The Local Spectra of Regular Line Graphs

M. A. Fiol ${ }^{\text {a }}$, M. Mitjana ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departament de Matemàtica Aplicada IV
Universitat Politècnica de Catalunya
Barcelona, Spain
${ }^{\mathrm{b}}$ Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract

The local spectrum of a graph $G=(V, E)$, constituted by the standard eigenvalues of G and their local multiplicities, plays a similar role as the global spectrum when the graph is "seen" from a given vertex. Thus, for each vertex $i \in V$, the i-local multiplicities of all the eigenvalues add up to 1 ; whereas the multiplicity of each eigenvalue λ of G is the sum, extended to all vertices, of its local multiplicities. In this work, using the interpretation of an eigenvector as a charge distribution on the vertices, we compute the local spectrum of the line graph $L G$ in terms of the local spectrum of the regular graph G it derives from. Furthermore, some applications of this result are derived as, for instance, some results about the number of circuits of $L G$.

Key words: Graph spectrum; Eigenvalue; Local multiplicity; Line graph.

[^0]
1 Basic results

Throughout the paper, $G=(V, E)$ denotes a simple connected graph with order $n=|V|$ and size $m=|E|$. We label the vertices with the integers $1,2, \ldots, n$. If i is adjacent to j; that is, $(i, j) \in E$, we sometimes write $i \sim j$. The distance between two vertices is denoted by $\operatorname{dist}(i, j)$. The set of vertices which are ℓ-appart from vertex i is $\Gamma_{\ell}(i)=\{j: \operatorname{dist}(i, j)=\ell\}$. Thus, the degree of vertex i is just $\delta_{i}:=\left|\Gamma_{1}(i)\right| \equiv|\Gamma(i)|$. The eccentricity of a vertex is $\operatorname{ecc}(i):=\max _{1 \leq j \leq n} \operatorname{dist}(i, j)$ and the diameter of the graph is $D=D(G):=$ $\max _{1 \leq i \leq n} \operatorname{ecc}(i)$. Whenever $\operatorname{ecc}(i)=D$, we say that i is a diametral vertex, and also that a pair of vertices i, j such that $\operatorname{dist}(i, j)=D$ is a diametral pair. Moreover, any shortest path between i and j is a diametral path of the graph. The graph is called diametral when all its vertices are diametral.

1.1 Some algebraic-graph concepts

Let us now recall some algebraic graph concepts and results. The adjacency matrix of a graph G, denoted by $\boldsymbol{A}=\left(a_{i j}\right)=\boldsymbol{A}(G)$, has entries $a_{i j}=1$ if $i \sim j$ and $a_{i j}=0$ otherwise. Then, the characteristic polynomial of G is just the characteristic polynomial of \boldsymbol{A} :

$$
\phi_{G}(x):=\operatorname{det}(x \boldsymbol{I}-\boldsymbol{A})=\prod_{l=0}^{d}\left(x-\lambda_{l}\right)^{m_{l}} .
$$

Its roots, or eigenvalues of \boldsymbol{A}, constitute the spectrum of G, denoted by

$$
\operatorname{sp} G:=\operatorname{sp} \boldsymbol{A}=\left\{\lambda_{0}^{m_{0}}, \lambda_{1}^{m_{1}}, \ldots, \lambda_{d}^{m_{d}}\right\}
$$

where the superindices denote multiplicities. The different eigenvalues of G are represented by

$$
\operatorname{ev} G:=\left\{\lambda_{0}>\lambda_{1}>\cdots>\lambda_{d}\right\} .
$$

It is well known that the diameter of G is lesser than the number of different eigenvalues; that is, $D(G) \leq d$ (see, for instance, Biggs [1]). When $D(G)=d$ we say that G is an extremal graph.

1.2 The spectral decomposition

For each eigenvalue $\lambda_{l}, 0 \leq l \leq d$, let \boldsymbol{U}_{l} be the matrix whose columns form an orthonormal basis for the λ_{l}-eigenspace $\mathcal{E}_{l}:=\operatorname{Ker}\left(\boldsymbol{A}-\lambda_{l} \boldsymbol{I}\right)$. The (principal) idempotents of \boldsymbol{A} are the matrices $\boldsymbol{E}_{l}:=\boldsymbol{U}_{l} \boldsymbol{U}_{l}^{\top}$ representing the orthogonal projections onto \mathcal{E}_{l}. Thus, in particular, $\boldsymbol{E}_{0}=\frac{1}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v} \boldsymbol{v}^{\top}$, where
$\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top}$ denotes the normalized positive eigenvector. From their structure, it is readily checked that such matrices satisfy the following properties (see, for instance, Godsil [11]):
(a.1) $\boldsymbol{E}_{l} \boldsymbol{E}_{h}= \begin{cases}\boldsymbol{E}_{l} & \text { if } l=h, \\ \mathbf{0} & \text { otherwise; }\end{cases}$
(a.2) $\quad \boldsymbol{A} \boldsymbol{E}_{l}=\lambda_{l} \boldsymbol{E}_{l}$;
(a.3) $p(\boldsymbol{A})=\sum_{l=0}^{d} p\left(\lambda_{l}\right) \boldsymbol{E}_{l}$, for any polynomial $p \in \mathbb{R}[x]$.

In particular, notice that if, in (a.3), we take $p=1$ and $p=x$ we obtain, respectively, $\sum_{l=0}^{d} \boldsymbol{E}_{l}=\boldsymbol{I}$ (as expected, since the sum of all orthogonal projections gives the original vector), and the so-called "Spectral Decomposition Theorem" $\sum_{l=0}^{d} \lambda_{l} \boldsymbol{E}_{l}=\boldsymbol{A}$. The following spectral decomposition of the canonical vectors is used below: $\boldsymbol{e}_{i}=\boldsymbol{z}_{i 0}+\boldsymbol{z}_{i 1}+\cdots+\boldsymbol{z}_{i d}$ where $\boldsymbol{z}_{i l}:=\boldsymbol{E}_{l} \boldsymbol{e}_{i} \in \mathcal{E}_{l}$, $1 \leq i \leq n, 0 \leq l \leq d$. Moreover,

$$
\begin{equation*}
\boldsymbol{z}_{i 0}=\frac{\left\langle\boldsymbol{e}_{i}, \boldsymbol{v}\right\rangle}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}=\frac{v_{i}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v} \tag{1}
\end{equation*}
$$

In particular for regular graphs $\boldsymbol{z}_{i 0}=(1 / n) \boldsymbol{j}$ since, in this case $\boldsymbol{v}=(1 / \sqrt{n}) \boldsymbol{j}$, with \boldsymbol{j} being the all- 1 vector.

1.3 The local multiplicity

Given two vertices i, j and an eigenvalue λ_{l}, Garriga, Yebra and the first author, introduced in [6] the concept of crossed (ij-)local multiplicity of λ_{l} as $m_{i j}\left(\lambda_{l}\right):=\left\langle\boldsymbol{z}_{i l}, \boldsymbol{z}_{j l}\right\rangle$. Note that this corresponds to the $i j$-entry of the idempotent \boldsymbol{E}_{l} since, using the symmetric character of \boldsymbol{E}_{l} and property (a.1),

$$
\left\langle\boldsymbol{z}_{i l}, \boldsymbol{z}_{j l}\right\rangle=\left\langle\boldsymbol{E}_{l} \boldsymbol{e}_{i}, \boldsymbol{E}_{l} \boldsymbol{e}_{j}\right\rangle=\left\langle\boldsymbol{E}_{l} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle=\left(\boldsymbol{E}_{l}\right)_{i j} .
$$

From the above properties of the idempotents we have that the crossed local multiplicities satisfy the following:
(b.1) $\sum_{l=0}^{d} m_{i j}\left(\lambda_{l}\right)= \begin{cases}1 & \text { if } i=j ; \\ 0 & \text { otherwise. }\end{cases}$
(b.2) $\sum_{j \sim i} m_{i j}\left(\lambda_{l}\right)=2 \sum_{(i, j) \in E} m_{i j}\left(\lambda_{l}\right)=\lambda_{l} m_{i i}\left(\lambda_{l}\right)$;
(b.3) $a_{i j}^{\ell}=\sum_{l=0}^{d} m_{i j}\left(\lambda_{l}\right) \lambda_{l}^{\ell}$,
where $a_{i j}^{\ell}:=\left(\boldsymbol{A}^{\ell}\right)_{i j}$ is the number of ℓ-walks between vertices i and j (see Godsil [9,10]) including closed walks (when $i=j$). Under some assumptions, the local crossed multiplicities admit closed expressions. For instance, when
$\lambda=\lambda_{0}$, we have

$$
\begin{equation*}
m_{i j}\left(\lambda_{0}\right)=\left\langle\frac{v_{i}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}, \frac{v_{j}}{\|\boldsymbol{v}\|^{2}} \boldsymbol{v}\right\rangle=\frac{v_{i} v_{j}}{\|\boldsymbol{v}\|^{2}} . \tag{2}
\end{equation*}
$$

Another example is given by the following result, see [6].
Let i, j be a pair of diametral vertices of an extremal graph G with normalized positive eigenvector \boldsymbol{v}. Then, the number of diametral paths between them and the crossed $i j$-local multiplicities are respectively given by

$$
a_{i j}^{d}=\pi_{0} \frac{v_{i} v_{j}}{\|\boldsymbol{v}\|^{2}}, \quad m_{i j}\left(\lambda_{l}\right)=(-1)^{l} \frac{\pi_{0}}{\pi_{l}} \frac{v_{i} v_{j}}{\|\boldsymbol{v}\|^{2}} \quad(1 \leq l \leq d),
$$

where $\pi_{l}:=\prod_{h=0, h \neq l}^{d}\left|\lambda_{l}-\lambda_{h}\right| \quad(0 \leq l \leq d)$.
In particular under the above assumptions, when G is a regular graph and considering that $a_{i j}^{\ell}=0$ for any $\ell \leq d-1$, property ($b .3$) yields:

$$
\begin{equation*}
\sum_{l=0}^{d} \frac{(-1)^{l}}{\pi_{l}} \lambda_{l}^{\ell}=0 \quad(0 \leq \ell \leq d-1) ; \quad \sum_{l=0}^{d} \frac{(-1)^{l}}{\pi_{d}} \lambda_{l}^{d}=1 . \tag{3}
\end{equation*}
$$

Moreover, for distance-regular graphs a closed expression for local crossed multiplicities can be obtained. In a distance-regular graph G, the crossed $i j$-local multiplicities only depend on the distance $k=\operatorname{dist}(i, j)$ and we can write $m_{i j}\left(\lambda_{l}\right)=m_{k l}$, see Godsil [10]. As noted in [4], crossed $i j$-local multiplicities can be given in terms of the k-distance polynomial and the (global) multiplicity,

$$
\begin{equation*}
m_{k l}=\frac{m\left(\lambda_{l}\right) p_{k}\left(\lambda_{l}\right)}{n p_{k}\left(\lambda_{0}\right)} \quad(0 \leq k, l \leq d) . \tag{4}
\end{equation*}
$$

where $p_{k}(x), 0 \leq k \leq d$, is the k-distance polynomial of G.

1.4 The local spectrum

The crossed $i j$-local multiplicities seem to have a special relevance when $i=j$. In this case $m_{i i}\left(\lambda_{l}\right)=\left\|\boldsymbol{z}_{i l}\right\|^{2} \geq 0$, denoted also by $m_{i}\left(\lambda_{l}\right)$, is referred to as the i-local multiplicity of λ_{l}. (In particular, (2) yields $m_{i}\left(\lambda_{0}\right)=v_{i}^{2} /\|\boldsymbol{v}\|^{2}$.) In [5] it was noted that when the graph is "seen" from vertex i, the i-local multiplicities play a similar role as the standard multiplicities, so justifying the name. Indeed, by property (b.1) note that, for each vertex i, the i-local multiplicities of all the eigenvalues add up to $1: \sum_{l=0}^{d} m_{i}\left(\lambda_{l}\right)=1$ whereas the
multiplicity of each eigenvalue λ_{l} is the sum, extended to all vertices, of its local multiplicities since

$$
\begin{equation*}
m\left(\lambda_{l}\right)=\operatorname{tr} \boldsymbol{E}_{l}=\sum_{i=1}^{n} m_{i}\left(\lambda_{l}\right) . \tag{5}
\end{equation*}
$$

Moreover, property ($b .3$) tells us that the number of closed walks of length ℓ going through vertex $i, a_{i j}^{\ell}$, can be computed in a similar way as is computed the whole number of such walks in G by using the "global" multiplicities. Some closely related parameters are the Cvetković's "angles" of G, which are defined as the cosines $\cos \beta_{i l}, 1 \leq i \leq n, 0 \leq l \leq d$, with $\beta_{i l}$ being the angle between \boldsymbol{e}_{i} and the eigenspace $\operatorname{Ker}\left(\boldsymbol{A}-\lambda_{l} \boldsymbol{I}\right)$ (notice that $m_{i}\left(\lambda_{l}\right)=\cos ^{2} \beta_{i l}$.) For a number of applications of these parameters, see for instance Cvetković, Rowlinson, and Simić [3].

By considering only the eigenvalues, say $\mu_{0}\left(=\lambda_{0}\right)>\mu_{1}>\cdots>\mu_{d_{i}}$, with non-null local multiplicities, we can now define the (i-)local spectrum as

$$
\begin{equation*}
\operatorname{sp}_{i} G:=\left\{\lambda^{m_{i}\left(\lambda_{0}\right)}, \mu_{1}^{m_{i}\left(\mu_{1}\right)}, \ldots, \mu_{d_{i}}^{m_{i}\left(\mu_{d_{i}}\right)}\right\} . \tag{6}
\end{equation*}
$$

with (i-)local mesh, or set of distinct eigenvalues, $\mathcal{M}_{i}:=\left\{\lambda_{0}>\mu_{1}>\cdots>\right.$ $\left.\mu_{d_{i}}\right\}$. Then it can be proved that the eccentricity of i satisfies a similar upper bound as that satisfied by the diameter of G in terms of its distinct eigenvalues. More precisely, ecc $(i) \leq d_{i}=\left|\mathcal{M}_{i}\right|-1$ (see [6].)

From the i-local spectrum (6), it is natural to consider the function that is the analogue of the characteristic polynomial, which we call the i-local characteristic function, defined by:

$$
\begin{equation*}
\phi_{i}(x):=\prod_{l=0}^{d_{i}}\left(x-\mu_{l}\right)^{m_{i}\left(\mu_{l}\right)} . \tag{7}
\end{equation*}
$$

As expected, such a function can be computed from the knowledge of the characteristics polynomials of G and $G \backslash i$.

Proposition 1 Given a vertex i of a graph G, its i-local characteristic function is

$$
\begin{equation*}
\phi_{i}(x)=e^{\int \phi_{G \backslash i}(x) / \phi_{G}(x) d x} . \tag{8}
\end{equation*}
$$

Proof. First note that the characteristic polynomial $\phi_{G \backslash i}(x)$ is just, see [2], the $i i$-entry of the adjoint matrix of $x \boldsymbol{I}-\boldsymbol{A}$ which, in turn, can be written as

$$
\begin{aligned}
\operatorname{det}(x \boldsymbol{I}-\boldsymbol{A})(x \boldsymbol{I}-\boldsymbol{A})^{-1} & =\phi_{G}(x)(x \boldsymbol{I}-\boldsymbol{A})^{-1} \\
& =\phi_{G}(x) \sum_{l=0}^{d} \frac{1}{x-\lambda_{l}} \boldsymbol{E}_{l},
\end{aligned}
$$

where we have used property (a.3) extended to the continuity points of any rational function (in our case, $x \neq \lambda_{l}$). Hence, $\phi_{G \backslash i}(x)=\phi_{G}(x) \sum_{l=0}^{d} \frac{m_{i}\left(\lambda_{l}\right)}{x-\lambda_{l}}$. and, thus,

$$
\begin{equation*}
\frac{\phi_{G \backslash i}(x)}{\phi_{G}(x)}=\sum_{l=0}^{d} \frac{m_{i}\left(\lambda_{l}\right)}{x-\lambda_{l}}=\sum_{l=0}^{d_{i}} \frac{m_{i}\left(\mu_{l}\right)}{x-\mu_{l}}=\frac{\phi_{i}^{\prime}(x)}{\phi_{i}(x)} . \tag{9}
\end{equation*}
$$

Then, we obtain the claimed result integrating both sides with respect to x and isolating $\phi_{i}(x)$.

As a by-product, note also that, from (9) and adding over all the vertices, we get the known result:

$$
\sum_{i=1}^{n} \phi_{G \backslash i}(x)=\phi_{G}(x) \sum_{l=0}^{d} \sum_{i=1}^{n} \frac{m_{i}\left(\lambda_{l}\right)}{x-\lambda_{l}}=\phi_{G}(x) \sum_{l=0}^{d} \frac{m_{l}}{x-\lambda_{l}}=\phi_{G}^{\prime}(x) .
$$

See, for instance, [11].

1.5 Eigenvectors in a graph

A very simple, yet surprisingly useful, idea is the interpretation of the eigenvectors and eigenvalues of a graph as a dynamic process of "charge displacement" (see, for instance, Godsil [11]). To this end, suppose that \boldsymbol{A} is the adjacency matrix of a graph $G=(V, E)$ and \boldsymbol{v} a right eigenvector of \boldsymbol{A} with eigenvalue λ. If we think \boldsymbol{v} as a function from V to the real numbers, we associate v_{i} to the "initial charge" (or weight) of vertex i. Since \boldsymbol{A} is a $0-1$ matrix, the equation $\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}$ is equivalent to

$$
\begin{equation*}
(\boldsymbol{A} \boldsymbol{v})_{i}=\sum_{j=1}^{n} a_{i j} v_{j}=\sum_{j \sim i} v_{j}=\lambda v_{i} \quad \text { for all } i \in V \tag{10}
\end{equation*}
$$

Thus, the sum of the charges of the neighbors of i is λ times the charge of vertex i. In [11] it is shown how this idea can be extended to "vector charges", so leading to the important area of research in graph theory known as representation theory.

2 The spectra of line graphs

The line graph $L G$ of a graph $G=(V, E)$ is defined as follows. Each vertex in $L G$ represents an edge of $G, V_{L}=\{(i \cdot j):(i, j) \in E\}$, and two vertices of $L G$ are adjacent whenever the corresponding edges in G have one vertex in common.

Since the classical paper of Sachs [12], the spectra of line graphs have been studied extensively. In [7] the authors used the mentioned idea of interpreting the eigenvectors as a certain charge distributions to prove that, if a δ-regular graph G has the eigenvector \boldsymbol{u} with eigenvalue $\lambda \neq-\delta$, then the vector \boldsymbol{v} with entries $v_{(i \cdot j)}=u_{i}+u_{j},(i \cdot j) \in V_{L}$, is a $(\lambda+\delta-2)$-eigenvector of $L G$. The same method can be used to derive the local spectrum of $L G$.

2.1 The local spectrum of a regular line graph

The following result tells us how to compute the local spectrum of a line graph from the local spectrum of the (regular) graph it derives from.

Theorem 2 Let G be a δ-regular graph, with eigenvalue λ, multiplicity $m(\lambda)$, and (crossed) local multiplicities $m_{i j}(\lambda), i, j \in V$. Then, the crossed local multiplicities of the eigenvalues $\lambda^{\prime}=\lambda+\delta-2, \lambda \neq-\delta$, and $\lambda^{\prime}=-2$ in the line graph $L G$, are given by the expressions:

$$
\begin{align*}
m_{(i \cdot j)(k \cdot h)}\left(\lambda^{\prime}\right) & =\frac{m_{i k}(\lambda)+m_{i h}(\lambda)+m_{j k}(\lambda)+m_{j h}(\lambda)}{\delta+\lambda} \quad(\lambda \neq-\delta), \tag{11}\\
m_{(i \cdot j)(k \cdot h)}(-2) & =\alpha-\sum_{\lambda \neq-\delta} m_{(i \cdot j)(k \cdot h)}(\lambda), \tag{12}
\end{align*}
$$

where $\alpha=0$ if $(i \cdot j) \neq(k \cdot h)$ and $\alpha=1$ otherwise.
Proof. Assume first that $\lambda \neq-\delta$, and let U be the set of $m(\lambda)$ column vectors of the matrix \boldsymbol{U} (recall that these vectors constitute an orthonormal basis of the corresponding eigenspace $\mathcal{E}=\operatorname{Ker}(\boldsymbol{A}-\lambda \boldsymbol{I}))$. Then, given $\boldsymbol{u} \in U$, vector \boldsymbol{v} with components $v_{(i \cdot j)}=u_{i}+u_{j}$ is a $\lambda^{\prime}(=\lambda+\delta-2)$-eigenvector of $L G$, see [7]. Notice that, since

$$
\sum_{(i, j) \in E}\left(u_{i}+u_{j}\right)^{2}=\sum_{i \in V} \delta u_{i}^{2}+\sum_{(i, j) \in E} 2 u_{i} u_{j}=\delta+\langle\boldsymbol{u}, \boldsymbol{A} \boldsymbol{u}\rangle=\delta+\lambda,
$$

the corresponding normalized vector has components $\frac{u_{i}+u_{j}}{\sqrt{\delta+\lambda}}$. Then, the crossed $(i \cdot j)(k \cdot h)$-local multiplicity of λ^{\prime} is

$$
\begin{aligned}
m_{(i \cdot j)(k \cdot h)}\left(\lambda^{\prime}\right) & =\sum_{\boldsymbol{u} \in U} \frac{\left(u_{i}+u_{j}\right)\left(u_{k}+u_{h}\right)}{\delta+\lambda} \\
& =\frac{1}{\delta+\lambda} \sum_{\boldsymbol{u} \in U}\left(u_{i} u_{h}+u_{i} u_{k}+u_{j} u_{k}+u_{j} u_{h}\right) \\
& =\frac{m_{i k}(\lambda)+m_{i h}(\lambda)+m_{j k}(\lambda)+m_{j h}(\lambda)}{\delta+\lambda}
\end{aligned}
$$

Finally, the crossed local multiplicity of the eigenvalue $\lambda^{\prime}=-2$ is obtained by using property (b.1).

Notice that, in particular, the local multiplicities of λ^{\prime} are $m_{(i \cdot j)}\left(\lambda^{\prime}\right)=m_{(i \cdot j)(i \cdot j)}\left(\lambda^{\prime}\right)$, which gives:

$$
\begin{align*}
m_{(i \cdot j)}\left(\lambda^{\prime}\right) & =\frac{m_{i}(\lambda)+2 m_{i j}(\lambda)+m_{j}(\lambda)}{\delta+\lambda} \quad(\lambda \neq-\delta) ; \tag{13}\\
m_{(i \cdot j)}(-2) & =1-\sum_{\lambda \neq-\delta} \frac{m_{i}(\lambda)+2 m_{i j}(\lambda)+m_{j}(\lambda)}{\delta+\lambda} \tag{14}
\end{align*}
$$

Then, as expected,

$$
\begin{aligned}
\sum_{(i \cdot j) \in V_{L}} m_{(i \cdot j)}\left(\lambda^{\prime}\right) & =\frac{1}{\delta+\lambda} \sum_{(i, j) \in E}\left(m_{i}(\lambda)+2 m_{i j}(\lambda)+m_{j}(\lambda)\right)= \\
& =\frac{1}{\delta+\lambda}\left(\sum_{i \in V} \delta m_{i}(\lambda)+\sum_{i \sim j} m_{i j}(\lambda)\right)= \\
& =\frac{1}{\delta+\lambda} \sum_{i \in V}(\delta+\lambda) m_{i}(\lambda)=m(\lambda)
\end{aligned}
$$

where the last two equalities come from property (b.2) and equality (5), respectively.

The previous result can be used to compute, in the line graph $L G$, the number of ℓ-circuits rooted at vertex $(i \cdot j)$.

Proposition 3 Let G be a δ-regular graph, $\delta>2$, with spectrum $\operatorname{sp} G=$ $\left\{\lambda_{0}^{m_{0}}, \lambda_{1}^{m_{1}}, \ldots, \lambda_{d}^{m_{d}}\right\}$ and crossed (ij)-local multiplicities $m_{i j}\left(\lambda_{l}\right), i, j \in V \quad 0 \leq$ $l \leq d$. Then, the number of circuits of length $\ell, \ell>1$, rooted at vertex $(i \cdot j)$ in the line graph $L G$, is given by

$$
\begin{equation*}
\left(\boldsymbol{A}_{L G}^{\ell}\right)_{(i \cdot j)(i \cdot j)}=(-2)^{\ell}+\sum_{\lambda_{l} \neq-\delta} \sum_{p=0}^{\ell-1} K_{p} \lambda_{l}^{\ell-p-1}\left(m_{i}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)\right) \tag{15}
\end{equation*}
$$

where, for each ℓ, the coefficient of $\lambda_{l}^{\ell-p-1}$ is

$$
\begin{equation*}
K_{p}:=\sum_{r=0}^{p}\binom{\ell}{r}\binom{\ell-r-1}{p-r} \delta^{p-r}(-2)^{r} . \tag{16}
\end{equation*}
$$

Proof. We assume $\delta>2$ in order to have $\lambda^{\prime}=-2$ as an eigenvalue of $L G$, although we only would need to exclude odd cycles. It follows from property (b.3) and Eq. (11) that,

$$
\begin{aligned}
& \left(\boldsymbol{A}_{L G}^{\ell}\right)_{(i \cdot j)(i \cdot j)}=\sum_{\lambda_{l} \in \mathrm{sp} L G}\left(\lambda_{l}^{\prime}\right)^{\ell} m_{(i \cdot j)}\left(\lambda_{l}^{\prime}\right)= \\
= & \sum_{\lambda_{l} \neq-\delta}\left(\lambda_{l}+\delta-2\right)^{\ell} \frac{m_{i}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)}{\lambda_{l}+\delta}+(-2)^{\ell} m_{(i \cdot j)}(-2)= \\
= & \sum_{\lambda_{l} \neq-\delta}\left(\lambda_{l}+\delta-2\right)^{\ell} \frac{m_{i}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)}{\lambda_{l}+\delta}+ \\
+ & (-2)^{\ell}\left[1-\sum_{\lambda \neq-\delta} \frac{m_{i}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)}{\lambda_{l}+\delta}\right]= \\
= & (-2)^{\ell}+\sum_{\lambda_{l} \neq-\delta} \frac{\left(\lambda_{l}+\delta-2\right)^{\ell}-(-2)^{\ell}}{\lambda_{l}+\delta}\left(m_{i}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)\right)= \\
= & (-2)^{\ell}+ \\
& +\sum_{\lambda_{l} \neq-\delta}\left[\binom{\ell}{0}\left(\lambda_{l}+\delta\right)^{\ell-1}+\cdots+\binom{\ell}{\ell-1}(-2)^{\ell-1}\right]\left(m_{i}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)\right) .
\end{aligned}
$$

Collecting coefficients of $\lambda_{l}^{\ell-p-1}, 0 \leq p \leq \ell-1$, we obtain the result.
We may rewrite the expression of the number of circuits rooted at a given vertex $(i \cdot j)$ in the line graph $L G$, as a function of the number of circuits rooted at vertex i, circuits rooted at vertex j and walks that contain edge (i, j) in the original graph G.

Corollary 4 Under the same hypothesis of Proposition 3,

$$
\left(\boldsymbol{A}_{L G}^{\ell}\right)_{(i \cdot j)(i \cdot j)}=(-2)^{\ell}+\sum_{p=0}^{\ell-1} K_{p}\left(\boldsymbol{A}_{G}^{\ell-p-1}\right)_{i i}+\sum_{p=0}^{\ell-1} K_{p}\left(\boldsymbol{A}_{G}^{\ell-p-1}\right)_{j j}+2 \sum_{p=0}^{\ell-1} K_{p}\left(\boldsymbol{A}_{G}^{\ell-p-1}\right)_{i j}
$$

Proof. Again we use property (b.3) both in G and $L G$

$$
\begin{aligned}
\left(\boldsymbol{A}_{L G}^{\ell}\right)_{(i \cdot j)(i \cdot j)} & =(-2)^{\ell}+\sum_{\lambda_{l} \neq-\delta} \sum_{p=0}^{\ell-1} K_{p} \lambda_{l}^{\ell-p-1}\left(m_{i}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)\right)= \\
& =(-2)^{\ell}+\sum_{p=0}^{\ell-1} K_{p} \sum_{\lambda_{l} \neq-\delta} \lambda_{l}^{\ell-p-1}\left(m_{i}\left(\lambda_{l}\right)+m_{j}\left(\lambda_{l}\right)+2 m_{i j}\left(\lambda_{l}\right)\right)= \\
& =(-2)^{\ell}+\sum_{p=0}^{\ell-1} K_{p}\left(\boldsymbol{A}_{G}^{\ell-p-1}\right)_{i i}+\sum_{p=0}^{\ell-1} K_{p}\left(\boldsymbol{A}_{G}^{\ell-p-1}\right)_{j j}+2 \sum_{p=0}^{\ell-1} K_{p}\left(\boldsymbol{A}_{G}^{\ell-p-1}\right)_{i j} .
\end{aligned}
$$

In particular, since for $p=0,1,2$ we have
$K_{0}=1, \quad K_{1}=(\ell-1) \delta-2 \ell, \quad K_{2}=\frac{(\ell-1)(\ell-2)}{2} \delta^{2}-2 \delta \ell(\ell-2)+2 \ell(\ell-1)$.
the number of circuits rooted at vertex $(i \cdot j)$ in the line graph, is

$$
\begin{aligned}
& \left(\boldsymbol{A}_{L G}^{2}\right)_{(i \cdot j)(i \cdot j)}=4 \delta-2 \\
& \left(\boldsymbol{A}_{L G}^{3}\right)_{(i \cdot j)(i \cdot j)}=\left(\boldsymbol{A}_{G}^{2}\right)_{i i}+\left(\boldsymbol{A}_{G}^{2}\right)_{j j}+2\left(\boldsymbol{A}_{G}^{2}\right)_{i j}+2 \delta^{2}-8 \delta+4
\end{aligned}
$$

respectively, for $\ell=2$ and $\ell=3$.
Furthermore, using a similar reasoning, a general expression for the number of ℓ-walks between any vertices $(i \cdot j)$ and $(k \cdot h)$ in $L G$ holds,

$$
\begin{equation*}
\left(\boldsymbol{A}_{L G}^{\ell}\right)_{(i \cdot j)(k \cdot h)}=\alpha(-2)^{\ell}+\sum_{\lambda_{l} \neq-\delta} \sum_{p=0}^{\ell-1} K_{p} \lambda_{l}^{\ell-p-1}\left(m_{i k}\left(\lambda_{l}\right)+m_{i h}\left(\lambda_{l}\right)+m_{j k}\left(\lambda_{l}\right)+m_{j h}\left(\lambda_{l}\right)\right) \tag{17}
\end{equation*}
$$

In terms of the number of walks between vertices in G

$$
\begin{equation*}
\left(\boldsymbol{A}_{L G}^{\ell}\right)_{(i \cdot j)(k \cdot h)}=\alpha(-2)^{\ell}+\sum_{p=l 0}^{\ell} K_{p-1}\left(\left(\boldsymbol{A}_{G}^{\ell-p}\right)_{i k}+\left(\boldsymbol{A}_{G}^{\ell-p}\right)_{i h}+\left(\boldsymbol{A}_{G}^{\ell-p}\right)_{j k}+\left(\boldsymbol{A}_{G}^{\ell-p}\right)_{j h}\right) \tag{18}
\end{equation*}
$$

In both cases, $\alpha=0$ if $(i \cdot j) \neq(k \cdot h)$ and $\alpha=1$ otherwise and coefficients K_{p} are as in (16).

2.2 Local multiplicities in a cycle C_{n}

Let us consider C_{n} the cycle of order n. As the line graph of a cycle C_{n} is itself, $L C_{n}=C_{n}$, the number of ℓ-circuits rooted at vertex i in C_{n}, and at vertex $(i \cdot j)$ in $L C_{n}$ are the same. This fact allow us to derive simple relations between the crossed and local multiplicities of each eigenvalue. Taking into account that, as $\delta=2, \lambda^{\prime}=\lambda+\delta-2=\lambda$ and using (11),

$$
m_{i}(\lambda)=m_{(i \cdot j)(i \cdot j)}\left(\lambda^{\prime}\right)=\frac{m_{i}(\lambda)+2 m_{i j}(\lambda)+m_{j}(\lambda)}{\lambda+2}
$$

we get the crossed local multiplicity $m_{i j}(\lambda)$ corresponding to adjacent vertices i, j in C_{n} and $\lambda \neq-2$. Let us notice that, since cycles ara a particular case of walk-regular graphs, local multiplicities do not depend on the vertex they are referred to, see Godsil [11], thus property 5 and property (??) reads: $m_{i}(\lambda)=\frac{m(\lambda)}{n}$., thus

$$
\begin{equation*}
m_{i}(\lambda)=\frac{2 m_{i}(\lambda)+2 m_{i j}(\lambda)}{\lambda+2}, \quad m_{i j}(\lambda)=\frac{\lambda m_{i}(\lambda)}{2}=\frac{\lambda m(\lambda)}{2 n} . \tag{19}
\end{equation*}
$$

When $\lambda=-2$, i.e. for even cycles, the local multiplicity follows from (12),

$$
\begin{equation*}
m_{i}(-2)=1-2 \sum_{\lambda \neq-2} \frac{m_{i}(\lambda)+m_{i j}(\lambda)}{\lambda+2} . \tag{20}
\end{equation*}
$$

Crossed local multiplicities corresponding to non-adjacent vertices can also be computed. In order to simplify the notation, for a given eigenvalue λ of the cycle graph C_{n} and vertices i, j with $\operatorname{dist}(i, j)=\ell$, we will denote $m_{\ell}(\lambda):=$ $m_{i j}(\lambda)$, or simply m_{ℓ} if there is no confusion about the eigenvalue we are referring to.

Let p, q, i, j, r, s vertices of the cycle graph C_{n}, such that $i \sim j$ and $r \sim s$. Let us suppose $\operatorname{dist}(p, q)=\ell=\operatorname{dist}((i \cdot j),(r \cdot s)), 0 \leq \ell<\left\lfloor\frac{n}{2}\right\rfloor$. Then, as above, the equality $m_{p q}(\lambda)=m_{(i \cdot j)(r \cdot s)}(\lambda)$ and (11) leeds to

$$
m_{\ell}=\frac{m_{\ell+1}+2 m_{\ell}+m_{\ell-1}}{\lambda+2}
$$

that gives

$$
m_{1}=\frac{\lambda}{2} m_{0}
$$

and

$$
\begin{equation*}
\lambda m_{\ell}=m_{\ell-1}+m_{\ell+1} \quad\left(0<\ell<\left\lfloor\frac{n}{2}\right\rfloor\right) . \tag{21}
\end{equation*}
$$

Notice that the last equality is a Chebyshev's recurrence. Thus, the crossed local multiplicity corresponding to eigenvalue λ and vertices at distance ℓ, is related to the Chebyshev polynomial of the first kind of degree ℓ in $\frac{\lambda}{2}$, as follows

$$
\begin{equation*}
m_{\ell}(\lambda)=T_{\ell}\left(\frac{\lambda}{2}\right) m_{0} \tag{22}
\end{equation*}
$$

Using a different point of view, we may write equality (21) in matricial notation,

$$
\left(\begin{array}{cc}
\lambda & -1 \\
1 & 0
\end{array}\right)\binom{m_{\ell}}{m_{\ell-1}}=\binom{m_{\ell+1}}{m_{\ell}}
$$

or equivaletnly

$$
\left(\begin{array}{cc}
\lambda & -1 \\
1 & 0
\end{array}\right)^{\ell}\binom{m_{1}}{m_{0}}=\binom{m_{\ell+1}}{m_{\ell}}
$$

With some linear algebra, we can derive explicit expressions for the crossed multiplicities m_{ℓ} as function of the corresponding local multiplicity m_{0}. For each eigenvalue λ of G, define $\Phi_{1}=\frac{\lambda+\sqrt{\lambda^{2}-4}}{2}, \Phi_{2}=\frac{\lambda-\sqrt{\lambda^{2}-4}}{2}$, then

$$
\begin{equation*}
m_{\ell+1}=\frac{m_{0}}{\Phi_{1}-\Phi_{2}}\left[\frac{\lambda}{2}\left(\Phi_{1}^{\ell+1}-\Phi_{2}^{\ell+1}\right)+\Phi_{1}^{\ell}-\Phi_{2}^{\ell}\right] \tag{23}
\end{equation*}
$$

$0<\ell<\left\lfloor\frac{n}{2}\right\rfloor$. As expected, we get the Chebyshev polynomials evaluated at $\lambda / 2$:

$$
m_{1}=\frac{\lambda}{2} m_{0}, \quad m_{2}=\frac{\lambda^{2}-2}{2} m_{0}, \quad m_{3}=\frac{1}{2} \lambda\left(\lambda^{2}-3\right) m_{0}, \ldots
$$

References

[1] N. Biggs, Algebraic Graph Theory. Cambridge University Press, Cambridge, 1974; second edition: 1993.
[2] D. Cvetković and M. Doob, Developments in the theory of graph spectra, Linear and Multilinear Algebra 18 (1985), 153-181.
[3] D. Cvetković, P. Rowlinson, and S. Simić, Eigenspaces of Graphs. Cambridge University Press, Cambridge, 1997.
[4] M.A. Fiol, Algebraic characterizations of distance-regular graphs, Discrete Math. 246 (2002), 111-129.
[5] M.A. Fiol, E. Garriga, and J.L.A. Yebra, Locally pseudo-distance-regular graphs, J. Combin. Theory Ser. B 68 (1996), 179-205.
[6] M.A. Fiol, E. Garriga, and J.L.A. Yebra, Boundary graphs: The limit case of a spectral property, submitted, Discrete Math. 226 (2001), 155-173.
[7] M.A. Fiol and M. Mitjana, The spectra of some families of digraphs, Linear Algebra Appl., submitted, 2006.
[8] M.A. Fiol and M. Mitjana, The local spectra of line graphs, in: Proceedings of the Sixth Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications Elec. Notes in Disc. Math., submitted, 2006.
[9] C.D. Godsil, Graphs, groups, and polytopes, in: Combinatorial Mathematics (eds. D.A. Holton and J. Seberry) 157-164, Lecture Not. Math. 686, Springer, Berlin, 1978.
[10] C.D. Godsil, Bounding the diameter of distance regular graphs, Combinatorica 8 (1988), 333-343.
[11] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[12] H. Sachs, Über Teiler, Faktoren und characterische Polynome von Graphen II, Wiss. Z. Techn. Hosch. Ilmenau 13 (1967), 405-412.

[^0]: * Work supported by European Regional Development Fund (ERDF) and MEC under projects SGR2005-00412 and TEC2005-03575.
 A preliminary version of this paper appeared in [8].
 * Corresponding author:

 Email address: margarida.mitjana@upc.edu (M. Mitjana).

