
Some Families of Orthogonal Polynomials of a Discrete

Variable and their Applications to Graphs and Codes ∗
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Abstract

We present some related families of orthogonal polynomials of a discrete variable
and survey some of their applications in the study of (distance-regular) graphs and
(completely regular) codes. One of the main peculiarities of such orthogonal systems
is their non-standard normalization condition, requiring that the square norm of each
polynomial must equal its value at a given point of the mesh. For instance, when they
are defined from the spectrum of a graph, one of these families is the system of the pre-
distance polinomials which, in the case of distance-regular graphs, turns out to be the
sequence of distance polinomials. The applications range from (quasi-spectral) char-
acterizations of distance-regular graphs, walk-regular graphs, local distance-regularity
and completely regular codes, to some results on representation theory.

1 Introduction

The theory of orthogonal polynomials is a well-developed area of mathematics and it has
a large number of applications in the study of both theoretical and practical problems.
Two standard references on this topic are the classic textbook of Szegö [25] and Chihara’s
work [4] which puts more emphasis on the discrete case.
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In particular, different sequences of orthogonal polynomials have important applica-
tions in algebraic combinatorics. For instance, as described by Godsil [22], some examples
of such sequences are the matching polynomials of the complete graphs and the rook poly-
nomials of the complete bipartite graphs. Another example studied in the same reference
is the application of orthogonal polynomials in the study of polynomial spaces.

In the area of graph theory, we find the Chebyshev polynomials (of the second kind)
when studying the characteristic polynomials of the paths. Another recent application in
this area has been done by Chung, Faber and Manteuffel [5], and Van Dam and Haemers
[8], who gave upper bounds on the diameter of a graph in terms of its spectrum by using
Chebyshev polynomials shifted to a proper interval.

In the same area, one of the most important applications of orthogonal polynomials, not
always sufficiently exploited in opinion of the authors, is the study of distance-regularity
of graphs and related codes. Since their introduction, distance-regular graphs and their
main generalization, the association schemes, have proved to be a key concept in algebraic
combinatorics. They have important connections with other branches of mathematics,
such as geometry, coding theory, group theory, design theory, as well as with other areas
of graph theory. As stated in the preface of the comprehensive textbook of Brouwer,
Cohen and Neumaier [3], this is because most finite objects bearing “enough regularity”
are closely related to certain distance-regular graphs. Other basic references on distance-
regular graphs are Biggs [2], with a good introduction to distance-transitive graphs, and
Bannai and Ito [1] where the connection with the theory of distance-regular graphs is
emphasized.

The aim of this paper is to convince the reader of the importance and possibilities of
some families of orthogonal polynomials in the study of different (local and global) concepts
of distance-regularity in graphs. With this aim, we describe in detail three of such families
and survey some of their recent applications. We believe that these applications do not
exhaust all the possibilities and hope that much more will be given in the near future.
Thus, one of the more recent application of one of these families, the so-called predistance
polynomials, has been in the study of a kind of partial distance-regularity in graphs (the
so-called k-walk-regular graphs), which as extreme cases includes both distance-regular
and walk-regular graphs; see [6].

The plan of the paper is as follows. In the next section we present some new families
of orthogonal polynomials of a discrete variable, which have recently shown very useful
in the study of distance-regular graphs and their related concepts, such as local distance-
regularity and completely regular codes. One of the main peculiarities of such orthogonal
systems is their non-standard normalization condition, requiring that the square norm of
each polynomial must equal its value at a given point of the mesh. Then, to illustrate
the usefulness of such polynomials, we discuss in Section 3 some of their applications in
the area of algebraic graph theory. More specially, we study some results concerning the
concept of distance-regularity, defined in Subsection 3.3, and we will survey some results
obtained from the study of two different meshes and its corresponding orthogonal canonical
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system: the local spectrum of a given graph, defined in Subsection 3.2, and the spectrum
of a subset of its vertex set, defined in Subsection 3.7.

2 On orthogonal polynomials of a discrete variable

In this section we begin by surveying some known results about orthogonal polynomials
of a discrete variable. In order to do this paper more accessible to readers not familiarized
with this topic, we have included all the proofs. Afterwards, we describe three new families
of such polynomials: The canonical orthogonal system, their dual polynomials and their
conjugate. We begin by presenting some notation and basic facts.

Let M := {λ0, λ1, · · · , λd}, λ0 > λ1 > · · · > λd, be a mesh of real numbers. A real
function of a discrete variable f : M−→ R can be seen as the restriction onM of a number
of functions of real variable. Moreover, if we only consider polynomial functions, the class
of possible extensions of one discrete function on M constitute an element of the quotient
algebra R[x]/(Z) where (Z) is the ideal generated by the polynomial Z :=

∏d
l=0(x− λl).

Each class has a unique canonical representative of degree at most d. Denoting by F(M)
the set of functions on the mesh, we then have the following natural identifications:

F(M) ←→ R[x]/(Z) ←→ Rd[x]. (1)

For simplicity, we represent by the same symbol, say p, any of the three mathematical
objects identified in (1). When we need to point out some of the above three sets, we will
make it explicit.

A positive function g : M−→ R will be called a weight function on M. We say that it
is normalized when g(λ0) + g(λ1) + · · ·+ g(λd) = 1. We shall write, for short, gl := g(λl).
From the pair (M, g) we can define an inner product in Rd[x] (indistinctly in F(M) or in
R[x]/(Z)) as

〈p, q〉 :=
d∑

l=0

glp(λl)q(λl), p, q ∈ Rd[x], (2)

with corresponding norm ‖ · ‖. From now on, this will be referred to as the scalar product
associated to (M, g). Note that 〈1, 1〉 = 1 is the condition concering the normalized
character of the weight function g, which will be hereafter assumed.

In order to simplify some expressions, it is useful to introduce the following moment-like
parameters, computed from the points of the mesh M,

πk :=
d∏

l=0 (l 6=k)

|λk − λl| = (−1)k
d∏

l=0 (l 6=k)

(λk − λl) (0 ≤ k ≤ d); (3)
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and the family of interpolating polynomials (with degree d):

Zk :=
(−1)k

πk

d∏

l=0 (l 6=k)

(x− λl) (0 ≤ k ≤ d) , (4)

which satisfy:
Zk(λh) = δhk , 〈Zh, Zk〉 = δhkgk . (5)

Then, using Lagrange interpolation, p =
∑d

k=0 p(λk)Zk for any p ∈ Rd[x]. In particular,
when p = xi, i = 0, 1, . . . , d, we get xi =

∑d
k=0 λi

kZk whence, equating the terms with
degree d,

d∑

k=0

(−1)k

πk
λi

k = 0 (0 ≤ i ≤ d− 1) ,
d∑

k=0

(−1)k

πk
λd

k = 1 . (6)

2.1 Forms and orthogonal systems

Each real number λ induces a linear form on Rd[x], defined by [λ](p) := p(λ). Then, the
first equality in (5) can be interpreted by saying that the forms [λ0], [λ1], . . . , [λd] are the
dual basis of the polynomials Z0, Z1, . . . , Zd. The scalar product associated to (M, g)
induces an isomorphism between the space Rd[x] and its dual, where each polynomial p
corresponds to the form ωp, defined as ωp(q) := 〈p, q〉 and, reciprocally, each form ω is
associated to a polynomial pω through 〈pω, q〉 = ω(q). By observing how the isomorphism
acts on the bases {[λl]}0≤l≤d, {Zl}0≤l≤d, we get the expressions:

ωp =
d∑

l=0

glp(λl)[λl] , pω =
d∑

l=0

1
gl

ω(Zl)Zl. (7)

In particular, the polynomial corresponding to [λk] is

Hk := p[λk] =
d∑

l=0

1
gl

[λk](Zl)Zl =
d∑

l=0

1
gl

δlkZl

=
1
gk

Zk =
(−1)k

gkπk
(x− λ0) · · · ̂(x− λk) · · · (x− λd) ,

and their scalar products are:

〈Hh,Hk〉 = [λh](Hk) = Hk(λh) =
1
gh

δhk, (8)

where ̂(x− λk) denotes that this factor is not present in the product. Moreover, property
(6) is equivalent to stating that the form

∑d
k=0

(−1)k

πk
[λk] annihilates on the space Rd−1[x].
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Lemma 2.1 In the space Rd[x], let us consider the scalar product associated to (M, g).
Then, the polynomial

T :=
d∑

k=0

(−1)k

πk
Hk =

d∑

k=0

1
gkπ

2
k

(x− λ0) · · · ̂(x− λk) · · · (x− λd)

verify the following:

(a) T is orthogonal to Rd−1[x];

(b) ‖T‖2 =
d∑

k=0

1
gkπ

2
k

;

(c) T (λ0) =
1

g0π0
.

Proof. The proof of (a) is straightforward by considering the form ωT associated to
T , whereas (b) and (c) are proved by simple computations:

‖T‖2 =
d∑

h,k=0

(−1)h+k

πhπk
〈Hh,Hk〉 =

d∑

k=0

1
gkπ

2
k

;

T (λ0) =
d∑

k=0

(−1)k

πk
Hk(λ0) =

1
g0π0

. 2

A family of polynomials r0, r1, . . . , rd is said to be an orthogonal system when each
polynomial rk is of degree k and 〈rh, rk〉 = 0 for any h 6= k.

Proposition 2.2 Every orthogonal system r0, r1, . . . , rd satisfies the following properties:

(a) There exists a tridiagonal matrix R (called the recurrence matrix of the system) such
that, in R[x]/(Z):

xr := x




r0

r1

r2
...

rd−2

rd−1

rd




=




a0 c1 0
b0 a1 c2 0

0 b1 a2
. . . . . .

0
. . . . . . . . . 0
. . . . . . ad−2 cd−1 0

0 bd−2 ad−1 cd

0 bd−1 ad







r0

r1

r2
...

rd−2

rd−1

rd




= Rr ,

and this equality, in R[x], reads:

xr = Rr +
(

0 0 · · · 0
‖rd‖2

rd(λ0)
1

g0π0
Z

)>
.
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(b) All the entries bk, ck, of matrix R are nonnull and satisfy bkck+1 > 0.

(c) The matrix R diagonalizes with eigenvalues the elements of M. An eigenvector
associated to λk is (r0(λk), r1(λk), . . . , rd−1(λk), rd(λk))>.

(d) For every k = 1, . . . , d the polynomial rk has real simple roots. If Mk denotes the
mesh of the ordered roots of rk, then (the points of) the mesh Md interlaces M and,
for each k = 1, 2, . . . , d− 1, Mk interlaces Mk+1.

Proof. (a) Working in R[x]/(Z), we have 〈xrk, rh〉 = 0 provided that k < h− 1 and,
by symmetry, the result is also zero when h < k − 1. Therefore we can write, for any
k = 0, 1, . . . , d,

xrk =
d∑

h=0

〈xrk, rh〉
‖rh‖2

rh =
min{k+1,d}∑

h=max{0,k−1}

〈xrk, rh〉
‖rh‖2

rh = bk−1rk−1 + akrk + ck+1rk+1 ,

where, in order to uniform the notation, we have introduced the null formal terms b−1r−1,
and cd+1rd+1. Then, for any k = 0, 1, . . . , d the parameters bk, ak, ck are defined by:

bk =
〈xrk+1, rk〉
‖rk‖2

(0 ≤ k ≤ d− 1) , bd = 0 ,

ak =
〈xrk, rk〉
‖rk‖2

(0 ≤ k ≤ d) ,

c0 = 0 , ck =
〈xrk−1, rk〉
‖rk‖2

(1 ≤ k ≤ d) .

Given any k = 0, 1, . . . , d let Z∗k :=
∏d

l=0,l 6=k(x − λl) = ξ0rd + ξ1rd−1 + · · · , where notice
that ξ0 does not depend on k. Thus,

〈rd, Z
∗
k〉 = gkrd(λk)(−1)kπk = ξ0‖rd‖2 = g0rd(λ0)π0 6= 0. (9)

Moreover, for any k = 0, 1, . . . , d, we get:

rd − ‖rd‖2

rd(λ0)
1

g0π0
Z∗k ∈ Rd−1[x] ,

rd(λk)
rd(λ0)

= (−1)k g0π0

gkπk
. (10)

Then, the equality xrd = bd−1rd−1 + adrd, holding in R[x]/(Z), and the comparison of the
degrees allows us to stablish the existence of ψ ∈ R such that xrd = bd−1rd−1 + adrd + ψZ
in R[x]. Noticing that ψ is the first coefficient of rd, we get, from (10),

ψ =
‖rd‖2

rd(λ0)
1

g0π0
.

(b) By looking again to the degrees, we realize that c1, c2, . . . , cd are nonzero. For
k = 0, 1, . . . , d− 1, we have, from the equality

bk =
〈xrk+1, rk〉
‖rk‖2

=
〈xrk, rk+1〉
‖rk+1‖2

‖rk+1‖2

‖rk‖2
=
‖rk+1‖2

‖rk‖2
ck+1 ,
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that the parameters b0, b1, . . . , bd−1 are also nonnull and, moreover, bkck+1 > 0 for any
k = 0, 1, . . . , d− 1.

(c) This result follows immediately if we evaluate, in R[x] and for each λk, the matrix
equation obtained in (a).

(d) From (10) we observe that rd takes alternating signs on the points of M. Hence,
this polynomial has d simple roots whose mesh Md interlaces M. Noticing that Z takes
alternating signs over the elements of Md, from the equality bd−1rd−1 = (x−ad)rd−ψZ it
turns out that rd−1 takes alternating signs on the elements ofMd; whenceMd−1 interlaces
Md and rd has alternating signs on Md−1. Recursively, suppose that, for k = 1, . . . , d−2,
the polynomials rk+1 and rk+2 have simple real roots and that Mk+1 interlaces Mk+2, so
that rk+2 takes alternating signs on Mk+1. Then, the result follows by just evaluating the
equality bkrk = (x− ak+1)rk+1 − ck+2rk+2 at the points of Mk+1. 2

2.2 The canonical orthogonal system

Consider the space Rd[x] with the scalar product associated to (M, g). From the iden-
tification of such a space with its dual by contraction of the scalar product, the form
[λ0] : p → p(λ0) is represented by the polynomial H0 = 1

g0π0
(x − λ1) · · · (x − λd) through

〈H0, p〉 = p(λ0).

For any given 0 ≤ k ≤ d − 1, let qk ∈ Rk[x] denote the orthogonal projection of H0

over Rk[x]. Alternatively, the polynomial qk can be defined as the unique polynomial in
Rk[x] such that

‖H0 − qk‖ = min{‖H0 − q‖ : q ∈ Rk[x]}.
(See Fig. 1.) Let S denote the sphere in Rd[x] such that 0 and H0 are antipodal points
on it; that is, the sphere with center 1

2H0 and radius 1
2‖H0‖. Notice that its equation

‖p− 1
2H0‖2 = 1

4‖H0‖2 can also be written as ‖p‖2 = 〈H0, p〉 = p(λ0). Consequently,

S = {p ∈ Rd[x] : ‖p‖2 = p(λ0)} = {p ∈ Rd[x] : 〈H0 − p, p〉 = 0}.

Note also that the projection qk is on the sphere Sk := S ∩ Rk[x] since, in particular,
〈H0 − qk, qk〉 = 0.

Proposition 2.3 The polynomial qk, which is the orthogonal projection of H0 on Rk[x],
can be defined as the unique polynomial of Rk[x] satisfying

〈H0, qk〉 = qk(λ0) = max{q(λ0) : for all q ∈ Sk},

where Sk is the sphere {q ∈ Rk[x] : ‖q‖2 = q(λ0)}. Equivalently, qk is the antipodal point
of the origin in Sk.
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Proof. Since qk is orthogonal to H0 − qk, we have ‖qk‖2 + ‖H0 − qk‖2 = ‖H0‖2 = 1
g0

.
Then, as qk ∈ Sk we get

qk(λ0) = ‖qk‖2 =
1
g0
− ‖H0 − qk‖2 =

1
g0
−min{‖H0 − q‖2 : for all q ∈ Sk} =

= max{‖q‖2 : for all q ∈ Sk} = max{q(λ0) : for all q ∈ Sk}.

Considering the equivalent form ‖qk‖ = max{‖q‖ : for all q ∈ Sk} , the proof is complete.
2

H 0

q

= q
2

10
q

p

p

p

2

1

0

R  [ x ]

R  [ x ]

R  [ x ]

2

1

0

H_1
2

 0

Figure 1: Obtaining the q’s and the p’s by projecting H0.

With the notation qd := H0, we obtain the family of polynomials q0, q1, . . . , qd−1, qd.
Let us remark some of their properties.

Corollary 2.4 The polynomials q0, q1, . . . , qd−1, qd, satisfy the following:

(a) Each qk has degree exactly k.

(b) 1 = q0(λ0) < q1(λ0) < · · · < qd−1(λ0) < qd(λ0) =
1
g0

.
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(c) The polynomials q0, q1, . . . , qd−1 constitute an orthogonal system with respect to the
scalar product associated to the mesh {λ1 > λ2 > · · · > λd} and the weight function
λk 7→ (λ0 − λk)gk, k = 1, . . . , d.

Proof. (a) Notice that S0 = {0, 1}. Consequently, q0 = 1. Assume that qk−1 has
degree k− 1, but qk has degree lesser than k. Because of the uniqueness of the projection,
qk = qk−1 and H0 − qk−1 would be orthogonal to Rk[x]. In particular,

0 = 〈H0 − qk−1, (x− λ0)qk−1〉 = 〈(x− λ0)H0 − (x− λ0)qk−1, qk−1〉

= 〈(λ0 − x)qk−1, qk−1〉 =
d∑

l=0

gl(λ0 − λl)q2
k−1(λl).

Hence, qk−1(λl) = 0 for any 1 ≤ l ≤ d and qk−1 would be null.

(b) If qk−1(λ0) = qk(λ0), from Proposition 2.3 we would get qk−1 = qk, which is not
possible because of (a).

(c) Let 0 ≤ h < k ≤ d− 1. Since H0− qk is orthogonal to Rk[x] we have, in particular,
that

0 = 〈H0 − qk, (x− λ0)qh〉 = 〈(x− λ0)H0 − (x− λ0)qk, qh〉 = 〈(λ0 − x)qk, qh〉 =

=
d∑

l=0

gl(λ0 − λl)qk(λl)qh(λl) =
d∑

l=1

(λ0 − λl)glqk(λl)qh(λl) ,

stablishing the claimed orthogonality. 2

The polynomial qk, as the orthogonal projection of H0 over Rk[x], can also be seen
as the orthogonal projection of qk+1 over Rk[x], as qk+1 − qk = H0 − qk − (H0 − qk+1) is
orthogonal to Rk[x]. Consider the family of polynomials defined as

p0 := q0 = 1, p1 := q1 − q0, p2 := q2 − q1, . . . ,

pd−1 := qd−1 − qd−2, pd := qd − qd−1 = H0 − qd−1. (11)

Note that, then, qk = p0+p1+· · ·+pk (0 ≤ k ≤ d), and, in particular, p0+p1+· · ·+pd = H0.
Let us now begin the study of the polynomials (pk)0≤k≤d.

Proposition 2.5 The polynomials p0, p1, . . . , pd−1, pd constitute an orthogonal system with
respect to the scalar product associated to (M, g).

Proof. From pk = qk − qk−1 we see that pk has degree k. Moreover, we have already
seen that pk = qk − qk−1 is orthogonal to Rk−1[x], whence the polynomials pk form an
orthogonal system. 2

The sequence of polynomials (pk)0≤k≤d, defined in (11), will be called the canonical
orthogonal system associated to (M, g). The next result gives three different characteri-
zations of such systems.
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Proposition 2.6 Let r0, r1, . . . , rd−1, rd be an orthogonal system with respect to the scalar
product associated to (M, g). Then the following assertions are all equivalent:

(a) (rk)0≤k≤d is the canonical orthogonal system associated to (M, g);

(b) r0 = 1 and the entries of the recurrence matrix R associated to (rk)0≤k≤d, satisfy
ak + bk + ck = λ0, for any k = 0, 1, . . . , d;

(c) r0 + r1 + · · ·+ rd = H0;

(d) ‖rk‖2 = rk(λ0) for any k = 0, 1, . . . , d.

Proof. Let (pk)0≤k≤d be the canonical orthogonal system associated to (M, g). The
space Rk[x]∩R⊥k−1[x] has dimension one, and hence the polynomials rk, pk are proporcional:
rk = ξkpk. Let j := ( 1 1 · · · 1 )>.

(a) ⇒ (b): We have r0 = p0 = 1. Consider the recurrence matrix R (Proposition 2.2)
associated to the canonical orthogonal system (rk)0≤k≤d = (pk)0≤k≤d. Then, computing
xqd en R[x]/(Z) in two different ways we get:

xqd = x

d∑

k=0

pk = xj>p = j>Rp = ( a0 + b0 c1 + a1 + b1 · · · cd + ad )>p =

=
d∑

k=0

(ak + bk + ck)pk ;

xqd = xH0 = λ0H0 =
d∑

k=0

λ0pk ,

and, from the linear independence of the polynomials pk, we get ak + bk + ck = λ0.

(b) ⇒ (c): Working in R[x]/(Z) and from xr = Rr, we have:

0 = j> (xr −Rr) = x
d∑

k=0

rk − j>Rr = x
d∑

k=0

rk − λ0j
>r = (x− λ0)

d∑

k=0

rk .

Therefore there exists ξ such that
∑d

k=0 rk = ξH0 =
∑d

k=0 ξpk. Since, also,
∑d

k=0 rk =∑d
k=0 ξkpk, where ξ0 = 1, it turns out that ξ0 = ξ1 = · · · = ξd = ξ = 1. Consequently,∑d
k=0 rk = H0.

(c) ⇒ (d): ‖rk‖2 = 〈rk, r0 + r1 + · · ·+ rd〉 = 〈rk,H0〉 = rk(λ0).

(d) ⇒ (a): From rk = ξkpk, we have ξ2
k‖pk‖2 = ‖rk‖2 = rk(λ0) = ξkpk(λ0) = ξk‖pk‖2.

Whence ξk = 1 and rk = pk. 2
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Corollary 2.7 The highest degree polynomial pd of the canonical orthogonal system as-
sociatet to (M, g) satisfies the following:

(a) pd =

(
d∑

l=0

g0π0

glπ
2
l

)−1 d∑

k=0

1
gkπ

2
k

(x− λ0) · · · ̂(x− λk) · · · (x− λd) ;

(b) pd(λ0) =
1
g0

(
d∑

l=0

g0π
2
0

glπ
2
l

)−1

; pd(λk) = (−1)k g0π0

gkπk
pd(λ0) (1 ≤ k ≤ d) .

Proof. Recalling that the polynomial T =
∑d

k=0
(−1)k

πk
Hk , introduced in Lemma 2.1,

is orthogonal to Rd−1[x], there exists a constant ξ such that pd = ξT . From ‖pd‖2 = pd(λ0),
we then obtain pd = T (λ0)

‖T‖2 T . Substituting into this formula the values of T (λ0) and ‖T‖2,
given also in Lemma 2.1, we obtain the claimed expressions for pd, pd(λ0) and pd(λk). 2

From the last equality of Corollary 2.7 we get:

gk = g0
π0

πk

pd(λ0)
(−1)kpd(λk)

(0 ≤ k ≤ d) (12)

which, together with the normalization of g, implies that, given M, the knowledge of pd

allows us to reconstruct the weight function.

2.3 The conjugate canonical orthogonal system

Consider a given mesh M = {λ0 > λ1 > · · · > λd}. As we have seen, each normalized
weight function g : M → R induces a scalar product and its corresponding canonical
orthogonal system (pk)0≤k≤d. Moreover, we know that its recurrence matrix R, given in
Proposition 2.2, satisfies:

xp = Rp , j>R = λ0j
>, (13)

where p and j are the column matrices ( p0 p1 · · · pd )> and ( 1 1 · · · 1 )>, re-
spectively.

Given an n×m matrix A = (aij) we denote by A? the n×m matrix with (i, j)-entry
an−i+1,m−j+1, which results by applying a central symmetry to A. It is immediate to
check that (λA + µB)? = λA? + µB? and (AB)? = A?B?. The square (d + 1)-matrix
S with null entries excepting those on the principal antidiagonal which are 1’s, satisfies
S> = S−1 = S and, when A is any square (d + 1)-matrix, A? = SAS.

The polynomial pd has an inverse in R[x]/(Z) and, therefore, we can define p̃k :=
p−1

d pd−k for any k = 0, 1, . . . , d. Then, with the notation

p̃ := ( p̃0 p̃1 · · · p̃d )> = p−1
d p? = ( p−1

d pd p−1
d pd−1 · · · p−1

d p0 )>

11



we obtain, from (13),
xp̃ = R?p̃ , j>R? = λ0j

>. (14)

The entries of the tridiagonal matrix R?, which, according to the notation of Proposition
2.2, are denoted by ãk, b̃k, c̃k, are defined by: ãk = ad−k, b̃k = cd−k, c̃k = bd−k and
ãk + b̃k + c̃k = λ0, for k = 0, 1, . . . , d. Since b̃k c̃k+1 = cd−kbd−k−1 > 0 and p̃0 = 1 it turns
out that each p̃k has degree k.

Let P , respectively P̃ , denote the square (d + 1)-matrix with (i, j)-entry pi(λj),
respectively p̃i(λj), 0 ≤ i, j ≤ d. Also, let us consider the following diagonal ma-
trices D := diag(‖p0‖2, ‖p1‖2, . . . , ‖pd‖2), D̃ := diag(p̃0(λ0), p̃1(λ0), . . . , p̃d(λ0)), P d :=
diag(pd(λ0), pd(λ1), . . . , pd(λd)), and G := diag(g0, g1, . . . , gd). Now, we have the following
facts:

(a) The sequence (pk)0≤k≤d is the canonical orthogonal system with respect to the inner
product associated to (M, g) if and only if dgr pk = k, 0 ≤ k ≤ d, and

PGP> = D; (15)

(b) By the definition of P̃ we immediately have P̃ = SPP−1
d ;

(c) Similarly, from the definition of D̃, we get D̃ = p−1
d (λ0)SDS.

Then, the following computation

P̃
(
p−1

d (λ0)P dGP d

)
P̃
>

= p−1
d (λ0)P̃P dGP dP̃

>

= p−1
d (λ0)SPP−1

d P dGP dP
−1
d P>S

= p−1
d (λ0)SPGP>S = p−1

d (λ0)SDS = D̃ ,

stablishes that the family of polynomials (p̃k)0≤k≤d, with dgr p̃k = k, 0 ≤ k ≤ d, is the
canonical orthogonal system with respect to the product (M, g̃), where, using Corollary
2.7, g̃k := g̃(λk) corresponds to the expression:

g̃k = p−1
d (λ0) (P dGP d)kk = p−1

d (λ0)gkp
2
d(λk)

= g0
g0π

2
0

gkπ
2
k

pd(λ0) =
g0π

2
0

gkπ
2
k

(
d∑

l=0

g0π
2
0

glπ
2
l

)−1

. (16)

Note that, in particular, g̃ : M→ R is a normalized weight function on M. All the above
facts are summarized in the following result:

Proposition 2.8 Given a mesh M = {λ0 > λ1 > · · · > λd}, we associate, to each
normalized weight function g : M→ R, a new weight function g̃ : M→ R, which is also
normalized, defined as:

g̃k =
g0π

2
0

gkπ
2
k

(
d∑

l=0

g0π
2
0

glπ
2
l

)−1

(0 ≤ k ≤ d).

12



Then the respective canonical orthogonal systems:

(pk)0≤k≤d with respect to 〈p, q〉 =
∑d

l=0 glp(λl)q(λl); and

(p̃k)0≤k≤d with respect to 〈p, q〉̃ :=
∑d

l=0 g̃lp(λl)q(λl);

are related by p̃k = p−1
d pd−k, 0 ≤ k ≤ d, and the respective recurrence matrices, R and R̃,

coincide up to a central symmetry.

Corollary 2.9 The mapping g 7→ g̃, defined on the set of normalized weight functions on
M, is involutive.

Proof. The result follows immediately from the fact that R̃ is the matrix obtained by
applying a central symmetry to R. Or, alternatively, since p̃d = p−1

d we have: p̃−1
d p̃d−k =

pdp
−1
d pk = pk. Whence, using (12), it turns out that the conjugate weight function of g̃ is

g itself. 2

We shall say that the weight functions g and g̃, the respective scalar products, and the
corresponding canonical orthogonal systems are mutually conjugate.

2.4 The dual canonical polynomials

Associated to the canonical polynomials, there is another set of orthogonal polynomials,
which are called the “dual (canonical) polynomials”. In order to introduce them, notice
that the orthogonality property in (15) can also be written as P>D−1P = G−1. This
may be rewritten, in turn, as

P̂DP̂
>

= G−1, (17)

where we have introduced the new matrix P̂ := P>D−1. Then, note that (17) can also
be interpreted as an orthogonality property, with respect to the scalar product

〈p, q〉∗ :=
d∑

l=0

‖pl‖2p(λl)q(λl) (18)

for the new polynomials p̂k, 0 ≤ k ≤ d, defined as

p̂k(λl) := (P̂ )kl =
pl(λk)
‖pl‖2

=
pl(λk)
pl(λ0)

(0 ≤ l ≤ d), (19)

and which will be called the dual polynomials of the pk. Thus, (17) reads

〈p̂k, p̂l〉∗ = δklg
−1
l (0 ≤ k, l ≤ d), (20)

13



whence, using (18), the values of the weight function can be computed from the polyno-
mials (pk)0≤k≤d as:

gl =
1

(‖p̂l‖∗)2 =

(
d∑

k=0

pk(λl)2

pk(λ0)

)−1

. (21)

This is an alternative formula to (12).

Moreover, we have already seen, in Proposition 2.2(c) that the l-th column of P ,
namely (p0(λl), p1(λl), . . . , pd(λl))>, is an eigenvector of the tridiagonal recurrence matrix
R, with eigenvalue λl. That is,

RP = PDλ, (22)

where Dλ := diag(λ0, λ1, . . . , λd). Similarly, from (15) and the definition of P̂ we see that
P−1 = GP>D−1 = GP̂ . Then, (22) yields

P̂R = DλP̂ . (23)

That is, the k-th row of P̂ ,

(p̂k(λ0), p̂k(λ1), . . . , p̂k(λd)) =
(

p0(λk)
p0(λ0)

,
p1(λk)
p1(λ0)

, . . . ,
pd(λk)
pd(λ0)

)
,

is a left eigenvector of R with eigenvalue λk.

The number of sign-changes in a given sequence of real numbers is the number of
times that consecutive terms (after removing the null ones) have distinct sign. Thus, if
(pk)0≤k≤d is a (canonical) orthogonal system, the fact that dgr pk = k implies that the
sequence pk(λ0), pk(λ1), . . . , pk(λd) has exactly k sign-changes. Although the degrees of the
dual polynomials (p̂k)0≤k≤d does not necessarily coincide with their indexes, they keep the
above property and the sequence p̂l(λ0), p̂l(λ1), . . . , p̂l(λd) also has exactly l sign-changes.
This is a direct consequence of a known result about orthogonal polynomials (see e.g.
[25, 22]), which we formally state in the the next lemma, and prove it by considering the
“equivalent” sequence p0(λl), p1(λl), . . . , pd(λl) (since pk(λ0) > 0 for any 0 ≤ k ≤ d)).

Lemma 2.10 Let (pk)0≤k≤d be a sequence of orthogonal polynomials and let λ0 > λ1 >
· · · > λd be the zeros of pd+1. Then, for any given 0 ≤ l ≤ d, the sequence p0(λl), p1(λl),
. . . , pd(λl) has exactly l sign-changes.

Proof. We know that, between any two consecutive zeros of pk+1, there lies one zero
of pk. With this in mind, this could be seen as a “proof without words”; consider Fig. 2:
The number of sign-changes coincide with the crossed “staircases”. 2

A “non-visual” proof of this result can be found in Godsil [22]. Moreover, since each
column of the recurrence matrix sums to λ0, we also have the following corollary:

14
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Figure 2: Proof of Lemma 2.10.

Corollary 2.11 Let us consider a recurrence with coefficients satisfying ak +bk +ck = µ0,
0 ≤ k ≤ d. Then, for any 1 ≤ l ≤ d, the sequence p̂l(λ0)− p̂l(λ1),. . . ,p̂l(λd−1)− p̂l(λd) has
exactly l − 1 sign-changes.

Proof. Let C be the (d + 1) × (d + 1) matrix with 1’s on the principal diagonal,
−1’s on the diagonal below the principal one, and 0’s elsewhere. We know that P̂ l :=
(p̂l(λ0), p̂l(λ1), . . . , p̂l(λd)) is a (left) eigenvector of the recurrence matrix R, so that P̂ lC
is an eigenvector of the (also tridiagonal) matrix R′ := C−1RC. From this, one deduces
that (p̂l(λ0) − p̂l(λ1), . . . , p̂l(λd−1) − p̂l(λd)) is a left eigenvector of the d × d principal
submatrix of R′:




λ0 − b0 − c1 c1

b1 λ0 − b1 − c2 c2

b2 ·
· ·

· · cd−1

bd−1 λ0 − bd−1 − cd




with corresponding eigenvalue λl ∈ ev R\{λ0}. Then the result follows from Lemma 2.10.
2

3 Applications to graphs and codes

This section is devoted to discuss some applications of the results about orthogonal poly-
nomials given in Section 1 to the area of algebraic graph theory. We are specially interested
in the notion of distance-regularity, defined in Subsection 3.3, and we will survey some
results obtained from the study of two different meshes and its corresponding orthogonal
canonical system: the local spectrum of a given graph G, defined in Subsection 3.2, and
the spectrum of a subset of its vertex set, defined in Subsection 3.7.
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Throughout this section G = (V, E) denotes a simple undirected graph with vertex set
V = {1, 2, . . . , n} and edge set E. Two vertices i ∈ V and j ∈ V are adjacent if {i, j} ∈ E
and we denote it by i ∼ j. A walk of length k from i ∈ V to j ∈ V is a finite sequence
of vertices of G, i = u0, u1, u2, . . . , uk = j, such that ut ∼ ut+1, 0 ≤ t ≤ k − 1, and the
minimum length of such a walk is the distance dist(i, j) between i and j. If there is no
walk from i to j we write dist(i, j) = ∞. The k-apart from a vertex i, Γk(i), is the set
of vertices at distance k from i, and the k-neighbourhood of i, Nk(i), is the set of vertices
at distance at most k from i, that is, Nk(i) = Γ0(i) ∪ Γ1(i) ∪ · · · ∪ Γk(i). The degree of
a vertex i is δi = |Γ1(i)| and its eccentricity is ecc(i) = max1≤j≤n dist(i, j). Finally, the
diameter of G is D = D(G) = max1≤i≤n ecc(i) and its radius r = r(G) = min1≤i≤n ecc(i).
Notice that the diameter can be equivalently defined as the maximum distance between
two vertices and G is connected if and only if D(G) < ∞.

3.1 Some algebraic-graph results

One of the most important tools in the study of the algebraic properties of a graph G is
its adjacency matrix, A = A(G), which is the n× n matrix with entries

(A)ij =
{

1 if i ∼ j
0 otherwise.

Since G is taken to be a simple undirected graph, A(G) is a symmetric (0,1)-matrix
with zero diagonal entries. We denote the characteristic polynomial of A(G) by φG(x)
(since it is uniquely determined by the underlying graph G) and we will refer to it as
the characteristic polynomial of G. The spectrum of G is the set of eigenvalues of A(G)
together with their multiplicities, and we will write

spG := spA = {λm(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d },

where λ0 > λ1 > . . . > λd and m(λi) is the multiplicity of λi as a root of φG(x). Similarly,

ev G := {λ0, λ1, . . . , λd}
denotes the set of different eigenvalues of G. If we consider matrices and vectors indexed
by the vertices of G and associate to any vertex i ∈ V the i-th unitary vector ei of the
canonical basis of Rn, we can interpret the adjacency matrix A as an endomorphism of
Rn, and the following equivalence holds:

Au = λu ⇐⇒
∑

j∼i

uj = λui (1 ≤ i ≤ n).

Moreover, taking the mesh M = ev G and proceeding as in (3) we can consider the
moment-like parameters

πl :=
m∏

h=0,h6=l

|λl − λh| (0 ≤ l ≤ d)
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satisfying (6):
m∑

l=0

(−1)l λ
k
l

πl
=

{
0 if 0 ≤ k < d
1 if k = d.

When G is connected, the Perron-Frobenius Theorem for nonnegative matrices guar-
anties that its largest eigenvalue, λ0, is positive and simple and has an eigenvector v =
(v1, . . . , vn) with all its components positive. In particular we can normalize v in such a
way that min1≤i≤n vi = 1. Given U a subset of the vertices of G, let ρ be the mapping
defined by ρU :=

∑
i∈U viei. In what follows we suppose, for simplicity, that G is con-

nected and δ-regular, that is δi = δ for every i ∈ V . In this case, λ0 = δ and v = j, the
all-1 vector, and ρU turns out to be the characteristic vector of U , that is, (ρU)i = 1 if
i ∈ U and (ρU)i = 0 otherwise.

The adjacency algebra A(G) of G is the algebra of polynomials in its adjacency matrix
A. A simple inductive argument proves that the number of walks of length k between
vertices i and j is (Ak)ij (see [2] for example). Therefore, if G has diameter D, then the
set {I, A, A2, . . . , AD} is linearly independent in A(G), or to put it in another way, the
dimension of A(G) is at least D + 1. Moreover, if G has d + 1 distinct eigenvalues, the
minimum polynomial of A has degree d and the dimension of A(G) is d+1. This fact gives
us an upper bound for the diameter of a connected graph G, namely D ≤ d = | ev G| − 1.
When the equality holds, the diameter is spectrally maximal and we say that G is extremal.

3.2 Local spectrum

For each eigenvalue λl ∈ spG, let U l be the matrix whose columns form an orthogonal
basis for the eigenspace El := Ker(A − λlI) associated to λl. The principal idempotents
of A are the matrices El := U iU

>
l representing the orthogonal projections onto El. They

can be obtainded by the formula El = Zl(A), 0 ≤ l ≤ d, where Zl is the interpolating
polynomial in (4) and d = | ev G| − 1. In particular, E0 = (vv>)/‖v‖2. These matrices
satisfy the following properties (see [22]):

(a) ElEh =
{

El, if l = h
0, otherwise;

(b) AEl = λlEl;

(c) p(A) =
d∑

l=0

p(λl)El, for any p ∈ R[x].

By taking p = 1 in (c) we obtain
∑d

l=0 El = I, and for p = x we get the so-called Spectral
Decomposition Theorem:

A =
d∑

l=0

λlEl.

17



More generally, taking p = xk, each power of A can be expressed as a linear combination
of the idempotents El:

Ak =
d∑

l=0

λk
l El.

In [18], Fiol, Garriga and Yebra defined the i-local multitplicity of λl ∈ ev G as the
square of the norm of the projection of ei onto El, mi(λl) = ‖Elei‖2 ≥ 0 (in par-
ticular, mi(λ0) = 1/‖v‖2). Note that, since 〈Elei, Elei〉 = 〈Elei, ei〉 = (El)ii, the
i-local multiplicity coincides with the i-th entry of the diagonal of El. Moreover, if
µ0 = λ0 > µ1 > . . . > µdi

(di ≤ d) are the eigenvalues having not null i-local multi-
plicity, the above authors also defined the i-local spectrum as:

spi G := {λmi(µ0)
0 , µ

mi(µ1)
1 , . . . , µ

mi(µdi
)

m }. (24)

The name given to these parameters is justified by the fact that, when the graph “is seen”
from a given vertex i, its local multiplicities play a role similar to that of the standard
multiplicities. The following results from [18] support this claim.

Proposition 3.1 The i-local multiplicities satisfy:

(a) For any vertex i,
di∑

l=0

mi(µl) = 1.

(b) The multiplicity of an eigenvalue of G is the sum, extended to all vertices, of its local
multiplicities:

m(λl) =
n∑

i=1

mi(λl) (0 ≤ l ≤ d).

Proposition 3.2 Let i ∈ V be a vertex and let p denote a polynomial. Then,

(p(A))ii =
di∑

l=0

mi(µl)p(µl).

By taking p = xk we obtain the number of circuits of length k through (or rooted at)
vertex i, namely Ci(k) =

∑di
l=0 mi(µl)µk

l .

Other facts support this interpretation of the local spectrum. Given a vertex i, its
degree satisfies δi =

∑di
l=0 mi(µl)µ2

l ; in particular, Ci(2) = δi. Furthermore, analogous to
the relation of the diameter and the number of different eigenvalues, the eccentricity of

18



a vertex i of a connected graph is bounded above by the number of eigenvalues different
from λ0 in its local spectrum,

ecc(i) ≤ di = | evi G| − 1.

Let us define the characteristic polynomial corresponding to the i-local spectrum, de-
fined in (24), as

φi(x) =
di∏

l=0

(x− µl)mi(µl).

A graph G is said to be spectrally regular if all the vertices have the same local spectrum.
The following proposition gives several characterizations of such a graph (see [10, 6]).

Proposition 3.3 The following statements are equivalent:

(a) G is spectrally regular.

(b) φi = φj for any i, j ∈ V .

(c) The i-local multiplicities only depend on λl, so that, mi(λl) = m(λl)/n for any
λl ∈ ev G.

(d) G is walk regular, i.e. Ci(k) only depends on k.

(e) spG \ i = sp G \ j for any i, j ∈ V , where G \ v is the graph obtained by deleting the
vertex v from G.

Moreover, we have
φG\i(x)
φG(x)

=
φ′i(x)
φi(x)

.

3.3 Local distance-regularity and the local predistance polynomials

Let i ∈ V be a vertex with eccentricity ecc(i) = ε of a regular graph G. Let Vk := Γk(i)
and consider the numbers ck(j) := |Γ(j)∩Vk−1|, ak(j) := |Γ(j)∩Vk|, bk(j) := |Γ(j)∩Vk+1|,
defined for any j ∈ Vk and 0 ≤ k ≤ ε (where, by convention, c0(i) = 0 and bε(j) = 0 for
any j ∈ Vε). We say that G is distance-regular around i whenever ck(j), ak(j), bk(j) do
not depend on the considered vertex j ∈ Vk but only on the value of k. In such a case,
we simply denote them by ck, ak and bk, respectively, and we call them the intersection
numbers. The matrix

I(i) :=




0 c1 · · · cε−1 cε

a0 a1 · · · aε−1 aε

b0 b1 · · · bε−1 0
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Figure 3: Intersection numbers.

is called the intersection array around vertex i.

A graph G is distance-regular when it is distance-regular around each of its vertices
and with the same intersection array. In other words, if we consider the partition Π(i) of
V (G) defined by the sets Γk(i), k = 0, 1, . . . , ecc(i), the corresponding quotient G/Π(i) is
a weighted path with structure independent of the chosen vertex i.

Let G be distance-regular around vertex i ∈ V . Note that, for a given vertex u ∈ V ,
(AρVk)u = |Γ(u) ∩ Vk|. Thus,

AρVk = bk−1ρVk−1 + akρVk + ck+1ρVk+1.

Let Ar, 1 ≤ r ≤ d, be the adjacency matrix of Gr, that is, (Ar)ij = 1 if dist(i, j) = r
and (Ar)ij = 0 otherwise. Since G is regular, ρVr = Arei, 1 ≤ r ≤ d, and the previous
recurrence reads

AAkei = bk−1Ak−1ei + akAkei + ck+1Ak+1ei.

Thus, the polynomials obtained from the recurrence

xrk = bk−1rk−1 + akrk + ck+1rk+1, with r0 = 1, r1 = x, (25)

satisfy rk(A)ei = ρVk. Note that, if G is distance-regular, the intersection numbers are
the same for all the vertices and we also have rk(A) = Ak, but this is not true in general.

In what follows, we consider the i-local scalar product defined as the scalar product
associated to the mesh M = spi G and normalized weight function gl = mi(µl), 0 ≤ l ≤ di:

〈f, g〉i :=
di∑

l=0

mi(µl)f(µl)g(µl) = (f(A)g(A))ii,

Lemma 3.4 If G is distance-regular around a vertex i, the polynomials rk, 1 ≤ k ≤ d,
obtained from the recurrence (25) coincide with the canonical orthogonal system associated
to the mesh M = spi G and normalized weight function gl = mi(µl), 0 ≤ l ≤ di.
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Proof. Let us show, first, that the polynomials rk, 1 ≤ k ≤ d are mutually orthogonal.
Notice that the vectors ρVs and ρVt, s 6= t, are orthogonal. Then,

〈rs, rt〉i = (rs(A)rt(A))ii = 〈rs(A)ei, rt(A)ei〉 = 〈ρVs,ρVt〉 = 0.

Finally, by applying Proposition 2.6, since dgr(rk) = k, we conclude the proof. 2

Given any connected graph G and a vertex of it i, in [13] the authors defined the i-local
predistance polynomials, pi

k, 0 ≤ k ≤ di, as the canonical orthogonal system associated to
the mesh M = spi G and normalized weight function gl = mi(µl), 0 ≤ l ≤ di. As the
previous result suggests, these polynomials can be a useful tool to determine whether a
graph is distance-regular around a vertex i. In this direction, in [18] is proved that G is
distance-regular around vertex i, ecc(i) = ε, if and only if

pi
k(A)ei = ρVk =

∑

j∈Vk

ej (0 ≤ k ≤ ε), (26)

generalizing the result in [11] for the so-called predistance polynomials.

Since mi(λ0) = 1/‖v‖2 = 1/n, we can deduce from (12) that the i-local multiplicities
of G are given by

mi(µl) =
π0p

i
di

(λ0)
nπlp

i
di

(µl)
(0 ≤ l ≤ di),

where πl =
∏di

h=0(h6=l) |µl − µh|, and Corollary 2.7 gives us the value at λ0 of the highest
degree polynomial:

pi
di

(λ0) =

(
di∑

l=0

m2
i (λ0)π2

0

mi(µl)π2
l

)−1

.

Given i ∈ V , we say that a vertex j ∈ V is i-extremal if it is at spectrally maximum
distance from it, dist(i, j) = di = | evi G|−1. The number of i-extremal vertices is bounded
by

|Vdi
| ≤ pi

di
(λ0) =

(
di∑

l=0

m2
i (λ0)π2

0

mi(µl)π2
l

)−1

, (27)

and, as it is shown in [13], the equality holds if and only if G is distance-regular around
vertex i.
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3.4 Characterizing distance-regularity

Let G be a regular graph on n vertices, with spectrum spG = {λ = λ0, λ
m1
1 , . . . , λmd

d },
λ0 > λ1 > · · ·λd, and canonical orthogonal system p0, p1, . . . , pd satisfying Proposition
2.6. In [13], the authors obtainded a characterization of distance-regularity through the
following results.

Proposition 3.5 Let G be a graph as above. Let qk =
∑k

l=0 pl, 0 ≤ k ≤ d and let
exci(d− 1) denote the number of vertices at distance greater than d− 1 from i. Then, G
is spectrally regular if

exci(d− 1) = n− qd−1(λ) = pd(λ)

for every vertex i.

Theorem 3.6 Let G be a spectrally-regular graph. Then the following statements are
equivalent:

(a) G is distance-regular around each of its vertices.

(b) G is distance-regular.

As mentioned, in [13], from this two results, jointly with (27), a quasi-spectral charac-
terization of distance-regular graphs is obtained:

Theorem 3.7 Let G be a regular graph on n vertices with spectrum spG = {λ0, λ
m1
1 , . . . , λmd

d },
and let p0, p1, . . . , pd be the associated canonical orthogonal system. Then G is distance-
regular if and only if, for every vertex i,

|Γd(i)| = pd(λ0) = n

(
d∑

l=0

π2
0

mlπ
2
l

)−1

.

Using some results from [13, 18], the third author proved in [11] the following result,
which gives a bound satisfied by every polynomial, attainable only if the involved graph
is distance-regular. It is not unusual that distance-regularity appears when a bound is
attained, other example of such a case is the bound given in (27).

Theorem 3.8 Let G be a regular graph with n vertices and d+1 distinct eigenvalues. For
every vertex i ∈ V , let sd−1(i) := |Nd−1(i)|. Then, any polynomial r ∈ Rd−1[x] satisfies
the bound

r(λ0)2

‖r‖2
G

≤ n∑
i∈V

1
sd−1(i)

, (28)
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and equality is attained if and only if G is a distance-regular graph. Moreover, in this
case, we have

r(λ0)
‖r‖2

G

r = qd−1 =
d−1∑

k=0

pk,

where pk, 0 ≤ k ≤ d, are the distance polynomials of G.

Note that the above upper bound is, in fact, the harmonic mean of the numbers sd−1(i),
i ∈ V . Moreover, in case of equality, qd−1(A) =

∑d−1
k=0 Ak = J −Ad, and the distance-d

polynomial of G is just

pd = qd − qd−1 = qd − r(λ0)
‖r‖2

G

r, (29)

where qd represents the Hoffman polynomial ; that is, qd = H0 = n
π0

∏d
l=1(x−λl) (see [23]).

3.5 Bounding special vertex sets

Let i ∈ V be a vertex with eccentricity ecc(i) = ε. Given the integers k, µ such that
0 ≤ k ≤ ε and µ > 0, let Γµ

k(i) denote the set of vertices which are at distance k from
i ∈ V and there exist exactly µ (shortest) k-paths from i to each of such vertices; so we
have the partition Γk(i) = ∪µ≥1Γ

µ
k(i).

As shown in the following theorem of [9], the i-local predistance polynomials can be
used to derive some bounds on the cardinality of the set Γµ

k(i), giving also a characteri-
zation of the extremal cases. Moreover, when the results are particularized to spectrally
regular graphs, we get a proof of a conjecture of Van Dam (see Corollary 3.10 below).

Theorem 3.9 Let i be a vertex of a regular graph G, with local spectrum spi G, and let
(pi

k)0≤k≤di be the i-local predistance polynomials. Let ak denote the leading coefficient of
pi

k, and consider the sum polynomials qi
k =

∑k
l=0 pi

l. For any given integers µ > 0 and
0 ≤ k < di, consider the spectral k-excess ek = n − qi

k(λ0), and define σk(µ) := akµ − 1.
Then,

|Γµ
k(i)| ≤ pi

k(λ0)ek

pi
k(λ0)σk(µ)2 + a2

kµ
2ek

, (30)

and equality is attained if and only if either

(a) When k = ε:
P ∗ei = β∗εj + γ∗ερΓµ

ε (i), (31)

with the polynomial
P ∗ := aεµeεp

i
ε + pi

ε(λ0)σε(µ)qi
ε (32)

and constants

β∗ε := pi
ε(λ0)σε(µ), γ∗ε := pi

ε(λ0)σε(µ)2 + a2
εµ

2eε; (33)
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(b) When k < ε:
pi

kei = ρVk , (34)

in which case
nµ

k = nk = pi
k(λ0). (35)

In the case of spectrally regular graphs (which implies that pi
k = pk for every vertex i)

and k = d− 1, we have

ed−1 = n− qd−1(λ0) = qd(λ0)− qd−1(λ0) = pd(λ0)

and we get

nµ
d−1 ≤

pd−1(λ0)pd(λ0)
pd−1(λ0)σd−1(µ)2 + a2

d−1µ
2pd(λ0)

. (36)

When d = 3 the above result proves the following the following result conjectured by Van
Dam in [7].

Corollary 3.10 Let G be a regular graph with four distinct eigenvalues, and predistance
polynomials pk with leading coefficients ak. Then, for any vertex i ∈ V , the number nµ

2 of
vertices non-adjacent to i, which have µ common neighbours with i, is upper-bounded by

nµ
2 ≤

p2(λ0)p3(λ0)
p2(λ0)(a2µ− 1)2 + a2

2µ
2p3(λ0)

. (37)

Example. Let G be a regular graph with spectrum

spG = {41, 23, 03,−25}.

Then n = 12, and its proper polynomials and their values at λ0 = 4 are:

• p0 = 1, 1;

• p1 = x, 4;

• p2 = 2
3(x2 − x− 4), 16

3 ;

• p3 = 1
12(3x3 − 8x2 − 16x + 20), 5

3 ;

Then, (37) gives

nµ
2 ≤

⌊
20

7µ2 − 16µ + 12

⌋

and hence

• µ = 0, 1, 2, 3, 4, . . . ⇒ nµ
2 ≤ 1, 6, 2, 0, 0, . . .
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An example of a graph with such a spectrum is the one given by Godsil [22] (as an example
of walk-regular graph which is neither vertex-transitive nor distance-regular, see Fig. 4)
This graph can be constructed as follows: take two copies of the 8-cycle with vertex
set Z8 and chords {1, 5}, {3, 7}; joint them by identifying vertices with the same even
number and, finally, add edges between vertices labelled with equal odd number. The
automorphism group of this graph has two orbits, formed by “even” and “odd” vertices,
respectively. For such vertices we have (see again Fig. 4):

• nµ
2 = 0, 6, 1, 0, 0, . . . (for an even vertex);

• nµ
2 = 1, 4, 2, 0, 0, . . . (for an odd vertex).

1

0

2 3 4

5 6 7 8 9 10

11 0

1

2

34

5

6 7 8 9

10

11

0

1 2 3

4 5 6 7

8 9 10

11

Figure 4: Three drawings of a walk regular graph which is not distance-regular.

3.6 Representation theory

Given a graph G and λl ∈ ev G, we define, for every pair of vertices i, j the ij-cosine
respect to λl to be

wij(λl) =
〈Elei, Elej〉
‖Elei‖‖Elej‖ =

mij(λl)√
mi(λl)mj(λl)

,

where mij(λl) := mij(λl) is called the crossed (ij-)local multiplicity of λl (see [20]). The
name given to this parameter emphasizes the fact that it coincides with the cosine of the
angle formed by the projection of the vectors ei and ej onto the eigenspace associated with
λl. When G is a distance-regular graph, wij(λl) only depends on the distance r = dist(i, j)
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(see for instance [22]), and it is referred to as the r-th cosine wr(λl). In this case the
following recurrence holds

λlwr = crwr−1 + arwr + brwr+1 (0 ≤ r ≤ d),

where cr, ar, and br are the intersection parameters of G; w−1 and wd+1 are irrelevant
(since c0 = bd = 0); and w0 = 1.

If G is distance-regular around a vertex i and dist(i, j) = r the crossed ij-local multi-
plicity of µl ∈ spi G can be obtained from the i-local predistance polynomials,

mij(µl) =
pi

r(µl)
pi

r(µ0)
mi(µl) (0 ≤ l ≤ di),

and hence

wij(µl) =
pi

r(µl)
pi

r(µ0)

√
mi(µl)
mj(µl)

.

So we can infer that in a distance-regular graph the r-th cosine is

wr(λl) =
pr(λl)
pr(λ0)

(0 ≤ l ≤ d).

3.7 Distance-regularity around a vertex set

Given a vertex subset C ⊂ V of a (regular) graph G, its normalized vector is defined by

eC :=
1√
|C|ρC =

1√
|C|

∑

i∈C

ei.

Consider the spectral decomposition of the vector eC = z0 + z1 + · · · + zd, where zi ∈
Ker(A − λlI). Similar to the case of the local spectrum, we define the C-multiplicity of
the eigenvalue λl to be

mC(λl) := ‖zl‖2 = ‖EleC‖2 = 〈EleC , eC〉 =
1
|C|

∑

i,j∈C

〈Elei, ej〉

=
1
|C|

∑

i,j∈C

mij(λl) (0 ≤ l ≤ d). (38)

The sequence of C-multiplicities (mC(λ0), . . . , mC(λd)) corresponds in fact to the so-
called “McWilliams transform” of the vector eC (see [22]). Since eC is unitary, we have∑d

l=0 mC(λl) = 1. If µ0(= λ0), µ1, . . . , µdC
represent the eigenvalues λi of G with non-zero

C-multiplicities, then the (local) C-spectrum of G is

spC G := {λmC(λ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
}
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where dC(≤ d) is called the dual degree of C (see again [22]).

Notice that we have similar results to the presented in Proposition 3.2 and its direct
consequence for the spectrum of a vertex set. For any polynomial p ∈ R[x], we have

〈p(A)eC , eC〉 =

〈
d∑

l=0

p(λl)EleC , eC

〉
=

d∑

l=0

p(λl)〈EleC , eC〉

=
d∑

l=0

mC(λl)p(λl),

and the number of walks of length k from the vertices of C to itself is

CC(k) :=
∑

u,v∈C

(Ak)uv = |C|〈AkeC ,eC〉 = |C|
d∑

l=0

mC(λl)λk
l (k ≥ 0).

Proceeding as we did for the local spectrum, the C-local predistance polynomials
(pC

k )0≤k≤dC
are the canonical orthogonal system with respect to the scalar product

〈f, g〉C :=
dC∑

l=0

mC(µl)f(µl)g(µl)

with normalized weight function gl = mC(µl), satifying ‖pC
k ‖2

C = pC
k (λ0). The sum poly-

nomials will be also of our interest, they are defined by qC
k :=

∑k
h=0 pC

h , 0 ≤ k ≤ dC . In
this context, Theorem 4.2 of [15] reads as follows:

Theorem 3.11 Let C be a vertex subset of a regular graph G, with C-local predistance
polynomials (pC

k )0≤k≤d. Then, for any polynomial q ∈ Rk[x],

q(λ0)2

‖q‖2
C

≤ |Nk(C)|
|C| , (39)

and equality is attained if and only if

1
‖q‖C

q(A)eC = eNk
, (40)

where eNk
represents the unitary characteristic vector of Nk(C). Moreover, if this is the

case, q is any multiple of qC
k , whence (39) and (40) become

qC
k (λ0) =

|Nk(C)|
|C| , (41)

qC
k (A)ρC = ρNk(C). (42)
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Figure 5: Antipodal tight sets and their distance partition

The above result motivated the following definition. A subset C of the vertices of a
graph G is tight if qC

k (A)ρC = ρNk(C) for any 0 ≤ k ≤ dC . For every vertex subset C, we
consider also its antipodal set C. As the following proposition states, the tight character
of a set C —or, equivalently, the existence of the C-local predistance polynomial pC

d —
leads to the existence of all the C-local predistance polynomials with respect to both sets
C and C, and that they are just the members of their associated orthogonal system (see
[15]).

Proposition 3.12 Let C be a tight set of vertices with predistance orthogonal system
(pk)0≤k≤dC

, and let (pk)0≤k≤dC
be the predistance orthogonal system associated to its an-

tipodal set C. Then,

(a) The polynomials (pk)0≤k≤dC
are just the conjugate polynomials of (pk)0≤k≤dC

:

pk = p−1
d pd−k, pk = pdpd−k (0 ≤ k ≤ dC). (43)

(b) C is also tight. (If the family T of tight vertex sets of a graph G is not empty, then
the application which maps every set to its antipodal fixes T and it is involutive).

What is more, for every 0 ≤ k ≤ d, the action of the polynomial pk on ρC coincides with
the action of pd−k on ρC, so revealing the symmetry between the roles of C and C (See
Fig. 5).

Proposition 3.13 If C is a tight set with antipodal set C, and (pk)0≤k≤d, (pk)0≤k≤d are
the corresponding predistance orthogonal systems. Then,

pkρC = ρCk = ρCd−k = pd−kρC (0 ≤ k ≤ d).
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3.8 Completely regular codes in distance-regular graphs

Let C ⊂ V be a vertex set. The distance from C to a given vertex j of V is given by
dist(C, j) = mini∈C{dist(i, j)}. This definition gives us a distance partition of V where
each part Ck is the set of vertices at distance k from C. It is natural to say that the
eccentricity of C is given by ecc(C) = maxj∈V {dist(C, j)}.

We say that G is distance-regular around C, with eccentricity ε = ecc(C), if the distance
partition V = C0 ∪ C1 ∪ · · · ∪ Cε is regular, that is the numbers

ck(i) := |Γ(i) ∩ Ck−1|, ak(i) := |Γ(i) ∩ Ck|, bk(i) := |Γ(i) ∩ Ck+1|,

where i ∈ Ck, 0 ≤ k ≤ ε, depend only on the value of k, but not on the chosen vertex
i. The set C is also referred to as a completely regular set or completely regular code (see
[22]).

There are similar characterizations of distance-regularity around a vertex set to those
given for local distance-regularity in previous sections. Analogously to (26), a graph G
is distance-regular around a set C ⊂ V , with eccentricity ε, if and only if the C-local
predistance polynomials pC

0 , pC
1 , . . . , pC

ε satisfy

ρCk = pC
k (A)ρC (0 ≤ k ≤ ε). (44)

In [16] the authors gave the following characterization of completely regular codes in terms
of the number of vertices at spectrally maximum distance from C. From this point of view
it can be seen as the analogue of Theorem 3.7.

Theorem 3.14 Let G = (V,E) be a regular graph. A vertex subset C ⊂ V , with r vertices

and local spectrum spC G = {λmC(λ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
}, is a completely regular code

if and only if the number of vertices at distance dC from C; that is, ndC
(C) := |CdC

|
satisfies

ndC
(C) = pC

dC
(λ0) = r

(
dC∑

l=0

mC(λ0)2π2
0

mC(µl)π2
l

)−1

=
n2

r

(
dC∑

l=0

π2
0

mC(µl)π2
l

)−1

.

The number of ordered pairs (i, j) of vertices from C which are k apart in a distance-
regular graph G is given by

∑

i,j∈C

(Ak)ij = 〈AkeC , eC〉 = |C|〈pk(A)eC , eC〉 = |C|
d∑

l=0

mC(λl)pk(λl).
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From this we see that, within C, the mean number of vertices at distance k (from a vertex)
in G is

nk :=
1
|C|

∑

i∈C

|Γk(i) ∩ C| =
d∑

l=0

mC(λl)pk(λl) (0 ≤ k ≤ d). (45)

The numbers nk, 0 ≤ k ≤ d, are called the inner distribution of C and, as commented
by Godsil [22], they represent the probability, through the ratio nk/|C|, that a randomly
chosen pair of vertices from C are at distance k. Notice that always n0 = 1 and

∑d
k=0 nk =

|C|.
These last two observations lead us to conclude that, in a distance regular graph,

the local multiplicities of a vertex subset C can be easily computed from the distance
polynomials of G, its spectrum, and the inner distribution of C (see [16]).

Proposition 3.15 Let G be a distance-regular graph with a given subset C of r vertices.
Then there exist nonnegative numbers r0(= 1), r1, . . . , rk, such that nk = rk for every
0 ≤ k ≤ d, if and only if the C-multiplicities satisfy

mC(λl) =
m(λl)

n

d∑

k=0

rk
pk(λl)
pk(λ0)

(0 ≤ l ≤ d). (46)

In particular mC(λ0) = r
n and if C is a single vertex, C = {i}, we have r0 = 1, r1 = · · · =

rd = 0, so mi(λl) = m(λl)
n

p0(λl)
p0(λ0) = m(λl)

n , as expected.

In the case when all vertices in C are at distance k from each other, (46) gives:

mC(λl) =
m(λl)

n

(
1 + (r − 1)

pk(λl)
pk(λ0)

)
(0 ≤ l ≤ d).

But, when k = d, we know from Corollary 2.7 that pd(λl) < 0 for every odd l. This fact,
together with mC(λl) ≥ 0, yields the following upper bound for the maximum number of
vertices mutually at maximum distance d:

r ≤ 1 + min
l=1,3,...

pd(λ0)
|pd(λl)| .

A similar upper bound is given in [6] for the more general case of spectrally regular graphs.
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