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Abstract

As is well known, a graph is a mathematical object modeling the
existence of a certain relation between pairs of elements of a given set.
Therefore, it is not surprising that many of the first results concerning
graphs made reference to relationships between people or groups of
people. In this article, we comment on four results of this kind, which
are related to various general theories on graphs and their applica-
tions: the Handshake lemma (related to graph colorings and Boolean
algebra), a lemma on known and unknown people at a cocktail party
(to Ramsey theory), a theorem on friends in common (to distance-
regularity and coding theory), and Hall’s Marriage theorem (to the
theory of networks). These four areas of graph theory, often with
problems which are easy to state but difficult to solve, are extensively
developed and currently give rise to much research work. As exam-
ples of representative problems and results of these areas, which are
discussed in this paper, we may cite the following: the Four Colors
Theorem (4CTC), the Ramsey numbers, problems of the existence of
distance-regular graphs and completely regular codes, and finally the
study of topological proprieties of interconnection networks.

1 Introduction

A graph G = (V,E) is a mathematical structure consisting of a vertex set
V and a set of edges E (or nonordered pairs of vertices). Normally, each
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vertex v ∈ V is represented by a point and each edge e = {u, v} ∈ E by a
line joining vertices u and v. Graph theory belongs to combinatorics, which
is the part of mathematics that studies the structure and enumeration of
discrete objects, in contrast to the continuous objects studied in mathemat-
ical analysis. In particular, graph theory is useful for studying any system
with a certain relationship between pairs of elements, which give a binary
relation. It is therefore not surprising that many of the problems and results
were originally stated in terms of personal relationships. For example, one
of the most simple results is the Handshake lemma: At a cocktail party, an

even number of people shake an odd number of hands. There is also the so-
called Friendship theorem: At a party, if each pair of people has exactly one

friend in common, then there is somebody who is friend of everybody. The
first and most appealing proof of this theorem is due to Paul Erdős (with
Alfred Rényi and Vera Sós), a Hungarian mathematician, probably the most
prolific of the 20th century, who like Euler enjoyed coining sentences such as
“A mathematician is a device for turning coffee into theorems” or “Another
roof, another proof”. The latter phrase shows his great capacity and predis-
position for collaborating with other authors from all over the world (he had
509 coauthors). From Erdős we have the Erdős number : the co-authors of
Erdős have Erdős number 1, the co-authors of the co-authors of Erdős have
Erdős number 2, etc. For more information on Erdős, see Hoffman [30].

It is considered that the first paper on graph theory was published in
1736. Its author was the great Swiss mathematician Leonhard Euler, about
who it is said that he wrote papers in the half an hour between the first and
the second calls for lunch. This first paper is about the existence of a pos-
sible walk across the Königsberg bridges; see Euler [13]. This city was the
capital of Oriental Prussia, the birthplace of Immanuel Kant. Nowadays it
corresponds to the Russian city of Kaliningrad. The problem of the Königs-
berg bridges is related to the puzzle of drawing a figure without raising the
pencil from the paper and without passing twice through the same place. In
the original problem, it was asked if it was possible to walk through the city
by crossing all the bridges only once. With an ingenious reasoning, which
in fact does not explicitly use any graph, Euler proved the impossibility of
this walk.

Another of the most famous problems in graph theory, not solved until
1977 by Appel, Haken and Kock [3, 2], is the Four Colors theorem (4CT),
which states that the countries of any map drawn in the plane can be colored
with four colors, such that countries with a common border (different from a
point) bear different colors. This theorem is regarded as the first important
result to be proved using a computer, because in a part of its proof 1,482
configurations were analyzed. For this reason, not all mathematicians ac-
cept it. Twenty years later, Robertson, Sanders, Seymour and Thomas [38]
gave an independent proof, which is shorter, but also requires the use of a
computer, because of the 633 configurations analyzed.
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As we have already stated, graph theory is used to study different re-
lations. A first example is an electric circuit, with all its components and
its connections. In telecommunications, graph theory contributes to the
modeling, design and study of interconnection or communication networks.
For instance, interconnection networks are used in multiprocessor systems,
where some processors undertake a task of exchanging information, and in
local networks consisting of different computers placed at a short distances,
which exchange data at very high speed and low cost. As regards commu-
nication networks, nowadays the most important example is the Internet,
which makes the communication and exchange of data possible between com-
puters all around the world. In fact, we are experiencing a communication
revolution, so that we could say that we are ‘weaving’ the communication
network.

For more details about notation, basic concepts and history of graph
theory see, for example, Bollobás [7], Diestel [11], West [42] and Biggs,
Lloyd and Wilson [5].

2 Shaking hands: Colorings and Boolean algebra

In a graph G = (V,E), the degree δ(u) is the number of adjacent vertices to
vertex u, namely, the number of incident edges to u. We denote by ∆(G) the
maximum degree of all the vertices of G and by δ(G) the minimum degree.

We begin with one of the most simple results about graphs, which states
that the sum of the degrees of the vertices in V equals twice the number of
edges in E:

∑

u∈V

δ(u) = 2|E|, (1)

since in the degree sum, we count each edge twice because each edge is
incident to two vertices. From here, we obtain the inequalities:

δ(G)|V | ≤ 2|E| ≤ ∆(G)|V |. (2)

Although these results are apparently trivial, they have some interesting
corollaries, such as the following:

(a) Every graph has an even number of vertices with odd degree.

This is the so-called Handshake lemma, because it can be stated as
follows: At a cocktail party, the number of people who shake an odd

number of other people’s hands is always even.

(b) Every δ-regular graph (a graph is δ-regular if all its vertices have de-

gree δ), with δ odd, has an even number of vertices.
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Figure 1: The graphs of the five Platonic solids.

(c) Every planar graph (that is, it can be drawn on the plane without edge

crossings) with girth g (the girth is the length of the shortest cycle)
and number of edges |E| satisfies

|E| ≤
g(|V | − 2)

g − 2
. (3)

To prove (c), we need the well-known Euler formula [14] published be-
tween 1752 and 1753, and already observed by Descartes in 1640, which can
be proved by induction and states that every planar graph with n = |V |
vertices, m = |E| edges and r = |R| regions satisfies

r + n = m + 2. (4)

In this formula, the number of regions includes the exterior one (that
is, the ‘sea’, if we have a map or if the graph is imbedded on a sphere).
For example, the Euler formula is satisfied by the graphs of the Platonic
solids shown in Figure 1. In fact, this formula gives necessary conditions for
the existence of these regular polyhedra; see Rademacher and Toeplitz [36].
In proving (4), the key fact is that the removing of a vertex with degree δ
(and its incident edges) leaves a new planar graph whose number of regions,
vertices and edges have been reduced, respectively, by δ − 1, 1 and δ units.

Returning again to the Euler formula, the number r of regions can also
be interpreted as the cardinality of the vertex set of the dual graph G∗.
Given a planar graph G with n = |V | vertices and m = |E| edges forming
regions, its dual graph G∗ = (V ∗, E∗) has vertices representing the regions
of G, and there is an edge between two vertices if the corresponding regions
are neighbors. Then, r = |V ∗| and m = |E| = |E∗|. This interpretation
provides a more symmetric Euler formula:

|E∗| = (|V ∗| − 1) + (|V | − 1) = |E|, (5)

which allows us to prove it without using induction, but rather by identifying
both parenthesis in Equation (5) as the number of edges of two spanning
trees T ∗ and T belonging to G∗ and G, respectively. A spanning tree T of
a connected graph G = (V,E) (that is, there is a path between any pair of
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Figure 2: The spanning tree (black edges) of the cube graph Q (continuous
edges and black vertices) and its dual (dashed edges and white vertices).

vertices) is composed of the vertex set V and |V | − 1 edges without forming
cycles. An example of this is shown in Figure 2, where each black continuous
edge of G (the graph of a cube Q) belongs to T , but where each black dashed
edge corresponds to an edge of T ∗ in G∗ (the graph of an octahedron). For
more details, see Aigner and Ziegler [1].

In our case, the proof of (c) is as follows: As each edge is the border of
two regions and each region has at least g edges, we have r ≤ 2m/g. Note
that this inequality is obtained from (2), considering the dual graph, since
r = |V ∗|, m = |E∗| and g = δ(G∗). Using this inequality and Equation (4),
we obtain (3).

As a particular case of (c), we have the following result:

(d) In any planar graph (g ≥ 3) the number of edges satisfies m ≤ 3n− 6;
if it does not contain triangles (g ≥ 4), then m ≤ 2n − 4; and if it

contains neither triangles nor squares (g ≥ 5), then m ≤ 5
3 (n − 2).

From the first inequality, we can see that the complete graph K5 (n = 5,
m = 10) is not planar. A graph is complete if there is an edge between every
pair of vertices. Similarly, from the second inequality, we also obtain that
the complete bipartite graph K3,3 (n = 6,m = 9) is not planar. A bipartite

graph (that is, the vertex set can be decomposed into two independent
subsets such that vertices in every subset are not adjacent) is complete if
each pair of vertices in different subsets are adjacent. See both graphs in
Figure 3. Notice that, for instance, the third inequality turns out to be an
equality in the case of the dodecahedron graph (see again Figure 1, n = 20
and m = 30).

In this context, we have the famous Kuratowski theorem [33], which
characterizes planar graphs (see also the book by West [42, pp. 246–251]
and the paper by Thomassen [40], where the relation between the planarity
criterion and the Jordan Curve Theorem is explained):
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Figure 3: The complete graph K5 and the complete bipartite graph K3,3.

• A graph is planar if and only if it contains no homeomorphic subgraph

to K5 or K3,3.

Recall that a graph H is homeomorphic to a graph G if the edges of G
correspond to (independent) paths in H.

From Equation (1) and again the inequalities in (d), we can prove the
following:

• Every planar graph G contains a vertex u of degree δ(u) ≤ 5. More-

over, if G does not contain triangles, then it has a vertex u of degree

δ(u) ≤ 3.

Indeed, if ni denotes the number of vertices with degree i ∈ N, then from
Equation (1) we have that

2m = n1 + 2n2 + 3n3 + · · · ≤ 2(3n − 6) = 6n1 + 6n2 + 6n3 + · · · − 12,

whence
5n1 + 4n2 + 3n3 + 2n4 + n5 − n7 − 2n8 − · · · = 12,

so that ni ≥ 0 for some i ≤ 5, as claimed. The proof of the case without
triangles is analogue.

The existence of a vertex with degree at most five allows us to prove,
by induction, the Five Color theorem (5CT), which was first proved by
Heawood [29] (see Aigner and Ziegler [1]):

• Five colors suffice to get a vertex-coloring of a planar graph.

Recall that in a vertex-coloring, adjacent vertices have different colors.
First note that the result is trivially true for graphs with at most 5

vertices. Then, assume that it is also true for graphs with n−1 > 5 vertices,
and let G be a graph with n vertices. We know that G contains a vertex
u ∈ V with degree δ ≤ 5. Let vi, 1 ≤ i ≤ δ, denote the adjacent vertices
to u. From the induction hypothesis, the graph G′ = G − u (obtained from
G by removing vertex u and all its incident edges) has a vertex-coloring
with r ≤ 5 colors. Therefore, if r ≤ 4 (which is always the case when
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Figure 4: The case r = δ = 5 in the proof of the Five Color theorem (5CT).

δ ≤ 4), we can restore vertex u and give it a color different from the colors
of the adjacent vertices vi. Thus, we obtain a coloring of G using at most
5 colors. Otherwise, if r = δ = 5 we can assume, without lost of generality,
that we have a situation as shown in Figure 4 (where vertex vi has color
i, 1 ≤ i ≤ δ). Now consider the paths with vertices alternatively colored
1-3 (with final vertices v1 and/or v3) and 2-4 (with final vertices v2 and/or
v4). As G′ is planar, these possible paths cannot cross each other (that is,
they have neither crossed edges nor common vertices). Then if, for example,
there exists the path 1-3 with initial-final vertices v1-v3, the path 2-4 with
initial vertex v2 cannot have v4 as final vertex, but another vertex denoted
by v′2 (see again Figure 4). Therefore, we can interchange the colors 2-4 in
this path, so that v2 gets color 4. We can then restore vertex u and assign
it color 2, obtaining a coloring of G with 5 colors.

We now consider the case of giving one of three colors to each edge of a
graph G with maximum degree 3. This is called a free edge-coloring of G.
In particular, the (‘not-free’) edge-coloring of a cubic (3-regular) graph, also
called Tait-coloring, corresponds to the case where adjacent edges receive
different colors. As we will see later, if G is a planar graph, the problem of
the existence of Tait-colorings is closely related to the Four Color theorem
(4CT). Moreover, we will also see that the construction of cubic graphs
which cannot be Tait-colored leads to Boolean algebra, which is commonly
used in the study of logic circuits. To this end, we introduce a natural
generalization of the concept of ‘color’, which describes in a simple way the
coloring (“0” or “1”) of any set of edges or, more abstractly, of any family
F of m colors chosen between three different colors, say C = {1, 2, 3}, such
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+ 0 11 12 13

0 0 11 12 13

11 11 0 13 12

12 12 13 0 11

13 13 12 11 0

Table 1: Klein’s group of Boole-colorings.

that color i ∈ C appears mi times. This situation can be represented by the
coloring-vector m = (m1,m2,m3), where m = m1 +m2 +m3. Then, we say
that F has Boole-coloring 0, denoted by Ψ(F) = 0, if

m1 ≡ m2 ≡ m3 ≡ m (mod 2),

whereas F has Boole-coloring 1 (more specifically 1a), denoted by Ψ(F) = 1

(or Ψ(F) = 1a), if

ma + 1 ≡ mb ≡ mc ≡ m + 1 (mod2),

where {a, b, c} = {1, 2, 3}. See Fiol and Fiol [20] for more information.
Recalling these definitions, the Boole-coloring of an edge e ∈ E with

color a ∈ C is Ψ(e) = Ψ({a}) = 1a, and the Boole-coloring of a vertex
v ∈ V , denoted by Ψ(v), is defined as the Boole-coloring of its incident
edges, which can have either different or the same colors. In this context, it
is curious to note the following facts:

1. If δ(v) = 1, then Ψ(v) = 1a if and only if the incident edge to vertex
v has color a ∈ C.

2. If δ(v) = 2, then Ψ(v) = 0 if both incident edges to vertex v have the
same color, and Ψ(v) = 1 if not.

3. If δ(v) = 3, then Ψ(v) = 0 if and only if the three incident edges to
vertex v have three different colors. Thus, in a Tait-coloring of a cubic
graph, all its vertices have Boole-coloring 0.

Moreover, a natural sum operation can be defined in the set B = {0,11,
12,13} of Boole-colorings in the following way: Given the colorings X1 and
X2 represented, respectively, by the coloring-vectors m1 = (m11,m12,m13)
and m2 = (m21,m22,m23), we define the sum X = X1 + X2 as the coloring
represented by the coloring vector m = m1+m2. Then, (B,+) is isomorphic
to the Klein group, with 0 as identity, 1a + 1a = 0, and 1a + 1b = 1c where
{a, b, c} = {1, 2, 3}; see Table .

Notice that, since every element coincides with its inverse, m1a = 1a +

1a+
m
· · · +1a is 0 if m is even and 1a if m is odd. From this simple fact,
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Figure 5: An example of the fact that every map has a 3-graph associated.

we can imply the following result (see Fiol [18]), which is very useful in the
further development of the theory and can be regarded as a generalization
of the so-called Parity lemma (see Isaacs [31]):

• Let G be a graph with n vertices, maximum degree 3, and having a free

edge-coloring, such that ni vertices have Boole-coloring 1i, for i ∈ C,

with n′ = n1 + n2 + n3 ≤ n. Then,

n1 ≡ n2 ≡ n3 ≡ n′ (mod 2). (6)

Indeed, since the Boole-coloring of each vertex is the sum of the Boole-
colorings of its incident edges, and recalling again Equation (1), we can
write

∑

v∈V

Ψ(v) =
3
∑

i=1

ni1i + (n − n′)0 =
3
∑

i=1

ni1i =
∑

e∈E

2Ψ(e) = 0,

but this equality is only satisfied if ni1i = 0 or ni1i = 1i, for every i ∈ C.
Then, from n1 + n2 + n3 = n′, we get the result.

Note that, as a direct consequence, we also get the following:

• There is no edge-coloring of a graph G having only one vertex with

Boole-coloring 1 (and the other vertices with Boole-coloring 0).

Another consequence is the following result by Tait [39]:

• A cubic planar graph is Tait-colorable if and only if its corresponding

map is 4-colorable.

Using the Boole-colorings, the proof of this last result is as follows: First,
recall that every map has a 3-graph associated, because a vertex with degree
greater than 3 can be replaced by a polygon, in such a way that the map
obtained can be colored with 4 colors, and so can the original map; see an
example in Figure 5. Now assume that we have the regions of the map with
the colorings 0,11,12,13. Then, to obtain a Tait-coloring of a cubic planar
graph, we only need to assign to each edge the sum of the colorings of both
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Figure 6: Obtaining a Tait-coloring of a 3-graph.
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Figure 7: The 4-coloring of a map and the Tait-coloring of its edges.

regions separated by this edge. To see that this gives a Tait-coloring, we
only have to study one vertex, as shown in Figure 6. Since we have a 4-
colored map, each two neighboring regions have different colors. Thus, no
sum can give 0. Moreover, since the three regions with a common vertex
have different colorings X1,X2 and X3 and (B,+) is a group, the colorings
X1 + X2, X1 + X3 and X2 + X3 must also be different. Figure 7 provides
an example of a 4-coloring of a map and its Tait-coloring (obtained from
Table 1), where the colorings 0,11,12 and 13 are denoted by 0, 1, 2 and 3,
respectively.

Conversely, if we want to obtain a 4-colored map from a Tait-coloring of
the edges of the corresponding graph, we begin by giving the coloring 0 to
any region considered as initial. Then, starting from this region, we follow
an arbitrary path crossing some edges and visiting all the regions. We give
each newly visited region the coloring obtained by adding the coloring of
the ‘previous’ region plus the coloring of the last edge crossed. As no edge
has the coloring 0, it is obvious that the coloring obtained for each region
is different from that of its ‘previous’ region in the path followed; for an
example of this process, see Figure 8 (left and center). Now, to finish the
proof, we need to show that the coloring of each region is independent of
the path followed. With this aim, let p1 and p2 be two paths with the same
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paths with the same initial and final regions.
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Figure 9: Two paths from a region 0 to another with an unknown color.

initial and final regions. We want to prove that the coloring obtained for
the final region is the same following both paths; there is an example of
this fact in Figure 8 (center and right). The colorings X and Y obtained
by following both paths are equal if and only if the sum of the colorings of
all edges crossed, respectively, by p1 and p2 is 0. Indeed, let X1,X2, . . . ,Xs

and Y1, Y2, . . . , Yt be the colorings of the edges crossed respectively by p1

and p2, then X1 + X2 + · · · + Xs = X and Y1 + Y2 + · · · + Yt = Y . If
(X1 +X2 + · · ·+Xs)+(Y1 +Y2 + · · ·+Yt) = 0, the sums in both parenthesis
are equal, so X = Y . To prove this equality, we can assume that p1 +p2 is a
simple curve (see Figure 9) because, otherwise, we could decompose it into
some simple curves. If we imagine that we cut the graph with this curve,
we obtain two graphs, such that the colorings of the edges crossed by the
curve must satisfy m1 ≡ m2 ≡ m3 (mod 2), where mi is the number of edges
crossed with coloring 1i. (Just imagine that in every cut we have two vertices
of degree 1 and apply (6).) Then, (X1+X2+ · · ·+Xs)+(Y1+Y2+ · · ·+Yt) =
m1 11 + m2 12 + m3 13 = 0, as claimed.

As previously mentioned, the concept of colorings allows us to use the
theory of Boolean algebra for the construction and characterization of snarks,
that is, cubic graphs that are not Tait-colorable, also known as class two.
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Figure 10: The Petersen graph P .
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Figure 11: Multipoles and the NOT gate.

The name ‘snark’ was proposed by Gardner [25], who borrowed it from a
nonsense poem by the famous English author Lewis Carroll [10]. The most
simple example of snark is the Petersen graph [35] (see Figure 10). With the
colorings we can obtain infinite families of snarks. An example is the family
obtained by joining adequately an odd number of copies of the multipole
(cubic graph with edges and semi-edges—or ‘dangling edges’— which are
edges with only one final vertex), shown in Figure 11 (left). This structure
behaves as a NOT gate of logic circuits in the sense that, its edges and semi-
edges having been Tait-colored, the colorings X1 and X2 are conjugated one
to each other, namely X2 = 0 (respectively, X2 = 1) if and only if X1 = 1

(respectively, X1 = 0). This is satisfied for any coloring of semi-edge e.
Two examples of this fact are shown in Figure 11 (center and right). If, as
previously stated, we join an odd number of these multipoles in a circular
configuration, adding some vertices to connect semi-edges e, any attempt at
Tait-coloring will lead to a conflict, and hence the graph is a snark. An ex-
ample with five multipoles can be seen in Figure 12. This family of snarks,
called flower snarks, was proposed by Loupekhine (see Isaacs [32]). The
first infinite families of snarks were given by Isaacs [31], but they can also
be obtained by using Boole-colorings. More details on this technique can be
found in Fiol [16].
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Figure 12: A flower snark.

3 Known and unknown: Ramsey theory

Let us consider the following result:

• At a cocktail party with six o more people, there are always three people

who are known or unknown to each other.

In other words, if the complete graph Kn on n ≥ 6 vertices can be (free)
edge-colored with two colors, say blue and red, then it always contains a
monochromatic triangle, namely, a subgraph K3 with its three edges blue
or red. Indeed, as each vertex u has degree 5, at least 3 of its incident edges
{u, vi}, 1 ≤ i ≤ 3, must have the same color, for example, blue. Then, if
any of the 3 edges {vi, vj} (1 ≤ i < j ≤ 3) is blue, we obtain a blue triangle.
Otherwise, we have a red triangle. Although this is an easy proof, it can be
extremely difficult to prove similar results having more colors and/or impos-
ing other monochromatic subgraphs. In this context, recall that, given m
graphs G1, G2, . . . , Gm, the Ramsey number R(G1, G2, . . . , Gm) is defined as
the smallest number n, such that, in any edge-coloring of Kn using m colors,
there always exists a monochromatic subgraph (with color i) isomorphic to
Gi for some 1 ≤ i ≤ m. If Gi is a complete graph Kr, the Ramsey number
is expressed by writing r instead of Kr, for sake of simplicity. Some known
results of exact values and bounds for Ramsey numbers are the following:

R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18, R(4, 4) = 18,

R(4, 5) = 25, 43 ≤ R(5, 5) ≤ 49; R(3, 3, 3) = 17; 51 ≤ R(3, 3, 3, 3) ≤ 62.

So, the result at the beginning of this section can be expressed as R(3, 3)
≤ 6. Moreover, since R(3, 3) ≥ 6 (it is easy to color with two colors the
edges of the complete graph K5 without monochromatic triangles: the ‘outer
cycle’ with one color and the ’inner’ cycle with the other) we conclude that
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R(3, 3) = 6. A good updated summary on this subject can be found in
Radziszowski [37].

As an example, we now prove the following result:

• R(3, 3, 3) = 17.

We first see that R(3, 3, 3) ≤ 17. We make an edge-coloring of a complete
graph using three colors; say blue, red and green. Let us assume that the
edge-coloring has no monochromatic triangles. The green neighborhood of a
vertex v is the set of vertices that have a green edge to v. The green neigh-
borhood of v cannot contain any green edge in order to avoid monochromatic
triangles. Then, the edge-coloring of the green neighborhood of v has only
two colors: blue and red. Since R(3, 3) = 6, the green neighborhood of v can
contain at most 5 vertices. With the same reasoning, the blue and the red
neighborhoods of v can have at most 5 vertices each. As every vertex differ-
ent from v is in the green, blue or red neighborhoods of v, then the complete
graph can have at most 1 + 5 + 5 + 5 = 16 vertices. Thus, R(3, 3, 3) ≤ 17.

Now, to prove that R(3, 3, 3) ≥ 17, we use algebraic graph theory based
on the properties of eigenvalues and eigenvectors of the adjacency matrix,
that is, a matrix with rows and columns indexed by the vertices of the graph,
and whose entries are either 1 or 0, according to whether the corresponding
vertices are adjacent or not.

A δ-regular graph with n vertices is said to be (n, δ; a, c)-strongly regular

if each pair of adjacent vertices has a common neighbors and each pair of
nonadjacent vertices has c common neighbors.

If R(3, 3, 3) ≥ 17, then we can color the edges of the complete graph
K16 with three colors, namely, we can make an edge-coloring of K16 with-
out monochromatic triangles. The required edge-coloring is equivalent to
a decomposition of K16 into three graphs G1, G2 and G3, each one corre-
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sponding to one color. It follows that each Gi, i = 1, 2, 3, must be a graph on
16 vertices, regular of degree 5 (because each vertex has degree 15 and the
neighborhood with one color has at most 5 vertices) and without triangles.
Moreover, each vertex u ∈ Vi has 10 vertices at distance 2, which can be
reached by 5 · 4 = 20 paths of length 2. Then, we can consider a graph in
which any two nonadjacent vertices have 2 common neighbors and any two
adjacent vertices have no common neighbors. In other words, a (16, 5; 0, 2)-
strongly regular graph. It is known that there is just one such graph, the
Clebsch graph, which is illustrated in two different ways in Figure 13. On
the left, there is the Clesbch graph, as the graph whose vertices are labeled
with the numbers 0 to 15 in base 2, and where two vertices are adjacent
whenever the corresponding labels differ either by one or by all four digits.
On the right, there is the Clebsch graph, as the rooted graph with vertices
labeled 0, i, and the unordered pairs ij, with i, j ∈ {1, 2, 3, 4, 5}, for i 6= j.
In this representation, the adjacencies are 0 ∼ i, ij ∼ i, ij ∼ j, and ij ∼ kl
if i, j, k, l are all different and i, j, k, l ∈ {1, 2, 3, 4, 5}. In fact, the Clebsch
graph is vertex-transitive (informally speaking, we see the same structure
from any vertex), so that any vertex can be chosen as vertex 0. Notice
that, from this view of the Clebsch graph, it is apparent that the induced
subgraph on ten vertices at distance 2 (from the vertex chosen as 0) is the
Petersen graph [35]; compare Figure 13 (on the right) and Figure 10.

Therefore, our problem is to find three edge-disjoint copies of the Clebsch
graph in K16. To this end, let us introduce the following terminology: Let
Gi = (V,Ei) be a family of graphs on the same vertex set V and such that
Ei ∩ Ej = ∅, for i, j = 1, 2, . . . ,m. We define the graph G =

⋃m
i=1 Gi as

the graph G = (V,E), where E =
⋃m

i=1 Ei. Notice that the corresponding
adjacency matrices satisfy A(G) =

∑m
i=1 A(Gi). With Cli denoting a graph

isomorphic to the Clebsch graph, our problem now reads: Is it true that
K16 = Cl1 ∪ Cl2 ∪ Cl3? In terms of their adjacency matrices Ai = A(Cli),
we have

A1 + A2 + A3 = J − I, (7)

since the adjacency matrix of K16 is equal to J − I, where J denotes the
matrix whose entries are all 1 and I is the identity matrix.

We now use eigenvalue techniques to address Equation (7). Recall that
the spectrum of an adjacency matrix gives the eigenvalues of this matrix
(which are real because the matrix is symmetric), and that each eigenvalue
has at least one eigenvector associated. To find the spectra of the Clebsch
graph and the matrix J−I, we can either compute them or simply find them
in some standard reference, such as Godsil and Royle [27]. We then have
that spAi = {51, 110,−35} and sp(J − I) = {151,−115}, where the super-
scripts denote the multiplicity of each eigenvalue. In both cases, the largest
eigenvalue has the all-1 vector j as eigenvector. It follows that the eigenvec-
tors of the other eigenvalues are in the subspace H = j⊥ (with vectors the
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Figure 14: K16/3 = Clebsch graph.

addition of whose components are zero). Denote by Ei the eigenspace of Ai

corresponding to the eigenvalue 1, namely, Ei = ker(Ai − I), and consider
the subspace F = E1 ∩ E2 ⊂ H. As dim E1 = dim E2 = 10 and dimH = 15,
we infer that dimF ≥ 5. From Equation (7), with A1v = v, A2v = v

and (J − I)v = −v, where v ∈ F , we obtain that A3v = −3v and, then,
dimF = 5 and F = ker(A3 + 3I). This implies that

H = F1 ∪ F2 ∪ F3

where Fi = Ej ∩ Ek, with {i, j, k} = {1, 2, 3}.
This indicates that the required spectral condition necessary to the ex-

istence of the decomposition K16 = Cl1 ∪ Cl2 ∪ Cl3 is satisfied. In this
case, this condition is also sufficient, and it is known that there are only
two nonisomorphic decompositions. One of these is illustrated in Figure 14,
which shows how to color one third of the edges of K16 with one color
using the Clebsch graph. By rotating this graph 2π

15 and 4π
15 radians, we

obtain the edges to be colored with the two other colors; with this, we get
R(3, 3, 3) = 17.

In the case of avoiding monochromatic triangles with m > 3 colors,
only bounds of Ramsey numbers are known. By definition, we state that
C(m) := R(3, 3, m. . ., 3) − 1 for m ≥ 1, that is, C(m) is the biggest integer n
such that Kn can be colored with m colors without monochromatic triangles.
The following upper bound is known (see Fiol, Garriga and Yebra [23]):

• C(m) ≤ ⌊m! e⌋, (8)

Recall that, surprisingly, we find the number e. The proof is as follows:
Obviously, C(1) = R(3) − 1 = 2 and we know that C(2) = R(3, 3) − 1 = 5
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and C(3) = R(3, 3, 3) − 1 = 16. If we compute C(3) from C(2), considering
that a vertex v can only be adjacent to 6 + 5 + 5 vertices, we obtain that
C(3) ≤ 3C(2) + 1 = 16. For any m ≥ 1, we get the recurrence

C(m + 1) ≤ (m + 1)C(m) + 1.

We solve the corresponding linear equation

D(m + 1) = (m + 1)D(m) + 1,

first solving its homogeneous equation

D(m + 1) = (m + 1)D(m) ⇒ D(m) = K m!,

where K is a constant. Then, we look for a particular solution D(m) =
K(m)m! of the complete equation:

K(m + 1)(m + 1)! = (m + 1)K(m)m! + 1

⇒ K(m + 1) − K(m) =
1

(m + 1)!
⇒ K(m) =

m
∑

r=1

1

r!
+ α

⇒ D(m) = m!

(

m
∑

r=1

1

r!
+ α

)

,

where α is a constant. Finally, C(1) = D(1) = 2 gives α = 1 and, hence,
C(m) ≤ ⌊m! e⌋, as claimed.

From the examples given at the beginning of this section, we saw that
51 ≤ R(3, 3, 3, 3) ≤ 62. Using (8), we obtain that

R(3, 3, 3, 3) = C(4) + 1 ≤ ⌊4! e⌋ + 1 = 66,

which represents a good upper bound, quite close to the best bound known.

4 Common friends: Distance-regularity and cod-

ing theory

As commented by Aigner and Ziegler [1], nobody knows who was the first
to state the following result and to give it the human touch:

• At a cocktail party with three or more people, if each two people have

exactly one friend in common, then there is a person (the ‘politician’)
who is a friend of everybody.

Nowadays, this result is known as the Friendship theorem. As mentioned
in the introduction, the first proof (by contradiction) was given by Erdős,

17



Rényi and Sós [12] in 1966, and is considered to be the most successful. Ba-
sically, it has two parts: First, it is proved that if the graph G which models
such a cocktail party (where people correspond to vertices and friendships
are represented by edges) is a counterexample with more than three vertices,
then it has to be regular, say with degree k. As a consequence, G has to
be strongly regular with parameters (n, k; 1, 1), that is, every two adjacent
vertices has exactly one common neighbor, and the same holds for every
two nonadjacent vertices. Second, spectral graph theory is used to prove
that G cannot exist. In fact, the hypothetic graph G would be an exam-
ple of a distance-regular graph, in this case with diameter 2 (the concepts
of strongly-regularity and distance-regularity coincide for connected graphs
with diameter 2). Generally speaking, we say that a graph is distance-regular

if, when it is observed or ‘hung’ from any of its vertices (called root), we
obtain a partition of the vertex set into layers, where the layer i contains the
vertices at distance i from the root, and the vertices in a layer are indistin-
guishable from each other with respect to their adjacencies. A more precise
definition of distance-regularity is the following: A graph G with diameter D
is distance-regular if, for every pair of vertices u, v and integers 0 ≤ i, j ≤ D,
the number pij(u, v) of vertices at distance i from u and at distance j from
v only depends on the distance between u and v, dist(u, v) = k. Then,
we write pij(u, v) = pk

ij, where the constants pk
ij are called the intersection

numbers. Indeed, because of the many relations between these numbers, it
is possible to give a much more simple definition, since for each distance k
we only need the pairs of distances (i, j) = (k − 1, 1), (k, 1) and (k + 1, 1).
The corresponding intersection numbers are enough to determine all the
others; see, for example, Biggs [4]. Therefore, the most common definition
of distance-regularity is: A graph G is distance-regular if, for every pair of
vertices u, v at distance dist(u, v) = k, the numbers ck, ak, and bk of ver-
tices adjacent to v, and at distance k − 1, k, and k + 1, respectively, from
u only depends on k, such that ck = pk

k−1,1, ak = pk
k,1, and bk = pk

k+1,1.
As simple examples of distance-regular graphs, we have the 1-skeleton of
regular polyhedrons; see again Figure 1. In Figure 15, we show the layer
partition of the cube graph Q with the so-called intersection diagram of the
corresponding intersection numbers. Notice that each layer is represented
by a circle containing its number of vertices.

Since their introduction by Biggs in the early 70’s, distance-regular
graphs, and their principal generalization called association schemes (see,
for example, Brouwer and Haemers [9]), have been key concepts in algebraic
combinatorics. These graphs have connections with other areas of mathe-
matics, such as geometry, coding theory, group theory, design theory, and
with other parts of graph theory. As pointed out by Brouwer, Cohen and
Neumaier in their monumental book on this subject [8], this is because most
of the finite objects with ‘enough’ regularity are closely related to distance-
regular graphs.
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Figure 15: A layer partition of the cube Q and its intersection diagram.

In 1997 Fiol and Garriga [21, 19] gave the following quasi-spectral char-
acterization of distance-regular graphs:

• A regular graph G with adjacency matrix A and d + 1 distinct eigen-

values is distance-regular if and only if the number |Γd(u)| of vertices

at distance d from each vertex u is a constant and only depends on the

spectrum of the matrix A.

More precisely, consider a regular graph G with n vertices and spectrum
spG = {λ1

0, λ
m1

1 , . . . , λmd

d
}, where λ0, λ1, . . . , λd are the eigenvalues of A

and the superscripts denote their multiplicities; λ0 is simple because G is
connected, thus A is irreducible (Perron-Frobenius theorem for nonnegative
matrices, see Godsil [26, p. 31]). Then, G is distance-regular if and only if,
for each vertex u,

|Γd(u)| = n

(

d
∑

i=0

π2
0

miπ
2
i

)−1

, (9)

where πi’s are moment-like parameters, which can be calculated from the
distance between eigenvalues with the formula πi =

∏d
j=0(j 6=i) |λi − λj|, for

0 ≤ i ≤ d. As examples, we give the spectrum, the number of vertices
and the value of |Γd(u)| obtained from Equation (9) of the cube Q and the
Petersen graph P (see again Figures 15 and 10, respectively):

• Cube: sp Q = {31, 13,−13, 31}, n = 8, |Γ3(u)| = 1.

• Petersen: spP = {31, 15,−24}, n = 10, |Γ2(u)| = 6.

As previously mentioned, the theory on distance-regular graphs has
many applications in coding theory. Recall that a code C, with a set of
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allowed words or code-words, can be simply represented as a vertex subset
of a distance-regular graph G; see Godsil [26] and van Lint [41]. The vertex
subset represents the ‘universe’ of words, with or without meaning, which
can be received. There is an edge between two words if, with a certain
probability, one can be transformed into the other in the process of trans-
mission. Then, the shorter the distance between two words in G, the more
similar the words. If a code-word has not suffered too many changes, the
resulting word is not far from the original one and it is possible to retrieve
it (decision criterion by proximity). Therefore, a code is better if the words
that constitute it are far away from each other. In the study and design of
good codes, some algebraic techniques are used to obtain information about
the structure of the graph G and, in particular, about the vertex subset C
that represents the code. In the applications of special relevance, there are
the so-called completely regular codes, whose graphs are structured in a kind
of distance-regularity around the set that constitutes the code. Thus, these
codes can be algebraically characterized in a similar way to the character-
ization of the distance-regular graphs through their spectra; see Fiol and
Garriga [22] for more information.

5 Weddings: Hall’s and Menger’s theorems. Multi-

bus networks

Let us imagine two groups of heterosexual people available for marriage,
one of women and another of men, the latter at least as large as the former.
Also imagine that every woman knows a certain number of men. The Hall
Marriage theorem gives necessary and sufficient conditions for every woman
to be able to marry a man who she knows:

• A complete matching is possible if and only if each group of women,

whatever their number, knows altogether at least an equal number of

men.

If the sets of women and men are denoted by U and V , respectively, we can
represent the above situation as a bipartite graph G = G(U ∪ V,E), with
stable vertex sets U and V and where edges stand for acquaintances. Then,
we can state Hall’s theorem in a more mathematical form:

• In a bipartite graph G = G(U ⊂ V,E) with |U | ≤ |V |, a complete

matching is possible if and only if, for every U∗ ⊂ U ,

|Γ(U∗)| ≥ |U∗|, (10)

where Γ(U∗) = ∪u∈U∗Γ(u).

(Recall that Γ(u) ⊂ V is the set of vertices adjacent to vertex u ∈ U .)
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Figure 16: The situation of the proof of Hall’s theorem.

There are several proofs of Hall’s theorem. The proof we present here is
by Rado, although our reasoning is a little different from that in Bollobás [6]
or Harary [28]. As necessity is trivial, we are going to prove sufficiency. If
graph G satisfies Eq. (10), for any ui, uj ∈ U with i 6= j and Γ(ui)∩Γ(uj) = ∅,
it is immediate that G contains a complete matching. If Γ(ui) ∩ Γ(uj) 6= ∅,
then there exist at least two edges uiv and ujv, with v ∈ V . Now we claim
that, after removing one of these edges, the resulting graph still satisfies
Eq. (10). Indeed, if this were not the case, there would be two subsets
U1, U2 ⊂ U , with ui ∈ U1 and uj ∈ U2, such that |Γ(U1)| = |U1| and
|Γ(U2)| = |U2|. Moreover, ui would be the only vertex of U1 adjacent to
(some vertex of) V , and uj would be the only vertex of U2 adjacent to V .
See this situation in Figure 16. Then, we would have that the common
number of adjacent vertices to U1 and U2 would satisfy the inequality:

|Γ(U1) ∩ Γ(U2)| ≥ |Γ(U1 − {ui}) ∩ Γ(U2 − {uj})| + 1 ≥ |Γ(U1 ∩ U2)| + 1

≥ |U1 ∩ U2| + 1.

Moreover, we would also have:

|Γ(U1 ∪ U2)| = |Γ(U1) ∪ Γ(U2)| = |Γ(U1)| + |Γ(U2)| − |Γ(U1) ∩ Γ(U2)|

≤ |Γ(U1)| + |Γ(U2)| − |U1 ∩ U2| − 1

= |U1| + |U2| − |U1 ∩ U2| − 1,

a contradiction since, according to Eq. (10),

|Γ(U1 ∪ U2)| ≥ |U1 ∪ U2| = |U1| + |U2| − |U1 ∩ U2|.

Consequently, every vertex v ∈ V with degree δ(v) ≥ 2 can be converted to
a vertex with degree 1, and the resulting graph still satisfies Eq. (10). This
completes the proof.

Curiously, Hall’s theorem is closely linked to another classical result in
graph theory: Menger’s theorem; see, for example, Bollobás [7]. As in the
case of Hall’s theorem, Menger’s theorem states that a certain condition,
which is trivially necessary for a result to be true, is also sufficient. In
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Figure 17: The complete multibus interconnection scheme.

Menger’s case, the result is not on matchings, but on the vertex-connectivity
κ (or edge-connectivity λ) of a graph, which is defined as the minimum
cardinality of a vertex (or edge) set whose deletion disconnects the graph
or, in particular, two given vertices u, v. This set is called a cutting set or
separating set of G or, in particular, of u, v. Then, Menger’s theorem states
that for every pair of vertices u, v (nonadjacent, in the case of computing
κ):

• The minimum size κ(u, v) of a separating set of vertices equals the

maximum number of independent paths in vertices from u to v.

• The minimum size λ(u, v) of a separating set of edges equals the max-

imum number of independent paths in edges from u to v.

It has been shown that the vertex-connectivity κ = minu,v∈V κ(u, v) (or
edge-connectivity λ = minu,v∈V λ(u, v)) of a graph or digraph G (a digraph
is a graph whose edges are associated to one of the two possible directions)
reaches its maximum value, which equals the minimum degree of G, if in
G the diameter is small enough with respect to the girth (see Fàbrega and
Fiol [15]) or if the number of vertices is large enough with respect to the
diameter (see Fiol [17]).

Both the theorems mentioned, Hall’s and Menger’s, have many appli-
cations in the study and design of interconnection networks (for example,
between processors) and in communication networks. Here we explain an
application of Hall’s theorem to the study of multibus interconnection net-

works: A multiprocessor system with shared memory and multibus intercon-
nection network consists of P processors, B buses and M memory modules
with B ≤ min{P,M}. The processors have access to the memory mod-
ules through the buses, so we can establish processor-bus and bus-memory
connections. Let us assume that there are m ≤ M requirements by the
processors for accessing to different memory modules. As each processor-
memory connection requires a bus, if m ≤ B, then m memories will be
assigned; instead, if m > B, then only B memories will be assigned. In the
complete scheme (see Figure 17), each bus is connected to all the memories
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and all the processors. This represents B(P + M) connections, and gener-
ally this provides an important saving with respect to the crossbar network
with PM connections, one connection between each pair processor-memory,
because the number of buses is normally much smaller than the number of
processors and memories. For example, if M = N (an usual situation), the
saving is obtained if B < M/2.

Because the cost of the network basically depends on the number of
connections, it is useful to consider the redundancy of this scheme. Namely,
what is the maximum number of connections (processor-bus or bus-memory)
that can be removed without having system degradation? In other words,
how many connections, from all of B(P + M), can be removed such that

any of the m ≤ B processors asking for access to any of the m different

memory modules do not lose access? The answer is a direct consequence of
the following result:

• In a multiprocessor system with multibus network without having degra-

dation, each bus can be disconnected from at most B − 1 altogether

processors or memory modules.

The proof is as follows: For each bus i, 0 ≤ i ≤ B − 1, let pi and mi

be, respectively, the number of processors and memories connected to it.
Analogously, let pi and mi be the numbers of processors and memories
disconnected from bus i. Obviously, pi + pi = P and mi + mi = M . The
result states that, in a non-degrading system, each bus i can be disconnected
from, at most, B − 1 processors or memories, namely, pi + mi ≤ B − 1 for
0 ≤ i ≤ B − 1. But we can also state that each bus must have more than
P + M − B connections, such that pi + mi > P + M − B for 0 ≤ i ≤
B − 1. Assume that, on the contrary, for each bus i, we have pi + mi ≥ B.
Let k1, k2, . . . , ky with y ≤ pi ≤ P and j1, j2, . . . , jx with x ≤ mi ≤ M
be, respectively, the processors and memories disconnected to the bus i.
Note that x + y = B. Now consider x other processors ky+1, ky+2, . . . , ky+x

and y other memories jx+1, jx+2, . . . , jx+y, as in Figure 18. Let (k, j) be
the requirement of processor k to access to memory j. None of the B
requirements

(k1, jx+1), (k2, jx+2), . . . , (ky, jx+y), (ky+1, j1), (ky+2, j2), . . . , (ky+x, jx)

can use bus i, and this means that the system suffers degradation.
So, as stated before, the conclusion is that the maximum number of

redundant connections is B(B − 1). In fact, this value is obtained with
the so-called minimum topologies, such as the rhombic and the staircase

topologies; see Tables 2 and 3, respectively. More details can be found in
Fiol, Valero, Yebra and Land [24] and in Lang, Valero and Fiol [34].

Notice that the result only gives us necessary conditions for suffering
degradation. In this context, Hall’s theorem is used to give a characteriza-
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Figure 18: Part of a system that suffers degradation.

Rhombic scheme

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7 7 7 7 7 7 7 7 7
6 6 6 6 6 6 6 6 6

5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0

Table 2: Matrix representation of the rhombic scheme with M = 16 and
B = 8 (entries indicate the buses connected to memory modules).

tion for the interconnection topologies to prevent degradation of the system,
as in the aforementioned cases of the complete and the minimum topologies:

• A multibus system does not suffer degradation if and only if any of the

p ≤ B disjoint pairs processor-memory are connected to a set of, at

least, p buses.

As previously stated, this result gives necessary and sufficient conditions
for a non-degrading multibus system.
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