Feasibility analysis of offshore wind power plants with DC collection grid

Mikel De Prada Gila,*, J.L. Domínguez-Garcíaa, F. Díaz-Gonzáleza, M. Aragüés–Peñalbab, Oriol Gomis-Bellmunta,b

aCatalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2nd. - 08930 Sant Adrià de Besòs, Barcelona, (Spain)

bCentre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Universitat Politècnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain

Abstract

Offshore wind power plants (OWPPs) tend to be larger in size and distant from shore. It is widely accepted that for long distances HVDC links are preferred over HVAC transmission. Accordingly, one possible approach might be to consider not only a DC transmission system but also for the WPP collection grid. In this paper, a technical and economic comparison analysis of the conventional AC OWPP scheme and four proposed DC OWPPs topologies is addressed. Due to the conceptual novelty of DC technologies for OWPPs, uncertainty on electrical parameters and cost functions is relevant. A sensitivity analysis of the cost and efficiency of the components, OWPP rated power, export cable lengths and some economic data is carried out. For this study, a methodology is proposed and implemented in DIgSILENT Power FactoryR. To compare conventional AC offshore collector grid and the various proposed DC configurations, an OWPP based on Horn’s Rev wind farm is selected as base case. The analysis of the results shows that, in general terms, DC OWPPs present capital costs comparable with conventional AC OWPPs, as well as lower energy losses, concluding that DC collector grid could be of interest for future OWPP installations.

Keywords: Collector grid, DC technology, economic analysis, offshore wind power plants, sensitivity analysis.

*Corresponding author
Email address: mdeprada@irec.cat (Mikel De Prada Gil)

Preprint submitted to Renewable Energy
Nomenclature

\(C_{\text{AC,WPP}} \) Capital cost of AC WPPs.
\(C_{\text{DC,WPP}} \) Capital cost of DC WPPs.
\(C_{\text{ACwt}} \) Cost of full-equipped AC WT.
\(C_{\text{DCwt}} \) Cost of DC WT without step-up DC/DC converter.
\(C_{\text{ACcab}} \) Cost of MVAC submarine cables.
\(C_{\text{DCcab}} \) Cost of MVDC submarine cables.
\(C_{\text{ca&inst}} \) Cost of cable transport and installation.
\(C_{\text{ACsg}} \) Cost of AC switchgears.
\(C_{\text{DCsg}} \) Cost of DC circuit breakers.
\(C_{\text{tr}} \) Cost of MV/HV transformer.
\(C_{\text{C\text{ACDC}_{\text{AC}}}} \) Cost of single AC/DC power converter.
\(C_{\text{platAC}} \) Cost of offshore substation platform for AC WPPs.
\(C_{\text{platDC}} \) Cost of offshore substation platform for DC WPPs.
\(C_{\text{plat,DCDC}} \) Cost of DC/DC converter installed on collector platform.
\(C_{\text{wt,DCDC}} \) Cost of DC/DC converter installed on the WT.
\(C_{\text{losses}} \) Cost associated to energy losses.
\(E_{\text{losses}} \) Energy losses.
\(N_{\text{WT}} \) Number of WTs.
\(N_{\text{ACcab}} \) Number of MVAC submarine cables.
\(N_{\text{DCcab}} \) Number of MVDC submarine cables.
\(N_{\text{ACsg}} \) Number of AC switchgears.
\(N_{\text{DCsg}} \) Number of DC circuit breakers.
\(N_{\text{tr}} \) Number of MV/HV transformer.
\(N_{\text{plat}} \) Number of offshore platforms installed.
\(N_{\text{plat,DCDC}} \) Number of DC/DC converters installed on collector platforms.
\(N_{\text{WT,DCDC}} \) Number of DC/DC converters installed on the WT.
\(P_g(n) \) Power delivered by the WT.
\(P_{\text{PCC}}(n) \) Net active power transferred to the grid.
\(p_{\text{ab}}(n) \) Probability of occurrence of each state based on Weibull.
\(P_{\text{wt}} \) WT rated power.
\(T \) Time period.
1. Introduction

Offshore wind power is becoming increasingly relevant due to the existence of higher and steadier wind speeds than onshore and lesser number of installation restrictions allowing the use of larger wind turbines [1]. There is a clear trend towards the development of larger Offshore Wind Power Plants (OWPPs) located far from the shore. This tendency is expected to continue over the coming years, since there are already several projects approved or under development in the North sea [2].

Long distances and large power lead to the use of HVDC technology. Various studies agree that there is a break-even point in the range of 55–70 km where HVDC transmission becomes more cost-effective when compared to HVAC [3, 4]. To transmit generated power from the OWPPs to shore using a HVDC link has some major advantages over AC transmission systems including lower cable losses, power system stability enhancement capability and no reactive power compensation requirements [3]. There is currently one OWPP in operation with HVDC link named Bard Offshore 1 which is a 400 MW wind farm connected to the offshore HVDC converter station BorWin Alpha located at a distance of about 125 km from the German shore [5]; but some more are currently under planning and/or construction as those connected to DOLWIN1 cluster [6]. Several research has been carried out considering AC OWPP with HVDC power transmission focusing on different issues such as optimal design of the OWPP layout [7, 8], its control and grid integration [9, 10].

Adding the aforementioned advantages of DC technologies to its recent development and increased interest, not only for HVDC transmission links but also for Multi-Terminal HVDC [11, 12], lead to consider an OWPP concept in which both transmission and collection grid are in DC. Although there are no existing wind power plants with DC collection grid installed or planned, the concept of DC OWPP is being analyzed from technical and economic perspectives taking into consideration both parallel [13–16] and series [13, 17] configurations. Due to the fact that DC technologies for collection networks are not standard and...
still under development, there are some uncertainties to consider and challenges
to overcome. Therefore, the development of several critical DC components,
such as DC circuit breakers (DC–CB) [18–22] or DC/DC converters [23, 24] is
crucial.

This paper deals with the technical and economic assessment of four pro-
posed DC offshore collection grids, aiming to determine its cost–effectiveness
when compared to conventional AC OWPPs. Because of the uncertainty of
DC technology, a sensitivity analysis is carried out taking into consideration
various parameters which may affect technical and economic feasibility of DC
OWPPs, for example, DC equipment efficiencies, DC component cost, OWPP
rated power, export cable length, etc. A methodology is proposed and im-
plemented in DIgSILENT Power Factory®, using the DigSilent programming
language (DPL).

2. AC and DC offshore wind power plants configurations analysed

A simplified scheme of an offshore wind power plant transmitting generated
power to the main network through a point–to-point HVDC link is shown in
Fig. 1; however, a multi-terminal HVDC system may be also considered [25, 26].
As it can be seen, the diagram represents both the offshore wind power plant
collection grid, which is delimited by the dashed lines, and the transmission link
to shore.

Figure 1: Schematic representation of offshore wind power plant connection to the main grid.
The framed zone remarks the paper focus.
This paper focuses on the collection grid (AC or DC) and assumes an HVDC transmission to shore. Hence, the study covers all the equipment required to collect the power generated by the wind turbines and to export it to the offshore transmission HVDC platform, such as submarine cables, protections, wind turbines, collector platforms and DC/DC converters.

A short description of both the AC base case and the four DC offshore wind power plants configurations analysed in this paper is given in the following subsections.

2.1. Current offshore wind power plant design: AC case

An AC wind farm collection grid can be built in three different possible connection designs: radial, ring and star connected [27]. Theses designs are depicted in Fig. 2. In the radial collection system, the wind turbines included within the same feeder are installed in string configuration as it is shown in Fig. 2(a). It is the most common, economical and simplest collection system but it presents some reliability issues [28]. The ring collection (Fig. 2(b)) system can be understood as an improved version of the radial design in terms of reliability, but it becomes costly. The star collection system attempts to reduce the cable ratings of the cables which connect the wind turbines and the collector point. As it can be seen in Fig. 2(c), such common connection point is usually located in the middle of all wind turbines disposition.

Since radial design is the most common configuration installed thus far, it is adopted as base case.

2.2. DC offshore wind power plant design proposals

As with conventional AC, DC offshore collection grids can be mainly classified into three different designs based on the connection of the wind turbines: parallel, series or hybrid. In the parallel topology, the wind turbine voltage is maintained constant. It is worth remarking that this topology is the most similar to the conventional AC case and the logical first step for DC OWPP. For the series case, the wind turbine current is kept constant while the total voltage
Figure 2: (a) Radial collection configuration and layout of the AC offshore wind power plant considered (base case). (b) Ring collection configuration. (c) Star collection configuration.

The OWPP grid is the sum of the wind turbine voltages. Finally, the hybrid topology is defined as a mix of both previous topologies. It is designed as a number of wind turbines electrically connected in series with parallel connected feeders. Both series and hybrid topologies present some technical challenges. For example, a higher insulation requirement on the wind turbines because of the total voltage to withstand, and the fact that some electrical components of the wind power plant must be oversized to prevent overvoltages in the wind turbines [29]. Moreover, to handle the circumstance that some turbines are out of operation, the series connected wind turbines should have a bypass designed to short circuit the output of the wind turbines if an internal fault is detected.
All these technical issues pose extra uncertainty making it difficult to foresee their short–term feasibility.

As it is stated previously, the parallel design is the configuration similar to the radial design for AC cases. To ease the comparison between AC and DC technologies, these wind power plant designs are chosen. For the parallel configuration, four possible DC OWPP schemes are proposed within this paper depending on DC/DC converter requirement and offshore collector platforms existence. Such proposals are briefly described below and shown in Figs. 3, 4, 5 and 6.

2.2.1. DC OWPP configuration 1 (DC1)

In Fig. 3, the scheme of DC1 configuration is presented. In this case, each wind turbine feeder is directly connected with the HVDC main substation, where a DC/DC converter is included (instead of an AC/DC converter) to step-up the voltage to deliver the power to the onshore network via an HVDC transmission link.

![Figure 3: Simplified representation of the DC OWPP configuration 1 proposal (DC1).](image-url)

The main benefit of this configuration is the avoidance of using an intermediate collector platform which implies savings in capital costs. Nonetheless, the considerable distance between the OWPP feeders and the main platform leads to the requirement of both larger number and an increased cross-section
of inter–array cables in order to avoid large power losses.

2.2.2. DC OWPP configuration 2 (DC2)

This configuration design, shown in Fig. 4, considers an offshore grid in which all wind turbine strings are connected to a common offshore collection point. The present scheme differs from DC1 in the connection to the main offshore platform, since such collector grid includes an intermediate offshore platform gathering the inter–array cables from the feeders. Export cables with higher cross–section are used to interconnect the intermediate platform with the main offshore substation, where, as in the previous case, a DC/DC converter is installed.

![Figure 4: Scheme of the DC OWPP configuration 2 proposal (DC2).](image)

One of the main advantages of this scheme design is the non–requirement of DC/DC converter in the offshore collector platform. This fact saves both investment costs and energy losses costs related to power converter. Moreover, it enables the installation of a smaller intermediate offshore platform in comparison with a conventional AC offshore platform with step–up transformer. On the other hand, one of the most relevant disadvantages may be the large amount of power dissipated in the export cable depending on the OWPP voltage level.
2.2.3. DC OWPP configuration 3 (DC3)

The scheme diagram of DC OWPP configuration 3 proposal is presented in Fig. 5. Within this configuration, there are two step-up DC/DC converters. The first one located at the end of the whole wind farm is used to increase the voltage to export the power to the main offshore platform. The other DC/DC converter is required to step-up the voltage to deliver the power to the shore.

![Figure 5: Representation of the proposal of the DC OWPP configuration 3 (DC3).](image)

This scheme has the advantage of reducing the losses in the export cable due to the voltage increase, which is specially worthwhile if the distance between the collector and the main HVDC offshore platform is significant. However, this topology entails some drawbacks as reliability issues because of lack of redundancy; since if the DC/DC converter fails, the generated power of the whole wind power plant cannot be delivered.

2.2.4. DC OWPP configuration 4 (DC4)

Finally, a schematic representation of DC OWPP configuration 4 is shown in Fig. 6. As it can be seen, this proposal includes one single step-up DC/DC per wind turbine feeder. This power converter increases the voltage of the system to deliver the power to the main offshore platform where another step-up DC/DC converter is installed to transmit the generated power to the shore.

Compared to the previous configuration (DC3), the reliability of the system
Figure 6: Proposal scheme of the DC OWPP configuration 4 (DC4).

is increased because of the step-up converter redundancy. On the other hand, a disadvantage of this configuration in comparison with the previous one is the larger capital expenditures associated with the higher required number of DC/DC power converters. Moreover, the collector platforms that allocate all the DC/DC converters may be increased in size and cost.

3. Analysis methodology

A general overview of the steps required to analyse the methodology developed to evaluate both capital and energy losses cost of AC and DC OWPP configurations is presented in Fig. 7. It is worth noting that after the application of this methodology the comparison of those OWPP configurations can be performed.

Figure 7: General flowchart of the methodology proposed for OWPP evaluation.

The proposed methodology is composed by four main steps which can be
briefly introduced as follows: first, an initialization of the system and process is needed to design the electrical WPP collection grid. In this step, all electrical elements except the cables are selected according to voltage ratings (set by the user). Second, in the cable selection process, the type of inter-array and export cables are selected and the number of parallel lines required is determined. The cable selection is based on minimizing the cross section of the cable used ensuring both not overcoming the maximum admissible loading, and a proper and continuous operation under full load condition. Third, a technical analysis to calculate the energy losses of the WPP through load flow simulations is performed. Finally, a cost analysis is carried out calculating the capital expenditures of each component included in the wind power plant design, as well as the costs associated to energy losses considering both non–generated power and cable losses.

In the following subsections, these two last processes (technical and economic assessment) are explained in more detail.

3.1. Technical analysis

After the initialization of the process and the configuration of the wind power plant, the technical analysis can be carried out. As previously stated, this is mainly based on the calculation of the energy losses produced within the WPP by means of several load flow simulations. Considering this, the steady-state energy losses of each WPP configuration over a period of time T may be computed as

$$E_{\text{losses}} = T \sum_{n=1}^{N} (P_g(n) - P_{\text{PCC}}(n)) \cdot p_{\text{wb}}(n)$$

where $P_g(n)$ is the power delivered by the WPP, $P_{\text{PCC}}(n)$ is the net active power transferred to the grid at the Point of Common Coupling (PCC), N is the maximum number of generation states, being equivalent to the wind speeds set under consideration, and $p_{\text{wb}}(n)$ refers to the probability of occurrence of each state according to the Weibull distribution function used shown in Fig. 8(a).
The power generated by the WPP for each state, $P_g(n)$, is computed by considering the power curves of the wind turbines shown in Fig. 8(b), while the amount of power received at the PCC, $P_{PCC}(n)$, is calculated by means of multiple load flows (one per each generation state) and relies on the components efficiency which are included within the WPP collection grid. The total energy yield by each wind turbine is shown in Fig. 8(c), where the dash blue line represents the total wind energy available and the solid red line is the actual energy generated.

![Weibull distribution function](image1)

(a) Representation of the Weibull distribution function.

![Power generation curve](image2)

(b) Power generation curve of a wind turbine.

![Energy yield function](image3)

(c) Energy yield function of the wind turbine.

Figure 8: Generated energy distribution calculations
Due to the uncertainty existing over DC technology for WPPs, some parameters such as the efficiency of DC/DC converters or DC protections, are not well defined. Thus, the energy losses previously introduced in equation (1) results of only the cable losses consideration. Thereby, the total steady–state energy losses including the power losses of power electronic elements (AC/DC and DC/DC converters, and DC breakers) are evaluated by means of a sensitivity analysis.

From the technical analysis, the breakdown of the losses is obtained. This breakdown allows to determine the effect of each element into the total power losses, distinguishing among the different existing losses.

3.2. Cost analysis

The cost analysis deals with the calculation of the total cost of a wind power plant. Those results provide a basis to enable the comparison between AC and DC WPP configurations and to determine which one is the most cost–effective. To this end, the procedure presented in Fig. 9 is applied. In order to validate the results obtained for the base case during this process, the AC WPP cost model is compared to the wide–accepted cost estimations reported by the European Wind Energy Association (EWEA). [30]. Likewise, a sensitivity analysis is performed for the DC OWPP cases to overcome their uncertainty.

![Figure 9: Methodology used for the economic analysis.](image)

Within the economic methodology analysis, a cost function is included considering both the capital expenditures (CAPEX) and the costs associated to the energy losses during the lifetime of the installation. By using this function the total cost calculation of each OWPP configuration analysed can be performed.
3.2.1. Capital expenditure functions

According to the particular study focus, as previously stated, on the offshore collector network, the capital cost function for both an AC and a DC WPP \((C_{AC,WPP} \text{ and } C_{DC,WPP}, \text{ respectively})\) is formulated as

\[
C_{AC,WPP} = \sum N_{wt} C_{AC wt} + \sum N_{AC cab} (C_{AC cab} + C_{cab inst}) + \sum N_{AC sg} C_{AC sg} + \sum N_{tr} C_{tr} + C_{c,AC,DC,sg} + \sum N_{Plat} C_{Plat.AC}
\] (2)

\[
C_{DC,WPP} = \sum N_{wt} C_{DC wt} + \sum N_{DC cab} (C_{DC cab} + C_{cab inst}) + \sum N_{DC sg} C_{DC sg} + \sum N_{WT,DC,DC} C_{WT,DC,DC} + \sum N_{Plat,DC,DC} C_{Plat,DC,DC} + \sum N_{Plat} C_{Plat,DC}
\] (3)

where \(N_{wt}\) is the number of wind turbines within the WPP, \(N_{AC cab}\) and \(N_{DC cab}\) are the number of MV AC and DC submarine cables, \(N_{AC sg}\) and \(N_{DC sg}\) are the number of AC and DC switchgears, \(N_{tr}\) is the number of MV/HV transformers for the AC WPP, \(N_{WT,DC,DC}\) and \(N_{Plat,DC,DC}\) are the number of DC/DC converters in the WT and platforms, respectively, and \(N_{Plat}\) represents the number of platforms installed. The calculation of the capital cost of each component is detailed in the following. It is worth noting that all the costs are expressed in \(k\text{€}\).

Fully–equipped wind turbines. The cost of a fully–equipped wind turbine for the AC case [31], including the turbine, the back–to–back converter and the LV/MV transformer, can be computed by

\[
C_{AC wt} = 1.1 \cdot \frac{(2.95 \cdot 10^3 \cdot \ln(P_{wt}) - 375.2)}{C_{wt}}
\] (4)

where \(P_{wt}\) is the rated power (in MW) of the wind turbine and the coefficient 1.1 includes the costs of transport and installation.

In the DC case, the cost of wind turbines is assumed to be similar to the AC case. The difference relies on the not needing to include a back–to–back power converter nor transformer but only a single AC/DC power converter. Thus, the cost of the power converter and transformer is assumed as a certain percentage
of the total cost of the wind turbine and can be expressed as [30]

\[C_{DCwt} = K_{wt} \cdot C_{ACwt} \] \hspace{1cm} (5)

where \(K_{wt} \) refers to the sensitivity parameter of the percentage explained above, affecting the capital cost of the DC wind turbine.

AC and DC cables. The cost of MVAC submarine cables within the offshore MV collection grid are calculated through the following cost function [31]

\[C_{ACcab} = \alpha + \beta \exp\left(\frac{\gamma I_n}{10^5}\right) \cdot L \] \hspace{1cm} (6)

where \(I_n \) is the cable ampacity (in A), \(L \) is the cable length (in km) and the coefficients \(\alpha, \beta \) and \(\gamma \) depend on the nominal voltage level. For example, for cables of 30–36 kV they are defined as 52.08 k€/km, 75.51 k€/km and 234.34 1/A, respectively.

DC cable costs can be computed by [32]

\[C_{DCcab} = K_{cab}(A_p + B_p I_{rated} V_{rated})L \] \hspace{1cm} (7)

where \(V_{rated} \) and \(I_{rated} \) are the cable ratings (in A and V respectively), the constants \(A_p \) and \(B_p \) depend on voltage rating and \(K_{cab} \) refers to a sensibility parameter on cable cost.

Finally, the cable transport and installation costs are assumed to be equal in both cases

\[C_{ca\text{inst}} = K_{c\text{inst}}365L \] \hspace{1cm} (8)

where \(K_{c\text{inst}} \) is a variable parameter in DC case, but always constant (1) in AC. It is worth noting that this equation provides an average value, and does not reflect particularities of each case study such as seabed composition, water depth, among others.

MV/HV transformers. Referring to [31], the cost of a MV/HV transformer can be expressed as

\[C_{tr} = 42.688 A_t^{0.7513} \] \hspace{1cm} (9)

where \(A_t \) is the transformer rated power (in MVA).
AC/DC power converter. A single AC/DC power converter cost function which is installed before the HVDC link receiving the total power of the collection grid, has been determined in [32] through comparison of real installation cases. This leads to the following equation

\[C_{c,ACDC,cg} = 200P_r \]

(10)

where \(P_r \) is the rated power of converter (in MW).

DC/DC power converters. According to [32], the DC/DC converter cost can be based on Table 1 which is suggested by the industry.

<table>
<thead>
<tr>
<th>DC/DC converter type</th>
<th>(C_{c,DCDC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 MW dc/dc converter to be used with series dc layout</td>
<td>330 k€/MW</td>
</tr>
<tr>
<td>High power (150 MW and above) to be used in the large DC layout</td>
<td>220 k€/MW</td>
</tr>
<tr>
<td>2 MW dc/dc converter to be used with small and large DC layout</td>
<td>165 k€/MW</td>
</tr>
</tbody>
</table>

Table 1: Cost of the DC/DC converters [32].

To consider a wide-spread power ratings, linear interpolation between points is done (\(C_{c,DCDC} \)). Since there are different possible DC/DC converters within the collection grid (wind turbine and offshore platforms), they must be treated separately for the cost analysis.

\[C_{WT,DCDC} = K_{WTcon}C_{c,DCDC} \]
\[C_{Plat,DCDC} = K_{Platcon}C_{c,DCDC} \]

(11)

where \(C_{c,DCDC} \) is the cost of the DC/DC converter, \(K_{WTcon} \) and \(K_{Platcon} \) represent the cost variability of the converters themselves.

AC and DC switchgears. The cost model of the AC switchgears can be found in [31] as

\[C_{ACsg} = 40.543 + 0.76V_n \]

(12)
where \(V_n \) is the nominal voltage in kV. For DC case, according to [32], the cost of the DC breakers is twice the AC switchgears cost.

\[
C_{DC_{sg}} = K_{CB}(2C_{AC_{sg}})
\]

(13)

where \(K_{CB} \) represents a possible uncertainty on the cost hypothesis.

Offshore platform for AC and DC based WPPs. The cost of an offshore substation platform for AC WPPs is computed as [31]

\[
C_{pl_{AC}} = 2534 + 88.7N_{wt}P_{wt}
\]

(14)

where \(N_{wt} \) is the number of wind turbines within the OWPP and \(P_{wt} \) is the wind turbine rated power.

With regard to the DC OWPPs study, there exist various types of offshore platform that could be considered such as feeder, collector and main platform. Thus, the DC offshore platform cost based on the AC case can be expressed as

\[
C_{pl_{DC}} = K_{Col}(2534 + 88.7N_{wt}P_{wt}) + K_{Feed}((2534 + 88.7N_{wt}P_{wt}) 1.1) + K_{Plat}(2534 + 88.7N_{wt}P_{wt})
\]

(15)

where \(K_{Col}, K_{Feed} \) and \(K_{Plat} \) represent the cost variability depending on the type of platform required. It is worth noting that a cost correction factor is included for the feeder platform cost; since, bigger space is needed when larger number of DC/DC converters are installed, in spite of the amount of power remains the same.

Since the references considered are from diverse years, the cost results are updated to 2013 prices through the consumer price index of Spain (\(\approx 2 \% \)).

3.2.2. Cost associated with the energy losses

Energy losses costs associated with those produced within the WPP considering both cases, can be computed as

\[
C_{losses} = \sum_{t=1}^{T}(K_e t + C_e)E_{losses}
\]

(16)
where K_e represents the slope of the equation $P_e(n) = K_e t + C_e$, being P_e the energy price for the year t and C_e a fix cost ($89.5 \, \text{€}/(\text{MWh} \cdot \text{year})$). T is the lifetime of the OWPP and E_{losses} are the energy lost during this period calculated in (1).

3.3. Sensitivity analysis

Due to the fact that the novel concept of OWPPs based on DC collection grid are not a reality yet, some uncertainties rise up regarding both electrical efficiency and their manufacturing cost. With the aim to overcome such problem, a sensitivity analysis is carried out. This is done by modifying several parameters providing a wide range of possible admissible solutions. As it can be seen in Tables 2 and 3, three different scenarios (S1, S2 and S3) of sensitivity parameters are considered within the study. Such scenarios are mainly related with the expected status of this technologies as positive, average (base case) and negative. It is worth noting that the S2 parameter values are the base case, and correspond to those values presented into literature [31–34] and industry suggestions. Likewise, S1 and S3 values are selected mainly based on discussion with industry and academia hypothesis, since the technology is not available yet. The main idea is that such values will provide insight on the influence of the component parameter on cost.

Aiming to examine the influence of a single parameter on the overall cost of a particular WPP configuration, several analyses are performed by modifying only one sensitivity parameter while keeping the other in their base value. Alike, in order to determine the maximum cost range admissible for each WPP scheme, a more general study considering all the sensitivity parameters varying together is also carried out.

4. Case study

In this section, the proposed methodology previously described is applied to a particular case study. From the output of this methodology, the cost–
Table 2: Non-cost parameter values used for sensitivity analyses.

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Sensitivity parameter</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of the rated power of wind turbines (MW)</td>
<td>P_{rated}</td>
<td>2.5</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>Effect of the export cable distance (km) [34]</td>
<td>D_{export}</td>
<td>10</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>Effect of the losses of the DC breakers (%) [20]</td>
<td>$P_{\text{loss}_{\text{DC}}}b$</td>
<td>0.001</td>
<td>0.05</td>
<td>0.25</td>
</tr>
<tr>
<td>Effect of the losses of the DC/DC power converters (%)</td>
<td>$P_{\text{loss}_{\text{DC/DC}}}$</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Effect of different forecasted energy prices (€/MWh) [35] .</td>
<td>K_{e}</td>
<td>-1.1789</td>
<td>2.1105</td>
<td>5.3</td>
</tr>
<tr>
<td>Effect of different maximum admissible cable loading (%) [36]</td>
<td>MaxLoading</td>
<td>72</td>
<td>80</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 3: Capital cost parameter values used for sensitivity analyses.

<table>
<thead>
<tr>
<th>Type of analysis</th>
<th>Sensitivity parameter</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect of the cost of DCDC converters</td>
<td>K_{WTcon}</td>
<td>0.75</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>Effect of the cost of the DC breakers</td>
<td>K_{CB}</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Effect of the cost of platforms that support converters</td>
<td>K_{Plat}</td>
<td>0.75</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>Effect of the cost of platforms without converters</td>
<td>K_{Coll}</td>
<td>0.5</td>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>Effect of the cost of the cables</td>
<td>K_{cab}</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Effect of the cost of the cables installation</td>
<td>K_{cinst}</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Effect of the B2B and transformer cost over total WT cost</td>
<td>K_{wt}</td>
<td>0.9</td>
<td>0.925</td>
<td>0.95</td>
</tr>
</tbody>
</table>
effectiveness of DC OWPP configurations in comparison with the conventional AC solutions can be determined.

In order to facilitate the analysis comparison between the AC base case and the 4 DC OWPPs proposed configurations considered within this paper, all the DC collector grids studied present exactly the same characteristics in terms of number and location of wind turbines as the AC scheme. Each DC OWPP topology analysed is studied as two different cases depending on its collection grid voltage rating (A–± 20 kV and B–± 50 kV). The voltage rating at the export cable is ± 80 kV for DC3 and DC4 configurations.

In with this regard, the general wind farm designs are based on the well–known Horns Rev wind farm which is composed of 80 wind turbines laid out in a regular matrix form of 10 columns and 8 rows. The spacing among wind turbines is 7 rotor diameters (D) in both directions. As it is previously stated, the radial design is adopted connecting all the turbines within a column to one feeder.

4.1. AC cost function validation

With the aim of validating the AC cost functions used for cost modeling, the values obtained have been compared to the investment cost estimations provided by EWEA for OWPPs [30]. Table 4 presents cost predictions for three different scenarios (minimum, average and maximum) according to offshore technology development forecast.

<table>
<thead>
<tr>
<th></th>
<th>EWEA estimations</th>
<th>AC Cost function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>AVG</td>
</tr>
<tr>
<td>Wind turbine</td>
<td>570</td>
<td>920</td>
</tr>
<tr>
<td>Grid connection</td>
<td>280</td>
<td>500</td>
</tr>
<tr>
<td>Total CAPEX</td>
<td>1780</td>
<td>2080</td>
</tr>
</tbody>
</table>

As it can be seen, the obtained cost values lay on these expected ranges; therefore, the AC cost functions can be validated. For the grid connection cost calculation, various electrical components of the OWPPs including cables,
platforms, converters, switchgears and transformers, are gathered. It is worth
noting that although wind turbine and grid connection costs fits in between the
average and maximum cost estimations, the total CAPEX results to be among
minimum and average scenarios, since not all the costs considered on CAPEX
(SCADA, installation costs, among other) are included.

4.2. Comparative analysis

After applying the methodology introduced above and considering the sen-
sitivity parameters in Tables 2 and 3, the results shown in Figs. 10 and 11 are
obtained. For the sake of clarity, Table 5 shows a brief description of all DC
OWPP configurations analyzed within the study.

<table>
<thead>
<tr>
<th></th>
<th>DC1x</th>
<th>DC2x</th>
<th>DC3x</th>
<th>DC4x</th>
</tr>
</thead>
<tbody>
<tr>
<td>No collector platform</td>
<td>No DC/DC on collector platform</td>
<td>One DC/DC conv. per WF on collector platform</td>
<td>One DC/DC conv. per feeder on collector platform</td>
<td></td>
</tr>
</tbody>
</table>

where x represents both A and B cases which are based on ± 20 kV and ±
50 kV, respectively.

Fig. 10 shows the breakdown of both capital and energy losses costs of
all the presented DC OWPP configurations considering a particular case study
(wind turbines of 5 MW each and an export cable of 10 km long). The solid
line represents the AC cost (base case), while the bars indicate the relative cost
of DC OWPP schemes over AC case.

In general terms, it can be seen from Fig. 10(a) that capital cost for DC
WPPs configurations are slightly higher than AC case. On the other hand, Fig.
10(b) shows a reduction on the energy losses for the DC cases, as expected.
Concerning investment costs, it should be noted that the most critical expen-
ditures refer to wind turbine and DC/DC converters costs installed on wind
turbines and platforms, representing 47–50 % and 23–31 % of the total capital
cost, respectively. With regard to the energy losses costs, it is clear that the
Figure 10: Breakdown of all the DC OWPP configurations setting all the sensitivity parameters at their base values (S2). The solid black line indicates the cost of the AC base case.

crucial components for DC OWPPs are the DC/DC converter losses (considering both wind turbine and platform converters), being about 92–94 % of the total losses within the wind power plant.

Finally, Fig. 11 presents total relative OWPP costs for all the cases considered for evaluation over its respective AC base case. Table 6 shows all the AC base values obtained for different wind turbine power ratings (2.5, 5 and 7.5 MW) and export cable lengths (10, 40 and 70 km) considering base parameters for the sensitivity analysis (S2). It should be mentioned that the distances between wind turbines (7 D) has been adapted for each particular case accord-
Figure 11: Total relative WPP costs (including both capital investments and costs associated with losses) for all the cases analysed. The black lines show the AC base case considering a certain export cable length (10, 40 or 70 km) and a particular wind turbine rated power (2.5, 5 or 7.5 MW). The blue line represents the cost sensitivity of DC WPPs. The × symbol indicates the DC base values.

Table 6: Total cost of AC base cases depending on the wind turbine rating and the export cable length (in M€).

<table>
<thead>
<tr>
<th></th>
<th>2.5 MW</th>
<th>5 MW</th>
<th>7.5 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 km</td>
<td>538</td>
<td>1037</td>
<td>1402</td>
</tr>
<tr>
<td>40 km</td>
<td>685</td>
<td>1192</td>
<td>1567</td>
</tr>
<tr>
<td>70 km</td>
<td>840</td>
<td>1354</td>
<td>1735</td>
</tr>
</tbody>
</table>

In Fig. 11, all possible combinations of sensitivity parameters are taken into consideration. The edges of the blue lines indicates the minimum and the maximum cost for DC OWPPs representing the most optimistic and pessimistic scenarios for these technologies, respectively. In this figure, it can be seen that at short export cable length (10 km), generally DC1 and DC2 are of interest, since no extra investment must be done for the DC/DC converter. However, it does not occur in DC1 for the case of 7.5 MW where the large number of cables
required, due to OWPP power rating, for exporting the power to the main
offshore platform (no collector platform installed) leads to larger power losses
and significant increase of the investment cost. On the other hand, for long
export cables (70 km), DC3 and DC4 appear to be economical due to reduced
energy losses and lower number of cables needed. Finally, it can be stated that
assuming the optimistic case DC OWPPs are usually cheaper than AC, but in
the pessimistic case it is always the worst option.

5. Conclusion

This paper has presented different DC OWPPs topologies. Also, a method-
ology to evaluate and compare through a technical and economic assessment
the proposed DC OWPPs has been introduced, determining its potential cost–
effectiveness when compared to conventional AC OWPPs with HVDC link trans-
mission. Since DC technology for DC OWPPs is not well–established yet, a sen-
sitivity analysis has been done to consider various scenarios. In general terms,
the results show that DC configurations involve higher capital expenditures and
lower cost of energy losses, as expected.

From this study, the feasibility of DC configurations among current AC
systems has been demonstrated. It has been shown that DC OWPPs may be
of more interest for cases with longer distances. Likewise, it is not clear (and
is extremely sensitive to the DC/DC converter cost) whether the use of DC
technologies for larger wind power plants would imply a cost reduction; this is
because of the size of DC/DC power converters required.

It is worth remarking that the cost of DC OWPPs are mainly affected by the
cost of wind turbines, DC/DC converters and platforms, as well as the energy
losses cost of such DC/DC converters. Therefore, both cost reduction and ef-
ficiency improvement of the electrical components of the DC OWPP (specially
DC/DC converters) are required to make this option still more attractive.
Acknowledgements

The research was supported by the EU under the FP7 project IRPWIND and by the Ministerio de Economía y Competitividad, Plan Nacional de I+D+i under Project ENE2012-33043.

[5] ABB, “BorWind1. One of the most remote offshore wind farm clusters in the world is connected to the German grid by a 400 MW +/-150 kV HVDC Light transmission system from ABB.” [Online]. Available: http://new.abb.com/systems/hvdc/references/borwin1

into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, 2013.

