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Universitat Politècnica de Catalunya
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Abstract

The local spectrum of a graph G = (V,E), constituted by the standard eigenvalues
of G and their local multiplicities, plays a similar role as the global spectrum when
the graph is “seen” from a given vertex. Thus, for each vertex i ∈ V , the i-local
multiplicities of all the eigenvalues add up to 1; whereas the multiplicity of each
eigenvalue λl ∈ ev G is the sum, extended to all vertices, of its local multiplicities.

In this work, using the interpretation of an eigenvector as a charge distribution
on the vertices, we compute the local spectrum of the line graph LG in terms of the
local spectrum of the (regular o semiregular) graph G it derives from. Furthermore,
some applications of this result are derived as, for instance, some results related to
the number of cycles.
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1 Preliminaries

Throughout the paper, G = (V, E) denotes a simple connected graph with
order n = |V | and size m = |E|. We label the vertices with the integers
1, 2, . . . , n. If i is adjacent to j; that is, (i, j) ∈ A, we sometimes write
i ∼ j. The distance between two vertices is denoted by dist(i, j). The set
of vertices which are k-appart from vertex i: is Γk(i) = {j : dist(i, j) = k}.
Thus, the degree of vertex i is just δi = |Γ1(i)| ≡ |Γ(i)|. The eccentricity
of a vertex is ecc(i) := max1≤j≤n dist(i, j) and the diameter of the graph is
D = D(G) := max1≤i≤n ecc(i). Whenever ecc(i) = D, we say that i is a
diametral vertex, and also that a pair of vertices i, j such that dist(i, j) = D is
a diametral pair. Moreover, any shortest path between i and j is a diametral
path of the graph. The graph is called diametral when all its vertices are
diametral.

Some algebraic-graph concepts

Let us now recall some algebraic graph concepts and results. The adjacency
matrix of a graph G, denoted by A = (aij) = A(G), has entries aij = 1 if
i ∼ j and aij = 0 otherwise. Then, the characteristic polynomial of G is just
the characteristic polynomial of A:

φG(x) := det(xI −A) =
d∏

l=0

(x− λl)
ml .

Its roots, or eigenvalues of A, constitute the spectrum of G, denoted by

sp G := sp A = {λm0
0 , λm1

1 , . . . , λmd
d }

where the supra-indexes denote multiplicities. The (set of) different eigenval-
ues of G are represented by

ev G := {λ0 > λ1 > · · · > λd}.
It is well known that the diameter of G is lesser than the number of different
eigenvalues; that is, D(G) ≤ d (see, for instance, Biggs [5]). When D(G) = d
we say that G is an extremal graph.
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The spectral decomposition

For each eigenvalue λl, 0 ≤ l ≤ d, let U l be the matrix whose columns
form an orthonormal basis for the λl-eigenspace El := Ker(A − λlI). The
(principal) idempotents of A are the matrices El := U lU

>
l representing the

orthogonal projections onto El. Thus, in particular, E0 = 1
‖v‖2 vv>, where

v = (v1, v2, . . . , vn)> denotes the normalized positive eigenvector. From their
structure, it is readily checked that such matrices satisfy the following prop-
erties (see, for instance, Godsil [25]):

(a.1) ElEh =





El if l = h

0 otherwise;

(a.2) AEl = λlEl;

(a.3) p(A) =
∑d

l=0 p(λl)El, for any polynomial p ∈ R[x].

In particular, notice that if, in (a.3), we take p = 1 and p = x we ob-
tain, respectively,

∑d
l=0 El = I (as expected, since the sum of all orthogonal

projections gives the original vector), and the so-called “Spectral Decomposi-
tion Theorem”

∑d
l=0 λlEl = A. The following spectral decompositions of the

canonical vectors are repeatedly used below:

ei = zi0 + zi1 + · · ·+ zid = zi0 + zi (1 ≤ i ≤ n)

where zil := Elei ∈ El, 0 ≤ l ≤ d, and zi ∈ E1 ⊕ · · · ⊕ Ed = v⊥. Moreover,

zi0 =
〈ei,v〉
‖v‖2

v =
vi

‖v‖2
v. (1)

In particular, for regular graphs, zi0 = (1/n)j.

The local multiplicity

Given two vertices i, j and any eigenvalue λl, Garriga, Yebra and the first
author in [16], introduced the concept of crossed (ij-)local multiplicity of λl

as mij(λl) := 〈zil,zjl〉. Note that this corresponds to the ij-entry of the
idempotent El since, using the symmetric character of El and property (a.1),

〈zil, zjl〉 = 〈Elei, Elej〉 = 〈Elei, ej〉 = (El)ij.

From the above properties of the idempotents we have that the crossed local
multiplicities satisfy the following:



(b.1)
∑d

l=0 mij(λl) =





1 if i = j;

0 otherwise.

(b.2)
∑

j∼i mij(λl) = λlmii(λl);

(b.3) ak
ij =

∑d
l=0 mij(λl)λ

k
l ,

where ak
ij := (Ak)ij is the number of k-walks between vertices i and j (see

Godsil [23,24]) including closed walks (when i = j). Under some assumptions,
the local crossed multiplicities admit closed expressions. For instance, when
λ = λ0, we have

mij(λ0) = 〈 vi

‖v‖2
v,

vj

‖v‖2
v〉 =

vivj

‖v‖2
. (2)

Another example is given by the next result, see [16].

Lemma 1.1 Let i, j be a pair of diametral vertices of an extremal graph G
with normalized positive eigenvector v. Then, the number of diametral paths
between them and the crossed ij-local multiplicities are respectively given by

ad
ij = π0

vivj

‖v‖2
, mij(λl) = (−1)l π0

πl

vivj

‖v‖2
(1 ≤ l ≤ d),

where πl :=
d∏

h=0,h6=l

|λl − λh| (0 ≤ l ≤ d).

Notice that for regular graphs, from the above lemma and ak
ij = 0 for any

k ≤ d− 1, property (b.3) yields:

d∑

l=0

(−1)l

πl

λk
l = 0 (0 ≤ k ≤ d− 1);

d∑

l=0

(−1)l

πd

λd
l = 1. (3)

as we already knew.

The local spectrum

The crossed ij-local multiplicities seem to have a special relevance when
i = j. In this case mii(λl) = ‖zil‖2 ≥ 0, denoted also by mi(λl), is referred to
as the i-local multiplicity of λl. (In particular, (2) yields mi(λ0) = v2

i /‖v‖2.)
In [15] it was noted that when the graph is “seen” from vertex i, the i-local
multiplicities play a similar role as the standard multiplicities, so justifying
the name. Indeed, by property (b.1) note that, for each vertex i, the i-local
multiplicities of all the eigenvalues add up to 1:

∑d
l=0 mi(λl) = 1 whereas the



multiplicity of each eigenvalue λl is the sum, extended to all vertices, of its
local multiplicities since

m(λl) = tr El =
n∑

i=1

mii(λl). (4)

Moreover, property (b.3) tells us that the number of closed walks of length k
going through vertex i, ak

ij, can be computed in a similar way as is computed
the whole number of such walks in G by using the “global” multiplicities.
Some closely related parameters are the Cvetković’s “angles” of G, which are
defined as the cosines cos βil, 1 ≤ i ≤ n, 0 ≤ l ≤ d, with βil being the angle
between ei and the eigenspace Ker(A − λlI) (notice that mi(λl) = cos2 βil.)
For a number of applications of these parameters, see for instance Cvetković,
Rowlinson, and Simić [11].

By considering only the eigenvalues, say µ0(= λ0) > µ1 > · · · > µdi
, with

non-null local multiplicities, we can now define the (i-)local spectrum as

spi G := {λmi(λ0), µ
mi(µ1)
1 , . . . , µ

mi(µdi
)

di
}. (5)

with (i-)local mesh, or set of distinct eigenvalues, Mi := {λ0 > µ1 > · · · >
µdi
}. Then it can be proved that the eccentricity of i satisfies a similar upper

bound as that satisfied by the diameter of G in terms of its distinct eigenvalues.
More precisely, ecc(i) ≤ di = |Mi| − 1 (see [16].)

From the i-local spectrum (5), it is natural to consider the analogous func-
tion of the characteristic polynomial, which we call the i-local characteristic
function, defined as:

φi(x) :=

di∏

l=0

(x− µl)
mi(µl). (6)

As expected, such a function can be computed from the knowledge of the
characteristics polynomials of G and G \ i.

Proposition 1.2 Given a vertex i of a graph G, its i-local characteristic func-
tion is

φi(x) = e
∫

φG\i(x)/φG(x) dx. (7)

Proof. First note that the characteristic polynomial φG\i(x) is just the ii-
entry of the adjoint matrix of xI −A [9] which, in turn, can be written as



det(xI −A)(xI −A)−1 = φG(x)(xI −A)−1

= φG(x)
d∑

l=0

1

x− λl

El,

where we have used property (a.3) extended to the continuity points of any
rational function (in our case, x 6= λl). Hence,

φG\i(x) = φG(x)
d∑

l=0

mi(λl)

x− λl

.

and, thus,

φG\i(x)

φG(x)
=

d∑

l=0

mi(λl)

x− λl

=

di∑

l=0

mi(µl)

x− µl

=
φ′i(x)

φi(x)
. (8)

Then, we obtain the claimed result integrating both sides with respect to x
and isolating φi(x). 2

As a by-product, note also that, from (8) and adding over all the vertices,
we get the known result

n∑
i=1

φG\i(x) = φG(x)
d∑

l=0

n∑
i=1

mi(λl)

x− λl

= φG(x)
d∑

l=0

ml

x− λl

= φ′G(x).

(See, for instance, [25].)

2 Eigenvectors and Patterns

In this section we first recall the simple interpretation of eigenvalues and eigen-
vectors in terms of charge displacement. Second, some easy but very useful
results based on this approach are discussed.

Eigenvectors in a graph

As commented above, a very simple, yet surprisingly useful, idea is the
interpretation of the eigenvectors and eigenvalues of a graph as a dynamic
process of “charge displacement” (see, for instance, Godsil [25]). To this end,
suppose that A is the adjacency matrix of a graph G = (V, E) and v a right
eigenvector of A with eigenvalue λ. If we think v as a function from V to the
complex numbers, we associate vi to the “initial charge” (or weight) of vertex



i. Since A is a 0-1 matrix, the equation Av = λv is equivalent to

(Av)i =
n∑

j=1

aijvj =
∑
j∼i

vj = λvi for all i ∈ V . (9)

Thus, the sum of the charges of the neighbors of i is λ times the charge
of vertex i. In [25] it is shown how this idea can be extended to “vector
charges”, so leading to the important area of research in graph theory known
as representation theory.

3 The spectra of line graphs

The line graph LG of any graph G = (V, E) is defined as follows. Each vertex
in LG represents an edge of G, V (LG) = {ij : (i, j) ∈ E}, and two vertices
of LG are adjacent whenever the corresponding edges in G have a vertex in
common.

Since the classical paper of Sachs [31], the spectra of line graphs have been
studied extensively. In [19] the authors used the mentioned idea of interpreting
the eigenvectors as a certain charge distributions to prove that, if a δ-regular
graph G has the eigenvector u with eigenvalue λ 6= −δ, then the vector v with
entries that vij = ui + uj, where (i, j) ∈ E, is a (λ + δ− 2)-eigenvector of LG.
Let us now see that the method can be used to derive the local spectrum of
LG.

The local spectrum of a regular line graph

The following result tells us how to compute the local spectrum of a line
graph from the local spectrum of the (regular) graph it derives from.

Theorem 3.1 Let G be a δ-regular graph with eigenvalue λ, multiplicity m(λ),
and (crossed) local multiplicities mij = mij(λ), i, j ∈ V . Then, the crossed
local multiplicities of λ′ = λ+δ−2 in the line graph LG, with vertices denoted
in the same way as the edges of G; that is, (i, j), are given by the expressions:

m(i,j)(k,h)(λ
′) =

mik(λ) + mih(λ) + mjk(λ) + mjh(λ)

δ + λ
(λ 6= −δ), (10)

m(i,j)(k,h)(−2) = α−
∑

λ 6=−δ

m(i,j)(λ), (11)

where α = 0 if (i, j) 6= (k, h) and α = 1 otherwise.



Proof. Assume first that λ 6= −δ, and let U be the set of m(λ) column vectors
of the matrix U (recall that these vectors constitute an orthonormal basis of
the corresponding eigenspace E). Then, given u ∈ U , we already know that
the vector v with components v(i,j) = ui + uj is a λ′(= λ + δ − 2)-eigenvector
of LG. Notice that, since

∑

(i,j)∈E

(ui + uj)
2 =

∑
i∈V

δu2
i +

∑

(i,j)∈E

2uiuj = δ + 〈u,Au〉 = δ + λ,

the corresponding normalized vector has components
ui+uj√

δ+λ
. Then, the crossed

local multiplicity, at vertex (i, j), of λ′ is

m(i,j)(k,h)(λ
′) =

∑
u∈U

(ui + uj)(uk + uh)

δ + λ

=
1

δ + λ

∑
u∈U

(uiuh + uiuk + ujuk + ujuh)

=
mih(λ) + mik(λ) + mjk(λ) + mjh(λ)

δ + λ
.

Finally, the crossed local multiplicity of the eigenvalue λ′ = −2 is obtained by
using the formula (b.1). 2

Notice that, in particular, the local multiplicities of λ′ are m(i,j)(λ
′) =

m(i,j)(i,j)(λ
′), which gives:

m(i,j)(λ + δ − 2) =
mi(λ) + 2mij(λ) + mj(λ)

δ + λ
(λ′ 6= −2) (12)

m(i,j)(−2) = 1−
∑

λ 6=−2

mi(λ) + 2mij(λ) + mj(λ)

δ + λ
(13)

Then, as expected,
∑

(i,j)∈E

m(i,j)(λ
′) =

1

δ + λ

∑
i∼j

(mi(λ) + 2mij(λ) + mj(λ)) = (14)

=
1

δ + λ


∑

i∈V

δmi(λ) +
∑

(i,j)∈E

mij(λ)


 = (15)

=
1

δ + λ

∑
i∈V

(δ + λ)mi(λ) = m(λ). (16)

where the last two equalities come from property (b.2) and equality (4),
respectively.



Let us use the above relationship between the local multiplicities of a graph
and its line graph to compute the number of k-circuits in the line graph LG
based on vertex (i, j), this is the number of walks of length k between vertices
i, j in the graph G. Again, vertices in LG are denoted in the same way as the
edges of G; that is, (i, j).

Proposition 3.2 Let G be a δ–regular graph with spectrum

sp G = {λm0
0 , λm1

1 , . . . , λmd
d }

and crossed (ij)-local multiplicities mij(λl), i, j ∈ V 0 ≤ l ≤ d. Then, the
number of circuits of length k through vertex (i, j) in the line graph LG, is
given by

(Ak
LG)(i,j)(i,j) = (−2)k +

d−1∑

λl 6=−δ

k−1∑
p=0

Kpλ
k−p−1
l (mi(λl) + mj(λl) + 2mij(λl))

where, for each k, the coefficient of λk−p−1
l is

Kp :=

p∑
r=0

(
k

r

)(
k − r − 1

p− r

)
δp−r(−2)r

Proof.

(Ak
LG)(i,j)(i,j) =

=
d∑

l=0

(λl + δ − 2)k mi + 2mij + mj

λl + δ
=

=
d−1∑

l=0

(λl + δ − 2)k mi + 2mij + mj

λl + δ
+ (−2)k

[
1−

d−1∑

l=0

mi + 2mij + mj

λl + δ

]
=

= (−2)k +
d−1∑

l=0

(λl + δ − 2)k − (−2)k

λl + δ
(mi + 2mij + mj) =

= (−2)k +

+
d−1∑

l=0

[(
k

0

)
(λl + δ)k−1 + · · ·+

(
k

k − 1

)
(−2)k−1

]
(mi + 2mij + mj)

collecting coefficients of λk−p−1
l , 0 ≤ p ≤ k − 1, we obtain the result. 2



In particular for p = 0, 1, 2 we have

K0 = 1, K1 = (k−1)δ−2k, K2 =
(k − 1)(k − 2)

2
δ2−2δ k(k−2)−2 k(k−1)

From the previous result we may calculate the number of circuits rooted
at a given vertex (i, j), in the line graph as a function of the circuits rooted
in vertex i and walks that contain edge (i, j) in the original graph G.

Corollary 3.3

(Ak
LG)(i,j)(i,j) = (−2)k + 2

k−1∑
p=0

Kp(AG)k−p−1
ii + 2

k−1∑
p=0

Kp(AG)k−p−1
ij

(Ak
LG)(i,j)(i,j) = (−2)k +

d−1∑

l=0

k−1∑
p=0

Kpλ
k−p−1
l (mi(λl) + mj(λl) + 2mij(λl))

Local multiplicities in a cycle Cn

Let us consider Cn the cycle of orden n. As the line graph of a cycle Cn

is itself, LCn = Cn, the number of k–circuits rooted in vertex i in Cn, or
in vertex (i, j) in LCn is equal, this fact allow us to derive simple relations
between the crossed and local multiplicities of each eigenvalue.

Taking into account the result in (10), and δ = 2

mi(λl) = m(i,j)(i,j)(λl) =
mi(λl) + 2mij(λl) + mj(λl)

λl + 2

we get the crossed local multiplicity mij(λl) correspondig to adjacent ver-
tices i, j in Cn and λl 6= −δ

mi(λl) =
2mi(λl) + 2mij(λl)

λl + 2
⇒ mij(λl) =

λl mi(λl)

2
(17)

Case λl = −δ follows from (11)

mi(−2) = 1− 2
∑

λl 6=−2

mi(λl) + mij(λl)

λl + 2
(18)

Crossed local multiplicities corresponding to non-adjacent vertices can also
be computed.

In order to simplify the notation, for a given eigenvalue λl of the cycle
graph Cn and vertices i, j with dist(i, j) = k, we will denote the crossed (ij-



)local multiplicity mk(λl) := mij(λl), or mk for short if there is no confusion
about the eigenvalue we are referring to.

Let p, q, i, j, r, s vertices of the cycle graph Cn, such that i ∼ j and r ∼ s
so that (i, j) and (r, s) are vertices in the line graph LCn. Let us suppose
dist(p, q) = k = dist((i, j), (r, s)), 0 ≤ k < bn

2
c. Then, as above, the equality

mpq(λl) = m(i,j)(k,l)(λl) and (10) leeds to

mk =
mk+1 + 2mk + mk−1

λl + 2

that gives
λl m0 = 2m1

and
λl mk = mk−1 + mk+1

,

0 < k < bn
2
c, or equivalently,


λl −1

1 0





 mk

mk−1


 =


mk+1

mk


 ⇔


λl −1

1 0




k 
m1

m0


 =


mk+1

mk




With some linear algebra, we can derive explicit expressions for the crossed
multiplicities as function of the corresponding local multiplicity. Define Φ1,2 =
λl±
√

λ2
l−4

2
, then

mk+1 =
m0

Φ1 − Φ2

[
λl

2

(
Φk+1

1 − Φk+1
2

)
+ Φk

1 − Φk
2

]
, (19)

0 < k < bn
2
c. In particular we get

m1 =
λl

2
m0; m2 =

λ2
l − 2

2
m0; m3 =

1

2
λl(λ

2
l − 3) m0; . . .

Crossed local multiplicities corresponding to eigenvalue λl = −δ can be
computed with the previous result and (11).

The local multiplicities of a cycle Cn correspondig to a given eigenvalue λ
satisfy

mk(λ) = Tk

(
λ

2

)
m0

for 0 ≤ k ≤ bn
2
c ≤ n, where Tn(x) is the Chebyshev polynomial of degree n.



3.1 Semiregular graphs(?)

Here we will see that, as in the case of regular graphs, the eigenvalues of line
graphs of semiregular graphs can also be determined. A graph G = (V, E)
is called semiregular when, for some integers δ1, δ2, every edge {i, j} ∈ E has
its endvertices with degrees δ(i) = δ1 and δ(j) = δ2. In this case, we speak
also of a (δ1, δ2)-semiregular graph. Of course, the case δ1 = δ2 corresponds
to the standard regularity and, otherwise, the graph G must be bipartite,
V = V1 ∪ V2, with vertices in each stable set Vi having the same degree δi,
i = 1, 2. The following result was proved in [19]:

Theorem 3.4 Let G be a (δ1, δ2)-semiregular graph, δ1, δ2 > 1, with distinct
eigenvalues ev G = {±λl : 0 ≤ l ≤ r}. Then, its line graph LG, with adjacency
matrix AL, has the eigenvalues ev LG = {−2,±λ′l : 0 ≤ l ≤ r}, where

λ′l =
δ1 + δ2

2
± 1

2

√
(δ1 − δ2)2 + 4λ2

l − 2 (0 ≤ l ≤ r). (20)
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