
HLMP API: A Software Library to Support the
Development of Mobile Collaborative Applications

Juan Rodríguez-Covili, Sergio F. Ochoa, José A. Pino
Department of Computer Science

Universidad de Chile
Santiago, Chile

{jrodrigu, sochoa, jpino}@dcc.uchile.cl

Roc Messeguer, Esunly Medina, Dolors Royo
Department of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona, Spain
{messeguer, esunlyma, dolors}@ac.upc.edu

Abstract—Mobile collaborative applications are usually deployed
in work scenarios where the existence of fixed communication
infrastructure is hard to predict. For that reason, these
applications use Mobile Ad hoc Networks (MANETs) to support
communication between mobile users. The complexity involved in
such communication infrastructures make that developers avoid
developing software for mobile work scenarios. However, it is
possible to provide a reusable abstraction of such communication
mechanisms, in order to avoid that developers have to deal with
low-level programming. This article presents HLMP API, which
is an application programming interface that provides access to a
HLMP implementation. This API is organized as a fully
distributed mobile communication infrastructure, able to run on
MANETs. This infrastructure provides an important set of
services, which are required to support mobile collaboration. The
reuse of these services allows developers to reduce the
complexity, times and cost of these development projects.

Keywords-MANET; mobile collaborative work; mobile
collaborative applications; communication support; collaborative
systems development.

I. INTRODUCTION
The concept of Mobile Ad hoc Network (MANET) has

become an interesting contribution to solve communication
problems on loosely coupled activities, carried out in several
mobile collaborative work scenarios [4, 17]. In those contexts,
the applications are not usually reliant on a fixed infrastructure
communication system, such as antennas or access points. A
MANET creates a communication mesh to exchange messages
among participating devices. Those devices are free to move,
change connection status and even support autonomous tasks.
However, the successful development of mobile collaborative
applications usually has to mainly deal with network related
issues, instead of focusing efforts on social groupware
architectures and functionalities [5, 14]. This occurs because
collaboration and coordination problems are highly dependent
on the computer-mediated communication [6, 14, 18].
Therefore, it is important to count on an abstract solution,
which allows developers to reuse the networking services
without having to deal with low-level programming details.
This reuse can be done through an application programming
interface (API) providing access to particular implementation
of several communication and coordination services.

The authors have previously described the design and
implementation of a routing protocol called High Level
MANET Protocol (HLMP) [22]. Such proposal implements a
set of services required by mobile collaborative applications
when they are supported by a MANET. Examples of these
services are MANET formation, IP addresses self-
configuration and duplication detection, peers discovery, and
routing for multicast and unicast messages. Moreover, the
authors have designed a number of mobile shared workspace
applications for various scenarios, namely, construction
inspection activities, hospital healthcare work and urban
emergency response [15, 17, 19, 21].

This implementation process experience has also shown
that mobile groupware development requires reusable
interfaces for the communication mechanisms. The goal is to
save cost, time and effort on network related problems,
concentrating instead on the development of supporting
collaborative activities. The final objective is thus to improve
productivity and software quality [20, 23]. An application
programming interface seems to be a good idea to encapsulate
the networking services, and provide developers with an
abstract access to those functionalities. Such API could provide
useful information to collaborative applications, allowing the
implementation of awareness mechanisms. Those mechanisms
would provide detection of, e.g., users’ connection and
availability, or mobile workers’ location [14].

This paper presents HLMP API, an implementation of
HLMP which enhances mobile groupware development with a
high level API. This interface keeps the abstraction of the
communication processes through a message exchange
paradigm and an event delivery method. This reusable
infrastructure supports communication functionalities and it
takes advantage of the HLMP specification. In order to show
the quality of the solution that is being reused, this article
presents a performance comparison between HLMP API and
an implementation of the OLSR protocol [3]. This last protocol
is one of the well-known and currently used routing protocols
for MANETs. The tests were carried out using a peer to peer
file transfer routine in static and mobile scenarios.

Next section describes related work. Section III presents the
HLMP API structure and its components. Section IV shows the
performed tests, the obtained results and it also provides a

978-1-4244-6763-1/10/$26.00 ©2010 IEEE

Proceedings of the 2010 14th International Conference on Computer Supported Cooperative Work in Design

479

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 15,2010 at 15:06:45 UTC from IEEE Xplore. Restrictions apply.

comparison between the studied routing implementations.
Finally, section V presents the conclusions and future work.

II. RELATED WORK
Several initiatives propose reusable functions to support

collaboration in peer-to-peer networks. One of them is
LaCOLLA [12]. This middleware has a fully decentralized
peer-to-peer architecture and provides general purpose
functionalities for building collaborative applications.
However, this middleware requires networks with important
signal stability, it does not provide routing and it is not able to
run on hardware with scarce resources.

A similar framework is iClouds, which offers spontaneous
mobile user interaction and file exchange support in MANETs
[9]. Unfortunately this platform is focused just on file sharing.

Other frameworks providing specific functionalities to
support mobile collaboration through an API are YCab [2] and
JXTA [11]. Although these platforms have shown to be useful
to support collaboration in peer-to-peer networks, they require
signal stability. Therefore, they are unsuitable to be used on ad-
hoc mobile work settings.

Nokia is an interesting protagonist. Such company
developed a services-oriented framework that could be used to
support mobile collaboration. This framework includes a set of
APIs and an SDK (Software Development Kit) allowing
developers to create service-oriented applications that act as
consumers of Web services on mobile devices [10]. Since
mobile applications can just consume services, their autonomy
is small because they require a service provider, which is
unsuitable for MANETs.

Finally, there are several proposals to share information in
P2P networks, even considering mobile computing devices [8,
17]. Typical examples of these platforms are the tuple-based
distributed systems derived from LINDA, such as: FT-LINDA,
JINI, PLinda, T-spaces, Lime, JavaSpaces and GRACE [1, 7,
16]. All these solutions use centralized components; therefore
they cannot be used on MANETs. XMIDDLE [13] is another
middleware allowing mobile hosts to share XML documents
across heterogeneous mobile hosts, permitting on-line and off-
line access to data. Nevertheless, these middleware are just
focused on data sharing and they do not support the autonomy
and interoperability capabilities required by mobile workers.

III. HLMP API
HLMP API is composed of two main components (Fig. 1):

a core and plug-ins. On the one hand, the core implements the
mechanisms to support the communication process, network
data interchange and operating systems interoperability
procedures for delegated functionalities. On the other hand, the
plug-ins contain specifications for structuring groupware
communication protocols and awareness mechanisms, which
use the services provided by the core. Next subsections explain
these two components in detail.

Figure 1. HLMP API structure

A. HLMP Core
The core is the basic structure of the HLMP

implementation. It performs the configuration of threshold
values, it establishes the MANET connection procedures, and
structures, routes and it delivers messages through the network.
This component also keeps control on the events triggered by
the collaborative applications connected to the MANET. Such
information is reported to the application upper layers, which
are in charge of implementing the awareness mechanisms
which help mobile users to collaborate on-demand.

The core is divided into three functional sub-structures:
system interoperability, which is the procedure bus for
operating systems (OS) delegated functions; network layer,
which is responsible for the exchange of UDP and TCP
services and datagrams; and communication layer, which is the
API potentially used by developers as support for mobile
collaborative applications.

1) System Interoperabilty
This layer is in charge of specific OS delegated functions.

These functions include the actions required to carry out the
MANET connection procedure, i.e. configuration of the
WLAN profile in an XML form, management of the wireless
network adapter, configuration of the IP address and subnet
mask, and detection of duplicated address when connecting to
the specified WLAN, through OS notifications.

2) Network Layer
This component implements the TCP and UDP services

required to exchange messages in a MANET. These messages
are validated and queued, while receiving, to be lately attended
by the Communication Layer. It is also the component that
manages the links with the remote devices neighborhood using
TCP direct connections.

3) Communication Layer
This module implements the application programming

interface that developers can use to support communication in
collaborative mobile applications. This component is also a
manager of the HLMP services, i.e. routing mechanisms,
messages organization, message packing and unpacking. The
main concept relays on attending the queue of network
messages received through the Network Layer, and using a
factory to transform them into communication messages. Then,
the system decides what action to take once it has identified the
messages. Typically these actions are routing or attending
them. There is also a queue for outcoming messages which are
sent by the groupware layers. This queue is processed in order
to transform messages into the corresponding byte packets that
are finally sent through the network.

480

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 15,2010 at 15:06:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 2 shows how the communication messages are
organized. The API uses the requirements of HLMP for
creating a composed object-oriented specification. The main
abstract class Message contains the basic information of a
message, i.e. identification number, meta-type code, message
type code, sub-protocol type code, information about the sender
and the number of hosts through which the message has been
routed. From this class, three main abstract classes are derived.
These classes represent the three Meta Types of messages
defined in HLMP, i.e., Multicast Message, Unicast Message
and Safe Unicast Message.

MulticastMessage

send(NetHandler)
messagePack():byte[]
messageUnPack(byte[])

SafeUnicastMessage
TargetNetUser

send(NetHandler)
messagePack():byte[]
messageUnPack(byte[])

Message
Id
MetaType
Type
ProtocolType
SenderNetUser
Jumps

AckMessage

MessageId

messagePack():byte[]
messageUnPack(byte[])

ImAliveMessage

messagePack():byte[]
messageUnPack(byte[])

UnicastMessage
TargetNetUser

send(NetHandler)
messagePack():byte[]
messageUnPack(byte[])

Figure 2. Message class context diagram

Every Meta Type message decides how to send a packet, by
using the appropriate functionality offered by the Network
Layer. This delivery also considers the semantic mechanism
specified for each type of delivery. For example, multicast
messages are sent using the UDP channels to every user in the
MANET. Unicast messages are sent only to one remote user,
identified by the target user property, but using the TCP
channels. Finally, Safe Unicast messages are sent only to one
user with the same mechanism that the previous ones.
However, the sender waits for a confirmation of the reception
message (i.e., an ACK) in this case. If the ACK is not received
within a certain time period, the message is sent again.

The developers must extend and implement classes derived
from the Meta Type messages in order to build new kind of
messages for specific groupware requirements. Examples of
these extensions are the internal construction of the “I’m
Alive” message, used to implement peers’ detection
mechanisms, and the “Ack” message, used for notifications of
received Safe Unicast messages.

It is also important that every implemented message is in
charge of the procedures for reading and writing its own byte
message packets, depending on the information it needs to
propagate. The Meta Types use polymorphism to call those
procedures when creating the message bytes packets.

Fig. 3 shows the main components of the communication
process, i.e. the Communication class. This class offers the

functionality for connecting or disconnecting to/from the
MANET, and also to send any kind of derived message.

Figure 3. Communication class context diagram

A user in the MANET is managed as a NetUser. This class
has all the properties required to identify and keep the
information about the user signal quality, traffic state, semantic
information like the name, identification number or other data
required by groupware applications, e.g., group association,
position relative to a coordinates system, and system
permissions. The local user information is kept in the
Configuration object along with local network parameters. The
rest of the MANET users are kept in a NetUserList object,
which is managed internally by the Communication class.

MANET events are communicated to collaborative
applications, because these systems typically implement
awareness based on such information. NetEvent emits
notifications about the internal behavior of the system, such as
log information and exceptions. ConnectionEvent manages the
notifications triggered when the connection status of the local
user has changed or it is currently changing. NetUserEvent
triggers events related to the rest of the users in the MANET.
For example, events notifying that new users are connected to
the network or that a mobile user goes to an offline status. This
information is also updated in the NetUserList object.

Finally, the MessageEvent component manages the
messages that were received and accepted; and that need to be
processed as received messages. It also manages the Safe
Unicast messages which were sent by the groupware layer and
not delivered successfully to destination, due to disconnection
of the target user or failure when trying to find a path to
destination.

B. HLMP Plug-ins
The API offers, as an optional feature, an organization for

sub-protocols implementations (e.g. groupware specific
protocols), involving more complex services, e.g. text
messaging, mail boxes, files sharing and transfer, or data
synchronization mechanisms.

These complements also offer fundamental mobile
groupware communication GUIs. Fig. 4 shows the
SubProtocolI interface, which can be instantiated in order to
create a new sub-protocol that uses the HLMP Core. These
objects are added to a SubProtocolList, managed by the
Communication object. Whenever messages of a specific sub-
protocol type are received, then the Communication class

481

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 15,2010 at 15:06:45 UTC from IEEE Xplore. Restrictions apply.

assigns that message to the corresponding instantiated sub-
protocol. HMLP API presents some pre-built basic sub-
protocols, such as a text message delivery protocol, for group
and private communications; and a file transfer protocol, which
allows network users to share and download any type of files

Figure 4. Sub-Protocol context diagram

Pre-built communication user interfaces for mobile
collaborative applications are also accessible, i.e. icons
representing users’ list or connection awareness mechanisms.
Fig. 5 (a) shows a user list which makes use of the
Communication object to manage visual users’ awareness. The
first user shown in black is the local one. The color intensity of
the participant’s icon indicates the communication quality with
that user: the darker the better.

Figure 5. Common communication interfaces

Fig. 5 (b) shows a MANET graph representing the current
networking links among mobile users. It is useful for showing
the paths that messages can use for reaching their destination. It
can also be used to see mobile network evolution and users’
behavior.

Finally, Fig. 5 (c) shows the GUI corresponding to the file
transfer sub-protocol. It illustrates the list of transferred files
and their current status.

IV. PERFORMANCE COMPARISON
The experimentation process involved three settings. In

each setting, the HLMP API implementation was compared
with an implementation of the OLSR protocol [3]. The reason
to choose such protocol as a comparison instrument was
because OLSR have one of the best routing implementations
available for MANETs. The test scenarios used in the
experimentations involved stationary and mobile nodes in a
controlled scenario, as a way to reproduce the communication
conditions of each setting. Next sections describe the
evaluation scenarios and the obtained results.

A. Test Case I
In this case all nodes were located to one hop of distance.

Initially there were just two nodes in the MANET, then a third
one was added, then a fourth one, and so on to complete seven
nodes (Fig.6).

Figure 6. Evaluation Scenario I

In this case, the test measured the control overhead
involved in each routing protocol (i.e. HLMP and OLSR). The
obtained results (Fig. 7) show that HLMP packet sizes are
similar to OLSR datagram sizes. OLSR packet seems to have a
higher incremental proportion when new nodes are added.
However, Fig. 8 shows that HLMP needs to send more packets
when the nodes number increases in a group scenario. Despite,
the great majority of those packets are discarded and dropped
when performing the HLMP duplication detecting mechanisms.

Although the external behavior differences are not
significant, such situation has a simple explanation: HLMP was
designed to deal with high mobility of the users. For that reason
the protocol need to monitor the network more frequently than
OLSR, which produce the extra overhead at low levels, but that
routine is controlled at higher levels.

Figure 7. Test Case I: packet size

Figure 8. Test Case I: control overhead

482

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 15,2010 at 15:06:45 UTC from IEEE Xplore. Restrictions apply.

B. Test Case II
The second test scenario involved the transmission of a file
between a sender (Tx) and a receiver (Rx). Initially the
MANET involved two nodes; then interim nodes were added in
a line until complete three hops (Fig. 9). Two different files
were used in this experiment. The first one weighted 993 KB
and the second one weighted 2.7 MB.

Figure 9. Evaluation Scenario II

Moreover, two OLSR implementations (for Windows and
Linux respectively) were used in this test case, and one
implementation of HLMP for Windows. The transfer overhead
(bytes) related to each protocol implementation was measured,
and the obtained results are presented in Fig. 10.

The results show that HLMP and OLSR have a similar
transfer overhead, if we consider the same operating system.
Considering different operating system, the HLMP overhead is
30% less than the OLSR overhead. This is because the
transportation layer depends on the operative system protocol
implementation for OLSR. HLMP is an independent platform.

Figure 10. Test Case II: traffic overhead

C. Test Case III
Finally, the last scenario involves the transmission of a file

between two remote nodes, but in a mobility context. The main
nodes where situated statically in separated rooms. And five
moving nodes where commutated between, creating active
routes every 30 seconds (Fig. 11).

In this experimentation was measured the behavior of the
data transmission and the impact of the MANET topology
changes in each protocol. When a commutation of the interim
nodes occurs, the network seems to have pauses to reactivate or
recalculate the paths of the sent packets.

Figure 11. Evaluation Scenario III

Fig. 12 shows an average sample of a network pause in the
OLSR implementation routine, when the system is reacting to
connections and disconnections of the devices. Fig. 13 shows
the same sample, but for the HLMP API. In all repeated
sequences the OLSR protocol seems to have longer inactivity
periods (13-15 seconds) than the HLMP system (lower than 10
seconds).

Figure 12. Test Case II: OLSRd raction behavior

Figure 13. Test Case III: HLMP API reaction behavior

D. Discussion
The experimental results show that HLMP and the OLSR

are similar in terms of routing performance and throughput.
However, HLMP reacts faster to topology changes than OLSR
due to the overhead cost to monitoring the network and the
propagation of control packets (“I’m Alive” messages).
Moreover, HLMP API implements the protocol in the
application layer, which provides an ample control to decide
when deliver the messages or the packets size to be used in
each case.

Contrarily, the OLSR works inside the networking layer;
therefore any mobile collaborative application that uses this
protocol has to assume the parameters established by operating
system when performing data transportation procedures. It
reduces the capability to do tuning to collaborative solutions.

Considering the HLMP API performance and services, it is
clear this is a component that worth of reusing. Developers of
mobile collaborative applications can take advantage of this
infrastructure.

V. CONCLUSSIONS AND FUTURE WORK
This paper has presented the HLMP API, a particular

implementation of the HLMP routing protocol [22]. This

483

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 15,2010 at 15:06:45 UTC from IEEE Xplore. Restrictions apply.

communication infrastructure avoids that developers of mobile
collaborative applications have to deal with low level
communication details when develop a new software system.
The reuse of the HLMP API services allows them to be focused
on the groupware design aspects.

 The upper layers of this API are able to create
collaborative work functionalities by using the message
exchange paradigm. It is also possible to reuse or implement
network awareness mechanisms due to the several event types
that are triggered to the collaborative application when
important information or network behaviors occur.

The tests conducted to the API have shown the performance
of this infrastructure is comparable to those obtained using
OLSR protocol. If we consider that OLSR is one of the best
protocols for MANETs, it is clear that the HLMP API worth of
reusing. Typically this reuse helps to reduce the projects
complexity and development times and cost. Moreover, it helps
improve the quality of the final products.

Next steps for this work consider including new context-
aware mechanisms to the API. Thus, the authors will intend to
combine and adapt the API threshold values to increase the
network performance or reduce excess of control overhead.
These values can be grouped and configured depending on the
work context. The API can inform to the collaborative
application about changes in certain variables; therefore the
application will implement self-adaption processes according to
the work context changes.

ACKNOWLEDGEMENTS
This work was partially supported by Fondecyt (Chile),

grants Nº 11060467 and 1080352, LACCIR grants No.
R0308LAC004 and R0308LAC005, and Spanish MEC project
P2PGrid TIN2007-68050-C03-01.

REFERENCES
[1] Bosneag, A.M., Brockmeyer, M.: "GRACE: Enabling collaborations in

wide-area distributed systems"; Proc. of WETICE’05, Workshop on
Distributed and Mobile Collaboration (DMC), IEEE CS Press,
Linkoping University Sweden, 72-77, 2005.

[2] Buszko, D., Lee, W., Helal, A.: "Decentralized Ad-Hoc Groupware API
and Framework for Mobile Collaboration"; Proc. of ACM Int. Conf. on
Supporting Group Work (GROUP’01), ACM Press, Colorado USA, 5-
14, 2001.

[3] T. Clausen, P. Jacquet: “Optimized Link State Routing Protocol (OLSR)”.
IETF RFC 3626, October 2003.

[4] Corson, S. Macker, J.: “Mobile Ad hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations”. IETF,
RFC 2501, January 1999.

[5] Dyck, J.: “A Survey of Application-Layer Networking Techniques for
Real-time Distributed Groupware”. Technical Report HCI-TR-06-06,
University of Saskatchewan, 2006.

[6] Ellis, C.A., Gibbs, S.J., Rein, G.L.: “Groupware: Some Issues and
Experiences”. Communications of the ACM 34(1), 38–58, 1991.

[7] Handorean, R., Payton, J., Julien, C., Roman, G.: "Coordination
Middleware Supporting Rapid Deployment of Ad Hoc Mobile Systems";
Proc. ICDCS’03, Workshop on Mobile Computing Middleware, IEEE
CS Press, Rhode Island USA, 363-368, 2003.

[8] Hauswirth, M., Podnar, I., Decaer, S.: "On P2P Collaboration
Infrastructures"; Proc. of WETICE’05, Workshop on Distributed and
Mobile Collaboration (DMC), IEEE CS Press, Linkoping University
Sweden, 66-71, 2005.

[9] Heinemann, A., Kangasharju, J., Lyardet, F., Mühlhäuser, M.: "iClouds:
Peer-to-Peer Information Sharing in Mobile Environments"; Proc. of
Euro-Par’03, Lecture Notes in Computer Science 2790, Klagenfurt
Austria, 1038-1045, 2003.

[10] Hirsch, F., Kemp, J., Ilkka, J.: "Mobile Web Services: Architecture and
Implementation"; Nokia Research Center. John Wiley & Sons Publisher,
2006.

[11] JXTA Project, 2009, https://jxta.dev.java.net/. Last visit: October 2009.
[12] Marques, J., Navarro, L.: "LaCOLLA: A Middleware to Support Self-

Sufficient Collaborative Groups"; Computing and Informatics, 25(6),
571-595, 2006.

[13] Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W.: "XMIDDLE: A
Data-Sharing Middleware for Mobile Computing"; Journal on Personal
and Wireless Communications, 21(1), 77-103, 2002.

[14] Messeguer, R., Ochoa, S.F., Pino, J.A., Medina, E., Navarro, L., Royo,
D., Neyem, A.: “Building Real-World Ad-Hoc Networks to Support
Mobile Collaborative Applications: Lessons Learned”. Lecture Notes in
Computer Science, Volume 5784, Springer, 1-16 September 2009.

 [15] Monares, A. Ochoa, S.F., Pino, J.A., Herskovic, V., Neyem, A.:
“MobileMap: A Collaborative Application to Support Emergency
Situations in Urban Areas”. Proceedings of the 2009 13th International
Conference on Computer Supported Cooperative Work in Design
(CSCWD’09), Santiago, Chile, IEEE Press, 565-570, Apr. 2009.

[16] Nemlekar, M.: "Scalable Distributed Tuplespaces"; MSc. Thesis.
Department of Electrical and Computer Engineering, North Carolina
State University, Chapter 5, 2001.

[17] Neyem, A., Ochoa, S.F., Pino, J.A.: “Integrating Service-Oriented Mobile
Units to Support Collaboration in Ad-hoc Scenarios”. Journal of
Universal Computer Science 14(1), 88-122. 2008.

[18] Neyem, A., Ochoa, S.F., Pino, J.A. “Communication Patterns to Support
Mobile Collaboration”. Proceedings of the 15th International Workshop
on Groupware. Duoro, Portugal, Sept. 13-17, 2009.

[19] Ochoa, S.F., Pino, J.A., Bravo, G., Dujovne, N. Neyem, A.: “Mobile
Shared Workspaces to Support Construction Inspection Activities”. In P.
Zaraté, J.P. Belaud, G. Camilieri, F. Ravat (eds.): Collaborative Decision
Making: Perspectives and Challenges, IOS Press, Amsterdam, 270-280,
2008.

[20] Ravichandran, T. and Rothenberger, M. A.: “Software reuse strategies
and component markets”. Communications ACM 46, 8, 109-114. Aug.
2003.

[21] Rodríguez-Covili, J., Ochoa, S.F., Pino, J.A., Favela, J., Mejía, D.,
Morán, A.L.: "Designing Mobile Shared Workspaces by Instantiation".
Proceedings of the 2009 13th International Conference on Computer
Supported Cooperative Work in Design (CSCWD’09), Santiago, Chile,
IEEE Press, 402-407. Apr. 2009.

[22] Rodríguez-Covili, J., Ochoa, S.F., Pino, J.A.: “HLMP: High Level
MANET Protocol”. Technical Report TR/DCC-2009-11, Department of
Computer Science, Universidad de Chile. Nov. 2009.

[23] Sadaoui, S. and Yin, P.: “Generalization for component reuse”. In
Proceedings of the 42nd Annual Southeast Regional Conference. ACM-
SE 42. ACM Press, 134-139, April 2004.

484

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on June 15,2010 at 15:06:45 UTC from IEEE Xplore. Restrictions apply.

