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Abstract

We consider some related families of orthogonal polynomials of a dis-
crete variable, and discuss their applications in the study of (distance-regular)
graphs and codes. One of the main peculiarities of such orthogonal systems is
their non-standard normalization condition, requiring that the square norm
of each polynomial must equal its value at a given point of the mesh.

1 On orthogonal polynomials of a discrete vari-

able

In this section we survey some old and some news results about polynomials of a
discrete variable. In order to do this paper more accesible to readeres not familiarized
with this topic, we have included all the proofs.
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Let M :={Xo > A > -+ > A;} be a mesh of real numbers. A real function of
a discrete variable f : M — R can be seen as the restriction on M of a number of
functions of real variable. Moreover, if we only consider polynomial functions, the
class of possible extensions of one discrete function on M constitute an element of
the quotient algebra R[x]/(Z) where (7) is the ideal generated by the polynomial
7 = H;lzo(x — A1). Each class has a unique canonical representative of degree at
most d. Denoting by F(M) the set of functions on the mesh, we then have the
following natural identifications:

F(M) +— Rlz]/(Z) +— Ry|x]. (1)

For simplicity, we represent by the same symbol, say p, any of the three objects
identified in (1). When we need to point out some of the above three sets, we will
make it explicit.

A positive function g : M — R will be called a weight function on M. We
say that it is normalized when g(Xo) + g(A1) + - -+ + g(Xg) = 1. We shall write, for
short, ¢ := ¢g(A;). From the pair (M,g) we can define an inner product in Ry[z]
(indistinctly in F(M) or in R[z]/(7)) as

d
(p.q) =Y _awp(M)a(N)  p.q € Ralal, (2)
1=0
with corresponding norm || - ||. From now on, this will be referred to as the scalar

product associated to (M, g). Note that (1,1) = 1 is equivalent to the normalized
character of the weight function g, which will be hereafter assumed.

In order to simplify some expressions, it is useful to introduce the following
moment-like parameters, computed from the points of the mesh M,

d d

o= [ Pe=ANl=0=DF I Gv=2)  (0<k<d); (3)
)

1=0 (I#k) 1=0 (I#k
and the family of interpolating polynomials (with degree d):

d

1)k
=0 L e-n sz, (1)
1=0 (I£k)
which satisfy:
Zk(An) = onk (Zy, Zy) = Spigr - (5)



Then, using Lagrange interpolation, p = ZZ:O p(Ag)Zy for any p € Ry[x]. In par-
ticular, when p = 2*, 1 = 0,1,... ,d, we get 2 = EZ:O \. 7y, whence, equating the
terms with degree d,

ﬁé&;przo(ogigd—m, ﬁé@;fA}:L (6)

1.1 Forms and orthogonal systems

Each real number A induces a linear form on Ry[x], defined by [A](p) := p(A). Then,
equality (5) can be interpreted by saying that the forms [Ao], [A1], ..., [Aa] are the
dual basis of the polynomials Zy, 71, ..., Z;. The scalar product associated to
(M, g) induces an isomorphism between the space R4[x] and its dual, where each
polynomial p corresponds to the form w,, defined as w,(¢) := (p, q) and, reciprocally,
each form w is associated to a polynomial p, through (p,,q) = w(q). By observing
how the isomorphism acts on the bases {[A;] }o<i<a, {Zi}o<i<d, We get the expressions:

d

Y LY P S AP 7)

In particular, the polynomial corresponding to [Ax] is

d
Hy = }:iAkZﬂa E: MZ

=0 gt

1 1
_
9k gr Tk

(2 =Ao) (& = M) (2 = M)

and their scalar products are:

(Hy, Hy) = NJ(H) = Hy() = gié (8)

Moreover, property (6) is equivalent to stating that the form Ek 0 7rk) [Ax] annihi-
lates on the space Ry_q[z].

Lemma 1.1 In the space Ry[x], let us consider the scalar product associated to
(M, g). Then, the polynomial




verify the following.

(a) T is orthogonal to Ry_q[x];

ONAEED

() T(ho) = 7=

gomo

Proof. The proof of (a) is straightforward by considering the form wr associated

to T', whereas (b) and (c) are proved by simple computations:
(_1 h+k

d d
ITI? = S smo S (His Hy) = Yy 7

T(Ao) = Yo SLHi(Mo) = - O

Tk goTo

A family of polynomials rq,7y,... 7y is said to be an orthogonal system when
each polynomial ry, is of degree k and (r;,rx) = 0 for any h # k.

Proposition 1.2 FEvery orthogonal system ro,r, ... ,rq satisfies the following prop-
erties:

(a) There exists a tridiagonal matriz R (called the recurrence matriz of the system)

such that, in Rlz]/(7):

o ZO €1 0 o
= o a1 €3 0 =
T2 0 bl a9 T T ro
xri=x : = 0 .. e e 0 : = Rr,
T'q—2 ag_o €41 O T'q—2
Fd—1 0 bi—2 a4-1 cq Fd—1
T'd 0 bd—l aq T'd

and this equality, in RB[z], reads:

2 T
:z;r:Rr—|—<0 0 ... 0 Al 12)

ra(Xo) gomo

(b) All the entries by, ¢, of matriz R are nonnull and satisfy bycpy1 > 0.

(¢) The matriz R diagonalizes with eigenvalues the elements of M. An eigenvec-
tor associated to Ny is (ro(Ag), r1(Ak), -+ s7ac1(Ae), ra(Ae)) 7.



(d) For every k= 1,...,d the polynomial ri, has real simple roots. If My, denotes
the mesh of the ordered roots of ry,, then (the points of ) the mesh My interlaces
M and, for each k =1,2,... ,d—1, My, interlaces M.

Proof. (a) Working in R[x]/(7), we have (xrg,ry) = 0 provided that k < h —1
and, by symmetry, the result is also zero when h < k& — 1. Therefore we can write,

for any £ =0,1,... ,d,

min{k+1,d}

d
TrL, T TrE, T
TrE = Z Wm = Z Wm =by_174—1 + @’k + Chr17h41
h=0 Th h=max{0,k—1} "h

where, in order to uniform the notation, we have introduced, the null formal terms

b_yr_1, and ¢qr17441. Then, for any k = 0,1,... ,d the parameters by, ay, ¢, are
defined by:
<$Tk_|_1,7“k>
by = ————— (0<k<d-1), b; =0,
[I7&]
(xr), e
ap = ———— (0<k<d),
[l7x][?
¢ = 0, ck:M (1 <k<d).
[I7&]

Given any k =0,1,... ,d let Z; := H;l:o,l;,ek(l' — X)) =&ra+ Eram1 + -+, where we
note that & does not depend on k. Thus,

(ra, Zi) = gera()(=1) 1 = &ollrall® = gora(Ao)mo # 0 (9)
Moreover, for any k= 0,1,...,d, we get:
21 A
ry — HrdH Zk c Rd_l[l'] 7 Td( k) — (_1)kgo7TO (10)

Td()\o) GoTo Td()\o) GkTk

Then, the equality ary = by_1pa—1 + a4rq, holding in R[z]/(Z), and the comparison
of the degrees allows us to stablish the existence of ¢» € R such that xry = by_1ps_1+
aqrq + 7 en R[x]. Noticing that ¢ is the first coefficient of rq, we get, from (10),

— a1
77b T rq(Xo) gomo
(b) By looking again to the degrees, we realize that ¢, ¢s,... ¢4 are nonzero.

For k=0,1,... ,d — 1, we have, from the equality

b = i) i) el _ resd®
= = = +
[ R ¥ e T R T

5



that the parameters by, by, ... ,by_1 are also nonnull and, moreover, bycry; > 0 for

any k=0,1,...,d—1.

(¢) This result follows immediately if we evaluate, in R[z] and for each Ay, the
matrix equation obtained in (a).

(d) From (10) we observe that r, takes alternating signs on the points of M.
Hence, this polynomial has d simple roots whose mesh M, interlaces M. Noticing
that Z takes alternating signs over the elements of M, from the equality by_17r4-1 =
(x —aq)rq— 7 it turns out that ry_; takes alternating signs on the elements of M ;
whence My_; interlaces M, and r; has alternating signs on My ;. Recursively,
suppose that, for £ = 1,... ,d — 2, the polynomials r;y; and ryyo have simple real
roots and that M interlaces M2, so that ri,o takes alternating signs on M.
Then, the result follows by just evaluating the equality byry = (v — @pg1)resr —
ChiaTrye at the points of My, O

1.2 The canonical orthogonal system

Consider the space Ry[x] with the scalar product associated to (M, g). From the
identification of such a space with its dual by contraction of the scalar product, the
form [Ag] : p — p(Ao) is represented by the polynomial Hy = gﬁo(:}c — A1) (=)
through (Ho, p) = p(Ao).

For any given 0 < k < d — 1, let ¢ € Ry[x] denote the orthogonal projection
of Hy over Ri[z]. Alternatively, the polynomial ¢; can be defined as the unique
polynomial in Bi[z] such that

[Ho = gil| = min{[|Ho — ql| : ¢ € Ry[z]}.

(See Fig. 1.) Let S denote the sphere in Ry[x]| such that 0 and Hy are antipodal
points on it; that is, the sphere with center 1/, and radius 1||Ho||. Notice that

H? —

its equation ||p — 3 Ho||> = 1||Hol|* can also be written as ||p||* = (Ho,p) = p(Xo).

Consequently,

S ={p € Rala] : IplI* = p(Xo)} = {p € Ralz] : (Ho — p,p) = 0}.
Note also that the projection g is on the sphere Sy := S "R, [x] since, in particular,

<H0 - Qk7Qk> = 0.

Proposition 1.3 The polynomial g, which is the orthogonal projection of Hy on
Ri[x], can be defined as the unique polynomial of Ry[x] satisfying

(Ho, qx) = qr(Xo) = max{q(Xo) : per a tot ¢ € Si},



where Sy, is the sphere {q € R[] : ||q||* = ¢(Xo)}. Equivalently, qx is the antipodal
point of the origin in S.

I* =

Proof. Since g is orthogonal to Hy — qx, we have ||qr]|* + || Ho — qx||* = || Ho
gio. Then, as q; € S we get

1 1 .
a(ho) = |l = P | Ho — qi” = P min{||Ho — q||” : Vg€ S} =

= max{||q]|?: Vg€ Si} = max{q(A\o): Vg€ Si}.

Considering the equivalent form ||gx|| = max{]||q|| : Yq € Sk}, the proof is complete.
O

R,[x]

Figure 1: Obtaining the ¢’s and the p’s by projecting Ho.

With the notation ¢; := Hjy, we obtain the family of polynomials ¢o, ¢1, ...,
Gd—1, qq. Let us remark some of their properties.

Corollary 1.4 The polynomials qo, q1, ... , Gi—1, Ga, satisfy the following.



(a) Fach q has degree exactly k.
(6) 1= qo(Ao) < qi(Xo) <+ < qa-1(Ao) < qa(o) = gLO-

(¢) The polynomials qo,q1, ... ,qi—1 constitute an orthogonal system with respect
to the scalar product associated to the mesh {A\y > Ay > -+ > N} and the
weight function A, — (Ao — Ai)gr, k=1,... ,d.

Proof. (a) Notice that S = {0,1}. Consequently, ¢o = 1. Assume that gx_;
has degree k — 1, but g; has degree lesser than k. Because of the uniqueness of the
projection, qx = qx—1 and Hy — qr_1 would be orthogonal to Ri[z]. In particular,

0 = <H0 — qk—1, (51? - )\O)Qk—1> = <(51? - )\O)HO - (51? - )\O)Qk—17Qk—1>

= ((Ao = 2)qh-1,q-1) = Zgl()\o — M) Gy (M)

=0
Hence, gr—1(A;) = 0 for any 1 <! < d and ¢z—; would be null.

(b) If gr—1(Xo) = qr(Ao), from Proposicié 1.3 we would get gr—; = qx, which is
not possible because of (a).

(¢) Let 0 < h <k <d—1. Since Hy — g is orthogonal to Ri[x] we have, in
particular, that

0 = (Ho—qr(z—Xo)gn) = ((x — Ao)Ho — (¥ — Xo) @y qn) = (Ao — T)qk, qn) =

= Zgz()\o — ) ar(A)gn(AM) = Z()\o — M) giqr( M) gn( M)

=1
stablishing the claimed orthogonality. O
The polynomial gy, as the orthogonal projection of Hy over Ry[x], can also be seen

as the orthogonal projection of gx41 over Ri[x], as qr+1 — g = Ho — g — (Ho — Q1)
is orthogonal to Ry[x]. Consider the family of polynomials defined as

Po = (]0:17 P1:=4q1—4qo, P2 '= 42 — 1, .-,
Pt i= Gt — a2, Pa = qa — Ga—1 = Ho — qa (11)
Note that, then, ¢z = po+ p1 + -+ -+ pr (0 < k < d), and, in particular, po + p; +
-+ 4 pg = Ho. Let us now begin the study of the polynomials (pi)o<k<a-

Proposition 1.5 The polynomials pg, p1, ... ,pg_1,pa constitute an orthogonal sys-
tem with respect to the scalar product associated to (M, g).

8



Proof. From pp = qr — qr_1 we see that p; has degree k. Moreover, we have
already seen that py = ¢x — qx—1 is orthogonal to Rj_;[z], whence the polynomials
pr form an orthogonal system. O

The sequence of polynomials (pg)o<k<d, defined in (11), will be called the canon-
ical orthogonal system associated to (M, g). The next result gives three different
characterizations of such systems.

Proposition 1.6 Let rqg,ry,... ,rq_1,7q an orthogonal system with respect to the
scalar product associated to (M, g). Then the following assertions are all equivalent.

(@) (ri)o<k<d is the canonical orthogonal system associated to (M, g);

(b) ro = 1 and the entries of the recurrence matriz R associated to (ry)o<k<d,

satisfy ap + by + ¢ = Ao, for any k=0,1,...,d;
(¢)ro+ri+--+rg=Hy;
(d) Irxll> = ri(Ao) for any k= 0,1,... ,d.

Proof. Let (pg)o<k<a be the canonical orthogonal system el sistema ortogonal
associated to (M, g). The espace Ri[x] N Ri_,[z] has dimension one, and hence the
polynomials ry,, py are proporcional: ry = &py. Let j:=(1 1 --- 1)T.

(a) = (b): We have ro = pg = 1. Consider the recurrence matrix R, Proposition
1.2, associated to the canonical orthogonal system (ri)o<k<d = (Pr)o<k<a. Then,
computing xqq en R[z]/(Z) in two different ways we get:

d
Tqd = xzpk:l’jTP:jTRp:(ao—l-bo catart+b o cutag) p=
k=0
d
= Z(Gk-l-bk—l-ck)pk;
k=0
d
Tqq = l’HO:)\()Ho:Z)\Opkv
k=0

and, from the linear independence of the polynomials py, we get ar + by + cx = Ao.
(b) = (¢): Working in R[z]/(7) and from xr = Rr, we have:

d d d

OZjT(:z;r—Rr):erk—jTRr:erk—)\ojTr:(aj—)\o)Zrk.

k=0 k=0 k=0



Therefore there exists & such that ZZ:O r, = EHy = ZZ:O Epr. Since, also, ZZ:O rp =
EZ:O Erpr, on & = 1, it turns out that & = & = -+ = & = € = 1. Consequently,

EZ:O Ty = H,

(C) = (d) HrkH2 = <Tk7ro ‘I’ 1 —I— PN _I_ Td> — <rk,H0> _ Tk()\o)‘

(d) = (a): From ry = Gpy, we have Gllpull* = [Irell* = re(do) = &pa(Xo) =
kapk’P Whence fk = 1 and Tk = Pk- 0

Corollary 1.7 The highest degree polynomial py of the canonical orthogonal system
associatet to (M, g) satisfies the following:

-1y
GgoTo 1
® py= = Xo) - (z— M) (= Ag) ;
; ( g) D gm0 (=) (=)
-1
goTg £ 9oTo
° )\ = . Ap) = (=1 A 1<k<d).
pd 0 ( gﬂrl> pd( k) ( )gwkpd( o) (_ = )

Proof. Recalling that the polynomial T' = ZZ:O (:rlk)k Hj , introduced in Lemma
1.1, is orthogonal to R,;_i[z], the exists a constant ¢ such that p; = &7T'. From
lpal|* = pa(Ao), we then obtain p; = ”(T”2 T'. Substituting into this formula the
values of T'(Ag) and ||T']|?, given also in Lemma 1.1, we obtain the claimed expressions

for pa, pa(Ao) and py(Ay). O
From the last equality of Corollary 1.7 we get:

gkzgoﬁ—km (0 <k <d) (12)

which, together with the normalization of ¢, implies that, given M, the knowledge
of pg allows us to reconstruct the weight function.

1.3 The conjugate canonical orthogonal system

Consider a given mesh M = {)\g > Ay > -+ > A\;}. As we have seen, each nor-
malized weight function ¢ : M — R induces a scalar product and its corresponding
canonical orthogonal system (py)o<k<q. Moreover, we know that its recurrence ma-
trix R, given in Proposition 1.2, satisfies:

sp=Rp, j R=MXj' (13)

10



where p and j are the column matrices ( po p1 +-+ pg ) and (1 1 --- 1)7,
respectively.

Given an n X m matrix A = (a,;;) we denote by A* the n x m matrix with
(1,7)-entry @n—i1,m—-;+1, which results when applying a central symmetry to A.
It is immediate to check that (AA + uB)" = AA* + uB* and (AB)* = A*B".
The square (d + 1)-matrix S with null entries excepting those on the principal
antidiagonal which are 17s, satisfies 8T = 87! = § and, when A is any square

(d + 1)-matrix, A = SAS.

The polynomial p; has an inverse in R[x]/(Z) and, therefore, we can define
Pr = py ' pa_y for any k= 0,1,... ,d. Then, with the notation

pi=(po p -~ pa) =pip =(pi'Pa Py pi-t - pipo)
we obtain, from (13),
p=Rp, R =X\j' (14)

The entries of the tridiagonal matrix R*, which, according to the notation of Propo-
sition 1.2, are denoted by ak,bk,ck, are deﬁned by: ap = aq—, bk = Cy_k, Cr = by_y
and ay —I—bk—l—ck = Ao, per a k = 0,1,...,d. Since bkck-|—1 = ¢g—pbg_r—1 > 0 and
po = 1 it turns out that each pj has degree k.

Let P, respectively P, denote the square (d+ 1)-matrix with (¢, 7)-entry p;(A;),
respectlvely pi(A;), 0 <1,5 < d. Also, let us consider the following diagonal matrices

D := diag([[pol*, lp1ll*: - -, Ipall*), D == diag(po(Ao): Pi(Ao), - . PalXo)), Pa =
diag(pa(Ao)s pa(A1), ..., pa(Aa)), and G := diag(go, g1, .. ,94). Now, we have the

following facts:

(a) The sequence (pg)o<k<q is the canonical orthogonal system with respect to the
inner product associated to (M, g) if and only if dgrpy =k, 0 < k < d, and

; (15)

(b) By the definition of P we immediately have P = sppP;!

PGP =D

(¢) Similarly, from the definition of D, we get D = p; (M)SDS.
Then, the following computation

T

I i = ~ T
P<pc;1()‘0)PdGPd> P = pc?l()\o)PPdGPdP

= p;'(\)SPP;'P,GP,P;'P"S

= p7'(N)SPGP'S = p7'(X)SDS =D,

11



stablishes that the family of polynomials (pr)o<k<a, with dgrp, =k, 0 < k < d, is
the canonical orthogonal system with respect to the product (M, g), where, using
Corollary 1.7, gx := g(Ar) corresponds to the expression:

G = pg (X)) (PaGPg), = py'(Mo)gepi(Ar)

9073 9073 : 9073 B
= go—de()\o): 2 : (16)

2
gETg grTy,

Note that, in particular, g : M — R is a normalized weight function on M. All the
above facts are summarized in the following result:

Proposition 1.8 Given a mesh M = {)\g > Ay > -+ > A}, we associate, to each
normalized weight function g : M — R, a new weight function g : M — R, which is
also normalized, defined as:

-~ _ Y

(Z gof) (0<k<d).

Then the respective canonical orthogonal systems:

07To
kﬂ'k

(Pr)o<k<a with respect to (p,q) = 27:0 ap(A)g(N); and

(Pr)o<k<d with respect to (p,q) := Z?:o aip(Ai)g(Ni);
are related by py = Py ' Pack, 0 < k < d, and the respective recurrence matrices, R

and R, coincide up to a central symmetry.

Corollary 1.9 The mapping g — g, defined on the set of normalized weight func-
tions on M, is involutive.

Proof. The result follows immediately from the fact that R is the matrix ob—
tained from by applying a Central symmetry to R. Or, alternatively, since py = p;'
we have: p;'pa_r = pap;'px = pr. Whence, using (12), it turns out that the
conjugate weight function of g is ¢ itself. O

We shall say that the weight functions ¢ and g, the respective scalar products,
and the corresponding canonical orthogonal systems are mutually conjugate.

1.4 The dual canonical polynomials

Associated to the canonical polynomials, there is another set of orthogonal poly-
nomials, which are called the “dual (canonical) polynomials”. In order to intro-

12



duce them, notice that the orthogonality property in (15) can also be written as
P"D7'P = G7'. This may be rewritten, in turn, as

PDP' =G, (17)

where we have introduced the new matrix P := PT D" Then, note that (17) can

also be interpreted as an orthogonality property, with respect to the scalar product

(p.a)" =Y IpllPp(A)a(M) (18)

for the new polynomials pi, 0 < k < d, defined as

_ ) p(e)
P> pi(Xo)

and which will be called the dual polynomials of the py. Thus, (17) reads

Pr(N) = (P (0<1<d), (19)

(Pr, P1)* = Ouagy ! (0< k1< d), (20)

whence, using (18), the values of the weight function can be computed from the
polynomials (px)o<r<a as:

()
g;—( )2 (Z k(%)) : (21)

This is an alternative formula to (12).

Moreover, we have already seen, in Proposition 1.2(c) that the [-th column of P,
namely (po(Ar), pr(N), ..., pa(X))T, is an eigenvector of the tridiagonal recurrence
matrix R, with eigenvalue A;. That is,

RP = PD, (22)

where D) := diag(Ao, A1,...,Aq). Similarly, from (15) and the definition of P we
see that P~' = GP"D™' = GP. Then, (22) yields

PR=D,P. (23)
That is, the k-th row of 13,

(e00)s e pr(0) = (ig’fgig’f; f;z&i) |

13




is a left eigenvector of R with eigenvalue A.

The number of sign-changes in a given sequence of real numbers is the number of
times that consecutive terms (after removing the null ones) have distinct sign. Thus,
if (pr)o<k<a is @ (canonical) orthogonal system, the fact that dgrp, = k implies that
the sequence pi(Ao), pr(A1), ... ,pr(Ag) has exactly k sign-changes. Although the
degrees of the dual polynomials (pr)o<k<q does not necessarily coincide with their
indexes; they keep the above property and the sequence p;(Ao), pi(A1), ..., pi(Aq) also
has exactly [ sign-changes. This is a direct consequence of a known result about
orthogonal polynomials (see e.g. [15, 12]), which we formally state in the the next
lemma, and prove it by considering the “equivalent” sequence po(A;), p1( A1), ... , pa( )
(since pg(Ag) > 0 for any 0 < k < d)).

Lemma 1.10 Let (pi)o<k<a be a sequence of orthogonal polynomials and let Ao >
AL > - > Ag be the zeros of pgy1r Then, for any giwven 0 < [ < d, the sequence
po( A1), pr(A), <o, pa(N) has exactly | sign-changes.

Proof. We know that, between any two consecutive zeros of piiq, there lies
one zero of pr. With this in mind, this could be seen as a “proof without words”;
consider Fig. 2: The number of sign-changes coincide with the crossed “staircases”.
O

A “non-visual” proof of this result can be found in Godsil [12]. Moreover, since
each column of the recurrence matrix sums to Ag, we also have the following corollary:

Corollary 1.11 Let us consider a recurrence with coefficients satisfying ay + by +
e = po, 0 < k < d. Then, for any 1 < [ < d, the sequence pi(Xo) — pi(A1),
D Aa—1) — pi(Ag) has exactly | — 1 sign-changes.

Proof. Let C be the (d4 1) x (d+ 1) matrix with 1’s on the principal diagonal,
—1’s on the diagonal below the principal one, and 0’s elsewhere. We know that
P, = (pi(Xo), pi( A1), ... ,pi(Xa)) is a (left) eigenvector of the recurrence matrix R,
so that P,C is an eigenvector of the (also tridiagonal) matrix R := C™' RC. From
this, one deduces that (p;(Ao) — pi(A1), ... s pi(Aa—1) — Pi(Ag)) is a left eigenvector of
the d x d principal submatrix of R':

)\0 — bo — 1 (8]
bl )\0 - bl —C G
by

Cq—1
bd—l )\0 - bd—l — Cq

14



with corresponding eigenvalue A; € ev R\{Xo}. Then the result follows from Lemma
1.10. O

2 Applications to graphs

Some graph concepts

o ( = (V,E): simple graph, with vertex set V = {i,7,... ,n} and set of edges
(unordered pairs of vertices) F

o Adjacency {i,j} € E: 1~
e Distance between vertices ¢ and j:  9(1,))

o Set k-apart from vertex ¢:
Pe(i) = {7 : 00, j) = k}

o The k-Neighbourhood of vertex 1 is the set of vertices at distance at most k
from :

Ni(1) =To(0) UT1(2) U---Tg(9).
o Degree of vertex iz §; = |['1(¢)] = |I'(2)].
o Kecentricity of vertex i:

e =ecc(1) = max (i, 7)

o Diameter of G:
D =D(G) = f??g}i ecc(1)
o Radius of G

r=r(G)= lrgi<nn ecc(1)

Some algebraic-graph concepts
o Adjacency matriz of G, A = A(G):

1 ifi~ g
(A)m:{ 0

otherwise

15



o Characteristic polynomial of G

de(x) = det(a] — A) = H(x PRI

(=0

e Spectrum of G-
G imp A = DY AT a0

o Different eigenvalues of G-

GVG:{)\0>)\1>"'>)\C[}.

e “Moment-like” parameters defined as in (3) from the eigenvalues mesh calM =

ev(4:

m

o= [ =Ml (0<i<d)
h=0,h#l

and satisfying (6):

zm:(_l)lA_f: 0 if0<k<d
m 1 ifk=d.

(=0

Some algebraic-graph results

e Since (7 is supposed to be connected (D < oo) we have, by the Perron-
Frobenius theorem for nonnegative matrices, that A = p(A) > 0 with eigen-
vector v > 0 (let v s.t. minj<;<, v; = 1). Throughout this paper, we suppose,
for simplicity, that G is (d-)regular; that is §; = ¢ for every ¢ € V. In this case,
Ao = 6 and v = 7, the all-1 vector.

e Eigenvectors vs. charges:

Av=> v <= ZU]‘:)\UZ'

i~i

e Number of k-walks between vertices ¢ and j:

e Diameter D:

D<d=|evG| -1

16



Distance-regularity

We say that a (regular) graph (' is distance-regular around a vertex i with eccen-
tricity ecc(i) = €, whenever the numbers

cr(7) = [I'(7) O Vial,

ar(g) == |U(7) N Vil,
bi(7) = 0(7) O Viga],

where Vi, := I['4(7), defined for any j € Vj and 0 < k < ¢ (where, by convention,
co(1) = 0 and b.(5) = 0 for any j € V.) do not depend on the considered vertex
J € Vi, but only on the value of k. In such a case, we denote them by ¢y, ar and by
respectively (the intersection numbers). Then, the matrix

0 ¢ -+ cq c
Z(i):=| ao a1 -+ @1 a.
bp by -+ b._; O

is called the intersection array around vertex ¢ of (.

A graph G is called distance-regular when it is distance regular around each of
its vertices and with the same intersection array.

The local spectrum

For each eigenvalue \;, let E; be the matrix representing the orthogonal projections
onto the eigenspace & := Ker(A — X\ TI). These are called the (principal) idempotents
of A.

E, = Z7(A), 0 <[ <d, with Z; being the interpolating polynomial in (4);
that is /; = % Hizo(h#)(x — An). In particular, Eq = %’U’UT.

| E ifl=h
BB, = { 0  otherwise;
® AE[ = )\IEI;

e p(A) = Zp()\l)El, for any p € R[x].

(=0

17



d
Taking p = 1, we have ZE; =1

(=0

For p = = we get the spectral decomposition theorem:

d
A= Z MNE,
=0

The (i-)local multiplicity of X\; € ev G:
mi(A) = mi(A) = || Erel|* = 0

(for instance, m;(Ag) = 1/]|v|*)

d

As if the graph G were “seen” from vertex i: Z mi(N) =1
=0

m()\l) =tr El = ZmZ(Al)

d

Cis(k) = (AM)i = > Afma(n)
=0

The (i-)local spectrum:

Y

spt:= {Ami(ﬂo)7MTi(M1)7 o /«in(udi)}.
with po = Ao and m;(p) #0, 0 <1 < d;.

Degree 6;:

Eccentricity ecc(i):
ecc(1) <d; =ev; G| =1

Characteristic polynomials:

dani(r) ()

dalz)  dilx)

18



o (i is spectrally regular (i.e.,spi =spj for any 1,5 € V)
— ¢, =¢;foranyi,5 €V
<= the local multiplicities only depend on A;: m;(\;) = m(nAz) for any
AN Eevl

< (G is walk regular (i.e. Py (k) only depends on k)

< spG\i)=spG\j)forany ¢, €V

The local predistance polynomials

Given a vertex ¢ of a graph G, (i-local) predistance polynomials (p})o<k<d, are no
more than the canonical orthogonal system associated to the mesh M = sp: and
weight function ¢; = m;(y;), 0 <1 < d;:

e The (i-)local scalar product:

d;

(f.9)i = (fg(A))i =D miu) f()g(m)

=0
with normalized weight function g; := m;(p), 0 < 1 < d;, since 27:0 g =1
o The (i-local) predistance polynomials: (p})o<k<d, such that dgrp, = k and
N ifk#£1
(Prspi)i = { pz()\o) k=1

o As we already know, such a system is unique and characterized by the condi-
tions of Proposition 1.6.

2.1 Some “predistance” results
Let G be a (regular) graph on n = |V| vertices. Let ¢ € V.

e The i-local multiplicities of G are given by

- Qbopili()\o)

= : [ <d;
nﬁblpzli(/ll) (OS = )

()

where ¢ = TT3ogun (1 — ) = (=1)'m0.
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e The value at A\ of the highest degree polynomial is

e (7 is distance-regular around vertex 7, ecc(i) = &, if and only if

Pi(Aei=pVi=> e (0<k<e)

JEVR
where Vi := 'y (7).
e Bounding the number of i-extremal vertices (9(¢,7) = d; = |ev; G| — 1):
i m2(Xo)md B
Vol < pb (M) = A7)0
Vi, _pd,( 0) (1220: mz’(/«”)ﬁ)

and equality occurs iff G is distance-regular around vertex .

Characterizing distance-regularity
In [6], the authors gave the following characterization of distance-regularity

e A (connected) regular graph GG with
sp G = {Ag" A", A7)

is distance-regular iff for each vertex i the number of i-diametral vertices is

d 2 -1
Vil =n (Z )
mym

(=0

Using some results from [6, 9], the first author proved in [5] the following result,
which gives another characterization of distance-regular graphs.

o Let G be a regular graph with n vertices and d + 1 distinct eigenvalues. For
every vertex ¢ € V', let s4_1(7) := |Ny4_1(7)|. Then, any polynomial r € Ry_q[z]
satisfies the bound

r(Xo)? < n

< , (24)
e~ Yievsmm
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and equality is attained if and only if (¢ is a distance-regular graph. Moreover,
in this case, we have

d—1
r(A
( 0)7“ =4qd—1 = Zpkv

2
Il =

where the p;’s are the distance polynomials of G.

Note that the above upper bound is, in fact, the harmonic mean of the numbers
$4-1(7), ¢ € V, which is hereafter denoted by H. Moreover, in case of equality,
qi-1(A) = Z;é Ap =J — Ay, and the distance-d polynomial of G is just

r(Xo)

RER

Pd = qd — qd—1 = qd (25)

where g, represents the Hoffman polynomial; that is, s = Ho = - H;l:l(:zj —A;) (see

13).

Bounding special vertex sets

Let ¢ € V be a vertex with eccentricity ecc(i) = . Given the integers k, u such that
0 <k<eand p>0,let I'V(:) denote the set of vertices which are at distance at
least k from 7 € V and there exist exactly p (shortest) k-paths from i to each of

such vertices. Note that I')(7) = V' \ Ni(7), and if p # 0, then I'}(7) contains only
vertices at distance k from 7, so that we get the partition I'y (1) = U,>1 I} (7).

e Let ¢ be a vertex of a (regular) graph G, with local spectrum spi, and let
(P} )o<k<d;, be the local predistance polynomials. Let aj denote the leading
coefficient of p , and consider the sum polynomials ¢}, = Ef:o pi. For any given
integers > 0 and 0 < k < d;, consider the spectral k-excess ¢ = n—v?q. (o),
and define oy (p) := agp — 1. Then,

O € S+ e 2
and equality is attained if and only if either
(a) When k = e:
Prei = 525 422 (0), 1)
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with the polynomial
P* = a.pe.p; + pi(No)oe(p)g: (28)
and constants
B2 = pi(No)oe(p), 42 = pl(No)ou(p)® + alpe.; (29)
(b) When k < e:
piei = pVi, (30)
in which case

nt = e = ph(a). (31)

In the case of walk-regular graphs (= p\, = pj, for every vertex i) and k = d — 1,
we have

€d—1 =N — %—10\0) = Qd()\o) - %—10\0) = pd()\o)
and we get

pd—1()\0)pd()\o)

= pa—1(Ao)oa_1(p)? + a3_1M2pd()\0)' (32)

g_y
When d = 3 the above result proves the following conjecture of Van Dam (1996).

o Let (G be a regular graph with four distinct eigenvalues, and predistance poly-
nomials p; with leading coefficients a;. Then, for any vertex: € V., the number
nY of vertices non-adjacent to ¢, which have g common neighbours with ¢, is
upper-bounded by

L pz()\o)p:a()\o)

n2<

=m0z — D2 + aZaps(ho) (33)

Example. Let G be a regular graph with spectrum
sp G = {4',2°,0°, —=2°1,
Then n = 12, and its proper polynomials and their values at A\g = 4 are:
*po=1, L
e =z, 4
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* p2:%($2_$_4)7 s

o ps = (327 — 82 — 16z +20), 3;

Then, (33) gives

2
nhy < 5 0
T — lop + 12

and hence
e 1=0,1,2,3,4,... = nj<1,6,2,0,0,...

An example of a graph with such a spectrum is the one given by Godsil [12] (as
an example of walk-regular graph which is neither vertex-transitive nor distance-
regular.) This graph can be constructed as follows: take two copies of the 8-cycle
with vertex set Zg and chords {1,5}, {3,7}; joint them by identifying vertices with
the same even number and, finally, add edges between vertices labelled with equal
odd number. The automorphism group of this graph has two orbits, formed by
“even” and “odd” vertices respectively. Then,

e ny =1,4,2,0,0,... (for an even vertex);

e ny =0,6,1,0,0,... (for an odd vertex).

Representation theory

Given a graph GG and \; € ev (G, we define, for every pair of vertices 1, j,

e The ij-cosine w;; = w;;(\):

w"()\l): <E16i,E16]‘> _ mij()‘l)
! | Ee|||| Eqe;] mi(A)m;( )

where m;; (A1) := my;(A) is called the (ij-)crossed local multiplicity of A;.

When G is a distance-regular graph, w;;(A;) only depends on the distance r :=
d(i,7), and it is referred to as the r-th cosine w,(X;).

In this case:

)\lwr = ¢Wp_1 + apw, + brwr—l—l (0 <r< d)7
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where ¢,, a,, and b, are the intersection parameters of (; w_; and wgyy; are irrelevant
(since ¢g = by = 0); and wy = 1.

Some “cosine” results are the following:

e (7 distance-regular around vertex ¢ and 9(7, j) = r:

oy Pl ,
ml](/“”) - pi(/lo) Z(/“Ll) (0 <I< dl)

and hence

Around a vertex set

Given a vertex subset ¢’ C V of a graph G, we define the normalized vector

ec = — e
C.: 27
VIC| VIC pvt

o C-multiplicity of the eigenvalue ),

1
me(A) = ||[Eec|” = (Eec,ec) ] Y (Eeie))
1,j€C
1
= Z mi(\) (0 <1< d). (34)
1,j€C
The sequence of C-multiplicities (m¢(Ao), ... ,mc(Aq)) corresponds in fact to

the so-called “MeWilliams transform” of the vector ex. Since e is unitary,

we have 27:0 me(A) = 1.

o If po(= Xo),p1,... ,a. represent the eigenvalues A; of G with non-zero C-
multiplicities, then the (local) C-spectrum of C' is

spC = {Agelo) et ety

9 7dC

where d¢ (< d) is called the dual degree of C.
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Some results involving the C-spectrum are the following:

e For any polynomial p,

(p(A)ec,ec) = <ZP(A1)E160760> ZP(A1)<E160760>

e Number of walks of length ¢ from (the vertices of) C to itself:

d
age = Y (AN = [Cl{A'ec.ec) = [O1) me(MAT (2 0).
(=0

u,veC

o The (C-local) predistance polynomials (p§ Jo<k<a. are the canonical orthogonal
system with respect to

(frg)c =Y melm) f(u)g(m)

(weight function g; = me (1)), with ||p 1|2 = p$ (Ao).

e Sum polynomials ¢} := EZ:O pe,0<k<do
In this context, our basic result reads as follows:

e Let (' be a vertex subset of a (regular) graph ¢, with (C-local) predistance
polynomials (pf )o<k<q. Then, for any polynomial ¢ € R[],

g’ _ IN(C)]

< 35
alz =1 o
and equality is attained if and only if
1
q(A)ec = en,. (36)
lalle

where ey, represents the unitary characteristic vector of Ni(C'). Moreover, if
this is the case, ¢ is any multiple of ¢¢', whence (35) and (36) become

C _ |Nk(c)|
qy ()‘0) - |C|

g (A)pC = pNy(C).
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Figure 2: Antipodal tight sets and their distance partition

From the above result we consider the following definition:

C is called tight when ¢¢ (A)pC = pN,(C)

Tight sets come in pairs: Let C be a tight set of vertices with predistance
orthogonal system (pr)o<k<dc, and let (P, Jo<k<a. be the predistance orthogonal
system associated to its antipodal set C'. Then,

(a) The polynomials (py)o<k<d. are just the conjugate polynomials of the
(P )o<ksde:

Py = Dy Pk pr = pabg_p (0 <k < do). (37)

(b) C is also tight. (If the family T of tight vertex sets of a graph G is not
empty, then the application which maps every set to its antipodal fixes 7 and
is involutive).

The tight character of a set C'—or, equivalently, the existence of the distance
polynomial p§— leads to the existence of all the distance polynomials with
respect to both sets C' and C, and that they are just the members of their
associated predistance orthogonal systems. What is more, for every 0 < k < d,
the action of the polynomial p; on pC coincides with the action of p,_;, on
pC, so revealing the symmetry between the roles of C' and C. (See Fig. 2.)

Let C be a tight set, with antipodal set C, and let (pi)o<k<a, (Py)o<k<d be the
corresponding predistance orthogonal systems. Then,

pepC = pCr = pCy_y =Py_1pC (0 <k < do).
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Completely regular codes in distance-regular graphs

o Let C' C V be a vertex set with eccentricity €. Then, we say that GG is distance-
reqular around C if the distance partition V = Co U C; U --- U C, is regular;
that is the numbers

(i) = |06 N Coacal, an(i) == |06 N Chl,  bili) = [T(7) N

where u € (', 0 < k < e, depend only on the values of £ and h, but not on
the chosen vertex u. The set ' is also referred to as a completely reqular set
or completely reqular code.

e A graph GG = (V, F) is distance-regular around a set C' C V, with eccentricity
g, if and only if the predistance polynomials p§,p¢, ..., p¢ satisfy

o Let G = (V, E) be a regular graph. A vertex subset C' C V, with r vertices

and local spectrum spC' = {)\SHC(AO),/,LTC(M), o ,/,L;n:(“dc)}, is a completely

regular code if and only if the number of vertices at distance d¢ from C'; that
is, na. (C) 1= |Cy| satisfies

ndc(c) = pgc()\o) = r (Z M)

— me(p)rf
r \ & melp)ni )

In a distance regular graph, the local multiplicities of a vertex subset C' can be
easily computed from the distance polynomials of GG, its spectrum, and the inner
distribution of C.

e Number of ordered pairs (7,7) of vertices from C which are k apart in a
distance-regular graph G is given by

d
D (Ax)y = [Clpe(A)ec.ec) = 1C1 Y me(N)ps(N)
1,j€C =0

e From this we see that, within C', the mean number of vertices at distance k in

G is

Ty := %' M=) " me(\pe(h)  (0< k< d). (38)
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The numbers 77y, 0 < k < d are called the inner distribution of C' and, as
commented by Godsil [12]), they represent the probability that a randomly
chosen pair of vertices from (' are at distance k. Notice that always 1y = 1

and EZ:Oﬁk = |C].

o Let G be a distance-regular graph G with a given subset C of r vertices. Then
there exist nonnegative numbers ro(= 1),ry,...,rt, such that 7, = ry for
every 0 < k < d, if and only if the C-multiplicities satisfy

d
m(\) Pr(A)
mo(N) = r 0 < <d). 39
o(h) = =2 ; e ) (39)
e Some interesting particular cases:
[=0=me(ho) = =0 Fiom = &
C = {u} (TO = 1,7“1 = =g = 0) = mc()\l) = m(n/\l) 52((:\\(1))) — m(n/\l)

In the case when all vertices are at distance k from each other, (39) gives:

m( ;) ( pk()\l)> .
me(A)=—~ 1+ (r—1)——= 0 <1 <d).
) =2 (1 -2 ) i)
In particular, when k = d we know that py(A;) < 0 for every odd ¢. This,
together with mec(A;) > 0, yields the following upper bound for the maximum
number of vertices mutually at maximum d:

r <1+ min paldo)
1=13,... |pa(Ar)]
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