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NONLINEAR EQUATIONS FOR FRACTIONAL LAPLACIANS II:

EXISTENCE, UNIQUENESS, AND QUALITATIVE

PROPERTIES OF SOLUTIONS

XAVIER CABRÉ AND YANNICK SIRE

Abstract. This paper, which is the follow-up to part I, concerns the equation
(−Δ)sv + G′(v) = 0 in Rn, with s ∈ (0, 1), where (−Δ)s stands for the
fractional Laplacian—the infinitesimal generator of a Lévy process.

When n = 1, we prove that there exists a layer solution of the equation (i.e.,
an increasing solution with limits ±1 at ±∞) if and only if the potential G has
only two absolute minima in [−1, 1], located at ±1 and satisfying G′(−1) =
G′(1) = 0. Under the additional hypotheses G′′(−1) > 0 and G′′(1) > 0, we
also establish its uniqueness and asymptotic behavior at infinity. Furthermore,
we provide with a concrete, almost explicit, example of layer solution.

For n ≥ 1, we prove some results related to the one-dimensional symmetry
of certain solutions—in the spirit of a well-known conjecture of De Giorgi for
the standard Laplacian.

1. Introduction

This paper, which is a follow-up to our work [9], is devoted to the study of the
nonlinear problem

(1.1) (−Δ)sv = f(v) in R
n,

where s ∈ (0, 1) and

(1.2) (−Δ)sv(x) = Cn,s P.V.

∫
Rn

v(x)− v(x)

|x− x|n+2s
dx

is the fractional Laplacian. In the previous integral, P.V. stands for the Cauchy
principal value and Cn,s is a normalizing constant to guarantee that the symbol of
the resulting operator is |ξ|2s; see [9] for more details. As shown by Caffarelli and
Silvestre [11] (see also section 3 of [9]), this problem is equivalent to the nonlinear
boundary value problem

(1.3)

⎧⎨⎩div (ya ∇u) = 0 in R
n+1
+ ,

(1 + a)
∂u

∂νa
= f(u) on ∂Rn+1

+ ,
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where n ≥ 1, Rn+1
+ = {(x, y) ∈ Rn × R : y > 0} is a halfspace, ∂Rn+1

+ = {y = 0},
u = u(x, y) is real valued, and

∂u

∂νa
= − lim

y→0
ya∂yu

is the generalized exterior normal derivative of u. Points in Rn are denoted by
x = (x1, . . . , xn). The parameter a belongs to (−1, 1) and is related to the power
of the fractional Laplacian (−Δ)s by

a = 1− 2s.

Indeed, Caffarelli and Silvestre [11] proved the following formula relating the frac-
tional Laplacian (−Δ)s to the Dirichlet-to-Neumann operator:

(1.4) (−Δ)s {u(·, 0)} = ds
∂u

∂νa
in R

n = ∂Rn+1
+ ,

where ds is a positive constant depending only on s.
The aim of the present paper is to study some special bounded solutions of (1.1).

The solutions we consider are the so-called layer solutions, i.e., those solutions which
are monotone increasing, connecting −1 to 1 at ∓∞, in one of the x-variables. We
focus on their existence, uniqueness, symmetry and variational properties, as well
as their asymptotic behavior.

In our previous paper [9], we proved a Modica-type estimate which allowed us
to derive a necessary condition on the nonlinearity f for the existence of a layer
solution in R. More precisely, we proved the following result. Here and throughout
the paper, G denotes the potential associated to the nonlinearity, i.e.,

G′ = −f,

which is defined up to an additive constant.

Theorem 1.1 ([9]). Let a ∈ (−1, 1) and f any C1,γ(R) function, for some γ >
max(0, a). Let n = 1 and u be a layer solution of (1.3), that is, a bounded solution
of (1.3) with n = 1 such that ux(·, 0) > 0 in R and u(x, 0) has limits ±1 as
x → ±∞.

Then, for every x ∈ R we have
∫ +∞
0

ta|∇u(x, t)|2dt < ∞ and the Hamiltonian
equality

(1 + a)

∫ +∞

0

1

2
ta

{
u2
x(x, t)− u2

y(x, t)
}
dt = G(u(x, 0))−G(1).

Furthermore, for all y ≥ 0 and x ∈ R we have

(1 + a)

∫ y

0

1

2
ta

{
u2
x(x, t)− u2

y(x, t)
}
dt < G(u(x, 0))−G(1).

In the previous theorem, the last estimate is uniform as s tends to 1, i.e., as
1 + a tends to 0. This led in [9] to the convergence of layers, as s ↑ 1, to a layer of
−v′′ = f(v) in R. In addition, using the Hamiltonian estimates of Theorem 1.1, we
established the following necessary conditions for the existence of a layer in R.

Theorem 1.2 ([9]). Let s ∈ (0, 1) and f any C1,γ(R) function, for some γ >
max(0, 1− 2s). Assume that there exists a layer solution v of

(1.5) (−∂xx)
sv = f(v) in R,
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that is, v is a solution of (1.5) satisfying

v′ > 0 in R and lim
x→±∞

v(x) = ±1.

Then, we have

(1.6) G′(−1) = G′(1) = 0

and

(1.7) G > G(−1) = G(1) in (−1, 1).

In the present paper, we prove that the two necessary conditions in Theorem 1.2
are actually sufficient to ensure the existence of a layer solution in R. Under the
additional hypotheses G′′(−1) > 0 and G′′(1) > 0, we also prove the uniqueness (up
to translations) of a layer solution in R and we establish its asymptotic behavior
at infinity.

To study the asymptotic behavior of the layer solution for a given nonlinearity
f , it will be very useful to have the following almost explicit example of layer
solution for a particular nonlinearity. For every t > 0, a layer solution for some odd
nonlinearity f t

s ∈ C1([−1, 1]) (see Theorem 3.1 below for more details) is provided
by the following function:

(1.8) vts(x) = −1 + 2

∫ x

−∞
ps(t, x) dx =

2

π

∫ ∞

0

sin(xr)

r
e−tr2sdr,

where ps is the fundamental solution of the linear fractional heat equation

∂tw + (−∂xx)
sw = 0, t > 0, x ∈ R.

When s = 1/2, the particular layer solution above agrees with the explicit one
used in [10], namely

vt1/2(x) =
2

π
arctan

x

t
, with f t

1/2(v) =
1

πt
sin(πv).

In [10], J. Solà-Morales and one of the authors studied layer solutions of⎧⎨⎩Δu = 0 in R
n+1
+ ,

∂u

∂ν
= f(u) on ∂Rn+1

+ ,

which corresponds to the case a = 0 (that is, s = 1/2) in (1.3). The goal of our
paper is to generalize this study to any fractional power of the Laplacian between
0 and 1. We will make a great use of the tools developed in [10].

The study of elliptic equations involving fractional powers of the Laplacian ap-
pears to be important in many physical situations in which one has to consider
long-range or anomalous diffusions. From a probabilistic point of view, the frac-
tional Laplacian appears as the infinitesimal generator of a Lévy process (see the
book of Bertoin [6]). In our case, as in [10], we will concentrate on the problem
(1.3) and we will not consider probabilistic aspects.

Problem (1.3) is clearly a degenerate elliptic problem concerning the weight ya.
However, since a ∈ (−1, 1), the weight ya belongs to the Muckenhoupt class of A2

functions, i.e., it satisfies

sup
B

(
1

|B|

∫
B

w)(
1

|B|

∫
B

w−1) ≤ C,
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where w(x, y) = |y|a and B denotes any ball in Rn+1. This fact allows us to develop
a regularity theory for weak solutions of (1.3); see [9].

Another important property of the weight ya is that it just depends on the
extension variable y and not on the tangential variable x. The equation is therefore
invariant under translations in x, which allows the use of the sliding method to
get uniqueness of the layer solution in R, as well as monotonicity of solutions with
limits ±1 at ±∞.

Remark 1.3. Another interesting problem is to consider the existence of monotone
solutions of equation (1.1) connecting v(x2, . . . , xn) at −∞ to v(x2, . . . , xn) at +∞,
where both v and v are solutions of (−Δ)sw = f(w) in Rn−1. We will not address
this problem here, but we believe that the methods developed in the present paper
(and in [9, 10]) allow us to deal with this type of problem.

2. Results

Throughout the paper we will assume that the nonlinearity f is of class C1,γ(R)
for some γ > max(0, 1− 2s). We will denote by G the associated potential, i.e.,

G′ = −f.

The potential G is uniquely defined up to an additive constant.
Let Ps=Ps(x, y) be the Poisson kernel associated to the operator La=div (ya ∇),

with a = 1 − 2s. We then have (see section 3 of [9]): for v a bounded C2
loc(R

n)
function, v is a solution of (1.1) if and only if

u(·, y) = Ps(·, y) ∗ v,

a function having v as trace on ∂Rn+1
+ , is a solution of (1.3) with f replaced by

(1 + a)d−1
s f = 2(1 − s)d−1

s f . Recall that ds is the constant from (1.4). It turns
out that 2(1− s)d−1

s has a positive limit as s ↑ 1. This is the reason why we wrote
problem (1.3) in [9] with the multiplicative constant 1 + a = 2(1 − s) in it; we
wanted uniform estimates as s ↑ 1.

Let us recall some regularity results from [9]. The first one is Lemma 4.4 of [9].

Lemma 2.1 ([9]). Let f be a C1,γ(R) function with γ > max(0, 1−2s). Then, any
bounded solution of

(−Δ)sv = f(v) in R
n

is C2,β(Rn) for some 0 < β < 1 depending only on s and γ.
Furthermore, given s0 > 1/2 there exists 0 < β < 1 depending only on n, s0,

and γ—and hence independent of s—such that for every s > s0,

‖v‖C2,β(Rn) ≤ C

for some constant C depending only on n, s0, ‖f‖C1,γ , and ‖v‖L∞(Rn)—and hence
independent of s ∈ (s0, 1).

In addition, the function defined by u(·, y) = Ps(·, y) ∗ v (where Ps is the Poisson
kernel associated to the operator La) satisfies for every s > s0,

‖u‖
Cβ(Rn+1

+ )
+ ‖∇xu‖Cβ(Rn+1

+ )
+ ‖D2

xu‖Cβ(Rn+1
+ )

≤ C

for some constant C independent of s ∈ (s0, 1), indeed depending only on the same
quantities as the previous one.
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Following [10], we introduce

B+
R = {(x, y) ∈ R

n+1 : y > 0, |(x, y)| < R},
Γ0
R = {(x, 0) ∈ ∂Rn+1

+ : |x| < R},
Γ+
R = {(x, y) ∈ R

n+1 : y ≥ 0, |(x, y)| = R}.
We consider the problem in a half-ball

(2.1)

⎧⎨⎩div (ya ∇u) = 0 in B+
R ,

(1 + a)
∂u

∂νa
= f(u) on Γ0

R.

In the sequel we will denote by

La = div (ya ∇)

the differential operator in (2.1). Obviously, there is a natural notion of a weak
solution of (2.1); see Definition 4.1 of [9].

We have the following regularity result (Lemma 4.5 of [9]).

Lemma 2.2 ([9]). Let a ∈ (−1, 1) and R > 0. Let ϕ ∈ Cσ(Γ0
2R) for some σ ∈ (0, 1)

and u ∈ L∞(B+
2R) ∩H1(B+

2R, y
a) be a weak solution of⎧⎨⎩Lau = 0 in B+

2R ⊂ R
n+1
+ ,

∂u

∂νa
= ϕ on Γ0

2R.

Then, there exists β ∈ (0, 1) depending only on n, a, and σ, such that u ∈
Cβ(B+

R) and yauy ∈ Cβ(B+
R).

Furthermore, there exist constants C1
R and C2

R depending only on n, a, R,
‖u‖L∞(B+

2R) and also on ‖ϕ‖L∞(Γ0
2R) (for C1

R) and ‖ϕ‖Cσ(Γ0
2R) (for C2

R), such that

(2.2) ‖u‖
Cβ(B+

R)
≤ C1

R

and

(2.3) ‖yauy‖Cβ(B+
R)

≤ C2
R.

Problem (2.1) has variational structure, with corresponding energy functional

(2.4) EB+
R
(w) =

∫
B+

R

1

2
ya|∇w|2 +

∫
Γ0
R

1

1 + a
G(w),

where G′ = −f . This allows us to introduce some of the following notions.

Definition 2.3. a) We say that u is a layer solution of (1.3) if it is a bounded
weak solution of (1.3),

(2.5) ux1
> 0 on ∂Rn+1

+ , and

(2.6) lim
x1→±∞

u(x, 0) = ±1 for every (x2, . . . , xn) ∈ R
n−1.

Note that we will indifferently call a layer solution a solution as above for problem
(1.3) or a solution v of equation (1.1) satisfying the same properties.

b) Assume that u is a Cβ function in R
n+1
+ for some β ∈ (0, 1), satisfying

−1 < u < 1 in R
n+1
+ and such that for all R > 0,

ya|∇u|2 ∈ L1(B+
R).
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916 XAVIER CABRÉ AND YANNICK SIRE

We say that u is a local minimizer of problem (1.3) if

EB+
R
(u) ≤ EB+

R
(u+ ψ)

for every R > 0 and every C1 function ψ in R
n+1
+ with compact support in B+

R ∪Γ0
R

and such that −1 ≤ u + ψ ≤ 1 in B+
R . To emphasize this last condition, in some

occasions we will say that u is a local minimizer relative to perturbations in [−1, 1].
c) We say that u is a stable solution of (1.3) if u is a bounded solution of (1.3)

and if

(2.7)

∫
R

n+1
+

ya|∇ξ|2 −
∫
∂Rn+1

+

1

1 + a
f ′(u) ξ2 ≥ 0

for every function ξ ∈ C1(Rn+1
+ ) with compact support in R

n+1
+ .

It is clear that every local minimizer is a stable solution. At the same time, it
is not difficult to prove that every layer solution u is also a stable solution—for
this, one uses Lemma 6.1 below and the fact that ux1

is a positive solution of the
linearized problem to (1.3).

2.1. Layer solutions in R. The following result characterizes the nonlinearities f
for which problem (1.1) admits a layer solution in R. In addition, it contains a
result on uniqueness of layer solutions.

Theorem 2.4. Let f be any C1,γ(R) function with γ > max(0, 1 − 2s), where
s ∈ (0, 1). Let G′ = −f . Then, there exists a solution v of

(−∂xx)
sv = f(v) in R

such that v′ > 0 in R and limx→±∞ v(x) = ±1 if and only if

(2.8) G′(−1) = G′(1) = 0 and G > G(−1) = G(1) in (−1, 1).

If in addition f ′(−1) < 0 and f ′(1) < 0, then this solution is unique up to
translations.

As a consequence, if f is odd and f ′(±1) < 0, then the solution is odd with
respect to some point. That is, v(x+ b) = −v(−x+ b) for some b ∈ R.

Remark 2.5. The statement on uniqueness of a layer solution also holds for any
nonlinearity f of class C1([−1, 1]) satisfying f ′(−1) < 0 and f ′(1) < 0. There is
no need for f ′ to be Cγ([−1, 1]). Indeed, we will see that the proof follows that
of [5] and thus only requires f to be Lipschitz in [−1, 1] and nonincreasing in a
neighborhood of −1 and of 1. See also Lemma 5.2 of [10], where this more general
assumption is presented.

Note that a layer solution v = v(x), x ∈ R, as in Theorem 2.4 provides us with
a family of layer solutions of the same equation in Rn. More precisely, for each
direction e ∈ R

n, with |e| = 1 and e1 > 0, let

ve(x1, . . . , xn) := v(〈e, (x1, . . . , xn)〉).
Then, ve is a layer solution of

(2.9) (−Δ)sve = f(ve) in R
n.

This fact is not immediate from the definition of the fractional Laplacian (1.2)
through principal values in R and in Rn—indeed, the integrals in R and in Rn
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differ, but the normalizing constants Cn,s in front make them agree. This fact—
that ve solves (2.9)—follows directly from the equivalence of problem (1.1) with the
extension problem (1.3) and the fact that the constant ds in (1.4) is independent
of the dimension n.

The equality G(−1) = G(1) is equivalent to∫ 1

−1

f(s)ds = 0.

Remark 2.6. Note that G may have one or several local minima in (−1, 1) with
higher energy than −1 and 1, and still satisfy condition (2.8). Such a G will
therefore admit a layer solution, hence a solution with limits −1 and 1 at infinity.
Instead, such a layer solution will not exist if G has a minimum at some point in
(−1, 1) with the same height as −1 and 1. In particular, when G is periodic (as in
the Peierls-Nabarro problem f(u) = sin(πu); see [23]), the previous theorem proves
that there exists no increasing solution connecting two nonconsecutive absolute
minima of G.

In [18], with different techniques than ours, Palatucci, Savin, and Valdinoci prove
that for potentials G with G′(−1) = G′(1) = 0, G > G(−1) = G(1) in (−1, 1), and
G′′(±1) > 0, there exists a layer solution to equation (1.1). They also establish its
main properties. As a main difference with our work, they do not use the extension
problem (1.3). We also refer to the interesting paper [14] where properties of ground
state solutions are investigated.

Our next result gives the asymptotic behavior of layer solutions.

Theorem 2.7. Let f be any C1,γ(R) function with γ > max(0, 1 − 2s), where
s ∈ (0, 1). Assume that f ′(−1) < 0, f ′(1) < 0, and that v is a layer solution of

(−∂xx)
sv = f(v) in R.

Then, there exist constants 0 < c ≤ C such that

(2.10) c|x|−1−2s ≤ v′(x) ≤ C|x|−1−2s for |x| ≥ 1.

As a consequence, for other constants 0 < c ≤ C,

(2.11) cx−2s ≤ 1− v(x) ≤ Cx−2s for x > 1

and

(2.12) c|x|−2s ≤ 1 + v(x) ≤ C|x|−2s for x < −1.

To prove the above theorem for a given nonlinearity f , the following almost
explicit layer solution (we emphasize that it is a layer solution for another nonlin-
earity) will be very useful. More properties and remarks on these concrete layers
will be given in section 3.

Theorem 2.8. Let s ∈ (0, 1). For every t > 0, the C∞(R) function

vts(x) := −1 + 2

∫ x

−∞
ps(t, x) dx =

2

π

∫ ∞

0

sin(xr)

r
e−tr2s dr

is the layer solution in R of (1.1) for a nonlinearity f t
s ∈ C1([−1, 1]) which is odd

and satisfies f t
s(0) = f t

s(1) = 0, f t
s > 0 in (0, 1), and (f t

s)
′(±1) = −1/t.
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In the theorem, since f t
s ∈ C1([−1, 1]) and (f t

s)
′(±1) < 0, Theorem 2.4 and

Remark 2.5 guarantee that its corresponding layer vts is unique up to translations.
As we will see in Theorem 2.11 below, every layer solution is a local minimizer

and, in particular, a stable solution. This holds in any dimension and for any
nonlinearity. Our next result states that the converse is also true in dimension
one and under a certain hypothesis on the nonlinearity. That is, under various
assumptions on G, we prove that, for n = 1, local minimizers, solutions with limits
(not monotone a priori), or stable solutions are indeed layer solutions.

Theorem 2.9. Let f be any C1,γ(R) function, with γ > max(0, 1− 2s). Let n = 1
and u be a function such that

|u| < 1 in R2
+.

a) Assume that G > G(−1) = G(1) in (−1, 1), and that u is a local minimizer
of problem (1.3) relative to perturbations in [−1, 1]. Then, either u = u(x, y) or
u∗ = u∗(x, y) := u(−x, y) is a layer solution of (1.3).

b) Assume G′′(−1) > 0, G′′(1) > 0, and that u is a solution of (1.3) with

lim
x→±∞

u(x, 0) = ±1.

Then, u is a layer solution of (1.3).
c) Assume that G satisfies:

if − 1 ≤ L− < L+ ≤ 1, G′(L−) = G′(L+) = 0,(2.13)

and G > G(L−) = G(L+) in (L−, L+),(2.14)

then L− = −1 and L+ = 1.(2.15)

Let u be a nonconstant stable solution of (1.3). Then, either u = u(x, y) or u∗ =
u∗(x, y) := u(−x, y) is a layer solution of (1.3).

Remark 2.10. Notice that the hypothesis (2.13)-(2.15) on G in part c) of the theo-
rem is necessary to guarantee that u connects ±1. Indeed, assume that −1 < L− <
L+ < 1 are four critical points of G with G > G(−1) = G(1) in (−1, 1) and with
G > G(L−) = G(L+) in (L−, L+). Assume also that

G(±1) < G(L±).

Then, by our existence result (Theorem 2.4) applied twice—in (−1, 1) and also in
(L−, L+) after rescaling it—we have that (−∂xx)

sv = f(v) in R admits two different
increasing solutions: one connecting L± at infinity, and another connecting ±1.

Instead, as pointed out in Remark 2.6, if G ≥ G(±1) = G(L±) in (−1, 1), then
there is no increasing solution connecting ±1, as a consequence of our Modica
estimate (Theorem 1.1), which gives (1.7).

Note that an identically constant function u ≡ s is a stable solution of (1.1) if
and only if G′(s) = 0 and G′′(s) ≥ 0. This follows easily from the definition (2.7) of
stability. Therefore, regarding part c) of the previous theorem, a way to guarantee
that a stable solution u is nonconstant is that u = s ∈ (−1, 1) at some point and
that either G′(s) �= 0 or G′′(s) < 0.

2.2. Stability, local minimality, and symmetry of solutions. The following
result states that every layer solution in R

n+1
+ is a local minimizer. This result is

true in every dimension n. See also [18] for a related result which does not use the
extension problem.
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Theorem 2.11. Let f be any C1,γ(R) function and γ > max(0, 1 − 2s), where
s ∈ (0, 1). Assume that problem (1.3) admits a layer solution u in R

n+1
+ with

n ≥ 1. Then :
a) u is a local minimizer of problem (1.3).
b) The potential G satisfies

(2.16) G′(−1) = G′(1) = 0 and G ≥ G(−1) = G(1) in (−1, 1).

The strict inequality G > G(−1) = G(1) in (2.16) is known to hold when n = 1
or, as a consequence, when u(·, 0) is a one-dimensional solution in Rn. We estab-
lished this in [9] (it is one of the implications in Theorem 2.4 above). The strict
inequality G > G(±1) also holds when n = 2 (as a consequence of Theorem 2.12
below) and when n = 3 and s ≥ 1/2 (as a consequence of a result from [8]). It
remains an open question in the rest of the cases.

For n = 2, we prove that bounded stable solutions u (and hence also local
minimizers and layer solutions) are functions of only two variables: y and a linear
combination of x1 and x2. This statement on the 1D symmetry of u(·, 0) is closely
related to a conjecture of De Giorgi on 1D symmetry for interior reactions, proved
in [2, 3, 15] in low dimensions and partially settled by Savin [20] up to dimension
8. We also refer the reader to [21, 22] where some rigidity properties of boundary
reactions have been established through a more geometric approach. Particularly,
in [21], the following symmetry result in dimension n = 2 is proved by using a
completely different approach than the one used in the present paper, relying on a
weighted Poincaré inequality (see also [13]).

Theorem 2.12. Let f be any C1,γ(R) function and γ > max(0, 1 − 2s), where
s ∈ (0, 1). Let v be a bounded solution of

(−Δ)sv = f(v) in R
2.

Assume furthermore that its extension u is stable.
Then, v is a function of one variable. More precisely,

v(x1, x2) = v0 (cos(θ)x1 + sin(θ)x2) in R
2

for some angle θ and some solution v0 of the one-dimensional problem with the
same nonlinearity f , and with either v′0 > 0 everywhere or v0 identically constant.

For n = 3 and s ≥ 1/2, this 1D symmetry result has been proved by E. Cinti
and one of the authors in [7, 8]. It remains open for n = 3 and s < 1/2, and also
for n ≥ 4.

A simpler task than the study of all stable solutions consists of studying solutions
u of (1.3) with |u| ≤ 1 and satisfying the limits (2.6) uniformly in (x2, . . . , xn) ∈
Rn−1. Under hypotheses f ′(−1) < 0 and f ′(−1) < 0, it is possible to establish
in every dimension n that these solutions depend only on the y- and x1-variables,
and are monotone in x1. Here, by the uniform limits hypothesis, the x-variable
in which the solution finally depends on is known a priori—in contrast with the
variable of dependence in Theorem 2.12. For the standard Laplacian this result
was first established in [4,5,12]. We will not provide the proof of the result because
it is completely analogous to the one in [10] (which uses the sliding method, as in
[5]). Since our operator La is invariant under translations in x, one can perform
the sliding method together with the maximum principles proved in [9].
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Theorem 2.12 is a partial converse in dimension two of Theorem 2.11 a), in the
sense that it establishes the monotonicity of stable solutions and, in particular, of
local minimizers. The remaining property for being a layer solution (i.e., having
limits ±1 at infinity) requires additional hypotheses on G, as in Theorem 2.9.

2.3. Outline of the paper. In section 3 we construct an almost explicit layer
solution (Theorem 2.8) and we use it to establish the asymptotic behavior of any
layer solution in R as stated in Theorem 2.7. In section 4 we prove the existence of
minimizers to mixed Dirichlet-Neumann problems in bounded domains of Rn+1

+ —a
result needed in subsequent sections. In section 5 we prove the local minimality
of layer solutions in any dimension and the necessary conditions on G for such a
layer in R

n to exist, Theorem 2.11. The 1D symmetry result for stable solutions in
R2, Theorem 2.12, is established in section 6. Finally, section 7 concerns layers in
R and establishes the existence result, Theorem 2.4, and the classification result,
Theorem 2.9.

3. An example of a layer solution. Asymptotic properties

of layer solutions

In this section we provide with an example of a layer solution based on the
fractional heat equation. From it, we get the asymptotic behavior of layers for all
other nonlinearities. Let us first explain how the concrete layer is found.

The starting point is the fractional heat equation,

(3.1) ∂tw + (−∂xx)
sw = 0, t > 0, x ∈ R,

which is known to have a fundamental solution of the form

(3.2) ps(t, x) = t−
1
2s qs(t

− 1
2sx) > 0

for x ∈ R, t > 0. Being the fundamental solution, ps has total integral in x equal
to 1, i.e.,

(3.3)

∫
R

ps(t, x) dx = 1 for all t > 0.

To compute ps, one takes the Fourier transform of (3.1) to obtain

∂tp̂s + |ξ|2sp̂s = 0,

where p̂s = p̂s(t, ξ) is the Fourier transform in x of ps(t, x). Thus, since ps(0, ·) is
the Delta at zero and hence p̂s(0, ·) ≡ 1, we deduce that

p̂s(t, ξ) = exp{−t|ξ|2s}.
From this, by the inversion formula for the Fourier transform, we find

(3.4) ps(t, x) =
1

π

∫ ∞

0

cos(xr)e−tr2s dr.

It follows that the function

(3.5) vts(x) := −1 + 2

∫ x

−∞
ps(t, x) dx = 2

∫ x

0

ps(t, x) dx

is increasing and has limits ±1 at ±∞. The concrete expression (3.6) below for
vts is obtained by interchanging the order of the two integrals when using (3.4) to
compute the primitive of ps.
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That vts is a layer solution is stated in the next theorem, which contains all
statements in Theorem 2.8 and also the asymptotic behavior of vts, among other
facts. The proof of the theorem is given at the end of this section.

Theorem 3.1. Let s ∈ (0, 1). For every t > 0, the C∞(R) function

vts(x) := −1 + 2

∫ x

−∞
ps(t, x) dx = 2

∫ x

0

ps(t, x) dx

=
2

π

∫ ∞

0

sin(xr)

r
e−tr2s dr

= sign(x)
2

π

∫ ∞

0

sin(z)

z
e−t(z/|x|)2s dz(3.6)

is the layer solution in R of (1.1) for a nonlinearity f t
s ∈ C1([−1, 1]) which is odd

and twice differentiable in [−1, 1] and which satisfies

f t
s(0) = f t

s(1) = 0, f t
s > 0 in (0, 1), (f t

s)
′(±1) = − 1

t

and

(3.7) (f t
s)

′′(1) = − π

t

cos(πs)

sin(πs)

Γ(4s)

(Γ(2s))2

⎧⎪⎨⎪⎩
< 0 if 0 < s < 1/2,

= 0 if s = 1/2,

> 0 if 1/2 < s < 1.

In addition, the following limits exist:

(3.8) lim
|x|→∞

|x|1+2s(∂xv
t
s)(x) = t

4s

π
sin(πs)Γ(2s) > 0

and, as a consequence,

lim
x→±∞

|x|2s|vts(x)∓ 1| = t
2

π
sin(πs)Γ(2s) > 0.

Remark 3.2. As stated in the theorem, we have f t
s ∈ C1([−1, 1]) and (f t

s)
′(±1) < 0

for every s ∈ (0, 1). In particular, by Theorem 2.4 and Remark 2.5, its correspond-
ing layer vts is unique up to translations.

When s = 1/2, the particular layer above agrees with the explicit one used in
[10], namely

vt1/2(x) =
2

π
arctan

x

t
, with f t

1/2(v) =
1

πt
sin(πv).

This can be easily seen computing (3.4) explicitly when s = 1/2, using integration
by parts, to obtain

∂xv
t
1/2(x) = 2p1/2(t, x) =

2

π

1

t

1

1 + x2/t2
.

We may try to see which function we obtain in the above formulas setting s = 1.
In this case, (3.4) can be checked to be equal to a Gaussian, and thus vt1, two times
its primitive, is the error function erf(x)—up to a scaling constant. Its derivative is

therefore e−cx2

, which does not have the correct decay e−cx at +∞ for the derivative
v′ of a layer solution to −v′′ = f(v). This is due to the fact that the limit as s → 1
of f t

s will not be a C1([−1, 1]) nonlinearity at the value 1—even if they all satisfy
(f t

s)
′(1) = −1/t. The reason is that their second derivatives at 1, (f t

s)
′′(1), blow-up

as s → 1 as shown by (3.7).
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Note also that (3.7) shows that, when 1/2 < s < 1, the nonlinearity f t
s is positive

but not concave in (0, 1).

The following immediate consequence of Theorem 3.1 will give the asymptotic
behavior of layer solutions for any nonlinearity f .

Corollary 3.3. Let s ∈ (0, 1) and t > 0 be a constant. Then, the function

ϕt = ∂xv
t
s > 0,

where vts is the explicit layer of Theorem 3.1, satisfies

(3.9) (−∂xx)
sϕt(x) + 2t−1ϕt(x) ≥ 0 for |x| large enough,

(3.10) (−∂xx)
sϕt(x) + 2−1t−1ϕt(x) ≤ 0 for |x| large enough,

and that the following limit exists and is positive:

(3.11) lim
|x|→∞

|x|1+2sϕt(x) ∈ (0,+∞).

Proof. Clearly ϕt = ∂xv
t
s > 0 satisfies the linearized equation

(−∂xx)
sϕt − (f t

s)
′(vts(x))ϕ

t = 0 in R.

Using that ϕt > 0, vts has limits ±1 at ±∞, f t
s is C1([−1, 1]), and that (f t

s)
′(±1) =

−1/t, both (3.9) and (3.10) follow. The statement (3.11) follows from (3.8). �

With this corollary at hand, we can now prove the asymptotics of any layer.

Proof of Theorem 2.7. The proof uses Corollary 3.3 above and a very easy maximum
principle, Lemma 4.13 and Remark 4.14 of [9]. Its statement in dimension one is
the following.

Let w ∈ C2
loc(R) be a continuous function in R such that w(x) → 0 as |x| → ∞

and

(3.12) (−∂xx)
sw + d(x)w ≥ 0 in R

for some bounded function d. Assume also that, for some nonempty closed set
H ⊂ R, one has w > 0 in H and that d is continuous and nonnegative in R \ H.
Then, w > 0 in R.

Now let f and v be a nonlinearity and a layer as in Theorem 2.7. We then have

(3.13) (−∂xx)
sv′ − f ′(v)v′ = 0 in R.

To prove the upper bound for v′ in (2.10), we take t large enough such that
2t−1 < min{−f ′(−1),−f ′(1)}. Then, for any positive constant C > 0,

w := Cϕt − v′

satisfies, by (3.9) and (3.13), (−∂xx)
sw + 2t−1w ≥ 0 for |x| large enough, say for x

in the complement of a compact interval H. Next, take the constant C > 0 so that
w ≥ 1 in the compact set H, and now define d in H so that (−∂xx)

sw + dw = 0
in H—recall that w ≥ 1 in H and hence d is well defined and bounded in H. We
take d = 2t−1 in R \H. Thus, (3.12) is satisfied and, since w → 0 at infinity, the
maximum principle above leads to w > 0 in R. This is the desired upper bound for
v′ in (2.10), since ϕt satisfies (3.11).

To prove the lower bound for v′ in (2.10), we proceed in the same way but
replacing the roles of v′ and ϕt. For this, we now take t > 0 small enough such
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that max{−f ′(−1),−f ′(1)} < 2−1t−1. Thus, w̃ := Cv′ − ϕt satisfies (−∂xx)
sw̃ +

2−1t−1w̃ ≥ 0 for |x| large enough. One proceeds exactly as before to obtain w̃ > 0
in R for C large enough, which is the desired lower bound for v′ in (2.10). �

It remains to establish Theorem 3.1. For this, we use the following well-known
technical lemma due to G. Pólya [19], 1923. We prove it here for completeness; in
fact, the proof as explained in [19] only works for s ≤ 1/2. For s > 1/2, we follow
the proof given in [16].

Lemma 3.4. For κ > 0 and s ∈ (0, 1), we have

lim
x→+∞

∫ ∞

0

sin(z)zκs−1e−(z/x)2s dz = sin(κsπ/2)Γ(κs).

Proof. For every x > 0, we have∫ ∞

0

sin(z)zκs−1e−(z/x)2s dz = Im

∫ ∞

0

eizzκs−1e−(z/x)2s dz

= Im

∫ ∞

0

hx(z) dz,

where
hx(z) := zκs−1eiz−(z/x)2s .

Let us also denote
h∞(z) := zκs−1eiz.

For 0 ≤ θ ≤ π/2, let γθ be the half-line from the origin making an angle θ with
the positive x-axis. We will next see that, for certain angles θ, Im

∫
γθ

hx(z) dz are

all equal and independent of those θ. For this, given two angles 0 ≤ θ1 < θ2 ≤ π/2
and R > 0, we integrate counterclockwise on the contour given by the segments of
length R starting from 0 on γθ1 and on γθ2 , and by the arc ΓR

θ1,θ2
of radius R with

center at the origin and joining the two end points of the previous segments. We
also need to remove a neighborhood of zero and add a small arc with center at the
origin connecting the two half-lines. The integrals of hx and of h∞ in this small
arc will tend to zero as the radius tends to zero, since |hx(z)|+ |h∞(z)| ≤ C|z|κs−1

near the origin.
The key point is to make sure that the integral of hx, and later of h∞, on the arc

ΓR
θ1,θ2

of radius R tends to zero as R → ∞ if we choose the angles 0 ≤ θ1 < θ2 ≤ π/2
correctly. Note that if z ∈ C belongs to such an arc, then z belongs to the sector

Sθ1,θ2 := {z ∈ C : θ1 ≤ Arg(z) ≤ θ2}.
To guarantee the convergence to zero of the integral on the arc, note that

(3.14) |hx(z)| = |z|κs−1 exp{−Im(z)− x−2sRe(z2s)}
and

(3.15) |h∞(z)| = |z|κs−1 exp{−Im(z)}
for all z ∈ C in the first quadrant.

We need to distinguish two cases.

Case 1. Suppose that s ≤ 1/2. In this case we take θ1 = 0 and θ2 = π/2. Then,
if z lies in the sector S0,π/2 (the first quadrant), z2s is also in the first quadrant,
since 2s ≤ 1. Thus, the real and imaginary parts appearing in (3.14) are both
nonnegative, and at least one of them is positive up to the boundary of the quadrant.
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Thus, by (3.14), |hx| → 0 exponentially fast—as exp{−c(x)|z|2s}—uniformly in all
of the quadrant. Hence, the integral on the arc ΓR

0,π/2 tends to zero as R → ∞. We

deduce that∫ ∞

0

sin(z)zκs−1e−(z/x)2s dz = Im

∫
γ0

hx(z) dz = Im

∫
γπ/2

hx(z) dz

= Im

{
eiκsπ/2

∫ ∞

0

yκs−1e−y−i2s(y/x)2s dy

}
.

Note that the function in the last integral is integrable since

|e−y−i2s(y/x)2s | = |e−y−(cos(sπ)+i sin(sπ))(y/x)2s | = e−y−cos(sπ)(y/x)2s ≤ e−y

due to s ≤ 1/2. Thus, the limit as x → +∞ exists and is equal to

lim
x→+∞

∫ ∞

0

sin(z)zκs−1e−(z/x)2s dz = Im

{
eiκsπ/2

∫ ∞

0

yκs−1e−y dy

}
= sin(κsπ/2)

∫ ∞

0

yκs−1e−y dy

= sin(κsπ/2)Γ(κs),(3.16)

as claimed.

Case 2. Suppose now that 1/2 < s < 1. In this case (3.14) does not tend to zero at
infinity in all of the first quadrant, since 2s > 1, and thus Re(z2s) becomes negative
somewhere in the quadrant. Here, we need to take

θ1 = 0 and θ2 =
π

4s
.

Now, in the sector S0,π/(4s), the real and imaginary parts appearing in (3.14) are
both nonnegative, and at least one of them positive up to the boundary of the
sector. Thus, as before, we now deduce∫ ∞

0

sin(z)zκs−1e−(z/x)2s dz = Im

∫
γ0

hx(z) dz = Im

∫
γπ/(4s)

hx(z) dz.

Note that in the last integral on γπ/(4s), we have

|hx(z)| = |z|κs−1 exp{−Im(z)− x−2sRe(z2s)}
= |z|κs−1 exp{−Im(z)} = |h∞(z)|

for z ∈ γπ/(4s). Besides, by the last expression, h∞ is integrable on γπ/(4s). Thus,
by dominated convergence, we have

(3.17) lim
x→+∞

∫ ∞

0

sin(z)zκs−1e−(z/x)2s dz = Im

∫
γπ/(4s)

h∞(z) dz.

Finally, for this last integral we work on the sector Sπ/(4s),π/2. By (3.15), h∞(z)
tends to zero exponentially fast and uniformly as |z| → ∞ on the sector. Thus,

Im

∫
γπ/(4s)

h∞(z) dz = Im

∫
γπ/2

h∞(z) dz

= Im

{
eiκsπ/2

∫ ∞

0

yκs−1e−y dy

}
.

Recalling (3.17), one concludes as in (3.16). �
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Finally, we can prove our results on the explicit layer.

Proof of Theorem 3.1. Let vts be defined by (3.6). It is clear that

(3.18) vts(x) = v1s(t
−1/(2s)x).

Hence, by the definition (1.2) of the fractional Laplacian, we have (−∂xx)
svts(x) =

t−1(−∂xx)
sv1s(t

−1/(2s)x). Thus, having proved all the statements for v1s , they will
also hold for vts with nonlinearity f t

s(v) = t−1f1
s (v).

Hence, we may take t = 1. To simplify notation, we denote

v := v1s and f := f1
s .

From v′(x) = 2ps(1, x) and expression (3.4), it is clear that v ∈ C∞(R). By
expression (3.5), we have v(−∞) = −1. Since v′ = 2qs = 2ps(1, ·) > 0, v is
increasing.

The fact that v(+∞) = 1 is a consequence of (3.3),
∫
R
ps(1, y) dy = 1. It also

follows from expression (3.6) and the well-known fact that
∫∞
0

sin(z)z−1 dz = π/2.
This can also be proved by adding a factor zκs in the integral (3.6), and then using
Lemma 3.4 and that sin(κsπ/2)Γ(κs) = sin(κsπ/2)(κs)−1Γ(κs+1) → π/2 as κ ↓ 0.

We now prove that there exists a function f such that

(−∂xx)
sv = f(v) in R.

For this, we use the expression (3.2) and that ps solves the fractional heat equation
(3.1). Because of the commutation of the derivative with the fractional Laplacian
(recall that v ∈ C∞(R) and that v and v′ are bounded), we deduce that

{(−∂xx)
sv}′(x) = (−∂xx)

sv′(x) = 2(−∂xx)
sqs(x) = −2∂tps(1, x)

=
1

s
{qs(x) + xq′s(x)} .

Therefore, integrating by parts,

(−∂xx)
sv(x) =

1

s

∫ x

−∞
{qs(z) + zq′s(z)} dz =

1

s
xqs(x) =

1

2s
xv′(x).

Since v′ > 0, the C∞ function v = v(x) is invertible on R, with inverse x = x(v),
a C∞ function on the open interval (−1, 1). We now set

(3.19) f(v) :=
1

2s
x(v)v′(x(v)),

so that our semilinear fractional equation is satisfied. We know that f ∈ C∞(−1, 1).
Also, since v is an odd function, its inverse x is also odd and therefore f is odd, by
(3.19). This expression also gives that f > 0 in (0, 1).

It remains to verify that f ∈ C1([−1, 1]) once we set f(±1) = 0 and f ′(±1) = −1,
and that f is twice differentiable in [−1, 1] and having values for f ′′(±1) given by
(3.7) with t = 1. It also remains to establish the asymptotic behavior of v′.

For all this, using (3.4) we compute

(π/2)v′(x) = πqs(x) =
1

x

∫ ∞

0

cos(z)e−(z/x)2s dz

=
1

x

∫ ∞

0

{sin(z)}′e−(z/x)2s dz

= 2sx−1−2s

∫ ∞

0

sin(z)z2s−1e−(z/x)2s dz,(3.20)
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926 XAVIER CABRÉ AND YANNICK SIRE

by integration by parts. Hence using Lemma 3.4 with κ = 2, we deduce

(3.21) lim
x→+∞

x1+2sv′(x) = lim
x→+∞

2x1+2sqs(x) =
4s

π
sin(πs)Γ(2s),

as claimed in (3.8)—for other values of t, simply use (3.18). In particular,

lim
x→+∞

xv′(x) = 0

and thus, by (3.19), f is continuous on [−1, 1] defining f(±1) = 0. In addition, we
also deduce

(3.22) 1− v(x) =

∫ ∞

x

v′(y) dy =
2

π
sin(πs)Γ(2s)x−2s + o(x−2s)

as x → +∞.
Next, we differentiate (3.19), that is, f(v(x)) = (2s)−1xv′(x) = (2s)−1x2qs(x),

to obtain

f ′(v)v′ =
1

2s
{v′ + x(v)2q′s(x(v))}

and hence

(3.23) f ′(v) =
1

2s

{
1 + x(v)

q′s(x(v))

qs(x(v))

}
.

Thus, using (3.4) we compute

πxq′s(x) = −
∫ ∞

0

xr sin(xr)e−r2s dr

= −x−1

∫ ∞

0

z sin(z)e−(z/x)2s dz

= −x−1

∫ ∞

0

{sin(z)− z cos(z)}′e−(z/x)2s dz

= −2sx−1−2s

∫ ∞

0

{sin(z)− z cos(z)}z2s−1e−(z/x)2s dz.

We also compute π{(1 + 2s)qs + xq′s} by adding (3.20) (multiplied by 1 + 2s) to
the previous expression. Integrating by parts, and at the end invoking Lemma 3.4
with κ = 4s, we obtain

π{(1 + 2s)qs + xq′s}

= 2sx−1−2s

∫ ∞

0

{2s sin(z) + z cos(z)}z2s−1e−(z/x)2s dz

= 2sx−1−2s

∫ ∞

0

{sin(z)z2s}′e−(z/x)2s dz

= (2s)2x−1−4s

∫ ∞

0

sin(z)z4s−1e−(z/x)2s dz

= x−1−4s{4s2 sin(2πs)Γ(4s) + o(1)}
= x−1−4s{8s2 sin(πs) cos(πs)Γ(4s) + o(1)}(3.24)

as x → +∞.
Therefore, from (3.23), (3.24), and (3.21), one has

(3.25) f ′(v(x)) = −1 +
1

2s

(1 + 2s)qs + xq′s
qs

= −1 + O(x−2s).
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Thus, setting f ′(±1) = −1 and using that f ′ is even, we have that f is differentiable
at ±1.

Finally, using (3.25), (3.24), (3.22), and (3.21), we have

f ′(v(x))− f ′(1)

v(x)− 1
=

f ′(v(x)) + 1

v(x)− 1

=
1

2s

(1 + 2s)qs + xq′s
(v − 1)qs

→ −π
cos(πs)Γ(4s)

sin(πs)(Γ(2s))2

as x → +∞. This establishes that f ∈ C1([−1, 1]) and also that f is twice differ-
entiable in all of [−1, 1] with

(3.26) f ′′(±1) = ∓π
cos(πs)

sin(πs)

Γ(4s)

(Γ(2s))2
.

The proof is now complete. �

4. Minimizers of the Dirichlet-Neumann problem

in bounded domains

In this section, we concentrate on the existence of absolute minimizers of the
functional EΩ(u) on bounded domains Ω. This is an important step since, as in
[10], the existence theory of layer solutions goes through a localization argument in
half-balls of Rn+1

+ .

Let Ω ⊂ R
n+1
+ be a bounded Lipschitz domain. We define the following subsets

of ∂Ω:

∂0Ω = {(x, 0) ∈ ∂Rn+1
+ : B+

ε (x, 0) ⊂ Ω for some ε > 0} and(4.1)

∂+Ω = ∂Ω ∩ R
n+1
+ .(4.2)

Let H1(Ω, ya) denote the weighted Sobolev space

H1(Ω, ya) =
{
u : Ω → R : ya(u2 + |∇u|2) ∈ L1(Ω)

}
endowed with its usual norm.

Let u ∈ Cβ(Ω) ∩ H1(Ω, ya) be a given function with |u| ≤ 1, where β ∈ (0, 1).
We consider the energy functional

(4.3) EΩ(v) =

∫
Ω

ya

2
|∇v|2 +

∫
∂0Ω

1

1 + a
G(v)

in the class

Cu,a(Ω) = {v ∈ H1(Ω, ya) : −1 ≤ v ≤ 1 a.e. in Ω and v ≡ u on ∂+Ω},
which contains u and thus is nonempty.

The set Cu,a(Ω) is a closed convex subset of the affine space

(4.4) Hu,a(Ω) = {v ∈ H1(Ω, ya) : v ≡ u on ∂+Ω},
where the last condition should be understood in terms of the fact that v − u
vanishes on ∂+Ω in the weak sense.

Lemma 4.1. Let n ≥ 1 and Ω ⊂ R
n+1
+ be a bounded Lipschitz domain. Let

u ∈ Cβ(Ω) ∩H1(Ω, ya) be a given function with |u| ≤ 1, where β ∈ (0, 1). Assume
that

(4.5) f(1) ≤ 0 ≤ f(−1).
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Then, the functional EΩ admits an absolute minimizer w in Cu,a(Ω). In partic-
ular, w is a weak solution of

(4.6)

⎧⎪⎪⎨⎪⎪⎩
Law = 0 in Ω,

(1 + a)
∂w

∂νa
= f(w) on ∂0Ω,

w = u on ∂+Ω.

Moreover, w is a stable solution of (4.6), in the sense that

(4.7)

∫
Ω

ya|∇ξ|2 −
∫
∂0Ω

1

1 + a
f ′(w)ξ2 ≥ 0

for every ξ ∈ H1(Ω, ya) such that ξ ≡ 0 on ∂+Ω in the weak sense.

Hypothesis (4.5) states simply that −1 and 1 are a subsolution and a supersolu-
tion, respectively, of (4.6).

Proof of Lemma 4.1. As in [10], it is useful to consider the following continuous

extension f̃ of f outside [−1, 1]:

f̃(t) =

⎧⎪⎨⎪⎩
f(−1) if s ≤ −1,

f(s) if − 1 ≤ s ≤ 1,

f(1) if 1 ≤ s.

Let

G̃(s) = −
∫ s

0

f̃ ,

and consider the new functional

ẼΩ(v) =

∫
Ω

ya

2
|∇v|2 +

∫
∂0Ω

1

1 + a
G̃(v),

in the affine space Hu,a(Ω) defined by (4.4).

Note that G̃ = G in [−1, 1], up to an additive constant. Therefore, any minimizer

w of ẼΩ in Hu,a(Ω) such that −1 ≤ w ≤ 1 is also a minimizer of EΩ in Cu,a(Ω).
To show that ẼΩ admits a minimizer in Hu,a(Ω), we use a standard compactness

argument. Indeed, let v ∈ Hu,a(Ω). Since v−u ≡ 0 on ∂+Ω, we can extend v−u to

be identically 0 in R
n+1
+ \Ω, and we have v−u ∈ H1(Rn+1

+ , ya). By Nekvinda’s result

[17], the trace space of H1(Rn+1
+ , ya) is the Gagliardo space W

1−a
2 ,2(Rn) = Hs(Rn).

The Sobolev embedding (see [1])

Hs(Rn) ↪→ L
2n

n−2s (Rn)

(or into any Lp(Rn) if n = 1 ≤ 2s) and the classical Rellich compactness theorem
immediately give the compactness of the inclusion

Hu,a(Ω) � L2(∂0Ω).

Now, since Hu,a(Ω) ⊂ L2(∂0Ω) and G̃ has linear growth at infinity, it follows

that ẼΩ is well defined, bounded below, and coercive in Hu,a(Ω). Hence, using the
compactness of the inclusion Hu,a(Ω) � L2(∂0Ω), taking a minimizing sequence in

Hu,a(Ω) and a subsequence convergent in L2(∂0Ω), we conclude that ẼΩ admits an
absolute minimizer w in Hu,a(Ω).

Since f̃ is a continuous function, Ẽ is a C1 functional in Hu,a(Ω). Making

first and second order variations of Ẽ at the minimum w, we obtain that w is a



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAYER SOLUTIONS FOR FRACTIONAL LAPLACIANS 929

weak solution of (4.6) which satisfies (4.7), with f and f ′ replaced by f̃ and f̃ ′,
respectively, in both (4.6) and (4.7).

Therefore, it only remains to show that the minimizer w satisfies

−1 ≤ w ≤ 1 a.e. in Ω.

We use that −1 and 1 are, respectively, a subsolution and a supersolution of (4.6),

due to hypothesis (4.5). We proceed as follows. We use that the first variation of ẼΩ

at w in the direction (w−1)+ (the positive part of w−1), is zero. Since |w| = |u| ≤ 1
on ∂+Ω and hence (w−1)+ vanishes on ∂+Ω, we have that w+ε(w−1)+ ∈ Hu,a(Ω)
for every ε. We deduce that

0 =

∫
Ω

ya∇w∇(w − 1)+ −
∫
∂0Ω

f̃(w)(w − 1)+

=

∫
Ω∩{w≥1}

ya|∇(w − 1)+|2 −
∫
∂0Ω∩{w≥1}

f(1)(w − 1)+

≥
∫
Ω

ya|∇(w − 1)+|2,

where we have used that f̃(s) = f(1) for s ≥ 1, and that f(1) ≤ 0 by assumption.
We conclude that (w−1)+ is constant, and hence identically zero. Therefore, w ≤ 1
a.e. The inequality w ≥ −1 is proved in the same way, now using f(−1) ≥ 0. �

5. Local minimality of layers and consequences.

Proof of Theorem 2.11

The fact that for reactions in the interior (that is, s = 1 in our equation), layer
solutions in R

n are necessarily local minimizers was found by Alberti, Ambrosio,
and one of the authors in [2]. For the fractional case, this is the statement in
Theorem 2.11 a) above. The proof in [2] also works in the fractional case, working
with the extension problem. It uses two ingredients: the existence result from the
previous section (Lemma 4.1) and the following uniqueness result in the presence
of a layer.

Lemma 5.1. Assume that problem (1.3) admits a layer solution u. Then, for every
R > 0, u is the unique weak solution of the problem

(5.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Law = 0 in B+

R ⊂ R
n+1
+ ,

−1 ≤ w ≤ 1 in B+
R ,

(1 + a)
∂w

∂νa
= f(w) on Γ0

R,

w = u on Γ+
R.

Proof. We refer the reader to the proof of Lemma 3.1 in [10] since the proof is
identical in our case. Indeed, since the operator La is invariant under translations
in x, this allows us to use the sliding method as in Lemma 3.1 of [10] to get the
uniqueness. The only other important ingredient in the proof is the Hopf boundary
lemma; in our present context it can be found in Proposition 4.11 and Corollary
4.12 of [9]. �

Part b) of Theorem 2.11 will follow from the following proposition. It will be
useful also in other future arguments. Notice that the result for n = 1 follows from
our Modica estimate, Theorem 2.3 of [9] (rewritten in Theorem 1.1 of the present
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paper). Instead, the following proof also works in higher dimensions but only
gives G ≥ G(L−) = G(L+) in [−1, 1]—in contrast with the strict inequality G >
G(−1) = G(1) obtained in dimension one from the Modica estimate (Theorem 1.1)
when L± = ±1.

Proposition 5.2. Let u be a solution of (1.3) such that |u| < 1, and

lim
x1→±∞

u(x, 0) = L± for every (x2, . . . , xn) ∈ R
n−1,

for some constants L− and L+ (that could be equal). Assume that u is a local
minimizer relative to perturbations in [−1, 1]. Then,

G ≥ G(L−) = G(L+) in [−1, 1].

Proof. It suffices to show thatG ≥ G(L−) andG ≥ G(L+) in [−1, 1]. It then follows
that G(L−) = G(L+). By symmetry, it is enough to establish that G ≥ G(L+)
in [−1, 1]. Note that this inequality, as well as the notion of local minimizer, is
independent of adding a constant to G. Hence, we may assume that

G(s) = 0 < G(L+) for some s ∈ [−1, 1],

and we need to obtain a contradiction. Since G(L+) > 0, we have that

1

1 + a
G(t) ≥ ε > 0 for t in a neighborhood in [−1, 1] of L+

for some ε > 0.
Consider the points (b, 0, 0) = (x1 = b, x2 = 0, . . . , xn = 0, y = 0) on ∂Rn+1

+ .
Since for R > 0,

EB+
R(b,0,0)(u) ≥

∫
Γ0
R(b,0)

1

1 + a
G(u(x, 0)) dx

and u(x, 0) −→
x1→+∞

L+, we deduce that

(5.2) lim
b→+∞

EB+
R(b,0,0)(u) ≥ c(n) εRn for all R > 0.

The constant c(n) depends only on n.
The lower bound (5.2) will be a contradiction with an upper bound for the energy

of u, that we obtain using the local minimality of u.
For R > 1, let ξR be a smooth function in Rn+1 such that 0 ≤ ξR ≤ 1,

ξR =

{
1 in B+

(1−η)R,

0 on R
n+1
+ \B+

R ,

and |∇ξR| ≤ C(n)(ηR)−1, where η ∈ (0, 1) is to be chosen later. Let

ξR,b(x, y) := ξR(x1 + b, x2, . . . , xn, y).

Since

(1− ξR,b)u+ ξR,bs = u+ ξR,b(s− u)

takes values in [−1, 1] and agrees with u on Γ+
R(b, 0, 0), we have that

EB+
R(b,0,0)(u) ≤ EB+

R(b,0,0)(u+ ξR,b(s− u)).
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Next, we bound by above this last energy. Since G(s) = 0, the potential energy
is only nonzero in B+

R \ B+
(1−η)R, which has measure bounded above by C(n)ηRn.

On the other hand, since we proved in Lemma 4.8(i) of [9] that

‖∇xu‖L∞(B+
R(x,0)) → 0 as x1 → ±∞,

we deduce that

lim
b→+∞

∫
B+

R(b,0,0)

ya|∇{u+ ξR,b(s− u)}|2 ≤ 2

∫
B+

R

ya|∇ξR|2

≤ C(n)

η2R2
Rn

∫ R

0

ya dy = C(n)
Rn+1+a

η2R2
= C(n)

Rn−2s

η2
.

Putting together the bounds for Dirichlet and potential energies, we conclude that

lim
b→+∞

EB+
R(b,0,0)(u) ≤ lim

b→+∞
EB+

R(b,0,0)(u+ ξR,b(s− u))

≤ C{ηRn + η−2Rn−2s},

for some constant C > 0 depending only on n, a, and G.
Recalling the lower bound (5.2), we now choose η small enough so that Cη =

(1/2)c(n)ε. In this way, (5.2) and the last upper bound lead to (1/2)c(n)εRn ≤
Cη−2Rn−2s. This is a contradiction when R is large enough. �

Proof of Theorem 2.11. We proceed exactly as in the proof of Theorem 1.4 in [10],
page 1708.

To prove part a), for R > 1 we consider problem (5.1) in a half-ball. Lemma 4.1
gives the existence of a minimizer w with −1 ≤ w ≤ 1. Note that in the lemma one
needs condition (4.5). But in the presence of a layer, we showed in Lemma 4.8(i)
of [9] that one has f(−1) = f(1) = 0.

On the other hand, Lemma 5.1 states that the layer u is the unique solution of
(5.1). Thus, u ≡ w in B+

R . This shows that u is a local minimizer.
To prove part b), G′(−1) = G′(1) = 0 was shown in Lemma 4.8(i) of [9]. We

have established the other relation, G ≥ G(−1) = G(1) in [−1, 1], in Proposition 5.2
above. �

6. Monotonicity and 1D symmetry of stable solutions in R2
.

Proof of Theorem 2.12

To prove Theorem 2.12, we need two lemmas. The following one, applied with
d(x) = −(1 + a)−1f ′(u(x, 0)), establishes an alternative criterium for a solution u
of (1.3) to be stable.

Lemma 6.1. Let d be a bounded and Hölder continuous function on ∂Rn+1
+ . Then,

(6.1)

∫
R

n+1
+

ya|∇ξ|2 +
∫
∂Rn+1

+

d(x)ξ2 ≥ 0

for every function ξ ∈ C1(Rn+1
+ ) with compact support in R

n+1
+ , if and only if

there exists a Hölder continuous function ϕ in R
n+1
+ such that ϕ > 0 in R

n+1
+ ,
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932 XAVIER CABRÉ AND YANNICK SIRE

ϕ ∈ H1
loc(R

n+1
+ , ya), and

(6.2)

⎧⎨⎩Laϕ = 0 in R
n+1
+ ,

∂ϕ

∂νa
+ d(x)ϕ = 0 on ∂Rn+1

+ .

Proof. First, assume the existence of a positive solution ϕ of (6.2), as in the state-

ment of the lemma. Let ξ ∈ C1(Rn+1
+ ) have compact support in R

n+1
+ . We multiply

Laϕ = 0 by ξ2/ϕ, integrate by parts and use the Cauchy-Schwarz inequality to ob-
tain (6.1).

For the other implication, we follow [10]. Assume that (6.1) holds for every

ξ ∈ C1(Rn+1
+ ) with compact support in R

n+1
+ . For every R > 0, let λR be the

infimum of the quadratic form

(6.3) QR(ξ) =

∫
B+

R

ya|∇ξ|2 +
∫
Γ0
R

d(x)ξ2

among functions in the class SR, defined by

SR =
{
ξ ∈ H1(B+

R , y
a) : ξ ≡ 0 on Γ+

R and
∫
Γ0
R
ξ2 = 1

}
⊂ H0,a(B

+
R) =

{
ξ ∈ H1(B+

R , ya) : ξ ≡ 0 on Γ+
R

}
.

We recall that the space H0,a(B
+
R) was already defined in (4.4).

By our assumption, λR ≥ 0 for every R. By definition it is clear that λR is a
nonincreasing function of R. Next, we show that λR is indeed a decreasing function
of R. As a consequence, we deduce that λR > 0 for every R, and this will be
important in the sequel.

To show that λR is decreasing in R, note first that since d is assumed to be a
bounded function, the functionalQR is bounded below in the class SR. For the same
reason, any minimizing sequence (ξk) has (∇ξk) uniformly bounded in L2(B+

R , y
a).

Hence, by the compact inclusion H0,a(B
+
R) � L2(Γ0

R) (already mentioned in the
proof of Lemma 4.1), we conclude that the infimum of QR in SR is achieved by a
function φR ∈ SR.

Moreover, we may take φR ≥ 0, since |φ| is a minimizer whenever φ is a mini-
mizer. Note that φR ≥ 0 is a solution, not identically zero, of⎧⎪⎪⎨⎪⎪⎩

LaφR = 0 in B+
R ,

∂φR

∂νa
+ d(x)φR = λRφR on Γ0

R,

φR = 0 on Γ+
R.

It follows from the strong maximum principle that φR > 0 in B+
R .

We can now easily prove that λR is decreasing in R. Indeed, arguing by con-
tradiction, assume that R1 < R2 and λR1

= λR2
. Multiply LaφR1

= 0 by φR2
,

integrate by parts, use the equalities satisfied by φR1
and φR2

, and also the as-
sumption λR1

= λR2
. We obtain∫

Γ+
R1

∂φR1

∂νa
φR2

= 0,

and this is a contradiction since, on Γ+
R1

, we have φR2
> 0 and the derivative

∂φR1
/∂νa < 0.
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Next, using that λR > 0 we obtain∫
B+

R

ya|∇ξ|2 +
∫
Γ0
R

d(x)ξ2 ≥ λR

∫
Γ0
R

ξ2 ≥ −δR

∫
Γ0
R

d(x)ξ2,

for all ξ ∈ H0,a(B
+
R), where δR is taken such that 0 < δR ≤ λR/‖d‖L∞ . From the

last inequality, we deduce that

(6.4)

∫
B+

R

ya|∇ξ|2 +
∫
Γ0
R

d(x)ξ2 ≥ εR

∫
B+

R

ya|∇ξ|2

for all ξ ∈ H0,a(B
+
R), for εR > 0 given by εR = 1− 1/(1 + δR).

It is now easy to prove that, for every constant cR > 0, there exists a solution
ϕR of

(6.5)

⎧⎪⎪⎨⎪⎪⎩
LaϕR = 0 in B+

R ,
∂ϕR

∂νa
+ d(x)ϕR = 0 on Γ0

R,

ϕR = cR on Γ+
R.

Indeed, rewriting this problem for the function ψR = ϕR − cR, we need to solve⎧⎪⎪⎨⎪⎪⎩
LaψR = 0 in B+

R ,
∂ψR

∂νa
+ d(x)ψR + cRd(x) = 0 on Γ0

R,

ψR = 0 on Γ+
R.

This problem can be solved by minimizing the functional∫
B+

R

ya

2
|∇ξ|2 +

∫
Γ0
R

{
1

2
d(x)ξ2 + cRd(x)ξ

}
in the space H0,a(B

+
R). Note that the functional is bounded below and coercive,

thanks to inequality (6.4). Finally, the compact inclusion H0,a(B
+
R) � L2(Γ0

R) gives
the existence of a minimizer.

Next, we claim that

ϕR > 0 in B+
R .

Indeed, the negative part ϕ−
R of ϕR vanishes on Γ+

R. Using this, (6.5), and the

definition (6.3) of QR, it is easy to verify that QR(ϕ
−
R) = 0. By definition of the

first eigenvalue λR and the fact that λR > 0, this implies that ϕ−
R ≡ 0, i.e., ϕR ≥ 0.

Now, Hopf’s maximum principle (Corollary 4.12 of [9]) gives ϕR > 0 up to the
boundary.

Finally, we choose the constant cR > 0 in (6.5) to have ϕR(0, 0) = 1. Then, by
the Harnack inequality in Lemma 4.9 of [9] applied to ϕS with S > 4R, we deduce
that

sup
B+

R

ϕS ≤ CR for all S > 4R.

Now that (ϕS) is uniformly bounded in B+
R , we use (2.2) in Lemma 2.2 to get a

uniform Cβ(B+
R/2) bound for the sequence. Note that the constant C1

R in (2.2)

depends on the L∞ (and not on the Cσ) of dϕS , which we already controlled. How-
ever, to apply Lemma 2.2 we need to know that dϕS is Cσ. This is a consequence
of the linear problem solved by ϕS and the fact that dϕS ∈ L∞. This leads to
ϕS ∈ Cσ as shown in the beginning of the proof of Lemma 4.5 of [9].
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934 XAVIER CABRÉ AND YANNICK SIRE

Now, the uniform Cβ(B+
R/2) bound gives that a subsequence of (ϕS) converges

locally in R
n+1
+ to a Cβ

loc(R
n+1
+ ) solution ϕ > 0 of (6.2). �

The previous lemma provides a direct proof of the fact that every layer solution
u of (1.1) is stable, which was already known by the local minimality property
established in section 5. Indeed, we simply note that ϕ = ux1

is strictly positive
and solves the linearized problem (6.2), with d(x) = −(1 + a)−1f ′(u(x, 0)). Hence,
the stability of u follows from Lemma 6.1.

We now use the previous lemma to establish a result that leads easily to the
monotonicity and the 1D symmetry of stable solutions in dimensions n = 1 and
n = 2, respectively.

Lemma 6.2. Assume that n ≤ 2 and that u is a bounded stable solution of (1.3).

Then, there exists a Hölder continuous function ϕ > 0 in R
n+1
+ such that, for every

i = 1, . . . , n,

uxi
= ciϕ in R

n+1
+

for some constant ci.

Proof. Since u is assumed to be a stable solution, then (6.1) holds with d(x) :=
−(1 + a)−1f ′(u(x, 0)). Note that d ∈ Cβ by Lemma 2.2. Hence, by Lemma 6.1,

there exists a Hölder continuous function ϕ > 0 in R
n+1
+ such that⎧⎨⎩Laϕ = 0 in R

n+1
+ ,

∂ϕ

∂νa
− (1 + a)−1f ′(u(x, 0))ϕ = 0 on ∂Rn+1

+ .

For i = 1, . . . , n fixed, consider the function

σ =
uxi

ϕ
.

The goal is to prove that σ is constant in R
n+1
+ .

Note first that

ϕ2∇σ = ϕ∇uxi
− uxi

∇ϕ.

Thus, we have that

div (yaϕ2∇σ) = 0 in R
n+1
+ .

Moreover, we have ∂σ
∂νa = 0 on ∂Rn+1

+ since

ϕ2σy = ϕuyxi
− uxi

ϕy = 0,

due to the fact that uxi
and ϕ both satisfy the same linearized boundary condition.

We can use the Liouville property that we established in [9] (Theorem 4.10 of
[9]), and deduce that σ is constant, provided that the growth condition

(6.6)

∫
B+

R

ya(ϕσ)2 ≤ CR2 for all R > 1

holds for some constant C independent of R. But note that ϕσ = uxi
, and therefore∫

B+
R

ya(ϕσ)2 ≤
∫
B+

R

ya|∇u|2.

Thus, we need to estimate this last quantity.
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To do this, we perform a simple energy estimate. Multiply the equation

div (ya∇u) = 0

by ξ2u and integrate in B+
2R, where 0 ≤ ξ ≤ 1 is a C∞ cutoff function with compact

support in B2R such that ξ ≡ 1 in BR and |∇ξ| ≤ 2/R. We obtain∫
B+

2R

ya {ξ2|∇u|2 + 2ξu∇ξ · ∇u} =

∫
Γ0
2R

(1 + a)−1f(u)ξ2u.

Thus, by the Cauchy-Schwarz inequality and since u and ξ are bounded,∫
B+

2R

ya ξ2|∇u|2 ≤ 1

2

∫
B+

2R

ya ξ2|∇u|2 + C

∫
B+

2R

ya|∇ξ|2 + C|Γ0
2R|

for a constant C independent of R. Absorbing the first term on the left hand side,

using that ξ ≡ 1 in BR and |∇ξ| ≤ 2/R, and computing
∫ 2R

0
ya dy, we deduce that∫

B+
R

ya |∇u|2 ≤ C{R−2RnR1+a +Rn} = C{Rn−2s +Rn} ≤ CR2

since n ≤ 2. This establishes (6.6) and finishes the proof. �

We can now give the

Proof of Theorem 2.12. Let n = 2. The extension u of v is a bounded stable
solution of (1.3) with f replaced by (1 + a)d−1

s f .
Lemma 6.2 establishes that uxi

≡ ciϕ for some constants ci, for i = 1, 2. If
c1 = c2 = 0, then u is a constant. Otherwise we have that c2ux1

−c1ux2
≡ 0 and we

conclude that u depends only on y and on the variable parallel to (0, c1, c2). That
is,

u(x1, x2, y) = u0

(
(c1x1 + c2x2)/(c

2
1 + c22)

1/2, y
)
= u0(z, y),

where z denotes the variable parallel to (0, c1, c2). We have that u0 is a solution of
the same nonlinear problem now for n = 1 thanks to the extension characterization;
recall that the constant ds in (1.4) does not depend on the dimension.

In particular ∂xu0 = (c21+c22)
1/2ϕ, and hence ∂xu0 > 0 everywhere. This finishes

the proof of the theorem. �

7. Layer solutions in R

This section is devoted to the case n = 1. The Modica estimate that we proved
in [9] (see Theorems 1.1 and 1.2 above) gave that

G > G(−1) = G(1) in (−1, 1)

is a necessary condition for the existence of a layer solution in R. Note the strict
inequality in G > G(±1).

The rest of the section is dedicated to proving the existence of a layer solution
under the above condition on G, in addition to G′(−1) = G′(1) = 0, as stated
in Theorem 2.4. The existence part of Theorem 2.4 is entirely contained in the
following lemma.
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Lemma 7.1. Assume that n = 1, and that

G′(−1) = G′(1) = 0 and G > G(−1) = G(1) in (−1, 1).

Then, for every R > 0, there exists a function uR ∈ Cβ(B+
R) for some β ∈ (0, 1)

independent of R, such that

−1 < uR < 1 in B+
R ,

uR(0, 0) = 0,

∂xuR ≥ 0 in B+
R ,

and uR is a minimizer of the energy in B+
R , in the sense that

EB+
R
(uR) ≤ EB+

R
(uR + ψ)

for every ψ ∈ C1(B+
R) with compact support in B+

R ∪ Γ0
R and such that −1 ≤

uR + ψ ≤ 1 in B+
R .

Moreover, as a consequence of the previous statements, we will deduce that a

subsequence of (uR) converges in Cβ
loc(R

2
+) to a layer solution u of (1.3).

Proof. For R > 1, let

Q+
R = (−R,R)× (0, R1/8).

Consider the function

vR(x, y) = vR(x) =
arctanx

arctanR
for (x, y) ∈ Q+

R.

Note that −1 ≤ vR ≤ 1 in Q+
R.

Let uR be an absolute minimizer of EQ+
R
in the set of functions v ∈ H1(Q+

R, y
a)

such that |v| ≤ 1 in Q+
R and v ≡ vR in ∂+Q+

R in the weak sense. Since we are
assuming G′(−1) = G′(1) = 0, the existence of such a minimizer was proved in
Lemma 4.1. We have that uR is a weak solution of⎧⎪⎪⎨⎪⎪⎩

Lau
R = 0 in Q+

R,

(1 + a)
∂uR

∂νa
= f(uR) on ∂0Q+

R,

uR = vR on ∂+Q+
R,

and, by the strong maximum principle and Hopf’s lemma (Corollary 4.12 of [9]),

|uR| < 1 in Q+
R.

The function uR is Hölder continuous by Lemma 2.2.
We follow the method developed in [10] and proceed in three steps. First we

show:

(7.1) Claim 1: EQ+
R
(uR) ≤ CR1/4

for some constant C independent of R. Here we take G − G(−1) = G − G(1) as
a boundary energy potential. We will use this energy bound to prove in a second
step that, for R large enough,

(7.2) Claim 2: |{uR(·, 0) > 1/2}| ≥ R3/4 and |{uR(·, 0) < −1/2}| ≥ R3/4.

Finally, in a third step independent of the two previous ones, we prove that

(7.3) Claim 3: uR
x = ∂xu

R ≥ 0 in Q+
R.
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With the above three claims, we can easily finish the proof of the lemma, as
follows. Since uR(·, 0) is nondecreasing (here, this is a key point) and continuous
in (−R,R), we deduce from (7.2) that for R large enough,

uR(xR, 0) = 0 for some xR such that |xR| ≤ R−R3/4.

Since |xR| ≤ R−R3/4 < R −R1/8, we have that

B+
R1/8(xR, 0) ⊂ (−R,R)× [0, R1/8] ⊂ Q+

R.

We slide uR and define

uR1/8(x, y) = uR(x+ xR, y) for (x, y) ∈ B+
R1/8(0, 0).

Then, relabeling the index by setting S = R1/8, we have that uS ∈ Cβ(B+
S (0, 0)),

−1 < uS < 1 in B+
S (0, 0), uS(0, 0) = 0, and ∂xuS ≥ 0 in B+

S (0, 0). Moreover, uS is

a minimizer in B+
S (0, 0) in the sense of Lemma 7.1. This follows from extending a

givenH1 function ψ with compact support in (B+
S ∪Γ0

S)(xR, 0), and with |u+ψ| ≤ 1

in B+
S (xR, 0), by zero in Q+

R \B+
S (xR, 0). Hence ψ is a H1(Q+

R) function. Then one

uses the minimality of uR in Q+
R and the fact that the energies of uR and uR + ψ

coincide in Q+
R \ B+

S (xR, 0) to deduce the desired relation between the energies in

B+
S (xR, 0).
Now we prove the last statement of the lemma: a subsequence of (uR) converges

to a layer solution. Note that we use the sequence (uR) just constructed, and not
the sequence (uR) in the beginning of the proof.

Let S > 0. Since |uR| < 1, Lemma 2.2 gives Cβ(B+
S ) estimates for uR, uniform

for R ≥ 2S. Hence, for a subsequence (that we still denote by uR), we have that

uR converges locally uniformly as R → ∞ to some function u ∈ Cβ
loc(R

2
+). By the

additional bound (2.3) on yauy given by Lemma 2.2, one can pass to the limit in
the weak formulation and u weakly solves (1.3).

We also have that |u| ≤ 1,

u(0, 0) = 0 and ux ≥ 0 in R
2
+.

Since u(0, 0) = 0, we have |u| �≡ 1 and hence |u| < 1 in R2
+, by the strong maximum

principle and Hopf’s lemma. Note that ±1 are solutions of the problem since, by
hypothesis, G′(±1) = f(±1) = 0.

Let us now show that u is a local minimizer relative to perturbations in [−1, 1].
Indeed, let S > 0 and ψ be a C1 function with compact support in B+

S ∪ Γ0
S and

such that |u + ψ| ≤ 1 in B+
S . Extend ψ to be identically zero outside B+

S , so

that ψ ∈ H1
loc(R

2
+). Note that, since −1 < u < 1 and −1 ≤ u + ψ ≤ 1, we have

−1 < u+(1−ε)ψ < 1 in B+
S for every 0 < ε < 1. Hence, by the local convergence of

(uR) towards u, for R large enough we have B+
S ⊂ B+

R and −1 ≤ uR+(1− ε)ψ ≤ 1

in B+
S , and hence also in B+

R . Then, since uR is a minimizer in B+
R , we have

EB+
R
(uR) ≤ EB+

R
(uR + (1− ε)ψ) for R large. Since ψ has support in B+

S ∪ Γ0
S , this

is equivalent to

EB+
S
(uR) ≤ EB+

S
(uR + (1− ε)ψ) for R large.

Letting R → ∞, we deduce that EB+
S
(u) ≤ EB+

S
(u + (1 − ε)ψ). We conclude now

by letting ε → 0.
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Finally, since ux ≥ 0, the limits L± = limx→±∞ u(x, 0) exist. To establish that
u is a layer solution, it remains only to prove that L± = ±1. For this, note that
we can apply Proposition 5.2 to u, a local minimizer relative to perturbations in
[−1, 1], and deduce that

G ≥ G(L−) = G(L+) in [−1, 1].

Since in addition G > G(−1) = G(1) in (−1, 1) by hypothesis, we infer that |L±| =
1. But u(0, 0) = 0 and thus u cannot be identically 1 or −1. We conclude that
L− = −1 and L+ = 1, and therefore u is a layer solution.

We now go back to the functions uR defined in the beginning of the proof, and
proceed to establish the three claims made above.

Step 1. Here we prove (7.1) for some constant C independent of R. We take
G−G(−1) = G−G(1) as a boundary energy potential.

Since EQ+
R
(uR) ≤ EQ+

R
(vR), we simply need to bound the energy of vR. We have

|∇vR| = |∂xvR| =
1

arctanR

1

1 + x2
≤ C

1

1 + x2
,

and hence ∫
Q+

R

ya|∇vR|2 ≤ CR
1+a
8

∫ R

−R

dx

(1 + x2)2
≤ CR1/4,

since 0 < 1 + a < 2.
Next, since G ∈ C2,γ , G′(−1) = G′(1) = 0 and G(−1) = G(1), we have that

G(s)−G(1) ≤ C(1 + cos(πs)) for all s ∈ [−1, 1],

for some constant C > 0. Therefore, using that π/ arctanR > 2, we have

G(vR(x, 0))−G(1) ≤ C

{
1 + cos

(
π
arctanx

arctanR

)}
≤ C

(
1 + cos(2 arctanx)

)
= C2 cos2(arctanx) =

2C

1 + x2
.

We conclude that∫ R

−R

{G(vR(x, 0))−G(1)} dx ≤ C

∫ R

−R

dx

1 + x2
≤ C.

This, together with the above bound for the Dirichlet energy, proves (7.1).

Step 2. Here we prove (7.2) for R large enough.

Since uR ≡ vR on {y = R1/8} and
∫ R

−R
vR(x) dx = 0, we have∫ R

−R

uR(x, 0) dx =

∫ R

−R

uR(x, 0) dx−
∫ R

−R

uR(x,R1/8) dx = −
∫
Q+

R

uR
y .

The energy bound (7.1) and the hypothesis that G−G(1) ≥ 0 give that the Dirichlet
energy alone also satisfies the bound in (7.1). We use this together with the previous
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equality and Cauchy-Schwarz inequality (writing |uR
y | = y−a/2ya/2|uR

y |), to deduce

∣∣∣ ∫ R

−R

uR(x, 0)dx
∣∣∣ ≤ ∫

Q+
R

|uR
y | ≤

{∫
Q+

R

y−a ·
∫
Q+

R

ya|∇uR|2
}1/2

≤ C
{
RR(1−a)/8R1/4

}1/2

≤ CR3/4,

(7.4)

since 0 < 1− a < 2.
Next, by (7.1) we know that

∫ R

−R
{G(uR(x, 0))−G(1)} dx ≤ CR1/4 ≤ CR3/4. On

the other hand, G(s)−G(1) ≥ ε > 0 if s ∈ [−1/2, 1/2], for some ε > 0 independent
of R. Moreover, G−G(1) ≥ 0 in (−1, 1). We deduce

ε
∣∣{|uR(·, 0)| ≤ 1/2}

∣∣ ≤ ∫ R

−R

{G(uR(x, 0))−G(1)} dx ≤ CR3/4,

and therefore
∣∣{|uR(·, 0)| ≤ 1/2}

∣∣ ≤ CR3/4. This combined with (7.4) leads to

(7.5)
∣∣∣ ∫

(−R,R)∩{|uR(·,0)|>1/2}
uR(x, 0) dx

∣∣∣ ≤ CR3/4.

We claim that

|{uR(·, 0) > 1/2}| ≥ R3/4 for R large enough.

Suppose not. Then, using (7.5) and |{uR(·, 0) > 1/2}| ≤ R3/4, we obtain

1

2
|{uR(·, 0) < −1/2}| ≤

∣∣∣ ∫
(−R,R)∩{uR(·,0)<−1/2}

uR(x, 0) dx
∣∣∣ ≤ CR3/4.

Hence, all the three sets {|uR(·, 0)| ≤ 1/2}, {uR(·, 0) > 1/2}, and {uR(·, 0) < −1/2}
would have length smaller than CR3/4. This is a contradiction for R large, since
these sets fill (−R,R).

Step 3. Here we establish the monotonicity result (7.3). This is done exactly as in
Step 3 in the proof in [10], to which we refer. One simply uses the sliding method
with the aid of the Hopf boundary lemma of [9]. �

Proof of Theorem 2.4. The necessary conditions on G follow from our previous
paper [9]; see Theorem 1.2 above.

That the conditions are sufficient for the existence of a layer v = v(x) follows
from Lemma 7.1, which gives a layer solution u = u(x, y) of the corresponding
nonlinear extension problem (1.3), and then by taking v := u(·, 0). Note that we
consider the extension problem with f replaced by (1 + a)d−1

s f due to the relation
(1.4) between the fractional Laplacian and the Neumann derivative.

Finally, the proof of the uniqueness result follows exactly that of Lemma 5.2 in
[10] for the half-Laplacian. It uses the sliding method combined with the maximum
principle Lemma 4.13 and Remark 4.14 in our previous paper [9]. �

Proof of Theorem 2.9. The proof is identical to that of Proposition 6.1 in [10], page
1727. �
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[3] Luigi Ambrosio and Xavier Cabré, Entire solutions of semilinear elliptic equations in R3

and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), no. 4, 725–739 (electronic),
DOI 10.1090/S0894-0347-00-00345-3. MR1775735 (2001g:35064)

[4] Martin T. Barlow, Richard F. Bass, and Changfeng Gui, The Liouville property and a conjec-
ture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), no. 8, 1007–1038, DOI 10.1002/1097-
0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L. MR1755949 (2001m:35095)

[5] H. Berestycki, F. Hamel, and R. Monneau, One-dimensional symmetry of bounded en-

tire solutions of some elliptic equations, Duke Math. J. 103 (2000), no. 3, 375–396, DOI
10.1215/S0012-7094-00-10331-6. MR1763653 (2001j:35069)
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linéaires, 2002. Habilitation à diriger des recherches, Paris VI.

[14] Rupert L. Frank and Enno Lenzmann, Uniqueness of non-linear ground states for fractional
Laplacians in R, Acta Math. 210 (2013), no. 2, 261–318, DOI 10.1007/s11511-013-0095-9.
MR3070568

[15] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math.
Ann. 311 (1998), no. 3, 481–491, DOI 10.1007/s002080050196. MR1637919 (99j:35049)

[16] Vassili Kolokoltsov, Symmetric stable laws and stable-like jump-diffusions, Proc. London
Math. Soc. (3) 80 (2000), no. 3, 725–768, DOI 10.1112/S0024611500012314. MR1744782
(2001f:60016)
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