PROJECT OF END OF STUDIES

TFG TITLE: Optimization of airport operations at Boston Logan Airport

DEGREE: Degree in Air Navigation Engineering

AUTHOR: Laura Artigas Aranda

ADVISOR: Jérôme Le Ny

DATE: July 27, 2015
Overview

Airport surface congestion results in significant increases in taxi times, fuel burn and emissions at major airports. This thesis proposes a control strategy to improve the performance of airport operations at Boston Logan International Airport.

First of all, an Eulerian model of the airport is built in order to be used for the purpose of control. This model can be used with different control strategies, however, in this project a strategy based in Model Predictive Control is chosen, which allows to include some feedback in the decision algorithms.

This approach determines which are the optimal moments to release aircraft from the gates (pushback) in order to prevent the airport surface from entering congested states and to reduce the time that flights spend with engines on while taxiing to the runway.

Finally, simulations results are shown in order to compare the efficiency of the proposed approach versus the current strategy used in ATC, the well-known First Come, First Served policy. The results demonstrate that lots of benefits are obtained through the proposed method in situations with high demand.

Key words: Airport congestion, Taxi time, Gate hold, Airport operations, Model predictive control, Eulerian model, Air Traffic Control.
Resum

La congestió a la superfície dels aeroports comporta un augment en els temps de taxi, en el consum de combustible i en les emissions produïdes a tots els grans aeroports. Aquest projecte proposa una estratègia de control per tal de millorar l’eficiència de les operacions aeroportuàries, la qual s’ha basat en l’aeroport de Boston.

En primer lloc, es construeix un model eulerià de l’aeroport amb l’objectiu de poder aplicar-hi cert control. Aquest model pot ser utilitzat amb diverses estratègies de control; ara bé, l’estratègia escollida en aquest projecte està basada en el Control Predictiu basat en Model, el qual permet afegir una certa realimentació en els algoritmes de decisió.

Aquest mètode determina quins són els moments òptims per deixar que els avions surtin del gate (pushback) per tal de prevenir que la superfície de l’aeroport entri en estats de congestió i així reduir el temps en què els avions tenen els motors engegats en tot el procés d’enlairament.

Per acabar, es mostren els resultats de les simulacions per tal de comparar l’eficiència del mètode proposat vers l’estratègia utilitzada actualment en ATC, el conegut First Come, First Served (primer a arribar, primer a ser servit). Els resultats demostren que s’obtenen molts beneficis utilitzant el mètode proposat en situacions d’alta demanda.
CONTENTS

Acknowledgements .. 1

Introduction .. 3

0.1. Motivation ... 3

0.2. Task of the project and related work 4

CHAPTER 1. The Airport System 7

1.1. Components of the airport system 7

1.2. Flow constraints at the airport system 8

CHAPTER 2. Overview of Logan Airport 9

2.1. Choice of the runway configuration (22L, 27 / 22R, 22L) and simplification 9

2.2. Interactive queuing system 11

 2.2.1. Queues for the departure segment 11

 2.2.2. Queues for the arrival segment 12

2.3. Queuing system for the simplified model 13

2.4. Characterization of our model 15

 2.4.1. Taxi times and minimum separation 15

 2.4.2. Interaction between arrivals, departures and runway crossing queues 17

 2.4.3. Gates .. 17

CHAPTER 3. Eulerian Model of Logan airport 19

3.1. Dynamics of the system 20

3.2. Restrictions and interactions 22

 3.2.1. Maximum throughput 22

 3.2.2. Interactions between control Volumes 23

 3.2.3. Capacity of the queues 23

3.3. Summary of the model 24

CHAPTER 4. Control Strategies 25
4.1. First Come, First Served Policy .. 25

4.2. Model Predictive Control .. 25
 4.2.1. Definition of MPC .. 25
 4.2.2. Formulation ... 26
 4.2.3. Cost function ... 28
 4.2.4. Solution of the optimization problem 31

CHAPTER 5. Simulation and Results ... 33

5.1. FCFS in nominal conditions ... 34

5.2. FCFS and MPC when demand exceeds capacity 36

Conclusions ... 43

Bibliography ... 45

APPENDIX A. Expanded Matrices for the Restrictions 49

A.1. Maximum Throughput .. 49

A.2. Interactions between Control Volumes 49

A.3. Capacity of the Control Volumes 50
LIST OF FIGURES

1 The Departure Planner Concept [1] .. 4

1.1 Schematic of the airport system components [2] 7

2.1 BOS Runway Configuration Usage [3] 9
2.2 Flow pattern under 22L, 27 / 22R, 22L configuration [1] 10
2.3 Queuing network under the 22L, 27 / 22R, 22L runway configuration [1] . 11
2.4 Queuing network for our model, adapted from [1] for the 22L, 27 / 22R, 22L configuration .. 14
2.5 Flow pattern in our configuration, adapted from [1] for 22L, 27 / 22R, 22L configuration .. 14

3.1 Schema of the control volumes and their interactions 20

4.1 Mathematical piecewise linear functions in our objective 30

5.1 Simulation of an scenario with balanced capacity and demand using FCFS (7dep - 4arr / 15min) .. 34
5.2 Simulation of an scenario with capacity higher than demand using FCFS (7dep - 3arr / 15min) .. 35
5.3 Simulation of an scenario with high demand using FCFS (8dep - 4arr / 15min) .. 37
5.4 Simulation of an scenario with high demand using MPC (8dep - 4arr / 15min) .. 40
5.5 Performance over 90 simulations in which demand exceeds capacity) 42
LIST OF TABLES

2.1 Average of an approximate unimpeded taxi-out time coming from each Terminal 16
2.2 Characteristics of aircraft considered in this thesis 16
2.3 Interactions due to departures and arrivals 17
2.4 Number of gates in reality and in the model 18

4.1 Values of the coefficients in the objective function 29

5.1 Example of some allowed operations in a 15 minute interval 33
5.2 Important data to analyse the performance 42
ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to Jérôme Le Ny, my supervisor and guide in all this thesis, for his help, support and patience during all the development of this study. Also, I would like to thank him for giving me the huge opportunity of doing a project on this topic, which perfectly matches my interests. I hope this is just an start to continue developing my career in this direction.

Secondly, I would really like to thank my parents for their support and encouragement throughout my life and specially for this golden opportunity of expanding my horizons over the world; an experience that I am sure I am not going to forget.
INTRODUCTION

While the demand in the air transportation industry is continuously growing, the Airspace System all over the world is reaching capacity limitations. This effect is particularly true at airports, which are usually the bottlenecks of the system, as they need an specific and really expensive infrastructure which is not as flexible to changes as the other parts of the system.

At major airports, the capacity of the runway is usually the most restricting element, as sometimes it is not able to support all the demand, specially when weather conditions are not ideal. The consequences of this unbalance between capacity and demand produce an increase in the airport surface congestion, which result in significant increases in taxi times, fuel burn and emissions.

The taxi-out time is defined as the time between the actual pushback and takeoff time. This quantity represents the amount of time that the aircraft spends on the airport surface with engines on and includes the time spent on the taxiway system and in the runway queue. At major congested airports, the taxi times tend to be much longer than the unimpeded taxi times, due to the high state of congestion that they support.

However, some observations in the behavior of the departure process were done in previous works. The most important is that this increase in the taxi-out time is basically caused by the queues that are formed at the departure runways, not on the taxiway system itself. Therefore, an interesting question appeared: why all these aircraft are waiting in the runway queue with the engines on instead of waiting in the gate without wasting fuel and producing emissions? It was seen that by addressing the inefficiencies in surface operations, it may be possible to decrease taxi times and surface emissions.

Considering this, the idea of gate-hold started to take more relevance, which consists on forcing the aircraft to absorb the delays in the gate instead of queuing in the taxi-out process.

This thesis presents the development of a decision aiding system which helps air traffic controllers in managing the traffic at congested airports. This system is based in a feedback control strategy that allows to consider the uncertainty of the system. Finally, some fast-time simulations are done in order to evaluate the quantitative effects of the proposed method in a specific scenario.

0.1. Motivation

As I said, airport surface congestion is a fact at major airports over the world, which produces an increase in taxi-out times and, consequently, fuel burn and emissions.

Drastic solutions to increase capacity of airports like adding new runways or creating new airports are expensive, require a lot of time and changes in the global system, as well as they have big social and environmental impacts. Consequently, other ways to improve the efficiency of the system without changing the existing infrastructure are being considered, as decision aiding systems that assist air traffic controllers in managing traffic at congested airports.
Therefore, the main motivation of this project came from the need of reducing congestion at airports without changing the existing infrastructure. In other words, the need of optimizing airport operations, particularly departure operations, to better exploit the current capacity of airport resources.

0.2. Task of the project and related work

The main goal of this project is to develop a decision aiding system which helps air traffic controllers in managing the traffic at congested airports.

Basically, it focuses on the idea of the Departure Planner, which is a concept for a decision aiding system that assists air traffic controllers in managing the departure traffic. The Departure Planner can be represented as a control system (Figure 1), where the departure process is the controlled system and the Departure Planner is a controller[1].

![Figure 1: The Departure Planner Concept [1]](image)

The concept of the Departure Planner can include different methods like: (i) an information provision system that enhances the state of knowledge of the system, (ii) a procedural rule-based system that would be incorporated in the existing procedures in ATC, or (iii) a real-time decision aiding system that provides advice or control inputs to the air traffic controllers based on optimization techniques[1]. This thesis focuses on the last option, the development of a real-time decision aiding system for air traffic controllers.

The consideration of the high uncertainty involved in the departure process like the differences in the scheduled departure times, the variation in speed, fleet of aircraft, pilots’ opinions, weather, etc. makes closed-loop policies very attractive in order to improve the performance of airport operations. In this thesis, therefore, a control strategy which includes some feedback in the decision algorithm is considered, as it is explained in Chapter 4. It should be mentioned that previous works have already included some feedback in the decision algorithms, like the work done in [4]. In that paper, a feedback control of the National Airspace System (NAS) was developed, in which the variation could be considered by means of a feedback control that helped the controllers to make good decisions.
Also, another task of the thesis is to develop a model of the airport which can be used to apply the control strategy proposed. In [4], a model based on aggregate flows was also developed, which simulate the behavior of the system as well as it is tractable for the purpose of control. This type of models are gaining popularity nowadays due to their lots of advantages, so in this project is decided to develop a model of this type to simulate the dynamics of the studied airport.

Finally, it is also needed to chose an airport in order to evaluate the results of the model and the proposed control strategy. Then, the requirements for the selection of the airport are basically two: (i) The airport has to be congested and (ii) enough data has to be available in order to be able to build a simulation and an adequate model. Considering all this, the chosen airport is Boston Logan Airport, because it has been already studied in different previous works like [1, 5] and also because it has high congestion in certain periods of the day.

Actually, the work done in [5] consists on the development and field test of a strategy which controls the rate in which pushbacks are done in order to reduce taxi-times, which is also the purpose of this thesis. However, it did not model other interesting parts of the airport that should also be managed efficiently, like intersecting and merging points, runway crossings, etc., effects that are considered in this thesis.

To summarize, the tasks that have been done in this project are shown in the list below:

- Understanding of the general departure process.
- Study of the specific characteristics of Boston Logan Airport as well as collect the required data to build a realistic model.
- Building of the model that will be used in the control strategy.
- Selection of the control strategy to be applied in the departure process.
- Simulation of the departure process at Boston Logan Airport, using the current control policy in airport operations (FCFS) and the proposed strategy in this project.
- Analysis of the results.
CHAPTER 1. THE AIRPORT SYSTEM

In this section, the main components of the airport system that affect to the departure process are defined, as well as its interactions with the NAS.

1.1. Components of the airport system

As this project focuses on studying the departure process, it is important to know how the airport systems works and which are its main components.

The main components of the airport system are shown in Figure 1.1, which are the gates, the ramp area around the gates, the taxiways that connect the ramp (or directly the gates) with the runway and the runway system. Also, there are the entry and exit fixes, which are the points where the aircraft enter and exit the airport system, going or coming from the NAS.

![Figure 1.1: Schematic of the airport system components](image)

Basically, the process is as follows: aircraft enter to the system by an entry fix (coming from the NAS), they use the runways to land and, after it, they go through the taxiways and the ramp area in order to arrive to the gate. Once they are in the gate the turnaround operations take place, which means that aircraft are converted into departing aircraft.

When aircraft are ready to depart, they ask for pushback and start the departure process. They leave the gate and they move through the ramp and taxis in order to arrive to the takeoff runway. Once there, they depart and exit the system by an exit fix.

Throughout all this process, aircraft are under the orders of ATC, another resource of the airport system as its shown in Figure 1.1. This component is of extremely importance in the scope of this project, as it is responsible of ordering the aircraft to move or not and follow certain paths in the airport surface. Also, it is the component that has more flexibility to change, as it is formed by air traffic controllers and they orders can be easily modified in order to improve efficiency. As it has been already said, the objective of this project is to
help controllers to improve the efficiency of this orders.

1.2. Flow constraints at the airport system

The different components of the airport system constitute a resource for which aircraft compete. Therefore, each of the airport resources becomes a potential constraint to the aircraft flow, where aircraft queue and wait to use the resource when the demand is higher than the capacity. That means that each component have aircraft queues associated with them, which are a manifestation of the flow constraints[1]. Moreover, the cost of having an aircraft in one queue or another depends on the queue itself. For example, it is more expensive to have an aircraft queuing in the middle of the taxi, with its engines on and its respective fuel and emissions costs, than having an airplane waiting for pushback in the gate with its engines off[2].

As it was analysed in [1], the airport system dynamics depend at a high level on the aircraft flow pattern on the airport surface and in the terminal airspace.

On one hand, regarding the terminal airspace, we have to take into account that external arrivals coming from the NAS requiring to use the runways and the rest of the airport components have an extremely effect on the airport congestion. Also, the rate of acceptance of departing aircraft to the NAS is going to influence the capacity of the runway, which has a tremendous effect in modeling the departure process.

On the other hand, the flow pattern is determined by the runway configuration, which is the combination of runways that can be used by arrivals or departures. Aircraft should move through specific taxis depending on the runway configuration in order to arrive to their designed takeoff runway (or designed gate in the case of an arriving aircraft).

Once the flow patterns are selected, the flow constraints are caused at the tactical aircraft movement level by the capacities of the airport resources relative to the demand. As [1] says, given the flow pattern, the departure process forms an interactive queuing system, where the queues show an imbalance between capacity and demand, and the interactions come from the highly dependence between the different components of the airport.

The scope of this project, however, is to build a model for a specific runway configuration, without considering the possibility of changing flow patterns. The chosen configuration is explained in Chapter 2, where the specific airport is treated. Therefore, the queuing dynamics is studied for just one possible runway configuration at BOS.
CHAPTER 2. OVERVIEW OF LOGAN AIRPORT

In this chapter, a description of the chosen runway configuration for the airport of study and its posterior simplification is explained. Also, a dynamic queuing network to represent this configuration is designed and explained.

Firstly, I would like to briefly mention why this airport is chosen. As it is said in the introduction, the proposed method has the goal of dealing with congested situations in major airports, that’s why a congested airport like BOS needs to be chosen. Moreover, the desire to build a model as realistic as possible requires to chose an airport which has enough available data; in other words, an airport which has already been studied. These two needs are the main reasons why Boston Logan International Airport was chosen.

Secondly, I would like to comment that all the analysis done in this chapter are focused on characteristics of the airport which are relevant for the construction of the model (Chapter 3), the one is used to apply the proposed control policy. Also, as this project has the goal of doing an initial test to verify if the proposed method is able to optimize the current operations, the real runway configuration and operations in the airport are simplified. That means that, as we are not interested in building a large model for a first approach, the complexity of the studied flow pattern is not too high and so the Eulerian model that it is developed in Chapter 3, which has just a small number of queues.

2.1. Choice of the runway configuration (22L, 27 / 22R, 22L) and simplification

In order to adapt a congestion management strategy for an airport, it is important to identify which are the most common runway configurations in that airport, because it would not be really useful to study a runway configuration which is rarely used.

In Figure 2.1, the use of the different runway configurations at BOS in the summer months of 2011 derived from ASDE-X data are shown [3].

Figure 2.1: BOS Runway Configuration Usage [3]
It is clear that there are two main configurations at BOS: 22L, 27 / 22R, 22L\(^1\) and 4R, 4L / 9, 4R. In this thesis, the first one is chosen due to more available data.

Also, as it is said in Section 1.2., once the runway configuration is chosen, the flow pattern is determined. In Figure 2.2, the flow pattern corresponding to this configuration is shown.

![Figure 2.2: Flow pattern under 22L, 27 / 22R, 22L configuration [1]](image)

In this configuration, runways 27 and 22L are the arrival runways and runways 22R and 22L are used for departures. However, not all of them are used equally because each of them has its functionality. As it is said, this model serves to obtain a first approach, so the runway configuration is going to be simplified taking into account which parts are more important to consider.

As it is said in [1], runway 22R is the primary departure runway, while the longer 22L runway is only used for heavy departures. Therefore, it is considered that assign all departures to runway 22R is a good approach which allow to treat runway 22L only for landings. Also, it is important to take into account that runways 22R and 22L are dependent parallel runways (they are separated less than 2500ft), which means that specific operating rules, as separation minims, have to be applied. This interaction is explained in more detail in Section 2.4.. Finally, it is desired to assign all the arrivals to one runway in order to simplify even more the configuration. The fact of testing if the proposed model is able to represent the interaction between dependent parallel runway is considered interesting, so finally runway 22L is chosen as the landing runway whereas runway 27 is discarded.

\(^1\)The runway configuration symbol starts with the list of arrival runways separated by commas, then a slash, then the list of departure runways separated by commas.
2.2. Interactive queuing system

As it is said, the aircraft movement in the airport system can be represented as a network of queues, where aircraft wait to operate on the airport resources. In this section, therefore, the queuing behavior of the airport system is described in detail.

In order to do that, a figure taken from [1], which shows the queue formations on the airport surface in configuration 22L, 27 / 22R, 22L, is shown (Figure 2.3) and explained. In order to better understand this Figure, a color code is used to differentiate the different types of queues.

![Figure 2.3: Queuing network under the 22L, 27 / 22R, 22L runway configuration [1]](image)

2.2.1. Queues for the departure segment

First of all, it is really important to understand how the dynamic queuing system shown in Figure 2.3 works, which represents the departure and arrival processes in the airport surface. Also, it is important to remember that the task of the controllers is to manage the aircraft movement over these queues in order to maintain safe operations. Some of their
tasks include to sequence the aircraft at merging points and intersections as well as asking for holding if is is necessary.

The departure process starts when an aircraft is ready for pushback and the pilot asks for a clearance to the controller. At that point, the aircraft enters the pushback queue (shown in pink). In the model built in this thesis, as it is explained in chapter 3, this queue is the entrance to the airport system for all departing aircraft.

Nowadays, controllers deliver the pushback clearance to aircraft according to a First Come First Served (FCFS) sequence in order to be fair with all the airlines, even if this strategy is not the most efficient. It is extremely important to take into account this concept of fairness in during all the project if the objective is to develop a control strategy which has to be accepted for the airlines as well as airport operators.

Once the controllers allow a pushback, aircraft enter to the ramp queue (shown in orange) before to move to the departure taxi queues (shown in yellow), in which they move to the departure runway.

In the case of BOS, controllers usually assign all the departing aircraft to taxi Kilo (the outer one) and the arriving aircraft to taxi Alpha (the inner one)[1], letters K and A in Figure 2.3. Doing this, they allow to separate opposite flows as much as possible and the interactions are much less.

After this, all departing aircraft move to taxiway November (shown with letter N) where different flows merge in order to join the takeoff queues (shown in green). In these queues is where aircraft wait until runways 22R or 22L are available for takeoff. In this specific configuration, there is also a runway crossing queue for departing aircraft that need to depart in runway 22L (shown in light green). Finally, we can consider that aircraft leave the airport system once they have departed.

2.2.2. Queues for the arrival segment

In the arrival segment, we start with landing queues, where aircraft who want to land at BOS wait for availability of the runway 22L. Once they receive the clearance to land from the controller, they land and exit the runway for one of the exits, depending on the distance they need to carry out the landing. In the case of study, we see that arriving aircraft need to cross the departure runway in order to get to their gates. So, as it is shown, aircraft join the arrival runway crossing queues after the landing.

In these queues, aircraft have to wait until the departure runway is empty and they can cross and enter the taxiway system, where they join the arrival taxi queues (light blue) and mix with departing traffic. As it is indicated in Figure 2.3, after that, aircraft taxi to the ramp in order to get to the assigned gate and perform the turnaround. If the assigned gate is occupied by another aircraft or the gate alley leading to the gate is blocked, the aircraft have to wait and form a gate-occupied or alley blocked queue (shown in violet).

Finally, once they get to their respective gate, they perform the turnaround (white in Figure 2.3) and are converted into departing aircraft.
2.3. Queuing system for the simplified model

In this section, the final simplification of the queuing system for the chosen model is explained.

First of all, just remember that runway 22L has been already neglected as a departure runway, which means that the departure runway crossing queue can be eliminated from the queuing network.

Secondly, it is important to remember that this project focuses on the departure process. Therefore, although we cannot forget about arrivals because they have high influence in the departure process\(^2\), the model can be simplified considering only the parts of the arrival process that highly affect the departures.

For example, on one hand, it has been said that in this configuration controllers tend to assign all departing aircraft to taxiway Kilo and arriving ones to taxiway Alpha, which reduces interaction. Also, [5] says that gate conflicts at BOS are relatively infrequent. Therefore, eliminating the arrival taxi and gate occupied queues in order to reduce the size of the network of queues is considered a good approach which will not influence too much the result.

On the other hand, however, the great influence of having dependent parallel runways for the departures and landings and the need for arrival aircraft to cross the departure runway to get to their gates requires the consideration of these two types of queues, as they have a huge influence in the departure process.

So, to sum up, the arriving aircraft are treated from the landing queue until they have crossed the departure runway, where they are not considered anymore because it is supposed that they arrive to their assigned gates without causing too much problems to the departing process. The only way they can interact with the departing taxiing aircraft is that, if the queue in taxiway Kilo is too big, aircraft cannot cross the departure runway in order to move to taxiway Alpha; but this interaction is going to be treated in Section 4.2.3.

Doing this, it can be said that this model does not consider explicitly the turnaround operations, as arrivals and departures are treated separately. However, as gate conflicts rarely happen at BOS, it is supposed that turnaround operations are done without problems and, when aircraft are ready for pushback, they ask for clearance while they wait in the pushback queue.

Moreover, the ramp queues has also been neglected and it is supposed that after pushback aircraft directly move to the taxis.

Considering all the simplifications said above, it is shown in Figure 2.4 how the network of queues for the proposed model looks like. Each of the control volumes that are drawn are the ones that are used in the Eulerian model explained in Chapter 3. It can be seen that in some regions certain control volumes have been separated in more than one volume of the same type, which is done to achieve a better match between the Eulerian model and reality, as it will be explained in Chapter 3. Moreover, names for each of the queues has been given in the Figure, because they will be useful to talk about the different modeled parts in Chapter 3 as well as in the simulation part 5.

\(^2\)Landing aircraft have priority over departures because airborne delays are much more expensive than ground delays and that can produce congestion in the surface due to unavailability to depart.
The flow pattern resulting from the runway configuration simplified it is also shown in Figure 2.5. We can easily see how arrival aircraft interact with departing taxiing aircraft just after they have crossed the runway 22R, however, we can also see that after that, they do not have any other important interaction.
Finally, I would like to summarize all the hypothesis and simplifications that have been considered in this chapter in the following list:

- Runway 22L is only for arrivals.
- Runway 27 is not considered.
- Turnaround operation are supposed to be done without problems.
- Taxi queues for arrivals are not considered.
- After pushback, aircraft directly move to taxi queues, which means that ramp queues are not considered.
- As gate conflicts rarely happen, gate occupied queues are neglected.
- Only two runway crossing queues are considered, as only an idea of their effect on the system is required.
- Missed approaches are not considered.
- Possible failures when an aircraft is already taking off is not considered. Once they have left the gate, they move until the departure runway if there are not other aircraft which are blocking the path.
- Downstream queues in the exit fixes are not considered. Therefore, once an aircraft have left the runway queue, it leaves the airport system.

2.4. Characterization of our model

In this section, some important data of Boston Logan Airport is shown. This information is completely necessary in order to model the airport, as certain values need to be considered to achieve a realistic model. This section includes data regarding regulations, airport dimensions, typical speeds, etc.

2.4.1. Taxi times and minimum separation

To model the taxiways of BOS, it is necessary to know which are the unimpeded taxi times, the regulations that have to be applied in the taxi (like the minimum separation between aircraft) as well as which are the typical velocities in the process of taxiing.

First of all, it is interesting to get some information about the unimpeded taxi times at BOS, as it is really important to have some realistic data to compare the obtained results and be able to evaluate the degree of reliability of the simulations. By using data from the Aviation System Performance Metrics (ASPM) database [6] and from [5, 7], an estimation of the unimpeded taxi-out time for aircraft coming from each of the terminals is computed. However, it is really important to take into account that this data is just an approximation, as the data analysed does not consider all the simplifications that have been done in this
Table 2.1: Average of an approximate unimpeded taxi-out time coming from each Terminal

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Taxi-Out Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal A</td>
<td>15 min</td>
</tr>
<tr>
<td>Terminal B</td>
<td>13 min</td>
</tr>
<tr>
<td>Terminal C</td>
<td>9 min</td>
</tr>
</tbody>
</table>

thesis as well as it considers average data obtained for full years, which is really general. The approximate taxi-out time for each group of gates is shown in Table 2.1.

Secondly, it was found in [8] that there is no minimum separation in taxi which has to be applied by law, and therefore it is decision of the pilots. However, pilots tend to use a separation similar to the length of the aircraft they are flying.

In this thesis, it was preferable to define "a rule" to be used in the fast-time simulation, as pilot's opinion is not analysed. Therefore, it was decided to always use the length of each aircraft as the minimum separation it has to maintain. The lengths, however, changes from one aircraft to the other, so the separations are different for each aircraft.

A similar situation happens with velocity in taxiways, as there is not defined velocity. In this case, data from [9] is used in order to define certain velocities for the fast-time simulation.

In all the taxi path that an aircraft follows to get to the runway, its velocity changes depending on different things like turns in the taxi path, proximity of other aircraft, etc. These changes usually go from 0 m/s to 7 m/s in the most part of the time, but they can also take velocities of around 12 m/s in a few moments. In this project, it is decided to work with an average velocity of 3.5 m/s for the most part of aircraft and they stop (completely) only if another aircraft is at a distance equal to the minimum separation in front of it. This velocity of 3.5 m/s was computed taking into account the range of possible values of the taxiway speeds, but also considering the unimpeded taxi-out time that was found as well as the real length of the taxiways at BOS. By using this value in the simulation, the obtained unimpeded taxi-out times is similar than the real values for Boston Logan Airport.

However, some variations in the velocity have been considered for different types of aircraft (velocities are assigned as a function of the size), even though each aircraft will have an assigned velocity during all the taxi. The only case in which an aircraft would taxi slower than its assigned speed is when it has a slower aircraft in front of it and, of course, it is impossible to pass it.

Finally, the possible sizes and mean velocities considered in this thesis, with the probability of having these specific characteristics, are summarized in Table 2.3. The probabilities are computed considering which sizes of aircraft are most common in airports like BOS.

Table 2.2: Characteristics of aircraft considered in this thesis

<table>
<thead>
<tr>
<th>Length</th>
<th>Mean Velocity</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 m</td>
<td>4.5 m/s</td>
<td>0.1</td>
</tr>
<tr>
<td>30 m</td>
<td>3.5 m/s</td>
<td>0.2</td>
</tr>
<tr>
<td>40 m</td>
<td>3.5 m/s</td>
<td>0.5</td>
</tr>
<tr>
<td>50 m</td>
<td>3.5 m/s</td>
<td>0.1</td>
</tr>
<tr>
<td>60 m</td>
<td>2.5 m/s</td>
<td>0.05</td>
</tr>
<tr>
<td>70 m</td>
<td>2.5 m/s</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Finally, regarding the minimum separation and the considered velocities, the maximum throughput of each of the control volumes that represent a part of the taxiway is computed. In order to do it, the most common values for velocities and sizes are used, as it is not possible to know how many aircraft of each type there will be at a certain control volume at each time. Therefore, it is preferred to consider a constant maximum throughput computed with the mean values. By using a speed of 3.5 m/s, a separation of 40 m and an aircraft size of 40 m, the maximum throughput from a taxiway control volume in one minute gives a result of 3 acc/min.

2.4.2. Interaction between arrivals, departures and runway crossing queues

Another important thing to consider in order to model the airport are the regulations that apply to arrivals and departures.

Again, in the proposed model is decided to work with the mean values instead of considering each type of aircraft separately. By using data from [10, 11, 12, 5], the mean value for the minimum separation between consecutive departures, consecutive arrivals, arrivals followed by departures, departures followed by arrivals and separation between departures and runway crossings are shown in Table 2.3. The separations shown already consider the separation due to wake vortex as well as it considers that the studied runway configuration has two dependent parallel.

<table>
<thead>
<tr>
<th>Type of operations</th>
<th>Time between operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep - Dep</td>
<td>1 min</td>
</tr>
<tr>
<td>Dep - Arr</td>
<td>1 min</td>
</tr>
<tr>
<td>Arr - Arr</td>
<td>2 min</td>
</tr>
<tr>
<td>Arr - Dep</td>
<td>2 min</td>
</tr>
<tr>
<td>Dep - Cross</td>
<td>1 min</td>
</tr>
<tr>
<td>Cross - Dep</td>
<td>1 min</td>
</tr>
</tbody>
</table>

2.4.3. Gates

In order to characterize the groups of gates, there are basically two things to take into account: how many gates are in each group (each terminal) and how many pushbacks can be done at the same time in a specific terminal due to its physical space; as we should consider that aircraft need enough space to maneuver.

In the queuing model that has been defined, each queue in the gates is a group of gates that share resources and have similar characteristics. For example, they are really close to each other and therefore they have to share the ramp and they have, more or less, the same taxi time.

The number of gates in each terminal was found in [7] and it is shown in Table 2.4, however, this number was reduced in this model. The reason is that, as it has been explained,
turnaround operations are not explicitly considered, however, it should be considered that some gates should be reserved for these kind of operations.

Finally, considering data from [1], it was considered reasonable to allow a maximum of two pushbacks in each terminal at each minute.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Real number of gates</th>
<th>Considered number of gates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>24</td>
<td>16</td>
</tr>
</tbody>
</table>
In this section, I propose an Eulerian Model of Boston Logan Airport (BOS) that allows different control approaches, based on the model developed in [4] to represent the National Airspace System (NAS) dynamics. However, this time the model will be used to represent the dynamics of the departure process at BOS, although it could be used to represent any airport by modeling adequately the corresponding data.

Eulerian models are control volume based, which means that the important thing is to control the aircraft counts in certain control volumes instead of following individual aircraft (Lagrangian models). Nowadays, models based on control volumes are preferred in Traffic Flow Management improvement techniques basically for two reasons: (i) They are computationally tractable, and their computational complexity does not depend on the number of aircraft, but only on the size of the physical problem of interest. (ii) Their control theoretic structure enables the use of standard methodologies to analyse them[13].

As it is done in [4], I start by deciding the points where the traffic flow needs to be controlled, which will correspond with the boundaries of the control volumes. So, it seems clear that a good approach is to use as a control volumes the different queues that I have described in section 2.3., where aircraft wait to operate on airport resources such as gate, ramp, taxiways and runways. The controls of my model, therefore, correspond to give or not access to certain airport resource.

However, there are some important features that I have to take into account in modeling the airport surface instead of the airspace of the NAS as it is done in [4]: (i) Paths to follow are fixed as well as their distance is constant, (ii) just one airplane fits in width in a taxi (an aircraft cannot pass another one) and (iii) aircraft velocity in taxi cannot have big changes (so the unimpeded time to cross a control volume cannot be decreased).

Considering this, we can think that having big control volumes in the airport surface can produce high uncertainty in knowing where the aircraft is placed inside the volume. For example, if we have a part of the taxi that needs approximately 6 minutes to be crossed (as Taxi B) and we want to compute the aircraft counts each minute (discretization time), we cannot know if the aircraft has just entered the control volume and consequently still needs 5 minutes to cross all the volume or if this aircraft is going to exit the volume in the next minute.

That means that different control volumes should have similar dimensions and the time required to cross them should be coherent with the discretization time of the dynamic system. Adding control volumes increase precision, because the knowledge about the airport surface is more accurate, as well as provides more decision support. However, increasing the number of volumes makes the system bigger, which means that computational cost increases (the number of states increases) and flexibility to adapt decreases, because I have to consider that I have to be able to count the number of aircraft in each volume in relatively small periods of time. Therefore, a balance between size of the control volumes and number of queues in the system is required, because having a high number of states can produce lots of problems when trying to solve the system in attempts to find optimal controls.
In section 2.4, the unimpeded time to pass through each control volume was analysed. Considering all that was said, it was supposed that a good time-discretization could be 1 minute (T=1min), as it is the time between consecutive departures, which is a good reference, and also it is small enough to avoid that aircraft can enter and leave the control volume in the same period. So, in the following sections all the numbers will be adapted to this time-discretization. Also, this number determines the time between each decision of the controllers, which means that they have to give instructions to the pilots of the aircraft every minute.

In Figure 3.1 we can see an schema of the dynamic queuing system that was shown in Figure 2.4. In it, we can see the thirteen control volumes that correspond to the thirteen queues considered. Each control volume has associated input and output boundaries, which accept a certain number of airplanes in each period of time (one minute in our case). Also, I have represented the interactions between control volumes with blue lines, which will be treated in section 3.2. Finally, external arrivals to the system are represented with red lines (aircraft which enter the system because they ask for a pushback or for a landing).

![Figure 3.1: Schema of the control volumes and their interactions](image)

3.1. Dynamics of the system

In this section, the dynamics that follows the aircraft count associated with our model (the schema represented in Figure 3.1) is explained. The number of aircraft at time kT, $k \in \mathbb{N}$, in all the control volumes is denoted by $X(k)$, which is a column vector in which each row corresponds to one queue (or control volume). Consequently, the basic equation is the following one:

$$X(k+1) = X(k) + EA(k) + BU(k), \quad \forall k \geq 0$$ \hspace{1cm} (3.1)

$$X(k) \geq 0, \quad \forall k \geq 0$$ \hspace{1cm} (3.2)
Here, \(A(k) \) is the number of external arrivals in each control volume during the time interval \([kT, (k+1)T]\), which come from unmodeled parts of the system (as we said, they are the end of the turnaround operations (when the aircraft ask for pushback) and the flights that ask for a landing). The matrix \(E \) consists of 0's and +1's, which indicate to which volume control affects the external arrival. \(U(k) \) is the control vector (controlled by ATC) and indicates the number of departures from each of the volumes during the corresponding time period. The matrix \(B \) is the incidence matrix for a graph whose nodes are the control volumes and whose edges connect successive control volumes [4]. In our case, however, the values of \(B \) depends on the time that an aircraft need to cross the specific volume in the case there is nobody else in that queue, which means the unimpeded taxi time in that control volume (e.g., the time required to cross a certain taxiway). We can also write the complete form of the equation, where all the values are shown (Equation 3.4).

\[
\begin{pmatrix}
-x_{C1} \\
-x_{C2}
\end{pmatrix}
+ \begin{pmatrix}
x_{G_b}
-x_{B}
-x_{A}
-x_{B_P1}
-x_{B_P2}
-x_{T_1}
-x_{T_2}
-x_{R}
-x_{L}
-x_{C1}
-x_{C2}
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
x_{G_b} \\
x_{B} \\
x_{A} \\
x_{B_P1} \\
x_{B_P2} \\
x_{T_1} \\
x_{T_2} \\
x_{R} \\
x_{L} \\
x_{C1} \\
x_{C2}
\end{pmatrix}
+ \begin{pmatrix}
A_{C} \\
A_{B} \\
A_{A} \\
A_{B_P1}
\end{pmatrix}
\begin{pmatrix}
(k) \\
(k+1)
\end{pmatrix}
\]

\((3.4) \)

\[
X(k) \geq 0, \quad \forall k \geq 0
\]

\((3.6) \)

\[
U(k) \geq 0, \quad \forall k \geq 0
\]

\((3.7) \)

For example, the taxi time to cross the first part of the Taxi B (The one that comes from the gates in terminal B), is 3 minutes, that’s why in the incident matrix in equation 3.4 has the number \(1/3 \) in the corresponding coefficient of \(u_{B_P1} \). The explanation is that when there is an aircraft in control volume \(x_{T_{BP1}} \), it could be at the beginning or at the end of that taxi, so when we apply the dynamics of our model, it considers that when the control has been one during three time periods, it is sure that an aircraft have left the control volume. We have to take into account, however, that this is an approximation and the model can make
Optimization of airport operations at Boston Logan Airport

mistakes due to the uncertainty caused by the size of the control volume. For all the other numbers the explanation is the same, if the unimpeded time cross the control volume is 2 minutes, the coefficient in matrix \(B \) will be \(1/2 \), and if it is 1 minute the coefficient will be 1. Also, depending if the control affects the the entering aircraft to a control volume or the departing ones, that number will be positive or negative.

Finally, we can also see that there are non-negativity constraints, because clearly the number of aircraft in a control volume cannot be negative as well as the number of aircraft which depart from a control volume.

3.2. Restrictions and interactions

In this section, all the restrictions as maximum throughput, maximum capacity and interactions between different volumes of the system are explained. The equation that models the dynamics of the system (3.1) is the basic equation of the model, however, this dynamics is restricted for different physical factors that need to be taken into account.

3.2.1. Maximum throughput

First of all, we need to know which is the maximum throughput in each control volume, which means the maximum number of departures accepted in each volume.

In order to model that, two equations have been used. The first one (Equation 3.8) forces the number of departures to be equal or lower than the number of aircraft in the volume, considering the respective external arrivals. The second one (Equation 3.9) forces the number of departures to be lower than the maximum number of aircraft allowed due to the minimum separation requirements in the airport surface. Actually, the most restrictive equation of these two at a time period is the one that will be used. It will depend on the current state at a specific time period.

\[
FU(k) \leq X(k) + EA(k), \quad \forall k \geq 0
\]
\[
U(k) \leq D_1, \quad \forall k \geq 0
\]

In Equation 3.8, matrix \(F \) is a matrix that relates each control with the specific control volume that affects, in order to be coherent with the inequality.

In Equation 3.9, the matrix \(D_1 \) shows the maximum number of departures (due to separation minimums) at a period, which could be considered as time depending, although it was not considered in this thesis. The fact that should be time depending is due to different things. First of all, as we said in Section 2.4., the minimum separation in a taxi is not a fixed value. It is decided for pilots and depends on the type of the aircraft. Secondly, the travel times in each taxi vary due to differences in speed or weather conditions. In our simulation, however, we have computed \(D_1 \) with the average value, as we have not considered weather forecasts, and therefore the differences on the throughput in our case were not so big, and also because the effect of the current number of aircraft in the control volume is already taken into account in Equation 3.8.
We can also expand both matrices considering all that was said in section 2.4., regarding minimum separation between airplanes in the taxi, the physical space at the ramp in order to carry out the pushbacks, the minimum time between consecutive departures or arrivals, etc. The expanded matrices of all the restrictions are shown in Appendix A.

3.2.2. Interactions between control Volumes

In this section the interactions between control volumes due to merging flows, dependent parallel runways and runway crossing queues are modeled.

On one hand, we have the interactions in the taxiways that are shown in Figure 3.1. For example, it is shown that aircraft coming from the volumes X_{TC} and X_{TB2} merge in the volume X_{ITP1}, which means that the output boundary of the first two volumes coincides with the input boundary of the last one. In the previous section, we have analysed the maximum throughput of each volume independently, however, in this case we have to take into account the flow coming from X_{TC} and X_{TB2} have to be accepted for X_{ITP1}. That means that increasing the departures from one control volume forces to reduce the departures of the other one. Therefore, an extra restriction is required, that could be modeled as follows:

$$u_{CI}(k) + u_{BI} \leq r_1, \quad \forall k \geq 0 \quad (3.10)$$

In Equation 3.10, $u_{CI}(k)$ represents the number of aircraft departing from X_{TC}, u_{BI} the ones coming from X_{TB2} and r_1 the maximum number of aircraft that can enter in volume X_{ITP1} in a specific period.

On the other hand, we have all the restrictions that affect the departure runway. Firstly, as we have seen in Section 2.4., there is a required minimum separation between departure and arrivals due to the creation of flow vortexes. Secondly, there is an interaction between the runway crossing queues and the departures, as the runway need to be clear of aircraft in order to allow a runway crossing.

Finally, the equation used to model these interactions is the following one:

$$CU(k) \leq R, \quad \forall k \geq 0 \quad (3.11)$$

Here, C is a matrix which relates the controls that interact, $U(k)$ is a column vector with all the control in the system and R is a column vector with the maximum value accepted in each interaction. Again, the expanded matrix is shown in the Appendix A.

Also, matrix R could be time depending, because the interactions between arrivals and departures, for example, depend on the weather forecast, the type of aircraft, etc. In our model, however, we have considered a mean value, without considering big changes in the weather.

3.2.3. Capacity of the queues

The big difference between modeling the airport surface instead of the airspace, as in [4], is that the airport has a much more limited physical space. In other words, the number of
aircraft that fit in the pushback queues is determined by the number of gates in the airport, the number of aircraft in a certain taxiway also depends on the length of it, etc. Therefore, capacity limits in each control volume are considered.

This constraint is represented as follows:

\[X(k) \leq S, \quad \forall k \geq 0 \] (3.12)

where S is a column vector which contains the maximum capacity of each queue. Again, the expanded equation is shown in Appendix A.

3.3. Summary of the model

Finally, this section is just to join all the equations of the model, dynamics and restrictions, that have been explained in the previous two sections. The purpose of representing all the equations together here is that, in all the following chapters, will be extremely useful to have all this information easily accessible, as it is a key part in all of them.

So finally, our model is represented by:

\[X(k+1) = X(k) + EA(k) + BU(k), \quad \forall k \geq 0 \] (3.13)

\[FU(k) \leq X(k) + EA(k), \quad \forall k \geq 0 \] (3.14)

\[U(k) \leq D_1, \quad \forall k \geq 0 \] (3.15)

\[CU(k) \leq R, \quad \forall k \geq 0 \] (3.16)

\[X(k) \leq S, \quad \forall k \geq 0 \] (3.17)

\[X(k) \geq 0, \quad \forall k \geq 0 \] (3.18)

\[U(k) \geq 0, \quad \forall k \geq 0 \] (3.19)
CHAPTER 4. CONTROL STRATEGIES

In this chapter, two control strategies are explained. The first one is the strategy used nowadays for air traffic controllers, which is the well-known First Come, First Served (FCFS) policy. The second one is the control strategy proposed in this thesis in order to improve the efficiency of airport operations, which is based in Model Predictive Control (MPC).

These strategies have been used in a fast time simulation in order to analyse their effect in airport management. This simulation will help us to evaluate the performance of the proposed method (which uses the Eulerian Model built in Chapter 3 with an MPC approach) and compare it with the current FCFS policy.

4.1. First Come, First Served Policy

First-come, first-served (FCFS) is a service policy whereby the requests of customers (in our case aircraft) are attended to in the order that they arrived to the queues (in our case the airport resources). Nowadays, this is the policy used for air traffic controllers, because it is known as the fair queue discipline\[14\], and that is something so important to have the acceptance of the airlines.

This policy, although it is possibly one of the fairest ones for the airlines, is clearly not the optimal. It does not allow congestion control (like feedback mechanisms) as well as it does not consider the different cost of waiting in different queues [4], like the difference of waiting in the gate with the engines off or in the runway queue with the engines on. Basically, in this policy aircraft are moved forward once they are ready to move. For example, if an aircraft is ready for pushback, it will obtain a clearance to move to the departure runway as soon as possible even if there is a big queue in the takeoff runway.

However, the good points of this policy are that does not require a lot of information to be applied, it is easy to implement by air traffic controllers and it usually works fine under nominal conditions.

In order to compute this strategy in the fast simulation, the use of the Eulerian Model that has been built is not necessary, because information about each one of the queues is not required. Therefore, in order to implement it, what is done is to suppose that the aircraft are always going to move forward, except when they cannot move because there is another airplane in front of it and the minimum separation would be violated or if the flow vortex legislation does not allow it. In other words, the only case in which they will not move forward is for safety restrictions.

4.2. Model Predictive Control

4.2.1. Definition of MPC

First of all, it is important to define what Model Predictive Control (MPC) exactly is. As it is described in [15], MPC is a form of control in which the current control action is obtained
by solving on-line, at each sampling instant, a finite-horizon open-loop optimal control problem, using a dynamic model of the system to predict its future behavior as well as the current state of the plant as the initial state. The result of the optimization yields an optimal control sequence and the first control in this sequence is the one that will be applied to the plant.

As the future behavior of the system depends on the actions (controls) applied through the finite-horizon, these are the variables with respect the ones we will optimize our objective[16]. As it is been said, the application of these actions give us an open loop, which does not take into account the variation of our system. However, MPC allows us to decrease the effect of the variation by incorporating a feedback; which allows to recalculate the controls at each sampling period considering the current state and, therefore, the variation that has occurred between the predicted state and the actual state.

Usually, MPC is a general tool which gives good results in constrained systems with variation like the one we have (3.13-3.19) [4]. It is true that it has higher implementation and information requirements respect the current methods, but we have to take into account that we are working with a system that has a lot of uncertainty and MPC is a better approach for that.

4.2.2. Formulation

In this section, the procedure to obtain a feedback control law for our system is explained. First of all, a finite-time horizon $K \geq 0$ is fixed, which in our case is 25 sampling periods, which is equivalent to 25 minutes (as $T=1$ min). In order to choose the time horizon, the most important thing that is taken into account is the unimpeded taxi time in the airport of study. Basically, the only constraint I have is to consider a time horizon which is higher than the unimpeded taxi time, as I want a control system able to calculate which is the best moment for an aircraft to leave the gate in order to arrive at the runway threshold at the best moment (a time when there is not too much queue, but without having an empty runway queue in order to profit the maximum throughput). At BOS, the longest unimpeded taxi-time is 15 minutes, which is for aircraft coming from Terminal A. From here, we proceed to increase the horizon until better results are obtained, but taking all the time into account that we need a control able to solve the optimization in a few seconds, as an update is required each minute. Finally, in our case was found that horizons higher than 25 minutes do not give better performance and they just slow the computation.

Secondly, in order to apply the MPC, it is necessary to observe, at period k_0, the current state $X(k_0)$ in all the control volumes and the number of external arrivals $A(k_0)$. After it, we determine the controls for the current period $U(k_0)$ by solving the following problem with variables $X = \{X_k\}_{1\leq k \leq K+1}, U = \{U_k\}_{0 \leq k \leq K}$:
\[\min_{X,U} f(X, U) \quad (4.1) \]

subject to
\[X_1 = X(k_0) + EA(k_0) + BU_0 \quad (4.2) \]
\[X_{k+1} = X_k + E\alpha(k) + BU(k), \quad 1 \leq k \leq K \quad (4.3) \]
\[FU_0 \leq X(k_0) + EA(k_0) \quad (4.4) \]
\[FU_k \leq X_k, \quad 1 \leq k \leq K \quad (4.5) \]
\[U_k \leq D_1, \quad 0 \leq k \leq K \quad (4.6) \]
\[CU_k \leq R, \quad 0 \leq k \leq K \quad (4.7) \]
\[X_k \leq S, \quad 1 \leq k \leq K \quad (4.8) \]
\[X_k \geq 0, \quad 0 \leq k \leq K \quad (4.9) \]
\[U_k \geq 0, \quad 0 \leq k \leq K \quad (4.10) \]

In the problem above, \(f \) is the cost function and is chosen to be a linear objective, as it is explained in the following subsection 4.2.3.

As in [4], the certainty-equivalence heuristic is used in the equations above, which consists in replacing \(A(k) \) by its average value \(\alpha(k) \) for \(k > k_0 \). As it will be explained in following sections, a constant rate for the external arrivals for each 15 minutes have been supposed in the simulation. However, these external arrivals can occur at any of the minutes of the 15 minutes interval, which means that at any 15 minute interval we will have a different distribution for the external arrivals, which has a high effect on the obtained results. For example, if in the simulation we have supposed that we have 4 aircraft that arrives to the landing queue and 8 aircraft which are ready for pushback, the column-vector \(\alpha(k) \) at each sampling period is the following one (it is important to take into account that the aircraft are distributed between the different group of gates as a function of the number of gates in each group):

\[A_C(k) = \frac{8 \text{ dep}}{15 \text{ min}} \frac{16 \text{ gates in } C}{51 \text{ gates in total}} = 0.1673 \text{ acc/min} \quad (4.12) \]
\[A_B(k) = \frac{8 \text{ dep}}{15 \text{ min}} \frac{25 \text{ gates in } B}{51 \text{ gates in total}} = 0.2614 \text{ acc/min} \quad (4.13) \]
\[A_A(k) = \frac{8 \text{ dep}}{15 \text{ min}} \frac{10 \text{ gates in } A}{51 \text{ gates in total}} = 0.1046 \text{ acc/min} \quad (4.14) \]
\[A_L(k) = \frac{4 \text{ arr}}{15 \text{ min}} = 0.2667 \text{ acc/min} \quad (4.15) \]
Where the numbers 16, 25 and 10 are the number of gates that have been considered in each terminal for our simulation as it has been said in section 2.4.3.

4.2.3. Cost function

In this section, the chosen cost function is explained in detail in order to show which is the different cost of having aircraft in each queue as well as to explain which are the effects that are considered totally undesired.

First of all, as it has been said in the previous subsection, the objective function has been chosen to be linear or, at least, piecewise linear in order to be able to apply the optimization methods used in this thesis. Secondly, just remember that the cost function shown here is just an example of a possible objective, but it can be changed in order to adjust the importance of each queue and the negative effects as it is desired for the designer of the controller.

The chosen objective is the following one:

\[
f(X, U) := \sum_{k=1}^{K} \left(\sigma X_k + L(4 - x_{R_k})^+ + M(x_{C1k} - 5)^+ + M(x_{C2k} - 5)^+ + H(x_{TBP1k} - 7)^+ \right) + \sum_{k=0}^{K} G(1 - (u_{R_k} + u_{L1k} + u_{L2k}))^+
\]

(4.16)

Where \(\sigma \) is a vector of 13 elements which contains the weighting for each queue and \(M, H, L \) and \(G \) are scalars which add a cost for undesired situations as will be explained.

Therefore, it is possible to separate the function in two parts in order to explain better its functionality: (i) one part which gives a cost of having aircraft in the different queues, containing the term of the vector \(\sigma \) multiplied by the states and (ii) one part to penalize undesired effects to help the controller to manage certain situations in this specific airport.

The first part is quite simple, it just gives different weights depending on the part of the airport system involved: having aircraft taxiing (with the engine on), having aircraft in the gate waiting for pushback (with the engine off but ready for departure), having an aircraft in the landing queue (with the engine on and in the air, which is always more expensive), etc.

In the second part four different undesired situations are considered. The first one (term with the \(L \)) adds a cost for having less than 4 aircraft in the runway queue. Actually, this effect should be undesired only if the queue is empty, however, it was seen in different simulations that putting a one instead of a four gives empty queues lots of times due to the uncertainty of our system. Therefore, it was preferred to increase this margin even if the aircraft have to do a little bit of queue before departure, as losing performance in the runway throughput was considered worse than having a queue a little bit smaller.

The second penalization (term with the \(M \)) considers the fact of having crossing queues with more than 5 aircraft. As it is shown in figure 2.4, the length of the taxiways where there are the runway crossing queues are really small, and it was found that they can contain a maximum of approximately 5 aircraft each one. If the aircraft start to accumulate in this part of the taxiway, what is going to happen is that they will cross the runway 22L...
and, therefore, the arrival aircraft will not be able to land and will start to accumulate in the air, which is totally undesired.

The third one (term with the H) considers the fact of having more than 7 aircraft in the part of the taxiway K that goes from the intersection between aircraft coming from terminals B and C until the part of the taxiway that is in front of the crossing queues. Here, what is considered is that if there is a high congestion in this part of the airport, the aircraft in the crossing queues cannot move until taxiway A, which is the inner taxiway designed for the arrival aircraft. Therefore, aircraft will start to accumulate in crossing queues, which the negative effect that this cause.

Finally, the effect of exploiting the capacity envelope of the airport as much as possible is considered. It means that the runway utilization have to be maintained all the time, either for departures or arrivals. Therefore, it was considered that one of the controls allowing a departure or an arrival have to be active at every minute. The only exception to this rule is having all the controls equal to zero due to safety reasons. For example, if an aircraft is allowed to land, it will need two minutes and, therefore, we will have all the controls equals to 0 at the beginning of the second minute.

Figure 4.1 shows the piecewise linear form of the four different penalties that I have just mentioned, but without considering the scalar number that should multiply it, as my goal is just to show its behavior. Also, the penalization for the crossing queues is shown just for one of them, as they are exactly equal.

Also, in Table 4.1 the final values for the different weights of each state and the scalar numbers for the penalties are shown. Before, however, it is important to show how the coefficients of vector σ are distributed, whose reason will be also explained:

$$\sigma = [\alpha \alpha \alpha \beta \beta \beta \delta \delta \delta \phi \theta \gamma \gamma]$$ \hspace{1cm} (4.17)

Table 4.1: Values of the coefficients in the objective function

<table>
<thead>
<tr>
<th>Coefficients for each state</th>
<th>Scalar coefficients for each penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 1$</td>
<td>$M = 10^6$</td>
</tr>
<tr>
<td>$\beta = 5$</td>
<td>$H = 10^3$</td>
</tr>
<tr>
<td>$\delta = 4$</td>
<td>$L = 100$</td>
</tr>
<tr>
<td>$\phi = 3$</td>
<td>$G = 10^6$</td>
</tr>
<tr>
<td>$\theta = 10$</td>
<td></td>
</tr>
<tr>
<td>$\gamma = 5$</td>
<td></td>
</tr>
</tbody>
</table>

On one hand, the weights of the states take different values depending if they are in the gates (α), in any of the taxiways except the one that we have called intermediate taxi in Figure 2.4 (β), in the intermediate taxiway (δ), in the runway queue (ϕ), in the landing queue (θ) or in the runway crossing queues (γ). Basically, these differences in the cost are due to different fuel consumption in each of these parts of the airport system, as it has been already explained. However, an extra difference have been added in taxing aircraft depending on the distance to the runway queue. It has been considered that, once an aircraft is already taxing, it is preferable to have it closer to the runway queue, as at least we will have more chances to benefit the maximum departure rate. Therefore, the following consideration has been also taken into account: $\beta \geq \delta \geq \phi$.
On the other hand, we can also see in Table 4.1 that the coefficients for the penalties are much higher than the simple weights for the states. That also makes sense if we remember that penalties are the cost of having highly undesired effects. In the penalties, we have also differences depending on the degree of their impact. The higher costs are for not taking profit of the maximum capacity of the runways (term with G) and for having crossing queues which block the landings (term with M). In the second position, we have the cost for having too much congestion in Taxi Kilo. This cost is lower because it only has a really bad effect when it produces also a high accumulation in the crossing queue, effect which has also been considered. However, we want our controller to avoid states when this effect have more probability to happen, that is why this term was added. Finally, we have the cost for having a runway queue lower than 4 aircraft. Again, this cost is smaller because the real bad effect happens when we are not using the maximum capacity of the runway, effect related with this term but also considered on its own. This term was added to help the solver to avoid empty queues, as it was seen that using only the term of the G, this effect happened too many times due to the uncertainty of the system.
4.2.4. Solution of the optimization problem

Once the formulation of the problem is clear, the only thing that remains is to solve the optimization problem. As it has been explained, by using the MPC a sequence of control vectors \((U_0, U_1, ..., U_K)\) is obtained, but only the first one is used in the current period as a control directive whereas the others are discarded. At the next period, the problem is solved again after observing the current state \(X\) and the current external arrivals \(A\) and also just the first control vector is used.

However, there is an important thing that has to be mentioned. We are solving an optimization problem that works with real values and, consequently, it gives a control vector \(U_0\) that is also real-valued. In order to convert this value in an integer value, it has to be processed after the optimization is solved. What it is done is to round all the controls contained in \(U_0\) and check that any of the constraints of the problem is broken. In the case that a constraint is broken by just rounding the values to the nearest integer, usually what it is done is to round them to the next smaller integer, as it is known that the previous state was valid, so rounding-down to smaller integers has more chances to give a valid state. It has to be mentioned, however, that this approximations are done taking into account which states and controls are more desired, which means that in case of having troubles with the constraints, good decisions are made.

As it is said in [4], an alternative approach would be to solve the program as an integer program, producing directly an integer solution. However, this method would take too much time, as adding integer constraint makes the job much more difficult for the solvers. Considering that we need a system able to compute new directives each minute (as well as giving enough time to the controllers to implement them), it was considered that an integer program was not adequate as the solver was not able to finish the optimization in the required time.
CHAPTER 5. SIMULATION AND RESULTS

In order to compare the performance of our proposed approach versus the current control strategy in ATC, a fast-time simulation has been done. As the idea of our approach is to be used in situations with an unbalance between capacity and demand, the studied scenario is a situation where the expected demand, considering arrivals and departures, exceeds the capacity envelope of the airport. It means that a situation of congestion is created and our idea is to manage it in the best possible way in order to reduce the taxi time as much as possible and also use the maximum capacity of the resources all the time (e.g., without leaving periods where the runways are not used).

As we said in section 2.4., we have modeled the throughput of the runways as follows: (i) A departure needs 1 minute to leave the airport system and allow another operation (another departure, an arrival or a runway crossing), and (ii) an arrival needs 2 minutes to be finished and allow another operation that interacts with it (another arrival or a departure). To understand it better, in the table 5.1 some examples of operations allowed in a 15 minutes interval are shown. Basically, if the demand is lower or equal than the maximum capacity (operations shown in the Table, between others) the current management method FCFS will be enough, but if not, FCFS is really inefficient.

<table>
<thead>
<tr>
<th>Some possible cases</th>
<th>Number of departures</th>
<th>Number of arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 departures</td>
<td>0 arrivals</td>
</tr>
<tr>
<td>2</td>
<td>13 departures</td>
<td>1 arrival</td>
</tr>
<tr>
<td>3</td>
<td>11 departures</td>
<td>2 arrivals</td>
</tr>
<tr>
<td>4</td>
<td>7 departures</td>
<td>4 arrivals</td>
</tr>
<tr>
<td>5</td>
<td>1 departure</td>
<td>7 arrivals</td>
</tr>
</tbody>
</table>

Moreover, it is desired to choose an scenario as much realistic as possible in order to test the developed controller. Therefore, information and data from [5] is used, paper that contains real data of BOS. As it is said in [5], there are two main departure pushes each day at BOS. The evening departure push differs from the morning one because of the larger arrival demand in the evenings. The morning departure push, however, presents a large number of flights with controlled departure times [5], which is something that is not considered in this thesis. Therefore, it is decided to simulate an scenario similar to the ones that take place in the evening pushes at BOS, where there is high demand for departures and arrivals and we can forget about controlled departure times, which is an extra challenge that could be studied in future work. Finally, the chosen scenario was a 2h period (between 18h and 20h for example) with a constant demand of 8 aircraft which ask for pushback and 4 aircraft which ask for a landing for each 15 minute period.

Finally, I would like to comment that, for each simulation, the initial state is the following one:

1 The meaning of each subindex is the one used in Figures 2.4 and 3.1
5.1. FCFS in nominal conditions

Before to proceed with the important simulation, it was decided to simulate two scenarios in nominal conditions in order to demonstrate that FCFS policy works efficiently in a balanced capacity-demand situation and in an scenario where capacity is higher than demand. First of all, an scenario with balanced capacity-demand was analysed, in which the constant demand for a 15 minutes interval was 7 departures and 4 arrivals. In figure 5.1, the taxi-out time of each aircraft (bottom), the number of aircraft in the runway queue sampled each minute (top-left) and the number of aircraft taxiing out at each minute (top-right) are shown. Also, it is important to consider that the initial state is the one that has been already mentioned at the beginning of this chapter and the simulation time is also 2 hours:

![Figure 5.1: Simulation of an scenario with balanced capacity and demand using FCFS (7dep - 4arr / 15min)](image-url)
As we can see, FCFS is able to stabilize the system when it is working in nominal conditions of demand, without creating high congestion states. First of all, we can see that the average taxi-out time is around 18 minutes, which is close to the unimpeded taxi time, which was determined in section 2.4.1. The small increment that it suffers in respect to the unimpeded taxi time is due to the interactions between aircraft on the airport surface as well as the different velocities of each aircraft.

Moreover, we can see that the number of aircraft taxiing-out and specifically the number of aircraft in the runway queue are stable, as they do not increase with the time. The number of aircraft in the runway queue varies around 4 aircraft during all the test, which means that, in this scenario, aircraft will have to do a little bit of queue before departure but not too much. This queue is caused for the different distribution of arrivals and departures in each period of 15 minutes, as we do not know in which of the minutes the external arrivals will happen. Based on these observations, it can be said, therefore, that there is a balance between the external arrivals to the system and the rate in which the aircraft can leave the airport system using FCFS for this scenario.

Secondly, an scenario where capacity is higher than demand was analysed, in which the constant demand is 7 departures and 3 arrivals. The results are shown in Figure 5.2

![Figure 5.2: Simulation of an scenario with capacity higher than demand using FCFS (7dep - 3arr / 15min)](image)

Of course, in this second scenario the taxi-out time is reduced, as there are less aircraft
asking for departure and therefore the congestion is even less. In this case, the taxi-out
time is around 14 minutes, which is really close to the unimpeded taxi time, although there
are still some differences due to interactions between aircraft in the surface, as they cannot
be completely eliminated even if there are just a few aircraft taxiing-out at the same time.
We can also see that, in this case, there are lots of moments where the number of aircraft
in the runway queue is zero, as the current demand is lower than the maximum capacity
of the runways and, therefore, they do not have to be used all the time as in the previous
case.

5.2. FCFS and MPC when demand exceeds capacity

Once the good behavior of FCFS in nominal conditions has been proven, it is time to move
to the case in which demand exceeds the capacity, which is the problematic scenario and
the one that requires an improvement. This is basically the objective of this thesis.

In this section, the used scenario is the one described at the beginning of this chapter,
with a constant demand of 8 departures and 4 arrivals per 15 minutes period and the initial
state that has been already specified.

In Figure 5.3, the results for this situation by using FCFS are shown, where we can see
the total taxi-out time for all the aircraft (top-left), the taxi-out time for aircraft coming from
terminal C (top-right), the taxi-out time for aircraft coming from terminal B (middle-left),
the taxi-out time for aircraft coming from terminal A (middle-right), the number of aircraft
taxiing out (bottom-left) and the number of aircraft which are taxiing out but have already
arrived to the runway queue (bottom-right). The reason of showing also the taxi times for
the aircraft coming from each different terminals is to also analyse the fairness between
airlines by using FCFS or MPC.
CHAPTER 5. SIMULATION AND RESULTS

37

(a) Taxi-out time for each of the aircraft
(b) Taxi-out time for aircraft from Terminal C
(c) Taxi-out time for aircraft from Terminal B
(d) Taxi-out time for aircraft from Terminal A
(e) Number of aircraft taxiing out at each minute
(f) Number of aircraft in the runway queue at each minute

Figure 5.3: Simulation of an scenario with high demand using FCFS (8dep - 4arr / 15min)

As we can see in Figure 5.3(a), the average taxi-out time in this scenario is around 31 minutes, which is a really high value respect to the unimpeded taxi time. This value is due to the larges queues that take place at the runway threshold, as it is shown in Figure 5.3(f).

Basically, what happens is that the airport cannot meet the departure demand and aircraft start to accumulate at the runway queue, as FCFS release aircraft from gates once they are ready for pushback and they taxi until the runway to wait there for the take off. We can
see that this queue increases with time. The reason is that we have supposed a constant demand which exceeds the capacity, therefore, each aircraft that cannot take off in its respective period because saturation is achieved, remains in the queue. Each 15 minute period there are airplanes which cannot takeoff and, therefore the numbers of aircraft in the runway queue increases all the time.

Consequently, not only the number of aircraft in the runway queue increases, but also the taxi-out time, as large delays are absorbed while queuing in the runway. All this extra time in the queue with the engines on, produces a high fuel consumption, which emits a lot of polluting emissions to the environment as well as increases the expenses in fuel for the airlines; in fuel that is totally lost just due to an inefficient management.

Also, we can see in Figure 5.3(e) that this instability in the runway queue also occurs in the count of the aircraft in surface. We have to consider, however, that the number of aircraft on the surface includes the number of aircraft in queue, and hence, this result is totally logic.

Finally, Figures 5.3(b), 5.3(c) and 5.3(d) shows the taxi-out time but separating the aircraft depending on the terminal they come from. As it has been already explained in Section 4.1., FCFS is a control strategy which is fair with the different airlines, because it releases aircraft from the gates in the order as they are ready for pushback, which allows them to start taxiing to the runway and take off in more or less the same order as they were ready. This fairness is also an important factor to analyse, as the objective of this thesis is to develop a controller that has to be accepted not only for ATC, but also for the airlines.

It is shown in this Figures that there are not aircraft specially injured due to the terminal they come from. The aircraft that have longer taxi-out times are due to the high queue in the runway, but this effect will have to be faced for aircraft coming from any of the terminals. We can also see that there is a small difference in the average taxi-out time of the different terminals; however, this difference is due to the different distance from each group of gates to the runway, as the unimpeded taxi time is already different. Terminal C, which is the closest terminal, has the smallest average taxi-out time and terminal A has the biggest, as it is the one that is further.

We just have seen that results obtained for this scenario with FCFS strategy are really bad, as the runway queue is totally unstable and it is reflected in the taxi-out time. Therefore, now a possible solution to this issue by using the proposed method in this thesis is shown.

The dynamics and constraints are the ones that have been explained in section 3. The external arrivals are modeled as explained in Section 4.2.2., with the respective values for this scenario, which are shown just below.

Rate of pushback from the gates:

\[
A_C(k) = 0.1673 \text{ acc/min}
\]
\[
A_B(k) = 0.2614 \text{ acc/min}
\]
\[
A_A(k) = 0.1046 \text{ acc/min}
\]

Rate of how the aircraft enter the landing queue:

\[
A_L(k) = 0.2667 \text{ acc/min}
\]

Also, in order to carry out a better analysis, the real external arrivals considered in the fast-time simulation for the MPC will take place at the same minutes than in the FCFS
simulation. For example, if in the FCFS simulation we had external arrivals to the landing queue in minutes 34, 55 and 110 from the beginning of the simulation (between others), in the MPC simulation we will have external arrivals in minutes 34, 55 and 110 too. Therefore, the only differences between the simulations will be the velocities and sizes of the aircraft, which are created in real time following the probability explained in 2.4.1., and the control variables.

One last comment about the MPC simulation is that an extra calculation was done in order to increase the fairness between airlines, as applying only the defined dynamics and the objective function, the method did not take into account this important factor. This calculation is done at each period of time after the solver has computed the optimal control for the current period and forces the controller to maintain the order in which the aircraft asked the pushback. Basically, it consists in calculating the number of aircraft that should pushback in that moment (considering the controls of the three groups of gates) and checking which are the airplanes that have been more time in the gate waiting for the departure. After that, the same number of pushbacks is assigned in the current period, however, it is possible that the specific aircraft that are allowed to release change, as fairness has priority. It is true that these changes can affect the performance of the strategy, because maybe the solver has predicted to release an aircraft from terminal A (unimpeded taxi time of 15 minutes), but instead we give the clearance to another one of terminal C (unimpeded time of 9 minutes) in order to be fair and, due to that, it arrives to the runway queue when there is still too much queue. However, even the lose of performance, a calculation to be fair and do not injure specific aircraft is completely necessary in order to develop a system that could be accepted for the airlines.

Furthermore, it should be mentioned that MPC algorithm involves solving a linear program at each period of time, as it was explained in Section 4.2. The linear program in the case of study has hundreds of variables and thousand of constraints, but its computation have to be done in a few seconds. In order to achieve it, it was decided to use Matlab and the optimization modeling package CVX [17, 18] with the Gurobi solver, which is able to finish the optimization with less than 3 seconds.

Finally, once all these considerations have been explained, the obtained results for the MPC simulation are shown in Figure 5.4.
Optimization of airport operations at Boston Logan Airport

(a) Taxi-out time for each of the aircraft
(b) Taxi-out time for aircraft from Terminal C
(c) Taxi-out time for aircraft from Terminal B
(d) Taxi-out time for aircraft from Terminal A
(e) Number of aircraft taxiing out at each minute
(f) Number of aircraft in the runway queue at each minute

Figure 5.4: Simulation of an scenario with high demand using MPC (8dep - 4arr / 15min)

The first observation is that the average taxi-out time has decreased to 22 minutes in exchange of an average gate-hold time of 9 minutes as well as it has been stabilized over the 2 hours of simulation, as shown in Figure 5.4(a). This means that, respect the FCFS strategy, we have reduced 9 minutes of unnecessary emissions and fuel consumption.

However, the gate-hold and taxi-times variations have some important differences between the different airplanes, as the taxi-out time goes from 10 minutes in certain cases to 30
minutes in another ones. This variation, however, does not have special repercussions at a certain terminal, it is produced directly by the special situation that takes place in the simulation. For example, sometimes the landing aircraft arrive all together at the same time and consequently the runway queue increases; due to that, aircraft that were already taxiing will start to accumulate at the runway queue and will have to wait until all the aircraft in front of them can take off. This situation can also be the opposite, when there are no landings and a sequence of departures can take place, decreasing the taxi time for some aircraft. However, that is something that cannot be controlled, as it is caused for the uncertainty of the system.

Gate-holds, on its side, vary from 1 minute to 19 minutes, but just in a few cases, as the most part of the aircraft wait at the gate for around 10 minutes. We can see that, at the beginning, the gate-holds are really short, due to the low congestion at the first minutes, but they become longer later on, where the effects of the high demand start to have consequences.

In Figures 5.4(e) and 5.4(f) we can also see how the MPC control has been able to stabilize the number of aircraft in the surface and the number of aircraft in the queue. Whereas in the FCFS simulation the runway queue had constantly increased until really undesired states like having around 18 aircraft in the runway queue, the MPC strategy has maintained the number of aircraft in the runway queue around 6 during all the simulation. Moreover, the number of aircraft on the surface has been also stabilized around 11.5 aircraft.

Again, we can see in Figures 5.4(b), 5.3(c) and 5.4(d) that there is not a terminal specially affected. The differences in their average taxi-out time are caused for the same reason as in the FCFS case: different distances to the runway queue. In this case, however, the differences between terminals C, B and A are a little bit higher than in the FCFS case. That is produced because, in the calculation to maintain the order in the pushbacks, it was considered that in case of different aircraft ask for pushback at exactly the same minute, aircraft from terminal C have preference over B and A, and aircraft from terminal B have preference over terminal A.

Considering only these two simulations, it is clear that we have obtained a far better result with the MPC approach. However, the drawbacks of this controller is that its implementation requires a lot of information to be sent to a central computing location at the beginning of each period, like the number of aircraft counts in each queue, and the external arrivals[4].

To help evaluate the performance of MPC versus FCFS, 90 sample simulations (with different external arrivals distributions for the same demand) were done and its results analysed. In Figure 5.5 the average taxi-out time for each one of the 90 simulations using FCFS and MPC is shown, as well as the total average. Moreover, other important features considering the performance were analysed, like the standard deviation in the average taxi-out times, the number of minutes in which the runway queue is empty and the number of simulations in which this undesired effect happens. These characteristics are shown in Table 5.2.

In Figure 5.5, we can see that the average taxi-out times for both policies does not differ too much from their mean in any of the 90 simulations. This fact can also be seen in the computed standard deviation shown in Table 5.2, where both deviations are quite small. Specially, we can realize that the approach proposed in this thesis is really reliable, as its standard deviation is 0.8664 over 90 simulations. Also, we can also see in the Figure 5.5
that the reduction in the taxi-out time is really significant, as around 8.32 min are reduced between both means in each simulation.

However, there are also some negative points in the application of the proposed controller. We can see in Table 5.2 that over 90 simulations there are 90 minutes (distributed over 41 of the simulations) where the runway queue is empty, which means that the capacity of the runways could be underutilized. We have to take into account, however, that capacity would be underutilized only if there is not any landing aircraft at these specific minutes in which the runway queue is empty. Therefore, probably the number of minutes where the runways are not utilized would be quite less than 90 minutes, although this effect was not calculated.

We can say, however, that in 49 simulations over 90, we did not have an empty queue at any moment and therefore the capacity was totally exploited.

Finally, in order to analyse the real improvement of the proposed method, we should make a balance between all its advantages and drawbacks. We have to take into account that the reduction (of around 8.32 min) obtained would happen each time that the controlled is used, which would give a large amount of fuel saved at the end of each year, as departure pushes happens almost every day in airports like BOS, which have a lot of congestion. We can also compute that, over these 90 simulations, almost 750 minutes (8.32min x 90 simulations) of wasted time taxiing-out would have been saved.
CONCLUSIONS

This thesis presented a decision aiding system for air traffic controllers that helps to improve the performance of airport operations, specially to reduce taxi-times and consequently unnecessary fuel burn and emissions.

Basically, the underlying dynamics of the developed controller requires the building of an Eulerian model to represent the dynamics of the airport of study in a specific runway configuration. With this model, which is tractable for the purpose of control, different closed-loop control policies can be used. In this thesis, the proposed method was based in MPC, which allowed to analyze the variation occurred and make good decisions in response to it.

An scenario with an unbalance between capacity and demand was studied and simulation results using the proposed method (MPC) and the current control strategy in ATC (FCFS) were presented. It was demonstrated that when the maximum throughput of the runway is not enough to serve all the aircraft that want to take off, the airport can reach high congestion states, as aircraft starts to accumulate. However, this congestion can be managed efficiently in order to reduce undesired effects as much as possible.

On one hand, it was shown that, using FCFS, the congestion of the airport was mainly manifested in the queue of the runway, as all the aircraft were sent there as soon as they were ready to depart. This management produced long queues at the runway and, consequently, huge taxi-out times of around 31 minutes. On the other hand, it was shown that MPC was able to reduce the congestion on the surface by keeping the aircraft in the gates. Doing this, the high level of congestion could be distributed over the airport surface, leaving the most part of the aircraft in the gates, where the cost of having aircraft queues is much less, as they have the engines off and do not waste fuel. In this second case, the average taxi-out time was reduced to around 23 minutes, which means that each aircraft saved around 8 minutes of queue in the runway.

The variability of this control strategies was also analyzed and it was shown that the proposed improved strategy is highly reliable, as it has a standard deviation of 0.866 over 90 simulations, which is a really small value. Another observation is that the worst taxi-out time obtained with MPC is 26 minutes, which is still better than any of the results obtained with FCFS.

The only point in which FCFS obtains better results than MPC is in exploiting the maximum capacity of the runway all the time. The MPC produced empty queues in 90 minutes over 90 simulations, which in average gives 1 minute per simulation.

Considering all these results, I strongly believe that the proposed method is really useful in managing high demand situations even with the lost of one minute of runway utilization each two hours of simulation. The high reduction in the taxi times is really significant and we will have lots of savings over the year, which is something that ATC should consider. Moreover, the fact of maintaining the order of the pushbacks as the different aircraft enters the queue has also been considered, so the proposed method takes also into account the fairness between airlines, which has always been the most remarkable feature of FCFS.

It is true that the information requirements of this controller require to modify a little bit the underlying dynamics of ATC. However, the new implementation does not require big changes, as only systems able to calculate the aircraft count in certain control volumes
are needed, as follow individual aircraft is not necessary to apply this type of control policy. Considering the high benefits of using MPC, the investment for developing systems to obtain the required data could be really worth if we are able to design a real controller that gives the same benefits than in the simulations.

However, it is important to remark that the proposed method requires minimum levels of congestion to be really useful, as it was proven that FCFS is efficient in managing situations with nominal conditions. Therefore, studies should be done to know which is the real percentage of time in which the application of our controller should be worth.

I would like to comment some future work that could be done to continue testing this control strategy. First of all, the real model should include time-varying restrictions, because the throughput of control volumes vary during the day due to different things like weather conditions. In [4], the introduction of weather forecasts in the model was explained, which demonstrates that the proposed Eulerian model is able to include variation in its definition, a part of consider it through the closed-loop nature of the MPC strategy. Also, more complicated configurations should be modeled, as well as new challenges included like considering aircraft affected for ground delay programs or any other strategy that is already in use in the airport management.

Finally, I would like to comment that there is still a lot of work to do in order to improve the performance of airport operations, as demand in air transportation industry is growing every day and its capacity should increase accordingly. This thesis shows a possible improvement to better manage the current capacity, but lots of other options should be also studied and considered in order to enhance air traffic management, which is essential for the possible growth of the aeronautics industry.
BIBLIOGRAPHY

[1] Husni R Idris and R John Hansman. Observation and analysis of departure planning operations at boston logan international airport. 2011. ix, 4, 5, 8, 10, 11, 12, 14, 18

[16] José Ramón Domínguez Frejo. *Control Predictivo cooperativo para el control de redes de tráfico mediante el uso de señales ITS*. 26

[18] Implementing mpc using cvx. Technical report. 39
APPENDICES
APPENDIX A. EXPANDED MATRICES FOR THE RESTRICTIONS

In this appendix, the expanded matrix for the restrictions and interactions are shown explicitly.

A.1. Maximum Throughput

The expanded matrices here, as it has been said in Section 3.2.1, correspond to equations 3.8 and 3.9 respectively, considering always that they are valid for $k \geq 0$:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
u_C \\
u_B \\
u_A \\
u_{AB} \\
u_{CI} \\
u_{BP1} \\
u_{BI} \\
u_{IP1} \\
u_R \\
u_{L1} \\
u_{C1} \\
u_{C2}
\end{bmatrix} \leq
\begin{bmatrix}
x_{G_C} \\
x_{G_B} \\
x_{G_A} \\
x_T \\
x_{BP1} \\
x_{BP2} \\
x_{IP1} \\
x_{IP2} \\
x_T \\
x_R \\
x_L \\
x_{C1} \\
x_{C2}
\end{bmatrix} \leq
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
A_C \\
A_B \\
A_A \\
A_L
\end{bmatrix}

(A.1)

\[
\begin{bmatrix}
u_C \\
u_B \\
u_A \\
u_{AB} \\
u_{CI} \\
u_{BP1} \\
u_{BI} \\
u_{IP1} \\
u_R \\
u_{L1} \\
u_{C1} \\
u_{C2}
\end{bmatrix} \leq
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
A_C \\
A_B \\
A_A \\
A_L
\end{bmatrix}

(A.2)

A.2. Interactions between Control Volumes

The expanded matrix here, as we said in section 3.2.2, corresponds to equation 3.11:
On one hand, it has been said in section 2.4.1. that the maximum throughput in the output boundary for an individual control volume was 3 aircraft. Consequently, the input boundary will accept also 3 aircraft, that’s why in the interactions regarding merging flows we have 3 as a maximum accepted number of aircraft.

On the other hand, we have the restriction that considers that departures and runway crossings are not allowed at the same time.

Finally, in the last row we have the restriction corresponding to the dependent parallel runways. As we said in section 2.4.2., arrivals and departures are not allowed at the same time in parallel dependent runways, so the controllers will allow just one aircraft to depart or to land in a time a period.

A.3. Capacity of the Control Volumes

The expanded matrix here, as we said in section 3.2.3., corresponds to equation 3.12.

The capacity of the gates coincides with the number of gates that we have considered that can be available for departing aircraft. As it has been said previously, we have not considered turnaround operations, however, we have to take into account that some of the gates of the airport should be destined to the arrival aircraft.

The number of aircraft that fit in the other queues, like taxiways, crossing queues, etc. highly depends on the size of the aircraft that are there in a certain moment, so the value is an approximation.

The number of aircraft that fit in the landing queue, however, is not specified in this model as its capacity is not fixed by the physical space because it is a queue in the air.