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Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract

The local spectrum of a graph G = (V,E), constituted by the standard eigenvalues
of G and their local multiplicities, plays a similar role as the global spectrum when
the graph is “seen” from a given vertex. Thus, for each vertex i ∈ V , the i-local
multiplicities of all the eigenvalues add up to 1; whereas the multiplicity of each
eigenvalue λ of G is the sum, extended to all vertices, of its local multiplicities.

In this work, using the interpretation of an eigenvector as a charge distribution on
the vertices, we compute the local spectrum of the line graph LG in terms of the local
spectrum of the regular graph G it derives from. Furthermore, some applications of
this result are derived as, for instance, some results about the number of circuits of
LG.
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1 Basic results

Throughout the paper, G = (V, E) denotes a simple connected graph with
order n = |V | and size m = |E|. We label the vertices with the integers
1, 2, . . . , n. If i is adjacent to j; that is, (i, j) ∈ E, we sometimes write i ∼ j.
The distance between two vertices is denoted by dist(i, j). The set of vertices
which are `-appart from vertex i is Γ`(i) = {j : dist(i, j) = `}. Thus, the
degree of vertex i is just δi := |Γ1(i)| ≡ |Γ(i)|. The eccentricity of a vertex is
ecc(i) := max1≤j≤n dist(i, j) and the diameter of the graph is D = D(G) :=
max1≤i≤n ecc(i). Whenever ecc(i) = D, we say that i is a diametral vertex,
and also that a pair of vertices i, j such that dist(i, j) = D is a diametral pair.
Moreover, any shortest path between i and j is a diametral path of the graph.
The graph is called diametral when all its vertices are diametral.

1.1 Some algebraic-graph concepts

Let us now recall some algebraic graph concepts and results. The adjacency
matrix of a graph G, denoted by A = (aij) = A(G), has entries aij = 1 if
i ∼ j and aij = 0 otherwise. Then, the characteristic polynomial of G is just
the characteristic polynomial of A:

φG(x) := det(xI −A) =
d∏

l=0

(x− λl)
ml .

Its roots, or eigenvalues of A, constitute the spectrum of G, denoted by

sp G := sp A = {λm0
0 , λm1

1 , . . . , λmd
d }

where the superindices denote multiplicities. The different eigenvalues of G
are represented by

ev G := {λ0 > λ1 > · · · > λd}.
It is well known that the diameter of G is lesser than the number of different
eigenvalues; that is, D(G) ≤ d (see, for instance, Biggs [1]). When D(G) = d
we say that G is an extremal graph.

1.2 The spectral decomposition

For each eigenvalue λl, 0 ≤ l ≤ d, let U l be the matrix whose columns
form an orthonormal basis for the λl-eigenspace El := Ker(A − λlI). The
(principal) idempotents of A are the matrices El := U lU

>
l representing the

orthogonal projections onto El. Thus, in particular, E0 = 1
‖v‖2 vv>, where
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v = (v1, v2, . . . , vn)> denotes the normalized positive eigenvector. From their
structure, it is readily checked that such matrices satisfy the following prop-
erties (see, for instance, Godsil [11]):

(a.1) ElEh =

El if l = h,

0 otherwise;

(a.2) AEl = λlEl;
(a.3) p(A) =

∑d
l=0 p(λl)El, for any polynomial p ∈ R[x].

In particular, notice that if, in (a.3), we take p = 1 and p = x we obtain,
respectively,

∑d
l=0 El = I (as expected, since the sum of all orthogonal pro-

jections gives the original vector), and the so-called “Spectral Decomposition
Theorem”

∑d
l=0 λlEl = A. The following spectral decomposition of the canon-

ical vectors is used below: ei = zi0 + zi1 + · · · + zid where zil := Elei ∈ El,
1 ≤ i ≤ n, 0 ≤ l ≤ d. Moreover,

zi0 =
〈ei, v〉
‖v‖2

v =
vi

‖v‖2
v. (1)

In particular for regular graphs zi0 = (1/n)j since, in this case v = (1/
√

n) j,
with j being the all-1 vector.

1.3 The local multiplicity

Given two vertices i, j and an eigenvalue λl, Garriga, Yebra and the first au-
thor, introduced in [6] the concept of crossed (ij-)local multiplicity of λl as
mij(λl) := 〈zil, zjl〉. Note that this corresponds to the ij-entry of the idempo-
tent El since, using the symmetric character of El and property (a.1),

〈zil, zjl〉 = 〈Elei, Elej〉 = 〈Elei, ej〉 = (El)ij.

From the above properties of the idempotents we have that the crossed local
multiplicities satisfy the following:

(b.1)
∑d

l=0 mij(λl) =

 1 if i = j;

0 otherwise.

(b.2)
∑

j∼i mij(λl) = 2
∑

(i,j)∈E mij(λl) = λlmii(λl);

(b.3) a`
ij =

∑d
l=0 mij(λl)λ

`
l ,

where a`
ij := (A`)ij is the number of `-walks between vertices i and j (see

Godsil [9,10]) including closed walks (when i = j). Under some assumptions,
the local crossed multiplicities admit closed expressions. For instance, when
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λ = λ0, we have

mij(λ0) = 〈 vi

‖v‖2
v,

vj

‖v‖2
v〉 =

vivj

‖v‖2
. (2)

Another example is given by the following result, see [6].

Let i, j be a pair of diametral vertices of an extremal graph G with normalized
positive eigenvector v. Then, the number of diametral paths between them and
the crossed ij-local multiplicities are respectively given by

ad
ij = π0

vivj

‖v‖2
, mij(λl) = (−1)l π0

πl

vivj

‖v‖2
(1 ≤ l ≤ d),

where πl :=
d∏

h=0,h 6=l
|λl − λh| (0 ≤ l ≤ d).

In particular under the above assumptions, when G is a regular graph and
considering that a`

ij = 0 for any ` ≤ d− 1, property (b.3) yields:

d∑
l=0

(−1)l

πl

λ`
l = 0 (0 ≤ ` ≤ d− 1);

d∑
l=0

(−1)l

πd

λd
l = 1. (3)

Moreover, for distance-regular graphs a closed expression for local crossed mul-
tiplicities can be obtained. In a distance-regular graph G, the crossed ij-local
multiplicities only depend on the distance k = dist(i, j) and we can write
mij(λl) = mkl, see Godsil [10]. As noted in [4], crossed ij-local multiplicities
can be given in terms of the k-distance polynomial and the (global) multiplic-
ity,

mkl =
m(λl) pk(λl)

n pk(λ0)
(0 ≤ k, l ≤ d). (4)

where pk(x), 0 ≤ k ≤ d, is the k-distance polynomial of G.

1.4 The local spectrum

The crossed ij-local multiplicities seem to have a special relevance when i = j.
In this case mii(λl) = ‖zil‖2 ≥ 0, denoted also by mi(λl), is referred to as
the i-local multiplicity of λl. (In particular, (2) yields mi(λ0) = v2

i /‖v‖2.)
In [5] it was noted that when the graph is “seen” from vertex i, the i-local
multiplicities play a similar role as the standard multiplicities, so justifying
the name. Indeed, by property (b.1) note that, for each vertex i, the i-local
multiplicities of all the eigenvalues add up to 1:

∑d
l=0 mi(λl) = 1 whereas the
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multiplicity of each eigenvalue λl is the sum, extended to all vertices, of its
local multiplicities since

m(λl) = tr El =
n∑

i=1

mi(λl). (5)

Moreover, property (b.3) tells us that the number of closed walks of length `
going through vertex i, a`

ij, can be computed in a similar way as is computed
the whole number of such walks in G by using the “global” multiplicities.
Some closely related parameters are the Cvetković’s “angles” of G, which are
defined as the cosines cos βil, 1 ≤ i ≤ n, 0 ≤ l ≤ d, with βil being the angle
between ei and the eigenspace Ker(A − λlI) (notice that mi(λl) = cos2 βil.)
For a number of applications of these parameters, see for instance Cvetković,
Rowlinson, and Simić [3].

By considering only the eigenvalues, say µ0(= λ0) > µ1 > · · · > µdi
, with

non-null local multiplicities, we can now define the (i-)local spectrum as

spi G := {λmi(λ0), µ
mi(µ1)
1 , . . . , µ

mi(µdi
)

di
}. (6)

with (i-)local mesh, or set of distinct eigenvalues, Mi := {λ0 > µ1 > · · · >
µdi

}. Then it can be proved that the eccentricity of i satisfies a similar upper
bound as that satisfied by the diameter of G in terms of its distinct eigenvalues.
More precisely, ecc(i) ≤ di = |Mi| − 1 (see [6].)

From the i-local spectrum (6), it is natural to consider the function that is
the analogue of the characteristic polynomial, which we call the i-local char-
acteristic function, defined by:

φi(x) :=
di∏

l=0

(x− µl)
mi(µl). (7)

As expected, such a function can be computed from the knowledge of the
characteristics polynomials of G and G \ i.

Proposition 1 Given a vertex i of a graph G, its i-local characteristic func-
tion is

φi(x) = e
∫

φG\i(x)/φG(x) dx. (8)

Proof. First note that the characteristic polynomial φG\i(x) is just, see [2],
the ii-entry of the adjoint matrix of xI −A which, in turn, can be written as

det(xI −A)(xI −A)−1 = φG(x)(xI −A)−1

= φG(x)
d∑

l=0

1

x− λl

El,
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where we have used property (a.3) extended to the continuity points of any

rational function (in our case, x 6= λl). Hence, φG\i(x) = φG(x)
∑d

l=0
mi(λl)
x−λl

.
and, thus,

φG\i(x)

φG(x)
=

d∑
l=0

mi(λl)

x− λl

=
di∑

l=0

mi(µl)

x− µl

=
φ′i(x)

φi(x)
. (9)

Then, we obtain the claimed result integrating both sides with respect to x
and isolating φi(x). 2

As a by-product, note also that, from (9) and adding over all the vertices, we
get the known result:

n∑
i=1

φG\i(x) = φG(x)
d∑

l=0

n∑
i=1

mi(λl)

x− λl

= φG(x)
d∑

l=0

ml

x− λl

= φ′G(x).

See, for instance, [11].

1.5 Eigenvectors in a graph

A very simple, yet surprisingly useful, idea is the interpretation of the eigenvec-
tors and eigenvalues of a graph as a dynamic process of “charge displacement”
(see, for instance, Godsil [11]). To this end, suppose that A is the adjacency
matrix of a graph G = (V, E) and v a right eigenvector of A with eigenvalue
λ. If we think v as a function from V to the real numbers, we associate vi

to the “initial charge” (or weight) of vertex i. Since A is a 0-1 matrix, the
equation Av = λv is equivalent to

(Av)i =
n∑

j=1

aijvj =
∑
j∼i

vj = λvi for all i ∈ V . (10)

Thus, the sum of the charges of the neighbors of i is λ times the charge
of vertex i. In [11] it is shown how this idea can be extended to “vector
charges”, so leading to the important area of research in graph theory known
as representation theory.

2 The spectra of line graphs

The line graph LG of a graph G = (V, E) is defined as follows. Each vertex
in LG represents an edge of G, VL = {(i·j) : (i, j) ∈ E}, and two vertices of
LG are adjacent whenever the corresponding edges in G have one vertex in
common.
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Since the classical paper of Sachs [12], the spectra of line graphs have been
studied extensively. In [7] the authors used the mentioned idea of interpreting
the eigenvectors as a certain charge distributions to prove that, if a δ-regular
graph G has the eigenvector u with eigenvalue λ 6= −δ, then the vector v with
entries v(i·j) = ui +uj, (i·j) ∈ VL, is a (λ+ δ−2)-eigenvector of LG. The same
method can be used to derive the local spectrum of LG.

2.1 The local spectrum of a regular line graph

The following result tells us how to compute the local spectrum of a line graph
from the local spectrum of the (regular) graph it derives from.

Theorem 2 Let G be a δ-regular graph, with eigenvalue λ, multiplicity m(λ),
and (crossed) local multiplicities mij(λ), i, j ∈ V . Then, the crossed local
multiplicities of the eigenvalues λ′ = λ + δ − 2, λ 6= −δ, and λ′ = −2 in the
line graph LG, are given by the expressions:

m(i·j)(k·h)(λ
′) =

mik(λ) + mih(λ) + mjk(λ) + mjh(λ)

δ + λ
(λ 6= −δ), (11)

m(i·j)(k·h)(−2) = α−
∑

λ6=−δ

m(i·j)(k·h)(λ), (12)

where α = 0 if (i · j) 6= (k · h) and α = 1 otherwise.

Proof. Assume first that λ 6= −δ, and let U be the set of m(λ) column
vectors of the matrix U (recall that these vectors constitute an orthonormal
basis of the corresponding eigenspace E = Ker(A− λI)). Then, given u ∈ U ,
vector v with components v(i·j) = ui + uj is a λ′(= λ + δ − 2)-eigenvector of
LG, see [7]. Notice that, since∑

(i,j)∈E

(ui + uj)
2 =

∑
i∈V

δu2
i +

∑
(i,j)∈E

2uiuj = δ + 〈u, Au〉 = δ + λ,

the corresponding normalized vector has components ui+uj√
δ+λ

. Then, the crossed

(i·j)(k ·h)-local multiplicity of λ′ is

m(i·j)(k·h)(λ
′) =

∑
u∈U

(ui + uj)(uk + uh)

δ + λ

=
1

δ + λ

∑
u∈U

(uiuh + uiuk + ujuk + ujuh)

=
mik(λ) + mih(λ) + mjk(λ) + mjh(λ)

δ + λ
.
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Finally, the crossed local multiplicity of the eigenvalue λ′ = −2 is obtained by
using property (b.1). 2

Notice that, in particular, the local multiplicities of λ′ are m(i·j)(λ
′) = m(i·j)(i·j)(λ

′),
which gives:

m(i·j)(λ
′) =

mi(λ) + 2mij(λ) + mj(λ)

δ + λ
(λ 6= −δ); (13)

m(i·j)(−2) = 1−
∑

λ6=−δ

mi(λ) + 2mij(λ) + mj(λ)

δ + λ
. (14)

Then, as expected,

∑
(i·j)∈VL

m(i·j)(λ
′) =

1

δ + λ

∑
(i,j)∈E

(mi(λ) + 2mij(λ) + mj(λ)) =

=
1

δ + λ

∑
i∈V

δmi(λ) +
∑
i∼j

mij(λ)

 =

=
1

δ + λ

∑
i∈V

(δ + λ)mi(λ) = m(λ).

where the last two equalities come from property (b.2) and equality (5), re-
spectively.

The previous result can be used to compute,in the line graph LG, the number
of `-circuits rooted at vertex (i·j).

Proposition 3 Let G be a δ–regular graph, δ > 2, with spectrum sp G =
{λm0

0 , λm1
1 , . . . , λmd

d } and crossed (ij)-local multiplicities mij(λl), i, j ∈ V 0 ≤
l ≤ d. Then, the number of circuits of length `, ` > 1, rooted at vertex (i·j) in
the line graph LG, is given by

(A`
LG)(i·j)(i·j) = (−2)` +

∑
λl 6=−δ

`−1∑
p=0

Kpλ
`−p−1
l (mi(λl) + mj(λl) + 2mij(λl)) (15)

where, for each `, the coefficient of λ`−p−1
l is

Kp :=
p∑

r=0

(
`

r

)(
`− r − 1

p− r

)
δp−r(−2)r. (16)

Proof. We assume δ > 2 in order to have λ′ = −2 as an eigenvalue of LG,
although we only would need to exclude odd cycles. It follows from property
(b.3) and Eq. (11) that,
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(A`
LG)(i·j)(i·j) =

∑
λ′

l
∈sp LG

(λ′l)
` m(i·j)(λ

′
l) =

=
∑

λl 6=−δ

(λl + δ − 2)` mi(λl) + 2mij(λl) + mj(λl)

λl + δ
+ (−2)` m(i·j)(−2) =

=
∑

λl 6=−δ

(λl + δ − 2)` mi(λl) + 2mij(λl) + mj(λl)

λl + δ
+

+ (−2)`

1− ∑
λ6=−δ

mi(λl) + 2mij(λl) + mj(λl)

λl + δ

 =

= (−2)` +
∑

λl 6=−δ

(λl + δ − 2)` − (−2)`

λl + δ
(mi(λl) + 2mij(λl) + mj(λl)) =

= (−2)` +

+
∑

λl 6=−δ

[(
`

0

)
(λl + δ)`−1 + · · ·+

(
`

`− 1

)
(−2)`−1

]
(mi(λl) + 2mij(λl) + mj(λl)).

Collecting coefficients of λ`−p−1
l , 0 ≤ p ≤ `− 1, we obtain the result. 2

We may rewrite the expression of the number of circuits rooted at a given
vertex (i · j) in the line graph LG, as a function of the number of circuits
rooted at vertex i, circuits rooted at vertex j and walks that contain edge
(i, j) in the original graph G.

Corollary 4 Under the same hypothesis of Proposition 3,

(A`
LG)(i·j)(i·j) = (−2)`+

`−1∑
p=0

Kp(A
`−p−1
G )ii+

`−1∑
p=0

Kp(A
`−p−1
G )jj+2

`−1∑
p=0

Kp(A
`−p−1
G )ij

Proof. Again we use property (b.3) both in G and LG

(A`
LG)(i·j)(i·j) = (−2)` +

∑
λl 6=−δ

`−1∑
p=0

Kpλ
`−p−1
l (mi(λl) + mj(λl) + 2mij(λl)) =

= (−2)` +
`−1∑
p=0

Kp

∑
λl 6=−δ

λ`−p−1
l (mi(λl) + mj(λl) + 2mij(λl)) =

= (−2)` +
`−1∑
p=0

Kp(A
`−p−1
G )ii +

`−1∑
p=0

Kp(A
`−p−1
G )jj + 2

`−1∑
p=0

Kp(A
`−p−1
G )ij.

2

In particular, since for p = 0, 1, 2 we have

K0 = 1, K1 = (`−1)δ−2`, K2 =
(`− 1)(`− 2)

2
δ2−2δ `(`−2)+2 `(`−1).
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the number of circuits rooted at vertex (i·j) in the line graph, is

(A2
LG)(i·j)(i·j) = 4δ − 2

(A3
LG)(i·j)(i·j) = (A2

G)ii + (A2
G)jj + 2(A2

G)ij + 2δ2 − 8δ + 4

respectively, for ` = 2 and ` = 3.

Furthermore, using a similar reasoning, a general expression for the number
of `-walks between any vertices (i·j) and (k ·h) in LG holds,

(A`
LG)(i·j)(k·h) = α(−2)`+

∑
λl 6=−δ

`−1∑
p=0

Kpλ
`−p−1
l (mik(λl)+mih(λl)+mjk(λl)+mjh(λl))

(17)

In terms of the number of walks between vertices in G

(A`
LG)(i·j)(k·h) = α(−2)`+

∑̀
p=l0

Kp−1

(
(A`−p

G )ik + (A`−p
G )ih + (A`−p

G )jk + (A`−p
G )jh

)
(18)

In both cases, α = 0 if (i·j) 6= (k ·h) and α = 1 otherwise and coefficients Kp

are as in (16).

2.2 Local multiplicities in a cycle Cn

Let us consider Cn the cycle of order n. As the line graph of a cycle Cn is
itself, LCn = Cn, the number of `–circuits rooted at vertex i in Cn, and at
vertex (i·j) in LCn are the same. This fact allow us to derive simple relations
between the crossed and local multiplicities of each eigenvalue. Taking into
account that, as δ = 2, λ′ = λ + δ − 2 = λ and using (11),

mi(λ) = m(i·j)(i·j)(λ
′) =

mi(λ) + 2mij(λ) + mj(λ)

λ + 2

we get the crossed local multiplicity mij(λ) corresponding to adjacent vertices
i, j in Cn and λ 6= −2. Let us notice that, since cycles ara a particular case of
walk-regular graphs, local multiplicities do not depend on the vertex they
are referred to, see Godsil [11], thus property 5 and property (??) reads:

mi(λ) = m(λ)
n

., thus

mi(λ) =
2mi(λ) + 2mij(λ)

λ + 2
, mij(λ) =

λ mi(λ)

2
=

λ m(λ)

2n
. (19)
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When λ = −2, i.e. for even cycles, the local multiplicity follows from (12),

mi(−2) = 1− 2
∑

λ6=−2

mi(λ) + mij(λ)

λ + 2
. (20)

Crossed local multiplicities corresponding to non-adjacent vertices can also be
computed. In order to simplify the notation, for a given eigenvalue λ of the
cycle graph Cn and vertices i, j with dist(i, j) = `, we will denote m`(λ) :=
mij(λ), or simply m` if there is no confusion about the eigenvalue we are
referring to.

Let p, q, i, j, r, s vertices of the cycle graph Cn, such that i ∼ j and r ∼ s. Let
us suppose dist(p, q) = ` = dist((i · j), (r · s)), 0 ≤ ` < bn

2
c. Then, as above,

the equality mpq(λ) = m(i·j)(r·s)(λ) and (11) leeds to

m` =
m`+1 + 2m` + m`−1

λ + 2
,

that gives

m1 =
λ

2
m0,

and

λ m` = m`−1 + m`+1 (0 < ` < bn
2
c). (21)

Notice that the last equality is a Chebyshev’s recurrence. Thus, the crossed
local multiplicity corresponding to eigenvalue λ and vertices at distance `, is
related to the Chebyshev polynomial of the first kind of degree ` in λ

2
, as

follows

m`(λ) = T`

(
λ

2

)
m0. (22)

Using a different point of view, we may write equality (21) in matricial nota-
tion, λ −1

1 0


 m`

m`−1

 =

m`+1

m`


or equivaletnly λ −1

1 0


`m1

m0

 =

m`+1

m`


With some linear algebra, we can derive explicit expressions for the crossed
multiplicities m` as function of the corresponding local multiplicity m0. For

each eigenvalue λ of G, define Φ1 = λ+
√

λ2−4
2

, Φ2 = λ−
√

λ2−4
2

, then
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m`+1 =
m0

Φ1 − Φ2

[
λ

2

(
Φ`+1

1 − Φ`+1
2

)
+ Φ`

1 − Φ`
2

]
, (23)

0 < ` < bn
2
c. As expected, we get the Chebyshev polynomials evaluated at

λ/2:

m1 =
λ

2
m0, m2 =

λ2 − 2

2
m0, m3 =

1

2
λ(λ2 − 3) m0, . . .
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