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Abstract

These are the notes of a talk in which we translate from the A
1-homotopy theo-

retic context an argument from [Mor99] showing that a homotopy invariant presheaf
of spectra on the category of smooth schemes that satisfies Nisnevich descent auto-
matically satisfies descent for abstract blow-ups.

More concretely, Theorem 3.3.1 in [Mor99] roughly says that a Nisnevich distin-
guished square of schemes is homotopy cartesian when seen in the stable A

1-homotopy
category. We complete the details of the proof of this theorem and write it in the lan-
guage of presheaves of spectra. This is theorem 3.7 in this notes.
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1 Preliminaries

In this section we recall some preliminary notions we need. We collect some known
results on different Grothendieck topologies we use.

In these notes Schk will denote the category of schemes of finite type over Spec k
where k is a field. Note that in particular, every scheme X ∈ Schk is Noetherian. The
subcategory Schk consisting of smooth schemes will be denoted by Smk.
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When talking about coverings in a Grothendieck site C, we will refer either to the
collection of morphisms {Ui → X} which cover X or to the coproduct of them, which
is a single morphism U =

∐

Ui → X . The context will make clear what we mean.
Note that if the covering is not finite, the morphism U → X is not of finite type.

1.1 cd-structures and topologies defined by squares

Here we set some terminology and sketch a couple of important ideas related to a class
of Grothendieck topologies defined by generating commutative squares in an abstract
way as done by Voevodsky in [Voe00a]. The main examples of such topologies we will
need are the Nisnevich and cdh topologies. They will be discussed later.

Definition 1.1. Let C be a category with an initial object 0. A cd-structure on C
is a class P of commutative squares in C closed under isomorphism of squares. The
squares in P will often be called distinguished squares.

A cd-structure P on C gives an associated Grothendieck topology tP , the coarsest
one for which every commutative square

B //

��

Y

��
A // X

in P gives a covering {A → X, Y → X} for tP .

Definition 1.2. Let P be a cd-structure on C and tP the associated Grothendieck
topology. The class of simple coverings is the smallest class of coverings of tP such
that

i) The isomorphisms are simple coverings.

ii) Every distinguished square

B //

��

Y

��
A // X

in P gives a simple covering {A → X, Y → X}.

iii) The composition of simple coverings is simple.

Observation 1.3. The finite simple coverings are the coverings obtained composing
a finite number of coverings coming from distinguished squares.

Voevodsky defines three important properties for the topologies coming from cd-
structures: completeness, regularity and boundedness. What matters to our discussion
is that complete and regular cd-topologies are nice because the sheaf condition can be
checked only on distinguished squares. If in addition the cd-topology is bounded the
sheaves have finite cohomological dimension. The topologies that we are interested
in, the Nisnevich and cdh ones, are complete, regular and bounded, as shown by
Voevodsky in [Voe00b].

1.2 Splitting sequences

Now we restrict to the category Schk.

Definition 1.4. A splitting sequence for a morphism of schemes f : U → X is a finite
filtration

∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xr = X

of X such that
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i) Every morphism Xi → Xi+1 is a closed embedding

ii) The morphism U ×X Xi → Xi admits a section over Xi \ Xi−1 for every i, i.e.
there are morphisms σi : Xi \ Xi−1 → U ×X Xi such that fσi = idXi\Xi−1

.

Definition 1.5. A morphism f : U → X has the rational point lifting property if
every point x : Spec k → X admits a lifting x̃ : Spec k → U such that

i) The diagram

U

f

��
Spec k

x //

x̃

<<
x

x
x

x
x

x
x

x
x

X

is commutative,

ii) f induces an isomorphism on residue fields k(x) → k(x̃).

Proposition 1.6. A morphism of schemes f : U → X has a splitting sequence if, and
only it has the rational point lifting property.

Proof. See [Voe00b] lemma 2.15.

1.3 The Nisnevich topology

The Nisnevich topology is a Grothendieck topology (strictly) in between the Zariski
and the étale topologies. In some sense has the good properties of both topologies
avoiding the bad ones. For example, We will see that the Nisnevich topology is
generated by distinguished squares, like the Zariski topology, and is fine enough to
allow an easy local description of closed embeddings of smooth schemes. They are,
Nisnevich locally, like the zero section embedding of a vector bundle.

Definition 1.7. The Nisnevich topology on Schk is the Grothendieck topology given
by the covering families {Ui → X} such that

i) The morphisms Ui → X are étale.

ii) The morphism U =
∐

Ui → X is an epimorphism.

iii) The morphism U =
∐

Ui → X has the rational point lifting propery.

Definition 1.8. We say that a diagram of schemes

W //

��

Z

��
U // X

is a Nisnevich distinguished square if

i) it is pull-back diagram,

ii) the map U → X is an open embedding,

iii) the map Z → X is an étale morphism which induces an isomorphism (Z \
W )red → (X \ U)red with the reduced scheme structures.

Observation 1.9. The Nisnevich distinguished squares form a cd-structure on Schk.
Moreover, a Nisnevich distinguished square gives a covering {U → X, Z → X} which
is a covering for the Nisnevich topology.

Proposition 1.10. Every Nisnevich covering in Schk admits a finite simple refine-
ment for the Nisnevich cd-structure.
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Proof. See [Voe00b] proposition 2.16.

Corollary 1.11. The Nisnevich topology on Schk is generated by the Nisnevich dis-
tinguished squares, in the sense that the Nisnevich topology is the coarsest topology in
which the Nisnevich distinguished squares give coverings.

Proof. The fact that Nisnevich distinguished squares give Nisnevich covers, says that
the Nisnevich topology is finer than the one generated by the distinguished squares.
The converse comes from the proposition.

1.4 The abstract blow up topology

Definition 1.12. The abstract blow-up topology is the Grothendieck topology on Schk

given by the coverings {Ui → X} such that U =
∐

Ui → X is a proper epimorphism
with the rational point lifting property.

Definition 1.13. Let

W //

��

Z

��
Y // X

be a diagram of schemes. We say it is an abstract blow-up square if

i) it is a pullback square,

ii) the map Y → X is a closed embedding,

iii) the map Z → X is a proper map that induces an isomorphism on Z\W → X\Y .

We say that it is a blow-up square if

i) it is a pullback square,

ii) the map Y → X is a closed embedding,

iii) Z is obtained by blowing up X with center Y .

Both, abstract blow-up squares and blow-up squares give cd-structures on Schk.

Observation 1.14. Every abstract blow-up

W //

��

Z

��
Y // X

gives a covering {Y → X, Z → X} for the abstract blow-up topology.

Observation 1.15. Note that a blow-up square is an abstract blow-up, but the
converse does not hold in general for singular schemes.

Proposition 1.16. Every abstract blow-up covering {Ui → X} admits a finite simple
refinement in the abstract blow-up cd-structure.

Proof. See [Voe00b] proposition 2.17.

Proposition 1.17. If k admits resolution of singularities (for example if chark = 0),
every abstract blow-up covering {Ui → X} of a smooth scheme X by smooth schemes
admits a finite simple refinement in the blow-up cd-structure.
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Proof. By the proposition 1.16 it only remains to check that a covering {Y → X, Z → X}
coming from an abstract blow-up square can be refined to a covering obtained by com-
position of blow-up’s of smooth schemes with smooth centers. But this follows from
resolution of singularities.

Corollary 1.18. The abstract blow-up topology on Schk is generated by the abstract
blow-up squares. Moreover, if k admits resolution of singularities, the abstract blow-up
topology on Smk is generated by actual blow-up squares.

1.5 The cdh topology

The cdh topology is the combination of the Nisnevich and abstract blow-up topology.

Definition 1.19. The cdh topology on Schk is the coarsest Grothendieck topology
such that every Nisnevich and abstract blow-up covering is also a cdh covering.

Proposition 1.20. Let {Ui → X} be a cdh covering. Then there is a factorization

U =
∐

Ui → X ′ → X

such that U → X ′ is a Nisnevich covering and X ′ → X an abstract blow-up covering.

Proof. See [SV00] proposition 5.9.

Now we will consider the combined cd-structure in which the distinguished squares
are both, Nisnevich distinguished squares and abstract blow-ups. Then we have

Corollary 1.21. Every cdh covering admits a finite simple refinement for the com-
bined cd structure.

Proof. This follows from proposition 1.20 and the fact that the Nisnevich and abstract
blow-up coverings admit simple refinements.

2 Presheaves of spectra

In this section we recall some facts about presheaves of spectra. We work on a fixed
category Spt of spectra, for example the Bousfield-Kan spectra with its model struc-
ture as described in [BF78].

Definition 2.1. A presheaf of spectra on a category C is a contravariant functor
F : Cop → Spt from C to the category of spectra. A morphism of presheaves of
spectra is a natural transformation. We denote the category of presheaves of spectra
by PreSh(C,Spt).

Definition 2.2. Let F be a presheaf of spectra. The homotopy presheaf πnF associ-
ated to F is the presheaf of abelian groups defined by

πnF (U) = πn(F (U)).

The category C will often come with a Grothendieck topology. Then, on can form
the associated sheaf of the homotopy presheaves πnF .

Definition 2.3. Let F be a presheaf of spectra on a site C. The homotopy sheaves
π̂nF are the sheaves associated to the presheaf πnF with respect to the topology on
C.
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2.1 Model category structure on presheaves of spectra

Definition 2.4. Let C be a site, and F, G ∈ PreSh(C,Spt). A map f : F → G of
presheaves of spectra is called

• An injective cofibration if it is a level-wise cofibration of spectra.

• A global weak equivalence if it induces isomorphisms f : πnF → πnG on homo-
topy presheaves

• A local weak equivalence if it induces isomorphisms f : π̂nF → π̂nG on homotopy
sheaves.

• A local injective fibration if it has the right lifting property with respect to
cofibrations that are local weak equivalences.

Observation 2.5. A morphism f : F → G is a global weak equivalence if and only it
induces degree-wise stable weak equivalences.

If the site C has enough points, a morphism f : F → G is a local weak equivalence
if and only if it induces stalk-wise stable weak equivalences (see [Jar87b]).

Now we describe the Jardine model structure on presheaves of spectra.

Theorem 2.6. The category of presheaves of spectra together with the injective cofibra-
tions, local weak equivalences and local injective fibrations described above is a proper
simplicial model category.

Proof. See [Jar87b].

2.2 Hypercohomology and descent

We can use presheaves of spectra as coefficients for a cohomology, generalising at the
same time the sheaf cohomology of abelian sheaves and the generalized cohomologies
associated to a spectrum.

First of all, let’s chose a fibrant replacement functor for the Jardine model structure
on presheaves of spectra. We will denote the fibrant replacement of a presheaf of
spectra F by H(·, F ). The homotopy groups of this fibrant replacement are called the
hypercohomology groups of F ,

H
n(U, F ) = π−nH(U, F ).

Observation 2.7. Given a sheaf of abelian groups A, we can form a presheaf of
Eilenberg-MacLane spectra as follows

KA(U) = K(A(U)),

which assigns as sections over U the Eilenberg-MacLane spectrum associated to the
abelian group A(U). An easy computation shows that the hypercohomology of the
presheaf of spectra KA coincides with the sheaf cohomology of A, i.e.

H
i(U, KA) ≃ Hi(U, A).

Observation 2.8. Consider the category Top of topological spaces. A spectrum T
gives rise to a generalized cohomology hn

T : Topop → Ab given by

hn
T (U) = [Σ∞U, ΩnT ].

We can define a presheaf of spectra on Top associated to the spectrum T taking the
internal hom spectrum instead of the homotopy classes of maps.

FT (U) = Hom(Σ∞U, T )

Now it is easy to see that
hn

T (U) ≃ H
n(U, FT )
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Definition 2.9. A presheaf of spectra F : Cop → Spt is said to satisfy descent if the
fibrant replacement map F → H(·, F ), which, a priori, is a local weak equivalence, is
in fact a global weak equivalence, i.e. for every U ∈ C the map

F (U) → H(U, F )

is a weak equivalence.

Observation 2.10. Voevodsky calls a presheaf of spectra that satisfies descent flasque.
Other authors call them quasi-fibrant.

Observation 2.11. When C = Schk, we will say that a presheaf of spectra satisfies
Zariski or Nisnevich descent if it satisfies descent in the model category associated
with the Nisnevich or Zariski topologies.

2.3 The Mayer-Vietoris property and Cech diagrams

Definition 2.12. We say that a commutative square of spectra

A
i //

j

��

B

f

��
C

g // D

is homotopy cartesian if the corresponding square in the homotopy category of spectra
HoSpt induces a distinguished triangle

A
(i,−j)// B ⊕ C

f+g // D // A[1]

Observation 2.13. This is equivalent to say that A is a homotopy pullback of the
corresponding diagram or that D is a homotopy pushout.

Now we give an abstract version of the Mayer-Vietoris property. For the rest of
this section the category C will be the category Schk together with the Nisnevich or
cdh topology.

Definition 2.14. Let F ∈ PreSh(C,Spt). We say that F has the Mayer-Vietoris
property if it sends every distinguished square in C to a homotopy cartesian square of
spectra.

A cartesian square in C which is sent to a homotopy cartesian square of spectra is
said to be F -acyclic.

If we take a finite covering U = {Ui → X}i∈I of more than two objects, we can
generalise this in the Cech way. First some notation.

Definition 2.15. Let �
+
I the category associated to the partially ordered set of

subsets of I. Let �I full subcategory of �
+
I obtained by removing the object associated

to the empty set.

That is, �
+
I has a cubical shape with the arrows pointing away from the object

represented by the empty set.

Example 2.16.

�
+
{1,2} =

• •oo

•

OO

•oo

OO

�{1,2} =

• •oo

•

OO
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We will use these categories as shapes for diagrams of spectra. A diagram of spectra
of shape �

+
I will be a covariant functor D : �

+
I → Spt. Observe that a diagram of

shape �
+
I can be thought as an augmented diagram of shape �I , that is, giving �

+
I -

diagram D : �
+
I → Spt is the same as giving a �I -diagram D : �I → Spt together

with maps D(∅) → D({i}) for every i ∈ I making the obvious diagrams commutative.
So, given a presheaf of spectra and a covering U we get a Cech cubical diagram of

spectra Č�+(U, F ) : �
+
I → Spt such that for every s ∈ �

+
I

Č�+(U, F )s = F (
∏

X
i∈s

Ui)

where the product must be understood as a fibered product over X . As Č�+(U, F )∅ =
F (X), by the previous remark we can think this diagram as an augmented �I -diagram

F (X) → Č�(U, F )•.

Proposition 2.17. A presheaf of spectra F ∈ PreSh(C,Spt) has the Mayer-Vietoris
propery if, and only if for every finite covering U = {Ui → X} the above augmentation
induces a weak equivalence

F (X) → holim
�I

Č�(U, F )•

Proof. This is done by induction on the dimension of the cubes and apply the Fubini
property of homotopy limits.

Finally, we relate the Mayer-Vietoris property with the descent property.

Theorem 2.18. Let C = Schk with the Nisnevich or cdh topology. A presheaf of
spectra F ∈ PreSh(C,Spt) satisfies descent if, and only if it has the Mayer-Vietoris
property.

Proof. It follows from [Voe00a] lemma 3.5 applied to the fibrant resolution morphism
and the fact that fibrant presheaves have the Mayer-Vietoris property.

2.4 Homotopy invariant presheaves of spectra

Definition 2.19. We say that a presheaf of spectra on Schk is homotopy invariant if
for every scheme X , the projection X×A

1 → X induces a weak equivalence of spectra
F (X) → F (X × A

1).

Proposition 2.20. Let F be a presheaf of spectra on Schk satisfying Zariski descent.
Then F is homotopy invariant if, and only if for every vector bundle p : E → X the
induced map F (X) → F (E) is a weak equivalence.

Proof. Let us assume F is homotopy invariant. Let U = {fi : Ui → X} be a Zariski
covering such that Ei = p∗Ui → Ui is a trivial vector bundle. The homotopy invariance
says that F (Ui) → F (Ei) is a weak equivalence. Together with Zariski descent we
have

F (X) ≃ holim Č(U, F )•

≃ holim Č(p∗U, F )•

≃ F (E).
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3 Descent for blow-ups

In this section we prove that a presheaf of spectra on Smk which is homotopy invariant
and satisfies Nisnevich descent automatically satisfies cdh descent. This is Theorem
3.3.1 in [Mor99].

The proof is done in two parts. The homotopy invariance condition is used to
show that this result is true for the blow-up of the zero section embedding of a vector
bundle. Next we use Nisnevich descent to reduce to this special case.

3.1 Special case: zero section of a vector bundle

Now we will study the blow-up of the zero section embedding of a vector bundle
p : E → X . Recall that the exceptional divisor of the blow-up is the projectivised of
the normal bundle of the embedding s : X → E, which in this case is PE. So, we have
a blow-up square

PE //

q

��

Ẽ

p

��
X

s // E

Recall that on PE there is a tautological line bundle OPE(−1) whose total space is
identified as the closed subscheme of q∗E whose fiber over y ∈ PE corresponds to the
points in q∗E lying in the line y.

Proposition 3.1. In the above situation, the blow-up square of the zero section em-
bedding of the vector bundle E → X is isomorphic to the cartesian square

PE
s′

//

��

OPE(−1)

��
X

s // E

where s′ is the zero section embedding of the line bundle OPE(−1) → PE.

Proof. The property of being a blow-up square is (Zariski) local on X , so restricting
to an open cover we can assume the vector bundle is trivial.

Assume for a moment that X = Spec k. The zero section embedding is nothing
more than a point in A

n, and the blow-up Ẽ can be described as

Ẽ =
{

(y, z) ∈ P
n−1 × A

n | z ∈ y
}

.

This coincides with the total space of OPE(−1), so in that case the blow-up of the zero
section embedding is given by the square

P
n−1

��

// OPn−1(−1)

��
Spec k // An

Now taking the fibered product (over Spec k) of the previous diagram with X ,
gives the cartesian square

X × P
n−1 //

��

X × OPn−1(−1)

��
X // X × A

n
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which is also a blow-up square. But now we see that this is the blow-up of the zero
section embedding of a trivial vector bundle over E = X × A

n → X , and that the
top right corner corresponds to the line bundle OPE(−1) over PE, precisely what we
wanted to show.

Corollary 3.2. Let F : Sm
op
k → Spt be a homotopy invariant presheaf of spectra

satisfying Zariski descent. Then the square

PE //

q

��

Ẽ

p

��
X

s // E

obtained by blowing-up the zero section embedding of a vector bundle E is F -acyclic.

Proof. Observe that the two horizontal maps of the blow up square of the zero section
embedding are zero sections of vector bundles. The lower one by hypothesis, and the
upper one is the zero section of the line bundle OPE(−1) by the proposition. But now,
homotopy invariance together with Zariski descent imply that F sends the horizontal
maps to weak equivalences, and the resulting square of spectra is trivially homotopy
cartesian.

3.2 Reduction to the special case

First we recall a theorem in [EGA4] which says how a closed embedding of smooth
schemes looks like locally in the étale topology.

Proposition 3.3. Let f : Y → X be a closed embedding of smooth schemes. Suppose
that n = dim X and k = dimY . Then there exist an open cover of X by affine open
subschemes Ui together with étale maps gi : Ui → A

n such that they fit in pull-back
squares

Y ×X Ui

f //

��

Ui

gi

��
A

k // An

where the morphism A
k → A

n is the inclusion in the first k coordinates.

Proof. See [EGA4] Corollaire 17.12.2.d.

Observation 3.4. This proposition says that, locally in the étale topology, a closed
embedding between smooth schemes looks like the embedding A

k → A
n.

Let’s give now a local description of a closed embeddings between smooth schemes
for the Nisnevich topology. It will follow from the following result.

Proposition 3.5 ([Mor99] Lemme 3.2.9). Consider a pullback square

Y
i //

��

X

��
A

k // An
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where the right vertical map is étale and separated. Then there exist a smooth scheme
Z fitting in a commutative diagram

Y // X

Y

id

OO

id

��

// Z

OO

��
Y // Y × A

n−k

where the two squares are cartesian and the right vertical maps are étale.

Proof. Consider the product of Y → A
k and the identity id : A

n−k → A
n−k. This

gives an étale map Y × A
n−k → A

n. Now define

Z ′ = X ×An (Y × A
n−k).

Note that the projections π′
1 : Z ′ → X and π′

2 : Z ′ → Y × A
n−k are étale maps.

We can form the following commutative cube

Y //

��

Y × A
n−k

��

Y ×Ak Y //

π1

��

π2
??

�
�

�

Z ′

��

??
�

�
�

A
k // An

Y //

??
�

�
�

X

??
�

�
�

�

where the upper horizontal map Y → Y × A
n−k on the back face is the zero section

embedding.
Observe that the left, right, lower and back faces are pullbacks by definition, there-

fore the front and upper faces are also pullback squares. So we get two cartesian
squares

Y ×Ak Y //

π1

��

Z ′

π′

1

��
Y // X

and
Y ×Ak Y //

π2

��

Z ′

π′

2

��
Y // Y × A

n−k

Now the diagonal embedding Y → Y ×Ak Y is open because Y → A
k is unramified,

and closed because it is separated. So we have a decomposition

Y ×Ak Y = Y ⊔ Y ′,

where Y and Y ′ are closed subschemes of Y ×Ak Y and therefore both are closed
subschemes of Z ′. Finally, define

Z = Z ′ \ Y ′



March 11, 2010 12

Restricting the upper map of the previous two pullback squares to Y → Z and sticking
them together, we get

Y // X

Y

id

OO

id

��

// Z

OO

��
Y // Y × A

n−k

as we wanted.

Observation 3.6. Note that that in the previous proposition, Z gives two Nisnevich
distinguished squares

U ×X Z

��

// Z

��
U // X

V ×Y ×An−k Z

��

// Z

��
V // Y × A

n−k

where U = X \ Y and V = Y × A
n−k \ Y .

Propositions 3.3 and 3.5 together say that a closed embedding between smooth
schemes, locally in the Nisnevich topology, looks like the zero section embedding of a
vector bundle.

Now mimicking the suggested proof of theorem 3.3.1 in [Mor99], we have the
following result.

Theorem 3.7. Let F : Sm/kop → Spt be a homotopy invariant presheaf of spectra
on the category of smooth schemes satisfying Nisnevich descent. Then F has the
Mayer-Vietoris property for blow-up squares (i.e. sends blow-up squares to homotopy
cartesian squares of spectra).

Proof. Let

Ỹ //

��

X̃

��
Y // X

(1)

be a blow-up square of smooth schemes. By 3.3 X has a Zariski open cover U =
{Ui → X} such that we have cartesian squares

Yi
//

��

Ui

��
A

k // An

(2)

with étale vertical maps. Here Yi = Y ×X Ui. By the proposition 3.5 we get a diagram

Yi
// Ui

Yi

id

OO

id

��

// Zi

OO

��
Yi

// Yi × A
n−k

(3)
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in which the two squares are cartesian and the two right vertical maps are étale. Let
us call Ei = Yi × A

n−k and see it as a trivial vector bundle Ei → Yi. The lower map
in (3) is the zero section embedding Yi → Ei. Now we blow-up Ui along Yi and Ei

along Yi, obtaining two commutative squares attached to the diagram (3). Moreover,
we can pull back both squares over the middle map Yi → Zi in (3) and both coincide
with the blow up of Zi along Yi. So, blowing up the schemes on the right with center
on the left gives a big commutative diagram

Yi
// Ui

Ỹi
//

??
�

�
�

Ũi

??
�

�
�

Yi
//

OO

��

Zi

��

OO

Ỹi
//

OO

��

??
�

�
�

Z̃i

OO

??
�

�
�

��

Yi
// Ei

Ỹi
//

??
�

�
�

Ẽi

??
�
�

�

(4)

We proceed in two steps. First of all we show that the upper face in the diagram
is F -acyclic. The second step consists in gluing all the squares

Ỹi
//

��

Ũi

��
Yi

// Ui

coming from the upper face in (4), which are shown to be F -acyclic in step 1, to prove
that the commutative square (1) is also F -acyclic, as we wanted to prove.

Step 1: Looking at (4) we see the following

• It follows from 3.2 that the lower face is F -acyclic because it is the blow up of
the zero section embedding of a vector bundle.

• Because the central horizontal square in (4) is obtained by pulling back either
the upper or the lower horizontal squares, all the vertical maps on the left are
identities. So both squares on the left face look like

Ỹi

id //

��

Ỹi

��
Yi

id // Yi

and are obviously F -acyclic.

• The two squares on the right face are also F -acyclic. We show it for the upper
one, but the same holds for the lower. Let Wi = Ui \Yi. Because the upper right
square is a blow up, we can fit it in a commutative diagram

Wi ×X Zi
//

��

Z̃i
//

��

Zi

��
Wi

// Ũi
// Ui
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The outer rectangle is a Nisnevich distinguished square as pointed out in the
observation 3.6. For the same reason, the left square is also a Nisnevich distin-
guished square. As F satisfies Nisnevich descent, both, the outer rectangle and
the left square are F -acyclic, so the right square is also F -acyclic.

Now we can conclude step 1. We have seen that the squares on the left, right and
lower faces are F -acyclic. A small exercise on homotopy limits shows that the upper
horizontal square is also F -acyclic, as we wanted.

Step 2: Let us denote the original blow up square (1) by X• → X considered as
a �

op
2 augmented diagram, i.e. X• represents the diagram

Ỹ //

��

X̃

Y

Recall that we obtained a Zariski covering U = {Ui → X}i∈I of X such that the blow
up square 1 restricted to each Ui is F -acyclic by step 1. So pulling back the covering
U to each Xt we get a covering Ut and taking the Cech cubical diagrams associated
to that coverings, we get a �2 × �I-diagram of spectra that we denote by Č(U•, F )•.
The two dots indicate that this is a diagram of Cech diagrams, i.e. a �2×�I-diagram.

We want to check the Mayer-Vietoris propery of F on the square (1). This is
equivalent to saying that the augmentation F (X) → F (X•) induces a weak equivalence

F (X) → holim
�2

F (X•).

Let’s check this last condition holds,

F (X) ≃ holim
s∈�I

Č(U, F )s

≃ holim
s∈�I

holim
t∈�2

Č(Ut, F )s

≃ holim
t∈�2

holim
s∈�I

Č(Ut, F )s

≃ holim
t∈�2

F (Xt).

The first isomorphism comes from the generalised Mayer-Vietoris property of F for
the Zariski covering U of X . The second comes from the fact obtained in step 1
that the blow up square restricted to the open sets in U are F -acyclic. The third
isomorphism is the Fubini or interchange property of homotopy limits. Finally the
fourth isomorphism comes again from the generalised Mayer-Vietoris property of F
for the restricted Zariski covers Ut on Xt. This concludes the proof.

Corollary 3.8. If k admits resolution of singularities, for example if chark = 0, then
a presheaf of spectra satisfying the hypothesis of the previous theorem satisfies cdh
descent.

Proof. By 1.18 the blow-up squares of smooth schemes with smooth centers generate
the topology of abstract blow-ups restricted on Smk. Now the conclusion of theorem
3.7 together with theorem 2.18 say that F satisfies descent for the abstract blow-up
topology. As F satisfies Nisnevich descent it follows that it satisfies cdh descent.
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