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Abstract 

The constitutive behavior of a medium carbon microalloyed steel during hot working over a 

wide range of temperatures and strain rates was studied using the Johnson-Cook (JC) model, the 

Hollomon equation, and their modifications. The original JC model was not able to predict the 

softening part of the flow curves and the subsequent modifications of the JC model to account 

for the softening stage and the strain dependency of constants were not satisfactory owing to the 

uncoupled nature of the JC approach regarding strain rate and temperature. The coupled effect 

of these variables was considered in the form of Zener-Hollomon parameter (Z) and the 

constants of the Hollomon equation were related to Z. This modification was found to be useful 

for the hardening stage but the overall consistency between the experimental flow curves and 

the calculated ones was not good. Therefore, a simple constitutive model was proposed in the 

current work, in which by utilization of the peak stress and strain into the Hollomon equation, 

good prediction abilities were attained. Conclusively, the proposed model can be considered as 

an efficient one for modeling and prediction of hot deformation flow curves. 
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1. Introduction

Microalloyed or High Strength Low Alloy (HSLA) steels constitute an important 

category of steels estimated to be around 12% of total world steel production, which 

have been increasingly used in a variety of automotive components such as connecting 

rods, wheel hubs, suspension systems, crankshafts and driveline components [1-3]. 

Hot deformation is an important step in the production of microalloyed steels, which 

facilitates shaping, precipitation control, and grain refinement to achieve desired 

mechanical properties. Hot deformation in austenite recrystallization region refines 

coarse grains by repeated static recrystallization in the interpass times and also by 

dynamic recrystallization during deformation. Moreover, deformation in the non-

recrystallization region increases ferrite nucleation sites through pancaking of austenite 

grains and creation of deformation bands. In this way, a fine microstructure will be 

produced after transformation [4,5]. 

In order to improve the properties, the parameters of the forming process must be 

controlled carefully. The understanding of the microstructural behavior of the steel 

under consideration is therefore required, together with the constitutive equations 

describing material flow [6-9]. 

Industrial hot deformation processing such as rolling for these steels is conducted in the 

temperature range of stability of austenite phase. Due to low stacking fault energy of 

austenite, the major restoration process during hot deformation is dynamic 

recrystallization (DRX) [10-14]. DRX is an important phenomenon for controlling 

microstructure and mechanical properties in hot working. The modeling of hot flow 

stress and the prediction of flow curves are important in metal-forming processes from 

the mechanical and metallurgical standpoints because this is an essential part of the 
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numerical simulations in finite element codes. As a result, considerable researches have 

been focused on this subject in recent years [6,15-17]. 

The aim of this work is to introduce a simple but effective constitutive equation for 

modeling the flow curves during hot working of a medium carbon microalloyed steel. 

 

2. Experimental Materials and Procedures 

The chemical composition of the investigated steel is listed in Table 1. Cylindrical 

specimens with 11.4 mm in height and 7.6 mm in diameter were prepared from the 

microalloyed steel for the hot compression test, which carried out at deformation 

temperatures in the range of 900 to 1150 °C (1173 to 1423 K) and strain rates from 

0.0001 to 3 s
-1

. Previous to every compression tests, the samples were soaked at 1150 ºC 

to put the microalloying elements into solution. The elastic region of flow curves was 

subtracted for subsequent flow stress analyses and modeling. More information about 

the hot deformation experiments on this material has been reported elsewhere [3,18] and 

are here revisited. 

 

Table 1: The chemical composition of the investigated steel. 

Element C Mn Si P S V Al Ti N 

Wt.% 0.34 1.52 0.72 0.025 0.025 0.083 0.0145 0.018 0.0114 

 

3. Results and discussion 

3.1. Flow curves 

The obtained flow curves are shown in Fig. 1. These curves illustrate the conventional 

DRX behavior, showing a broad peak with subsequent flow softening. During initial 

stages of deformation, the dislocations multiplication and interaction result in an 
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increase in the flow stress, during which dynamic recovery is underway. After the 

dislocation density reaches a critical value, the DRX becomes operative and because of 

softening that occurs by DRX process, the flow curve experiences a peak and afterward, 

a flow softening region appears and continues till reaching the steady-state stress. 

 

Fig. 1: The obtained flow curves. 
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The peak stress becomes less obvious when the strain rate is increased or the 

deformation temperature is decreased. However, the cyclic or multiple peaks DRX can 

be observed for high temperatures and low strain rates. The concurrent effect of 

temperature and strain rate can be represented by the Zener–Hollomon (Z) parameter in 

the form of )/exp( RTQZ  , where Q is the deformation activation energy, R is the 

universal gas constant (8.314 J.mol
−1

.K
−1

), and T is the absolute temperature (in 

Kelvin). The value of Q was taken as 270 kJ/mol, which is the value reported for the 

lattice self-diffusion activation energy in austenite [6,18]. As shown in Fig. 1, by 

increasing Z (decreasing temperature and increasing strain rate), the stress values 

increases. This is also illustrated in Fig. 2 for peak stresses based on a power law 

relationship and it can be seen that a linear relation exists between lnσp and lnZ and this 

shows that the Z parameter can appropriately predict the effect of deformation 

temperature and strain rate on the flow stress. This point will be revisited later. In the 

following sections, different models will be applied to model the flow curves. 

 

 

Fig. 2: The power law constitutive analysis. 
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3.2. The Johnson-Cook (JC) model 

The most common form of constitutive equation by consideration of the effects of 

strain, strain rate, and deformation temperature has been proposed by Johnson and Cook 

[19] as shown below: 
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where 
r  and Tr, Tm, and σ0r are the reference strain rate, reference temperature, the 

melting point of the material (1538 °C in the present steel), and the yield stress at 

reference temperature and strain rate, respectively. Moreover, since the elastic strain can 

be neglected, it is usual to use the total strain ( ) instead the plastic strain (
plastic ). 

However, it should be noted that the correct procedure is to remove the σ0r term while 

applying the total strain ( ) into the latter equation [6,20]. 

In the Johnson-Cook equation, the three groups of terms in parentheses represent work-

hardening (based on the constants n and B), strain rate (based on the constant C), and 

thermal (based on the constant q) effects, respectively [6]. In the current work, the 

lowest temperature and strain rate were considered as the reference values. Therefore, Tr 

= 900 °C and 
r = 0.0001 s

-1 
and it was found that σ0r = 21.7 MPa. At reference 

temperature and strain rate, Eq. (1) simplifies as n

r B  0
 or n

r B  0
. Taking 

natural logarithm from each sides of the latter equation gives  lnln)ln( 0 nBr  . 

Therefore, the slope and the intercept of the plot of )ln( 0r   against ln  (Fig. 3a) 

was used for obtaining the values of n = 0.128 and lnB = 3.602 (B = 36.67 MPa). 

At the reference temperature, Eq. (1) can also be simplified as 

  )0001.0/ln(167.367.21/ 128.0  C . Therefore, the slope of the plot of 
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 128.067.367.21/    vs. )0001.0/ln( at constant strains (0.1 to 0.7 at an interval of 0.1) 

and various strain rates by consideration of the intercept of 1 gives the value of C = 

0.221 as shown in Fig. 3b. 

At the reference strain rate, Eq. (1) is simplified as 

   qT 638/)1173(67.367.21/1 128.0   . Taking natural logarithm from both sides of 

this equation gives     638/)1173(ln67.367.21/1ln 128.0  Tq . Therefore, the 

slope of the plot of   128.067.367.21/1ln    vs.  638/)1173(ln T  at constant strains 

(0.1 to 0.7 at an interval of 0.1) and various temperatures by consideration of the 

intercept of 0 gives the value of q = 0.444 as shown in Fig. 3c. Therefore, the JC 

equation can be summarized as follows: 
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As it is clear from Fig. 3b and c, the consistency of the linear fitting method to obtain 

the values of C and q is very poor and C and q are dependent on strain. This dependency 

is in contrast to the hypothesis behind the JC model. This is a prevalent problem of the 

JC model and similar results have been also reported for other materials [6,21-23]. 

Based on these results, in the following section, the constants C and q were considered 

as functions of strain to address this issue. 

The comparison between the experimental flow curves and predicted ones is shown in 

Fig. 4. As it is apparent, the original JC model, cannot adequately predict the flow 

curves at hot working conditions. When the difference between a given testing and the 

reference conditions increases, a significant deviation will be resulted and the prediction 



  

 8 

ability will be impaired. Moreover, due to the parabolic form of the model, the original 

JC equation cannot represent the softening stage resulted form DRX. Therefore, the 

Ludwik form in the first parenthesis should be applied separately for hardening and 

softening stages. As a result, two values for n and B should be considered. 

 

 

Fig. 3: Plots used to determine the constants of the original JC model. 
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Fig. 4: Comparison between the experimental and the calculated flow curves by the 

original JC model. 

 

3.3. The modified JC model 

To address the problems of the original JC model, two values for n and B were 

considered before and after the peak stress (n1, n2, B1, B2) and the constants C and q 

were considered to be strain dependent. The required plots for determination of n and B 

values are shown in Fig. 5a and 5b, which resulted in the values of n1 = 0.418, n2 = -

0.143, B1 = 66.93, and B2 = 30.37. The next step is attaining C and q as functions of 

strain. For this purpose, the values of C and q were determined at constant strains (0.1 to 

0.7 at an interval of 0.1) as shown in Fig. 5c and the equations  2028.00303.0  C  

and 4894.01391.0  q  resulted. 

The flow curves were calculated by consideration of n1 and B1 before and n2 and B2 

after the peak point of each flow curve and the experimental values of the peak strain 

were used for this distinction. This was also done in the models proposed in Sections 
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3.4 and 3.5. The comparison between calculated flow curves with experimental ones is 

shown in Fig. 6 and, as it is obvious, this method cannot predict adequately either. 

 

Fig. 5: The plots used to determine the constants of the modified JC model. 

 

Fig. 6: Comparison between the experimental and the calculated flow curves by the 

modified JC model. 
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It should be noted that many other modifications were applied but the results were not 

satisfactory. Some of them are (1) higher order polynomial fitting for C and q, (2) 

changing the reference conditions, (3) removing σ0r, (4) substituting the strain rate term 

of  rC   /ln1  with the Fields–Backofen form of  m , (5) neglecting the thermal 

term and consideration of temperature dependency of B, C, and n. 

From this section, it is easy to get that the effect of strain rate and temperature on the 

flow stress cannot be isolated from each other. Therefore, in previous research works, 

more sophisticated modifications were considered. For instance, Vural and Caro [23] 

acknowledged that the amount of strain hardening (B) decreases faster than predicted by 

thermal softening rate in the JC model and subsequently modified the strain-hardening 

coefficient. They also showed that the JC model exhibits unrealistically small strain-rate 

dependence at high temperatures essentially because of completely uncoupled nature of 

strain-rate sensitivity from thermal effects. Therefore, they also modified the strain rate 

sensitivity parameter (C) in order to include enhanced rate sensitivity at elevated 

temperatures, which is observed particularly in quasi-static strain rate regime, and also 

to introduce an enhanced rate-sensitivity in dynamic regime [23]. However, these 

modifications add extra complexities to the model. It can be concluded that a parameter 

that considers the coupled effect of temperature and strain rate should be employed to 

address this problem. As indicated before, the Z parameter is an appropriate one for this 

purpose and by removing the σ0r and relating B and n with Z, the Hollomon equation 

can be evaluated for modeling the flow curves. 
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3.4. Modeling by the Hollomon equation 

To apply the Hollomon equation ( nB  ), n1, n2, B1 and B2 were determined for all 

flow curves and then their relations with Z was plotted in Fig. 7. It can be seen that the Z 

parameter fairly correlates well with the experimentally determined values. The 

obtained equations are also shown in Fig. 7 and it is obvious that, with increasing Z, the 

values of the strength coefficients B1 and B2 increase. 

The comparison between the calculated flow curves with experimental ones is shown in 

Fig. 8 and although certain accuracy is noticed in the hardening stage, the flow stress 

prediction after the peak value (softening region) obviously fails. The worst issue of this 

method is the large separation between the two parts of the calculated flow curves, i.e., 

the lack of continuity at the peak stress. Conclusively, it is apparent that a successful 

model should compensate the separation at the peak point. In the following section, a 

new constitutive equation is proposed to address all of the mentioned problems. 
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Fig. 7: Determination of the constants of the Hollomon equation as functions of Z. 

 

Fig. 8: Comparison between the experimental and the calculated flow curves by the 

Hollomon equation. 

 

Before proposing a new approach, it should be noted that Sheng and Shivpuri [24] have 

successfully modeled the hot flow curves by consideration of four different constitutive 

equations for the hardening stage (Hollomon equation by correlating its constants with 

Z using quadratic polynomial fits), stable stage, softening stage (by incorporation of 

peak stress), and steady-state region (by including the strain corresponding to the onset 

of steady-state regime) [24]. While this model can offer good results for different 

portions of flow curves but still add extra complexities to the model. 

 

 

3.5. The proposed constitutive equation 

To solve the problems of the original Hollomon equation, the following equation by 

incorporation of the peak stress (σP) and the corresponding strain (εP) was proposed: 
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n

PP B            (3) 

 

For representation of hardening and softening stages, Eq. (3) was applied to flow data 

before and after the peak point separately, and therefore, the four Z functions of n1, n2, 

B1 and B2 were considered. Based on the formula, at ε = εP, the equation simplifies to σ 

= σP, which remedies the problem of separation at the peak point. Since 
n

PB    is 

always a positive value, the values of σ will be less than σP. In this way, it is anticipated 

that the proposed constitutive equation can appropriately predict the flow curves. 

 

Fig. 9: The plots used to determine the constants of the proposed equation as functions 

of Z. 

 

The obtained equations for n1, n2, B1 and B2 are shown in Fig. 9, and subsequently, the 

flow curves were calculated by consideration of n1 and B1 before and n2 and B2 after the 

peak point of each flow curve and the experimental values of the peak stress and strain 
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were used for these calculations. The comparison between the calculated flow curves 

with experimental ones is shown in Fig. 10 and it can be seen that the consistency 

between the calculated flow stress and the experimental ones are satisfactory and the 

problem of separation at the peak point has vanished. Moreover, this model can 

adequately represent both the hardening and softening regions. The capability of the 

used methods has been summarized in Table 2 for 45 flow curves, by consideration of 

the root mean square error (RMSE) as defined below: 

 





N

i

ii yt
N

RMSE
1

2)(
1

        (4) 

 

where ti and yi are the experimental and calculated values, respectively. The average 

RMSE for the proposed approach is significantly lower than the other methods. This 

confirms the better applicability of the proposed equation (Eq. 3) for flow stress 

calculation, which is expressed in a simple form including typical parameters, i.e. peak 

stress and peak strain, and four Z functions of n1, n2, B1 and B2. It can be deduced that 

the proposed modification of the Hollomon equation with incorporation of the effect of 

the deformation temperature and strain rate into the Z parameter is an effective method 

for modeling of high-temperature flow curves. Nevertheless, it should be noted that due 

to the parabolic form of the Hollomon equation, it is not suitable for representation of 

the steady-state regime, basically. 
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Table 2: The RMSE for the various modeling techniques used in this study. 

Method Original JC Modified JC Hollomon Eq. Proposed Eq. 

RMSE (MPa) 10.1 9.6 12.2 2.8 

 

 

 

Fig. 10: Comparison between the experimental and the calculated flow curves by the 

proposed equation. 

 

4. Conclusions 

The constitutive behavior of medium carbon microalloyed steel during hot working over 

a wide range of temperatures and strain rates was studied using the Johnson-Cook (JC) 

model, the Hollomon equations and their modifications. The following conclusions can 

be drawn from this study: 

(1) The original JC model was not able to predict the softening part of the flow curves 

and the subsequent modifications of the JC model to account for the softening stage and 

strain dependency of the constants were not satisfactory owing to the uncoupled nature 
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of the JC approach regarding strain rate and temperature. The average RMSE for the 

original and the modified JC methods were determined as 10.1 and 9.6, respectively. 

These high values show that the JC model is not an optimized one for modeling and 

prediction of hot deformation flow curves. 

(2) The coupled effect of deformation temperature and strain rate was considered in the 

form of Zener-Hollomon parameter (Z) and the constants of the Hollomon equation 

were related to Z. This was found to be useful for the hardening stage but the overall 

consistency between the experimental flow curves and the calculated ones was not 

good. The worst issue of this method was the large separation between the hardening 

and softening parts of the calculated flow curves at the peak point. 

(3) A simple constitutive model was proposed, in which by utilization of the peak stress 

and strain into the Hollomon equation in the form of 
n

PP B   , very good 

prediction abilities were attained. It was found that the proposed approach with 

incorporation of the effect of the deformation temperature and strain rate into the Z 

parameter and the peak stress and peak strain into the Hollomon equation is an effective 

method for modeling of high-temperature flow curves. 
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Figure Captions 

Fig. 1: The obtained flow curves. 

Fig. 2: The power law constitutive analysis. 

Fig. 3: Plots used to determine the constants of the original JC model. 

Fig. 4: Comparison between the experimental and the calculated flow curves by the 

original JC model. 

Fig. 5: The plots used to determine the constants of the modified JC model. 

Fig. 6: Comparison between the experimental and the calculated flow curves by the 

modified JC model. 

Fig. 7: Determination of the constants of the Hollomon equation as functions of Z. 

Fig. 8: Comparison between the experimental and the calculated flow curves by the 

Hollomon equation. 

Fig. 9: The plots used to determine the constants of the proposed equation as functions 

of Z. 

Fig. 10: Comparison between the experimental and the calculated flow curves by the 

proposed equation. 
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Table Captions 

Table 1: The chemical composition of the investigated steel. 

Table 2: The RMSE for the various modeling techniques used in this study. 
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