 , 2 , 3

2 2 2

2 2 2 2 2 2 2 2 2
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l l t t
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

     

  

      
 (57) 

  

     ,c ,b ,c , 4 , 5 , 4

2 2 2

2 2 2 2 2 2 2 2 2

yy m u u i

yy m yy u m yy m u yy i m yy i u m yy i m i

l l t t

l l l l t l l l l t



     

  

      
 

The transversal normal stress equilibrium conditions at the front and back faces of the cell are as follows: 

 
  

     , , 1 , 2 , ,

2 2

2 2 2 2 2 2 2 2

zz m u u m
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

    

  

     
 (58) 

 
  

     , 1 , 2 , 3 , 4 , 5
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zz m u u m
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  

     
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The shear equilibrium conditions at the left face, a vertical cross section of the cell and at the top face of the 

cell read: 

    , 2 , , , 3 , 4 , 12 2 2 2 2 0xy u u xy c m xy h u u xy i u xy i m xy i u ih h h t h h h t            

    , 1 , , , 2 , 5 , 22 2 2 2 2 0xy u u xy b m xy c u u xy i u xy i m xy i u ih h h t h h h t            (59) 

Constant normal stress is assumed in the infill, so that 

 , 1 , 2 , 3 , 4 , 5xx i xx i xx i xx i xx i         

 , 1 , 2 , 3 , 4 , 5yy i yy i yy i yy i yy i         (60) 

 , 1 , 2 , 3 , 4 , 5zz i zz i zz i zz i zz i         

Zero in-plane shear is assumed in the infill, leading to 

 , 1 , 2 , 3 , 4 , 5 0xy i xy i xy i xy i xy i          (61) 

Two additional displacement conformity equations are introduced to accommodate the deformation of the 

infill. They read: 

 

    

    

, , 1 , 2 , , 1 , 2

, 1 , 2 , 3 , 1 , 2 , 3

2 2 2 2 4

2 2 2 2 2

xx h m xx u u m xx u m xy h xy u xy u u

xx i m xx i u m xx i m xy i xy i xy i m

l l l l h

l l l l h

     

     

      

     

 (62) 

 

    

    

, , 1 , 2 , , 1 , 2

, , , ,

2 2 2 2 4

2 2 2 2 2 2

xx h m xx u u m xx u m xy h xy u xy u u

xx c m xx b u m xy c xy b m

l l l l h

l l l h

     

   

      

   

  

The total cell strain in the horizontal and vertical direction remains the same. The strain in the transversal 

direction is now defined as: 
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    , , 2 2 2zz zz h u zz i i u it t t t      (63) 

3.5.2 Cell Subjected to Shear Stress 

For xy shear the same assumptions as for the running bond cell apply, although several additional 

assumptions are needed. Based on these assumptions the equilibrium equations are again adjusted. 

Constant shear strain is assumed in the infill, so that  

 , 1 , 2 , 3 , 4 , 5xy i xy i xy i xy i xy i          (64) 

The shear stress equilibrium conditions at the top face and at a horizontal cross-section across the middle of 

the cell are expressed as  

  

     , , 1 , 2 , 1 , 2 , 3

2 2 2

2 2 2 2 2 2 2 2 2

xy m u u i

xy h m xy u u m xy u m u xy i m xy i u m xy i m i

l l t t
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

     

  

      
 (65) 

  

     ,c ,b ,c , 4 , 5 , 4

2 2 2

2 2 2 2 2 2 2 2 2
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l l t t
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

     

  

      
 

Deformation conformity is assumed between the leaves, leading to 

 , 1 , 1 , 2 , 1 , 4 , 32 2 2 2xy h u xy c m xy u u xy i u xy i m xy i uh h h h h h           (66) 

For xz shear the deformation of the cell is dominated by the deformation of the infill. Therefore, the system 

of equations and the assumptions need to be adjusted. 

The shear stress equilibrium conditions at the back of the cell and at a vertical cross-section at the middle of 

the cell are as follows: 

 
  
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2 2

2 2 2 2 2 2 2 2
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  

     
 

 
  

   , 1 , , 1 , 2 , 5 , 2
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xz m u u i

xz u u xz b m xz u u u xz i u xz i m xz i u i

h h t t
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

     

  

    
 (67) 
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 The stress assumptions read: 

 , 1 , 2 , 3 , 4 , 5xz i xz i xz i xz i xz i         (68) 

The strain assumptions read: 

 , , 1 , 2 , ,bxz h xz u xz u xz c xz         (69) 

The total strain of the cell is defined as: 

    , , 1 2 2xz xz h u xz i i u it t t t      (70) 

For yz shear the deformation of the cell is again dominated by the deformation of the infill when its elastic 

modulus is low. However, the deformation profile changes for higher values of the Young’s modulus of the 

infill since in this case the deformation of the outer leaf becomes more significant. Overall, the deformation is 

still dominated by the different stiffness between the outer and inner leaves. 

The stress equilibrium conditions at the top, a horizontal cross section at mid height and at the front of the 

cell are as follows: 
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  
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      
 (71) 

 
  

     , , 1 , 2 , ,
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

    

  

     
 

The stress assumptions read: 

 , 1 ,yz i yz h   
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 , 2 , 1yz i yz u   

 , 3 , 2yz i yz u   (72) 

 , 4 ,yz i yz c   

 , 5 ,yz i yz b   

Deformation conformity conditions read: 

 , , 1 , 2 , 32 2xz h u xz t i xz u u xz t it t t t       

 , , , 2 , 1 , , 12 2 2 2xz h u xz c m xz u u xz u u xz b m xz u uh h h h h h           (73) 

Since deformation conformity is not rigidly imposed, the total strain of the cell is defined according to the 

geometrical average of the cuboids participating in the total deformation of the cell according to 
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 (74) 

3.6  Stack Bond Pillar 

For the stack bond pillar model the system of equations developed by Haller for vertical normal stress is 

used [22].  

According to Haller [20], the horizontal and transversal deformation equality of the two components reads: 

 , ,xx u xx b  and , ,zz u zz b   (75) 

The horizontal and transversal stress equilibrium reads: 
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   , ,xx m u xx u u xx b mh h h h     and   , ,zz m u zz u u zz b mh h h h      (76) 

The vertical stress equilibrium demands that both components develop vertical stress equal to the external 

load according to 

 , ,yy u yy b yy     (77) 

The total vertical strain of the cell is 

    , ,2 2 2 2yy yy u u yy b m u mh h h h      (78) 

3.7  English Bond Pillar 

Shear stresses in the components are disregarded for applied normal stress. Normal strain conformity in the 

cell is achieved by assuming 

 , 1 , 1 , 3 , 2 , 2 , 4xx u xx b xx u xx h xx c xx u          and , 2 , 1 , 1 , 4 , 3 , 5xx u xx c xx h xx c xx c xx c           

 , 3 , 1 , 4 , 5yy u yy h yy u yy c      , , 1 , 1 , 2 , 3yy b yy c yy c yy c      and , 2 , 4 , 1 , 2yy u yy c yy u yy h       (79) 

 , 2 , 1 , 1 , 1 , 1 , 3zz u zz c zz h zz u zz b zz u          and , 4 , 3 , 5 , 2 , 2 , 4zz c zz c zz c zz h zz c zz u           

Normal stress equilibrium in the horizontal, vertical and transversal directions is expressed as  
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 
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  

        , 3 , 4 , 1 , 2 , 1 , 2
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 

       
 

         , 3 , 1 , 5 , 42 2 2 2 / 2 2 2 2 2 2 2yy u u yy u u m yy h m u m yy c m yy u u m ml l l l t l l l l l t          
 

         , 1 , 1 , 3 , 22 2 2 2 / 2 2 2 2 2 2 2yy u u yy b u m yy c m u m yy c m yy c u m ml l l l t l l l l l t          
(80) 
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         , 1 , 2 , 4 , 22 2 2 2 / 2 2 2 2 2 2 2yy u u yy u u m yy u m u m yy c m yy h u m ml l l l t l l l l l t          
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 
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        , 4 , 5 , 2 , 3 , 2 , 4
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 

       
 

The total vertical strain of the cell is 

    , 3 , 1 , 12 2 2 2yy yy u u yy b m yy u u u m uh h h h h h         (81) 

3.8  Calculation 

For linear elastic analysis the solution from which the elastic moduli of the cell are derived can be 

accomplished in a single analysis step by solving the linear system of equations derived from the above 

expressions. For the application of normal stress, the systems need to be solved for the unknown normal stresses 

and strains and shear stresses and strains, where the latter two are considered. For the application of shear stress, 

the systems need to be solved for the arising shear stresses and strains. 

For normal stress loading, the unknowns include three normal stresses, three normal strains, one shear stress 

and one shear strain value for each cuboid. However, in the stack bond wall, the stack bond pillar and the 

English bond pillar models shear stress and strain unknowns are not included. In summary, for normal stress 

loading, the stack bond wall system, consisting of four cuboids, is solved for 24 unknowns, the running bond 

wall for 40 unknowns for its five cuboids, the Flemish bond wall for 128 unknowns for its sixteen cuboids and 

the three-leaf wall is solved for 80 unknowns arising from ten cuboids. The stack bond pillar has two cuboids 

and its system has 12 unknowns and the English bond pillar has twelve cuboids resulting in a system of 72 

unknowns. For shear stress loading each cuboid has one shear stress and one shear strain unknown components. 

Therefore, the number of unknowns is: 8 for the stack bond wall, 10 for the running bond wall, 32 for the 

Flemish bond wall and 20 for the three-leaf wall model. 
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Overall, obtaining closed form expressions for the stresses and strains in the cuboids, as well as for the 

elastic moduli of the cells, under conditions of applied normal stress is extremely difficult even for the simple 

case of stack bond masonry. Expressions for the shear moduli of the cells are far easier to be obtained due to the 

much smaller number of unknowns. However, the linear systems of equations can be solved with very little 

effort using simple linear algebra or any basic symbolic math software. 

4.  Verification of the Model 
The capacity of the model to predict the elastic properties of masonry cells under normal and shear loading 

is initially evaluated through a comparison with the results obtained from FE analyses. The meshes used for this 

verification are shown in Figure 7. Apart from the comparison between the results obtained from the proposed 

model and the FE analyses, it is desirable to compare the two approaches in terms of computational cost. 

The masonry unit cell is supposed to represent a volume of masonry inside an extended composite 

continuum. Therefore, boundary conditions assuring displacement conformity and periodicity at the cell faces 

need to be applied. Stress distribution in the constituents of the composite is not uniform but rather depends on 

the relative elasticity parameters of the involved components. The imposed boundary conditions ensure that the 

distribution of stress in the components is based on strain and deformation compatibility under normal and shear 

loading. 

Periodicity conditions for a cell shown in Figure 8a are imposed by tying the displacements of nodes in 

opposite faces of the FE model. The tyings can be described as keeping the distance between two pairs of nodes 

equal, specifying a number of controlling nodes: p1, p2, p3, p4 and p5. These controlling nodes also serve to 

fully describe the deformations necessary for the derivation of the elastic properties of the cell. Therefore the 

displacement of a node in face i2 or j2 for the application of a normal stress in the i direction or a shear stress in 

the ij plane can be derived from the displacement of the node in the opposite face i1 or j1 and the displacement 

of node p1, p2 and p3 as follows:  

 2 1 2 1i i p pd d d d    (82) 

 2 1 3 1j j p pd d d d    (83) 



 31 

where dp1, dp2 and dp3 are the displacement vectors of nodes p1, p2 and p3 in the ij plane and di1, di2, dj1 and 

dj2 are the displacement vectors of a node in faces i1, i2, j1 and j2 in the ij plane. Equal displacements in the k 

direction are imposed at the nodes of each of the external faces parallel to the ij plane for both applied normal 

and shear stress. 

The elastic properties of the composite cell may be derived by registered displacements in the above 

designated controlling nodes, where ,pn id  is equal to the displacement of node n in direction i. The total 

dimension of the cell in each principal direction i (horizontal, vertical and transversal) is designated as Di. The 

Young’s moduli and the Poisson’s ratios of the cell may be calculated from 
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and 
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where di, dj  and dk are the relative displacements between two opposing faces in the i, j or k direction 

respectively, which can be expressed by the difference in displacement of opposing controlling nodes in a given 

direction. 

The shear modulus of the cell is equal to 
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 (86) 

The deformation profile of the cell under normal and shear applied stress is shown in Figure 8b and c. 
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A parametric investigation is conducted in order to verify the accuracy of the models for a wide range of 

ratios of unit-to-mortar and mortar-to-infill Young’s modulus, as shown in Table 1. These properties and 

dimensions have been applied to all typologies of masonry under study. The parametric investigation of the 

three-leaf wall is conducted by assuming a ratio of 30 for the unit-to-mortar Young’s modulus and altering the 

Young’s modulus of the infill ranging from highly deformable to stiffer than the outer leaf. The wall models 

have been tested in all normal and shear directions and the pillar models have been tested for vertical loading. 

Finally, a comparison is made between the results obtained by the model and experimental results drawn 

from the existing literature. 

5.  Results 

5.1  Parametric Investigation 

5.1.1 Overview 

The analytical approach produced elastic results nearly identical to those obtained from FE analysis for all 

models and for almost the entire range of material properties. The Young’s moduli and the Poisson’s ratios of 

the masonry composites were calculated with great accuracy, with the differences being restricted to a number 

of shear moduli in out-off-plane loading. 

The computational cost of the analytical models is negligible, the results being produced practically 

instantaneously on an ordinary computer, even for the largest systems of equations. The FE models required a 

computational time ranging from several seconds to a few minutes for the production of the results. The results 

of the parametric investigation and their comparison with FEM calculations are illustrated in Figure 9 through 

Figure 13. 

The Young’s moduli and Poisson’s ratios for the stack bond case (Figure 9) are very well calculated. The 

shear moduli in the xy and xz planes are very similar due to the existence of the continuous bed mortar joint. The 

in-plane shear modulus is well approximated, while the two out-off-plane moduli are slightly overestimated by 

the model. 
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An interesting phenomenon is the tendency of the horizontal and vertical Young’s moduli to be drastically 

reduced for a reduction of the Young’s modulus of the mortar with the transversal modulus being reduced only 

slightly. For high values of the mortar modulus the three elastic moduli are of the same order of magnitude 

while for low values the transversal modulus is much higher. Certain conclusions may be drawn from this 

observation concerning the applicability of plane analysis methods for stack bond masonry structures. 

According to the relative deformability in the in-plane and out-of-plane directions, plane stress analysis may 

provide reasonable results for very rigid mortars and plane strain for very deformable mortars. 

The vertical and transversal Young’s modulus for running bond is almost exactly the same as for stack 

bond, but running bond has a higher horizontal modulus due to the staggered non-continuous layout of the 

horizontal joints, as illustrated in Figure 10. The model slightly underestimates the shear modulus in the xz plane 

for highly deformable mortars. Overall, the results are not drastically different from the ones obtained for stack 

bond masonry, although the accuracy of the model is slightly higher in the stack bond case. 

Similar observations as those made for the relative deformability of the stack bond masonry in the in-plane 

and out-of-plane directions can be made for running bond masonry as well. The fact that both typologies are 

single leaf structures with constant geometry across the thickness of the cell indicate that this trend of the 

transversal Young’s modulus of masonry to become much higher than the two in-plane ones may be shared by 

other singe leaf typologies. This assumption could be checked by further FEM or analytical calculations. 

At this point a comparison may be here made between the proposed model and the model proposed by 

Zucchini & Lourenço [15] for running bond masonry. The models are nearly equally accurate for the prediction 

of the Young’s modulus in all three orthogonal directions and the νxy, νxz and νyz Poisson’s ratios: the average 

absolute error is 1.4% for the proposed model, with the maximum absolute error being 6%, while the Zucchini 

& Lourenço model has a 1.3% average and 6% maximum absolute error. For the prediction of the shear 

modulus the proposed model has an average absolute error of 3% and a maximum absolute error of 18%, which 

is registered for the Gxz modulus for Eu/Em = 1000. The Zucchini & Lourenço model has a maximum error of 

only 5%, again for the Gxz modulus, which is registered for the Gxz modulus for Eu/Em = 10. The reason for the 

reduced accuracy of the proposed model is the inclusion of shear stresses and strains only in the plane of the 
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applied external stress, whereas the Zucchini & Lourenço model includes shear stresses and strains in the yz 

plane in the bed joint. 

In the Flemish bond wall case (Figure 11), due to the existence of the transversal joint, decreasing the 

Young’s modulus of the mortar results in a decrease in the transversal Young’s modulus of the cell. The 

discrepancy between the numerical and analytical results for the shear modulus in xz shear are similar to those in 

the previous cases, but all the remaining elastic properties are very well calculated. 

The transversal joint eliminates the distinct higher rigidity in the transversal direction for highly deformable 

mortars noted in the stack bond and running bond typologies. However, the complex geometry across the 

thickness of the structure would render the plane stress and plane strain methods of analysis inappropriate by 

definition. 

The model for the three-leaf wall case, whose results are shown in Figure 12, is capable of approximating 

the FEM results very well for the entire range of values. Of interest is the shift in the deformation profile of the 

cell under yz shear as the Young’s modulus of the infill increases. For low values the obtained shear modulus is 

equal to the modulus in the xz plane and for higher values it is equal to the modulus in the xy plane. This is due 

to the deformability of the infill dominating the global response when highly deformable. 

The horizontal and vertical Young’s modulus and the in-plane shear modulus are only slightly affected by a 

reduction of the Young’s modulus of the infill. The rest of the elastic moduli are greatly reduced. The infill 

influences the behavior of the masonry in a similar way to a continuous vertical or horizontal joint but in a 

transversal orientation. 

The analytical models for the stack bond and English bond pillar, shown in Figure 13, produced results 

identical to the ones obtained from FE analyses. The deformation of the bed joint under vertical loading 

dominates the response in terms of global elastic stiffness and, as such, the existence of head and cross joints in 

the English bond pillar case has very small influence on the final results. 
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5.2  Case Studies 

The modeling method has been applied to experimental cases consisting of stack bond, running bond and 

Flemish bond masonry composites found after an extensive literature review on masonry in compression [23–

36]. Only case studies providing experimental values for the Young’s modulus of the constituents have been 

considered. The cases and the analysis results are summarized in Table 2 through Table 5.The cases selected 

represent a wider range of material properties and dimensions that those considered in the parametric study. In a 

number of cases the Poisson’s ratio is not given in the cited work and, therefore, a nominal value is used. In 

these cases, the value of the Poisson’s ratio is indicated in brackets. The average value of the measured 

Poisson’s ratio in the set of case studies is 0.15 with values ranging from 0.07 to 0.2. For the cases in which the 

value was unknown, a value was used based on the type of mortar used. Lower values were used for stronger 

mortars and higher values for weaker mortars in order to represent the lower deformability of the former and the 

higher deformability of the latter. In [23,31] a weak lime mortar was used, so a value of 0.25 is adopted. For 

[24,25,29,30,35], for which a cement/lime mortar was used, a value of 0.20 is adopted. In [33,34] Portland 

cement mortars were used and a value of 0.15 is used. 

Again, the case studies have also been analyzed using FE models for the purpose of comparing the accuracy 

of the results and the computational cost. 

The analytical model gives values nearly identical to the values obtained through FE analysis for the 

majority of the cases. The comparison with the experimental values shows significant agreement as well, 

especially for the stack bond pillar and running bond wall cases. The results of the case studies are illustrated in 

Figure 14. 

6.  Conclusions 
Methods for the derivation of elastic and inelastic properties of masonry composites using micro-modeling 

techniques for the analysis of masonry periodic unit cells are presented and tested against results obtained from 

the analysis of corresponding FE cells and experimental results. 

The results on the elastic properties of several types of masonry composites for a wide range of material 

combinations are well approximated using an analytical model based on simple calculations. Using FE 
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calculations as a benchmark, the elastic anisotropic behavior of masonry due to the interaction of isotropic 

components arranged in various typologies in a periodic structure is well simulated. Additionally, the 

comparison between the results of the proposed model and the available experimental results is fair. 

Finally, the use of analytical models is shown to be very advantageous compared to FE calculations in terms 

of computational cost and model preparation time. The means required to implement the models for the 

derivation of the elastic properties of masonry only include simple linear algebra software. 

The extension of the modelling technique herein presented for the nonlinear analysis of masonry walls and 

the prediction of their nonlinear properties will be presented in a following paper.   
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Notation 

uE   Young’s modulus of units 

mE   Young’s modulus of mortar 

iE   Young’s modulus of infill 

,c iE   Young’s modulus of masonry in direction i 

uG   Shear modulus of units 

,c ijG   Shear modulus of masonry in plane ij 
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u   Poisson’s ratio of units 

m   Poisson’s ratio of mortar 

i   Poisson’s ratio of infill 

,c ij   Poisson’s ratio of masonry: contraction in direction j for applied extension in direction i 

ii   Normal stress in direction i 

ij   Shear stress in plane ij 

uh   Height of units 

ul   Length of units 

ut   Width of units 

mh   Thickness of mortar bed joint 

ml   Thickness of mortar head joint 

mt   Thickness of transversal mortar joint 

it   Transversal thickness of infill 

iD   Dimension of cell in direction i 

id   Deformation of cell in direction i  

pnd   Displacement vector of node n  

,pn id   Displacement of node n in direction i  
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ij

id   Deformation of cuboid in direction i due to shear strain in plane ij 
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 Figure Captions 

 Figure 1 Derivation of wall cells: full wall, repeating pattern and cell derived from geometrical symmetry of repeating 

pattern. (a) Stack bond wall, (b) running bond wall, (c) Flemish bond wall and (d) three-leaf wall with running bond outer leaf. 

Figure 2 Derivation of pillar cells: full wall, repeating pattern and cell derived from geometrical symmetry of repeating 

pattern. (a) stack bond pillar and, (b) English bond pillar. 

Figure 3 Discretization of periodic unit cells: (a) stack bond wall, (b) running bond wall, (c) Flemish bond wall, (d) 

three-leaf wall, (e) stack bond pillar and (f) English bond pillar. 

Figure 4 Discretization and component designation of single leaf wall periodic unit cells: (a) stack bond and (b) running 

bond. 

Figure 5 Discretization and component designation of multi leaf wall periodic unit cells: (a) Flemish bond and (b) three-

leaf wall with running bond outer leaf. 

Figure 6 Discretization and component designation of pillar periodic unit cells: (a) stack bond and (b) English bond. 

Figure 7 Finite element models of wall periodic unit cells: (a) stack bond wall, (b) running bond wall, (c) Flemish bond 

wall, (d) three-leaf wall, (e) stack bond pillar and (f) English bond pillar cell. 
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Figure 8 (a) FE model faces and nodes for definition of periodicity conditions. (b) Deformation profile of cell under 

uniaxial normal stress and (c) under pure shear stress. 

Figure 9 Comparison between analytical model and numerical results for stack bond wall. 

Figure 10 Comparison between analytical model and numerical results for running bond wall. 

Figure 11 Comparison between analytical model and numerical results for Flemish bond wall. 

Figure 12 Comparison between analytical model and numerical results for three-leaf wall with running bond exterior 

leaves. 

Figure 13 Comparison between analytical model and numerical results for (a) stack bond pillar and (b) English bond 

pillar. 

Figure 14 Comparison of vertical stiffness according to (a) FEM and analytical results and (b) experimental and 

analytical results. The dotted lines indicate the limits of 10% deviation between the compared values. 

Table Captions 

Table 1 Material properties and dimensions for linear elastic parametric analysis. 

Table 2 Stack bond pillar cases: Comparison between experimental, FE and analytical results. Assumed values in 

curly brackets. 

Table 3 Running bond wall cases: Comparison between experimental, FE and analytical results. Assumed values in 

curly brackets. 

Table 4 Flemish bond wall cases: Comparison between experimental, FE and analytical results. 

Table 5 English bond pillar cases: Comparison between experimental, FE and analytical results. Assumed values in 

curly brackets. 
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Case Ref. 
Eu νu hu lu tu Em νm hm lm tm Ec, exp Ec, FEM Ec, Analytical 

[MPa] [-] [mm] [mm] [mm] [MPa] [-] [mm] [mm] [mm] [MPa] [MPa] [MPa] 

S1 [23] 4200 0.16 45 290 140 125 {0.25} 10 - - 729 814 705 

S2 [24] 976 {0.15} 75 230 105 1500 {0.20} 12 - - 467 1016 1025 

S3 [24] 3372 {0.15} 75 230 105 8568 {0.20} 12 - - 2393 3525 3692 

S4 [25] 135 {0.15} 52 212 104 795 {0.20} 10 - - 207 154 154 

S5 [23] 4200 0.16 45 290 140 225 {0.25} 10 - - 1181 1157 1138 

S6 [26] 5500 0.11 113 240 175 2765 0.07 30 - - 4200 4702 4555 

S7 [24] 3372 {0.15} 75 230 105 5450 {0.20} 12 - - 3135 3628 3560 

S8 [24] 976 {0.15} 75 230 105 238 {0.20} 12 - - 379 735 701 

S9 [27] 2000 0.10 55 250 110 1700 0.20 10 - - 1936 1950 1956 

S10 [28] 7500 0.07 65 40 40 220 0.20 20 - - 878 1475 937 

S11 [29] 12000 0.20 45 285 130 4200 {0.20} 10 - - 10000 9761 9110 

S12 [26] 5500 0.11 238 252 241 2765 0.07 12 - - 5517 5330 5250 

S13 [30] 16700 0.15 52 210 100 2100 0.22 13 - - 6800 8294 7486 

S14 [31] 5756 {0.15} 55 125 120 5487 {0.25} 10 - - 2132 5906 5736 

S15 [24] 976 {0.15} 75 230 105 8568 {0.20} 12 - - 365 1098 1137 

S16 [32] 8000 0.08 100 305 143 6600 0.19 30 - - 5900 7013 7687 

S17 [28] 7500 0.07 65 40 40 220 0.20 10 - - 1938 2380 1509 

S18 24] 3372 {0.15} 75 230 105 7083 {0.20} 12 - - 3700 3585 3641 

S19 [33] 5300 {0.15} 75 230 110 545 {0.15} 10 - - 2239 3034 2679 

S20 [34] 12930 {0.15} 36 123 60 9590 {0.15} 7 - - 8000 12601 12244 
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Case Ref. 
Eu νu hu lu tu Em νm hm lm tm Ec, exp Ec, FEM Ec, Analytical 

[MPa] [-] [mm] [mm] [mm] [MPa] [-] [mm] [mm] [mm] [MPa] [MPa] [MPa] 

R1 [24]  3372 {0.15} 75 230 105 5450 {0.20} 12 12 - 5232 3590 3660 

R2 [30] 4000 0.13 50 206 96 1650 {0.20} 12.5 10 - 3200 3095 3114 

R3 [24] 976 {0.15} 75 230 105 238 {0.20} 12 12 - 580 717 685 

R4 [24] 976 {0.15} 75 230 105 1500 {0.20} 12 12 - 735 1033 1050 

R5 [24] 3372 {0.15} 75 230 105 7083 {0.20} 12 12 - 4824 3702 3825 

R6 [24] 3372 {0.15} 75 230 105 8568 {0.20} 12 12 - 5024 3782 3863 

R7 [35] 6740 0.167 35 110 50 970 {0.20} 5 5 - 3700 3949 3936 

R8 [24] 976 {0.15} 75 230 105 8568 {0.20} 12 12 - 400 1254 1561 
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Case Ref. 
Eu νu hu lu tu Em νm hm lm tm Ec, exp Ec, FEM Ec, Analytical 

[MPa] [-] [mm] [mm] [mm] [MPa] [-] [mm] [mm] [mm] [MPa] [MPa] [MPa] 

F1 [36] 4865 0.09 55 250 120 1180 0.06 10 10 10 1651 3107 3178 

F2 [36] 4865 0.09 55 250 120 5650 0.09 10 10 10 3833 5002 5025 

F3 [36] 4865 0.09 55 250 120 17760 0.12 10 10 10 4567 6390 6547 
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Case Ref. 
Eu νu hu lu tu Em νm hm lm tm Ec, exp Ec, FEM Ec, Analytical 

[MPa] [-] [mm] [mm] [mm] [MPa] [-] [mm] [mm] [mm] [MPa] [MPa] [MPa] 

P1 [24] 3372 {0.15} 75 230 105 8568 {0.20} 12 20 20 3317 4005 4157 

P2 [24] 3372 {0.15} 75 230 105 5450 {0.20} 12 20 20 3789 3684 3736 

P3 [24] 976 {0.15} 75 230 105 238 {0.20} 12 20 20 377 690 663 

P4 [24] 3372 {0.15} 75 230 105 7083 {0.20} 12 20 20 3677 3865 3966 

P5 [24] 976 {0.15} 75 230 105 1500 {0.20} 12 20 20 381 1056 1070 

P6 [24] 976 {0.15} 75 230 105 8568 {0.20} 12 20 20 376 1510 1869 

P7 [28] 7500 0.07 65 290 150 220 0.2 10 10 10 661 2007 1500 
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