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Abstract

The local spectrum of a graph G = (V| E), constituted by the standard eigenvalues
of G and their local multiplicities, plays a similar role as the global spectrum when
the graph is “seen” from a given vertex. Thus, for each vertex i € V, the i-local
multiplicities of all the eigenvalues add up to 1; whereas the multiplicity of each
eigenvalue A\ of GG is the sum, extended to all vertices, of its local multiplicities.

In this work, using the interpretation of an eigenvector as a charge distribution on
the vertices, we compute the local spectrum of the line graph LG in terms of the local
spectrum of the regular graph G it derives from. Furthermore, some applications of
this result are derived as, for instance, some results about the number of circuits of

LG.
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1 Basic results

Throughout the paper, G = (V, E) denotes a simple connected graph with
order n = |V| and size m = |E|. We label the vertices with the integers
1,2,...,n. If i is adjacent to j; that is, (,j) € F, we sometimes write i ~ j.
The distance between two vertices is denoted by dist(i, 7). The set of vertices
which are (-appart from vertex i is T'y(i) = {j : dist(¢,j) = ¢}. Thus, the
degree of vertex i is just 0; := |T'1(2)| = |['(i)|. The eccentricity of a vertex is
ecc(i) 1= maxy<j<y, dist(é, j) and the diameter of the graph is D = D(G) :=
max<;<, ecc(i). Whenever ecc(i) = D, we say that i is a diametral vertex,
and also that a pair of vertices i, j such that dist(i, 7) = D is a diametral pair.
Moreover, any shortest path between ¢ and j is a diametral path of the graph.
The graph is called diametral when all its vertices are diametral.

1.1 Some algebraic-graph concepts

Let us now recall some algebraic graph concepts and results. The adjacency
matrix of a graph G, denoted by A = (a;;) = A(G), has entries a;; = 1 if
t ~ j and a;; = 0 otherwise. Then, the characteristic polynomial of G is just
the characteristic polynomial of A:

d

¢c(x) == det(zl — A) = [J(z — \)™.

=0

Its roots, or eigenvalues of A, constitute the spectrum of G, denoted by
spG :=sp A = {\J°, AT, .. A}

where the superindices denote multiplicities. The different eigenvalues of GG
are represented by

evG:={)dg > A\ > > A}
It is well known that the diameter of G is lesser than the number of different
eigenvalues; that is, D(G) < d (see, for instance, Biggs [1]). When D(G) = d
we say that G is an extremal graph.

1.2 The spectral decomposition

For each eigenvalue \;, 0 < | < d, let U; be the matrix whose columns
form an orthonormal basis for the A-eigenspace & := Ker(A — \I). The
(principal) idempotents of A are the matrices E; := U;U, representing the

orthogonal projections onto &. Thus, in particular, E, = vaT, where



v = (v1,vy,...,v,)" denotes the normalized positive eigenvector. From their
structure, it is readily checked that such matrices satisfy the following prop-
erties (see, for instance, Godsil [11]):

E, ifl =h,
(al) ElEh =
0 otherwise;
(CL2) AEZ = /\ZEZ;
(a.3) p(A) = XL, p(\)E;, for any polynomial p € R[z].

In particular, notice that if, in (a.3), we take p = 1 and p = = we obtain,
respectively, Zfl:o E, = I (as expected, since the sum of all orthogonal pro-
jections gives the original vector), and the so-called “Spectral Decomposition
Theorem” Zfi:o ME; = A. The following spectral decomposition of the canon-
ical vectors is used below: e; = z;0 + z;1 + - - + 2,4 Where z; := Ee; € &,
1<i<n,0< 1 <d Moreover,

(e;,v) v;
= v = . (1)
|v][2 [v][?

Zi0

In particular for regular graphs 2z, = (1/n)j since, in this case v = (1/4/n) 7,
with 7 being the all-1 vector.

1.3 The local multiplicity

Given two vertices 7, 7 and an eigenvalue );, Garriga, Yebra and the first au-
thor, introduced in [6] the concept of crossed (ij-)local multiplicity of N\, as
mij (A1) == (2, 2;1). Note that this corresponds to the ij-entry of the idempo-
tent E; since, using the symmetric character of E; and property (a.1),

(za, zj1) = (Eie;, Eiej) = (Ee;, e5) = ().

From the above properties of the idempotents we have that the crossed local
multiplicities satisfy the following:

J 1 ifi=y;
(b.1) i—gmij(M) =
0 otherwise.

(0.2) Xjmimi(N) =236 jer mi () = Nima(\);
(8:3) af; = Xilomy (M)A,

where af; := (A%);; is the number of f-walks between vertices i and j (see
Godsil [9,10]) including closed walks (when ¢ = j). Under some assumptions,
the local crossed multiplicities admit closed expressions. For instance, when



A = Ao, we have . .. .
i' A = Z ] p— Z J . 2
mii (o) = (Y o2 = To]? )

Another example is given by the following result, see [6].

Let 4, j be a pair of diametral vertices of an extremal graph G with normalized
positive eigenvector v. Then, the number of diametral paths between them and
the crossed ij-local multiplicities are respectively given by

1Mo Uil

afy = oz M) = (=) (1<1<d),

m ||v]?

d
where m := [T [N —X| (0<1<d).
h=0,h=£l
In particular under the above assumptions, when G is a regular graph and
considering that afj =0 for any ¢ < d — 1, property (b.3) yields:

i D% -0 (0<r<da—1) i (=1

=0 1=0

M= 1. (3)

T Td

Moreover, for distance-regular graphs a closed expression for local crossed mul-
tiplicities can be obtained. In a distance-regular graph G, the crossed ij-local
multiplicities only depend on the distance k = dist(7,j) and we can write
m;j(A\) = my, see Godsil [10]. As noted in [4], crossed ij-local multiplicities
can be given in terms of the k-distance polynomial and the (global) multiplic-
ity,

— m(A) pr(N)

where pi(z), 0 < k < d, is the k-distance polynomial of G.

1.4 The local spectrum

The crossed ij-local multiplicities seem to have a special relevance when ¢ = j.
In this case m;;(\) = [|zq||*> > 0, denoted also by m;()\;), is referred to as
the i-local multiplicity of ;. (In particular, (2) yields m;(\g) = v?/||v|*)
In [5] it was noted that when the graph is “seen” from vertex i, the i-local
multiplicities play a similar role as the standard multiplicities, so justifying
the name. Indeed, by property (b.1) note that, for each vertex i, the i-local
multiplicities of all the eigenvalues add up to 1: 27:0 m;(A;) = 1 whereas the



multiplicity of each eigenvalue ); is the sum, extended to all vertices, of its
local multiplicities since

(/\l =1tr El Zmz /\l (5)

Moreover, property (b.3) tells us that the number of closed walks of length ¢
going through vertex i, afj, can be computed in a similar way as is computed
the whole number of such walks in G by using the “global” multiplicities.
Some closely related parameters are the Cvetkovi¢’s “angles” of GG, which are
defined as the cosines cos 3, 1 < i < n, 0 <[ < d, with §; being the angle
between e; and the eigenspace Ker(A — N I) (notice that m;()\;) = cos? 3;.)
For a number of applications of these parameters, see for instance Cvetkovic,

Rowlinson, and Simi¢ [3].

By considering only the eigenvalues, say po(= Ao) > g1 > -+ > g, with
non-null local multiplicities, we can now define the (i-)local spectrum as

sp; G = {Amio) 7 ) \ g, iy, (6)

with (i-)local mesh, or set of distinct eigenvalues, M; := {\g > g > -+ >
tta, }. Then it can be proved that the eccentricity of satlsﬁes a similar upper
bound as that satisfied by the diameter of GG in terms of its distinct eigenvalues.
More precisely, ecc(i) < d; = |M;| — 1 (see [6].)

From the i-local spectrum (6), it is natural to consider the function that is
the analogue of the characteristic polynomial, which we call the i-local char-
acteristic function, defined by:

d;

¢ix) = [] (& — pu)™ . (7)

=0

As expected, such a function can be computed from the knowledge of the
characteristics polynomials of G and G'\ i.

I IOPOSitiOIl I Giv@n a vertex Z ()f a g’,”aph G; Ztg i-lOCal Ch T Ct67’istic func-
tion 7;8 ara
(bz(l') == ef ¢G\z($)/¢g(z) d:):. ( )

Proof. First note that the characteristic polynomial ¢¢\;(x) is just, see [2],
the ii-entry of the adjoint matrix of xI — A which, in turn, can be written as

det(zI — A)(2d — A) "' = pg(z) (2] — A)~"

—da(x) S _1)\El

=0 ¥ !



where we have used property (a.3) extended to the continuity points of any
rational function (in our case, z # \;). Hence, ¢g\;(z) = da(z) Siy st ;\\’l :
and, thus,

gbG lol‘_/\l =0 L — (bz(x)
Then, we obtain the clauned result integrating both sides with respect to x
and isolating ¢;(x). O

As a by-product, note also that, from (9) and adding over all the vertices, we
get the known result:

3

> dte) = do() 33 T — do(a) 3 — (o)

=0 =1

%3

See, for instance, [11].

1.5 Figenvectors in a graph

A very simple, yet surprisingly useful, idea is the interpretation of the eigenvec-
tors and eigenvalues of a graph as a dynamic process of “charge displacement”
(see, for instance, Godsil [11]). To this end, suppose that A is the adjacency
matrix of a graph G = (V, E) and v a right eigenvector of A with eigenvalue
A. If we think v as a function from V to the real numbers, we associate v;
to the “initial charge” (or weight) of vertex i. Since A is a 0-1 matrix, the
equation Av = \v is equivalent to

Av); = Z a;jv; = Zvj = \v; foralli e V. (10)
j=1

j~i

Thus, the sum of the charges of the neighbors of i is A times the charge
of vertex i. In [11] it is shown how this idea can be extended to “vector
charges”, so leading to the important area of research in graph theory known
as representation theory.

2 The spectra of line graphs

The line graph LG of a graph G = (V, E) is defined as follows. Each vertex
in LG represents an edge of G, Vi, = {(i-7) : (i,j) € E}, and two vertices of
LG are adjacent whenever the corresponding edges in G have one vertex in
common.



Since the classical paper of Sachs [12], the spectra of line graphs have been
studied extensively. In [7] the authors used the mentioned idea of interpreting
the eigenvectors as a certain charge distributions to prove that, if a §-regular
graph G has the eigenvector u with eigenvalue A # —4, then the vector v with
entries v(.jy = w; +uy, (i-j) € Vi, is a (A+ 6 — 2)-eigenvector of LG. The same
method can be used to derive the local spectrum of LG.

2.1 The local spectrum of a regular line graph

The following result tells us how to compute the local spectrum of a line graph
from the local spectrum of the (regular) graph it derives from.

Theorem 2 Let G be a d-regular graph, with eigenvalue X, multiplicity m(\),
and (crossed) local multiplicities m;;(X), i,7 € V. Then, the crossed local
multiplicities of the eigenvalues N = A+ 6 — 2, X # =9, and N = —2 in the
line graph LG, are given by the expressions:

o (A#-d), (1)

Mgy kn) (—2) =a = D Mg wn(N), (12)
A£—§

Mgy (k-n) (X)) =

where « =0 if (i - j) # (k- h) and o = 1 otherwise.

Proof. Assume first that A # —4, and let U be the set of m(A) column
vectors of the matrix U (recall that these vectors constitute an orthonormal
basis of the corresponding eigenspace £ = Ker(A — AI)). Then, given u € U,
vector v with components v(;.;) = u; + u; is a X'(= A + § — 2)-eigenvector of
LG, see [7]. Notice that, since

>0 (witu)? =3 0uf+ 0 2wy =0+ (u, Au) =5+ X,

(ij)€E i€V (ij)EE

the corresponding normalized vector has components 1\‘/;%\ Then, the crossed
(2-7)(k-h)-local multiplicity of X is

(wi + uj)(ug + up)
D

Mgy ki) (A) =
ucevu

1
=—— Uiup + Uug + uup + uju
6+AUEU( " o+ gt )

_ mik(A) + min(A) + mie(A) +min(A)
5+ A '




Finally, the crossed local multiplicity of the eigenvalue A’ = —2 is obtained by
using property (b.1). O

Notice that, in particular, the local multiplicities of A" are my;.j)(X') = m.j)a5) (X)),
which gives:

_ mi(A) + 2m;;(X) + m;(A)

e (X) = i (h# ~0); (13)
M) (—2) =1 — A;S i) + Q?i(i) ), (14)
Then, as expected,
B map() =y 3 om0+ 2my ) + () =
= (Z () + gmm)) -
= S0+ Nmly) = m()

eV

where the last two equalities come from property (b.2) and equality (5), re-
spectively.

The previous result can be used to compute,in the line graph LG, the number
of (-circuits rooted at vertex (i-7).

Proposition 3 Let G be a d—regular graph, 6 > 2, with spectrum spG =
{AG AT L AT and crossed (if)-local multiplicities mi;(N), 1,7 € V. 0 <
[ < d. Then, the number of circuits of length ¢, £ > 1, rooted at vertex (i-j) in
the line graph LG, is given by

-1
(AL i = (=2 + D D KN (ma(N) + my(A) + 2mi;(\)) (15)
A7 —8 p=0
where, for each {, the coefficient of A\l "~ is

w=3 () (00 e (16)

r=0 r —-r

Proof. We assume 0 > 2 in order to have X' = —2 as an eigenvalue of LG,

although we only would need to exclude odd cycles. It follows from property
(b.3) and Eq. (11) that,



(ALe)anen = > ) 'may(A) =

N esp LG

mi;(\) + 2myi(N) + m; (A
_ Z ()\l+5_2>£ ( l) )\IJ_IE(SZ) J( l) +(_2)€m(i~j)(_2) _
NA—b

Yl A +0

mi(N) + 2mg () +m; ()
+ (_2)6 [1 - /\;6 )\l —+ 5

_(_ (N +6—2)" = (=2)
= ( 2)4+A§_6 s
=(-2)"+

e Z oot o (D)o mon somon cmo,

N#E—

(mi(N) + 2mgi () +my(Ar)) =

Collecting coefficients of /\f_p 1 0<p<l—1, weobtain the result. O

We may rewrite the expression of the number of circuits rooted at a given
vertex (7 - j) in the line graph LG, as a function of the number of circuits
rooted at vertex ¢, circuits rooted at vertex j and walks that contain edge
(1,7) in the original graph G.

Corollary 4 Under the same hypothesis of Proposition 3,

-1 -1 -1
(AL iy = (=243 Kp(Ag " it > Ky(AG" )42 > Ky (AGT )

p=0 p=0 p=0

Proof. Again we use property (b.3) both in G and LG

(ALe)inan=(=2)"+ X i Fp NP ma(A) +my () + 2mi(\) =

)\175—5 p:0
—1

=(=2 + DK, Y N ma(\) + my(N) + 2my(\) =
p=0 Ai#E—0

p = t—p—1 = t—p—1 = —p—1

= (=2 + Y K (AG" N+ Kp(Ag" )i +2) Ky(AGP )y

p=0 p=0 p=0
O
In particular, since for p = 0, 1,2 we have
(L—1)(¢-2)

Ko=1 K ={-1)06§-2(, K,= 62 —200(0—2)+24(L—1).



the number of circuits rooted at vertex (i-7) in the line graph, is

(A7) ()i =40 — 2
(A7)0 = (A&)is + (AZ)j5 + 2(AZ)iy; +20° — 80 + 4
respectively, for £ = 2 and ¢ = 3.

Furthermore, using a similar reasoning, a general expression for the number
of ¢-walks between any vertices (i-5) and (k-h) in LG holds,

/-1
(AL pymm = (=2)"+ D7 ST KNP ma(A) +man(N) +me(A) +mn(\))
A6 p=0

(17)

In terms of the number of walks between vertices in G

(AL ssen = a2+ Y Ky L ((AGP) ik + (AG )i+ (AG )k + (A1)
p=I0
(18)

In both cases, o = 0 if (i-7) # (k-h) and a = 1 otherwise and coefficients K,
are as in (16).

2.2 Local multiplicities in a cycle C,,

Let us consider C), the cycle of order n. As the line graph of a cycle C, is
itself, LC,, = C,, the number of /—circuits rooted at vertex ¢ in C,,, and at
vertex (i-7) in LC,, are the same. This fact allow us to derive simple relations
between the crossed and local multiplicities of each eigenvalue. Taking into
account that, as § =2, X' = A+ J — 2 = X and using (11),

mi(A) + 2my;(A) + m;(A)
A+2

mi(A) = M5 (N) =

we get the crossed local multiplicity m;;(\) corresponding to adjacent vertices
1,7 in C,, and X\ # —2. Let us notice that, since cycles ara a particular case of
walk-regular graphs, local multiplicities do not depend on the vertex they
are referred to, see Godsil [11], thus property 5 and property (??) reads:
m;(A) = @., thus

A+2 ’

0 =
mi(A) 2 o

10



When A = —2, i.e. for even cycles, the local multiplicity follows from (12),

)+mMM.

mi(=2)=1-2 > mi(A)\+2

AF£—2

(20)

Crossed local multiplicities corresponding to non-adjacent vertices can also be
computed. In order to simplify the notation, for a given eigenvalue A\ of the
cycle graph C,, and vertices 4, j with dist(z, 7) = ¢, we will denote my(\) :=
m;;(A), or simply my if there is no confusion about the eigenvalue we are
referring to.

Let p,q,1,j,r, s vertices of the cycle graph C,,, such that ¢ ~ j and r ~ s. Let
us suppose dist(p, q) = £ = dist((z - j),(r - s)), 0 < £ < |5]. Then, as above,
the equality mye(X) = mij)rs)(A) and (11) leeds to

M1 + 2my +my_q

me= At 2 ’
that gives
_A
my = 2m07
and n
)\mg =My_1+ Me+1 (O <l < |_§J) (21)

Notice that the last equality is a Chebyshev’s recurrence. Thus, the crossed
local multiplicity corresponding to eigenvalue A and vertices at distance /, is
related to the Chebyshev polynomial of the first kind of degree ¢ in %, as
follows

me\) =T, (;) Mo (22)

Using a different point of view, we may write equality (21) in matricial nota-
tion,

A —1 my Myt
1 0 me_1 - my
or equivaletnly
A =1 2 my Myy1
1 0 mo B my

With some linear algebra, we can derive explicit expressions for the crossed
multiplicities m, as function of the corresponding local multiplicity my. For
each eigenvalue A of G, define ®; = 2AHvA"=4 V2’\2’4, P, = A=VAT—4 V2’\2’4, then

11



L) A 041 041 ¢ ¢
s = s [ (857 - 067) 0 -] 23)

0 < ¢ < |5]. As expected, we get the Chebyshev polynomials evaluated at
A/2:
A A2 —2

my = ZMy mo =
2 ’ 2

myo, ms = 5)\(/\2—3) mo, ...
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