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Abstract

A new operation on graphs is introduced and some of its properties are studied.
We call it hierarchical product, because of the strong (connectedness) hierarchy of
the vertices in the resulting graphs. In fact, the obtained graphs turn out to be
subgraphs of the cartesian product of the corresponding factors. Some well-known
properties of the cartesian product, such as a reduced mean distance and diameter,
simple routing algorithms and some optimal communication protocols are inherited
by the hierarchical product. We also address the study of some algebraic properties
of the hierarchical product of two or more graphs. In particular, the spectrum of
the binary hypertree Tm (which is the hierarchical product of several copies of
the complete graph on two vertices) is fully characterized; turning out to be an
interesting example of graph with all its eigenvalues distinct. Finally, some natural
generalizations of the hierarchic product are proposed.

Key words: Graph operations, Hierarchical product, Diameter, Mean distance,
Adjacency matrix, Eigenvalues, Characteristic polynomial.

1 Introduction

Complex systems, constituted by some basic elements which interact among them,
appear in different fields such as technology, biology and sociology and recent re-
search shows that many share similar organization principles. When considering
graph theoretical models, the associated graphs have a low diameter (in most cases
logarithmic with the order) and the degree distribution usually obeys either a power-
law distribution (it is “scale-free”) or an exponential distribution. Such properties
are often associated to a modular or hierarchical structure of the system and the
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existence of nodes with a relatively high degree (hubs). Therefore, the characteriza-
tion of graphs with these properties, and the study of related graph operations and
constructions allowing their generation, has recently attracted much interest in the
literature, see [8] and references therein.

Classical graphs can also display a modular or hierarchical structure. One of the
best known examples is the hypercube or n-cube, which can be seen as the cartesian
(or direct) product of complete graphs on two vertices. The hypercube has been
considered in parallel computers, (Ncube, iPSC/860, TMC CM-2, etc.) as it has
a small diameter and degree and nice communication properties: it is a minimum
broadcast graph which allows optimal broadcasting and gossiping under standard
communication models. However it has a relatively large number of edges and many
of them are not used in optimal communication schemes [4,12].

Here we introduce a new graph operation, called the hierarchical product, that turns
out to be a generalization of the cartesian product and allows the construction of
hierarchical graphs families. As a consequence, some of the well known properties
of the direct product, such as a reduced diameter and simple routing algorithms,
are also shared by our construction. The name has been inspired by the strong
(connectedness) hierarchy of the vertices in the resulting graphs (see Fig. 1). An
example of hierarchical product is the deterministic tree obtained by Jung, Kim
and Kahng [6] which corresponds to the case when all the factors are star graphs;
see Fig. 2. Also, the hierarchical graph constructions proposed in [9,10,11] can be
related to hierarchical products of complete graphs.

In the following section we give the definition of the new hierarchical product and
we present the main properties of this product. We study the vertex hierarchy and
metric parameters like the radius, eccentricity, diameter and mean distance. We
also show that communication schemes valid for direct products can also be used
here. Section 3 is devoted to the study of algebraic properties of the hierarchical
product, in particular the determination of the spectrum of the hierarchical power
of a given graph. In particular, the spectrum of the binary hypertree Tm (which is
the hierarchical product of several copies of the complete graph on two vertices) is
fully characterized; turning out to be an interesting example of graph with all its
eigenvalues distinct. Finally, in the last section a generalization of the product is
given and other possible generalizations are suggested.

2 The hierarchical product

Let Gi = (Vi, Ei) be N graphs with each vertex set Vi, i = 1, 2, . . . , N , having a dis-
tinguished or root vertex, labeled 0. The hierarchical product H = GN u · · · uG2 uG1

is the graph with vertices the N -tuples xN . . . x3x2x1, xi ∈ Vi, and edges defined by
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Figure 1. The hierarchical products K2
2 and K4
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the adjacencies:

xN . . . x3x2x1 ∼



xN . . . x3x2y1 if y1 ∼ x1 in G1,

xN . . . x3y2x1 if y2 ∼ x2 in G2 and x1 = 0,

xN . . . y3x2x1 if y3 ∼ x3 in G3 and x1 = x2 = 0,
...

...

yN . . . x3x2x1 if yN ∼ xN in GN and x1 = · · · = xN−1 = 0.

(1)

Notice that the structure of the obtained product graph H heavily depends on the
root vertices of the factors Gi. As an example, Fig. 1 shows the hierarchical products
of two and four copies of the complete graph K2. The chosen order of the factors,
with their subindexes in decreasing order, is because when Vi = {0, 1, . . . , b − 1},
the vertices xN . . . x3x2x1 of H represent the first bN numbers in base b. Notice
that, with ni = |Vi| and mi = |Ei|, the number of vertices of H is nN · · ·n3n2n1.
Moreover, the number of edges of G2 u G1 is m2 + n2m1; the number of edges of
G3 uG2 uG1 is m3 + n3(m2 + n2m1) = m3 + n3m2 + n3n2m1; and so on.

Note also that the hierarchical product GNu· · ·uG2uG1 is simply a subgraph of the
classical cartesian product GN 2 · · · 2 G2 2 G1. (This fact suggested us to derive
the notation “u” from “2”.) Although the cartesian product is both commutative
and associative, the hierarchical product has only the second property, provided
that the root vertices are conveniently chosen (in the natural way). Moreover, such
a product is also distributive on the right with respect to the union of graphs.

Lemma 2.1 The hierarchical product of graphs satisfies the following simple prop-
erties:

(a) (Associativity) If the root vertices of G2 uG1 and G3 uG2 are chosen to be 00,

G3 uG2 uG1 = G3 u (G2 uG1) = (G3 uG2) uG1; (2)

(b) (Right-distributivity)

(G3 ∪G2) uG1 = (G3 uG1) ∪ (G2 uG1); (3)
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(c) (Left-semi-distributivity) If the root vertex of G2 ∪G1 is chosen in G2,

G3 u (G2 ∪G1) = (G3 uG2) ∪ n3G1, (4)

where n3G1 = Kn3 uG1 is n3 copies of G1.

Proof. To prove the first equality in (2) (the other being similar), we only need to
show that vertex x3(x2x1)—with selfexplanatory notation—has the same adjacent
vertices in G3 u (G2 uG1) as vertex x3x2x1 has in G3 uG2 uG1. Indeed,

x3(x2x1) ∼



x3(y2y1) if (y2y1) ∼ (x2x1) in G2 uG1; that is,

if

 y1 ∼ x1 in G1 and y2 = x2,

y2 ∼ x2 in G2 and y1 = x1 = 0,

y3(x2x1) if y3 ∼ x3 in G3 and (x2x1) = 0; that is, x2 = x1 = 0.

Thus, the required isomorphism is simply x3(x2x1) 7→ x3x2x1. 2

As a consequence, since clearly K1 u G = G uK1 = G, the set of graphs with the
binary operation u is a semigroup with identity element K1 (that is, a monoid).
A simple consequence of the adjacency conditions (1) and the role of K1 is the
following lemma, whose (trivial) proof is omitted.

Lemma 2.2 Let H = GN u· · ·uG2uG1. For a fixed string z of appropriate length
(for instance z = 0 = 0 . . . 0), let H〈zxk . . . x1〉 denote the subgraph of H induced
by the vertex set {zxk . . . x1|xi ∈ Vi, 1 ≤ i ≤ k}. Let H〈xN . . . xkz〉 be defined
analogously. Then,

(a) H〈zxk . . . x1〉 = Gk u · · · uG1 for any fixed z;

(b) H〈xN . . . xk0〉 = GN u · · · uGk;

(c) H〈xN . . . xkz〉 = (nN · · ·nk)K1 for z 6= 0. 2

Basic properties of the factor graphs that are inherited by their hierarchical product
H are, among others, tree structure, bipartiteness and planarity. (We again skip the
proofs, as they are straightforward consequences of our product definition.)

2.1 The vertex hierarchy

The reader will have already noticed from the definition, that there is a strong
connectedness hierarchy of the vertices in the graphs obtained with this new graph
product. More precisely, the more consecutive zeroes they have on the right side of
its string labels, the more neighbors (adjacent vertices) they have. In the language
of network theory such vertices with high degree act as hubs. A more detailed study
follows.
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Let Gi, i = 1, 2, . . . , N , be N graphs whose root vertices have degrees δi = δGi
(0).

Then, the degree of a generic vertex of its hierarchical product H = GN u · · · uG1,
say x = xNxN−1 . . . xk00 . . . 0, xk 6= 0, is

δH(x) =
k∑

i=1

δi, (5)

and there are (nk − 1)
∏N

i=k+1 ni vertices of this type. Moreover, the degree of the
root vertex 0 = 00 . . . 0 in H is

δG(0) =
N∑

i=1

δi. (6)

In particular, if Gi = G and δi = δ for every i = 1, 2, . . . , N , then H is the
hierarchical power GN = G u G u · · · u G, a graph on nN vertices whose degrees
follow a exponential-law distribution (see Fig. 3 for an example with G = K3).
That is, the probability of a randomly chosen vertex to have degree k is P(k) = γ−k

for some constant γ. Indeed, note that, for k = 1, . . . , N − 1, the power graph GN

contains (n− 1)nN−k vertices with degree kδ and n vertices with degree Nδ.

For instance, if G = K2, the hierarchical product Tm = Km
2 (which hereafter will

be called the binary hypertree or simply m-tree) has 2m−k vertices of degree k =
1, . . . ,m− 1, and two vertices of degree m. See again Fig. 1(b) for the case N = 4.

Now we show how the suppression of the root vertices results in a disconnected
graph whose number of components increases as the number of such zeroes does.

Lemma 2.3 Given a hierarchical product of graphs, H = GN u · · · u G1, N ≥ 2,
let H∗ = H − 0 denote the graph H after deleting its root vertex 0 = 00 . . . 0. Then

(GN u · · · uG2 uG1)
∗ =

N⋃
k=1

(G∗
k uGk−1 u · · · uG1).

In particular, if Gk = K2 for all 1 ≤ k ≤ N , we have

(KN
2 )∗ =

N−1⋃
k=0

Kk
2

where, by convention, K0
2 = K1.

Proof. To prove the first equality, simply apply recursively the formula (H2 u
H1)

∗ = (H∗
2 u H1) ∪ H∗

1 using the associativity of the product in Lemma 2.2(a).
Then, the formula concerning the power graph KN

2 follows from the identity role of
K∗

2 = K1. 2
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Figure 2. The hierarchical product S3 u S2 u S3.

2.2 Some metric parameters

In this section we study some of the more relevant metric parameters of the prod-
uct graphs. Namely, radius, diameter and mean distance. With this aim, let Gi =
(Vi, Ei) be N graphs with root vertices having eccentricities εi = eccGi

(0), 1 ≤ i ≤
N . Then, the eccentricity of the root vertex 0 = 00 . . . 0 in H is

eccH(0) =
N∑

i=1

εi. (7)

With respect to the diameter and radius of the hierarchical product H, we have the
following result:

Proposition 2.4 Given any shortest path routings ρi of Gi, i = 1, . . . , N , there
exists an induced shortest path routing ρ of H = GN u · · · u G1. Moreover, if the
graph factor GN has radius rN and diameter DN , then the radius and diameter of
H are, respectively,

rH = rN +
N−1∑
i=1

εi, (8)

DH = DN + 2
N−1∑
i=1

εi. (9)

Proof. Assume that we are given a shortest path routing ρi of Gi, for every i =
1, . . . , N . Then, for every fixed vertices vN , vN−1, . . . , vi+1, we can naturally extend
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ρi to the subgraph of H induced by the vertex subset {vNvN−1 . . . vi+1xi0 . . . 0 |xi ∈
Vi} ⊂ VH . For the sake of simplicity, these extensions will also be denoted by ρi.

Given two arbitrary vertices x, y of H, let z = xN . . . xk+1 their maximum common
prefix. (If k = N then z is the empty string.) Hence, we have x = zxk . . . x1 and
y = zyk . . . y1 with xk 6= yk.

This allows us to define the following (shortest path) routing from x to y, where
the symbol ◦ denotes concatenation of paths:

ρ(x, y) = ρ1(zxk . . . x2x1, zxk . . . x20) ◦ ρ2(zxk . . . x20, zxk . . . 00) ◦ · · ·
· · · ◦ ρk(zxk0 . . . 0, zyk0 . . . 0) ◦ ρk−1(zyk0 . . . 0, zykyk−1 . . . 0) ◦ · · ·
. . . ◦ ρ1(zyk . . . y20, zyk . . . y2y1).

(Notice that some of the above subpaths could be empty.) That is, in terms of
distances,

distH(x, y) = distGk
(xk, yk) +

k−1∑
i=1

(distGi
(xi, 0) + distGi

(0, yi)). (10)

Consequently, this algorithm provides the shortest path routing ρ and, as a by-
product, gives a constructive proof of the results about the radius and diameter.
Indeed, for a fixed vertex x, it is clear by (10) that there exists a vertex y with
yN 6= xN (k = N) such that

eccH(x) = distH(x, y) = eccGN
(xN) +

N−1∑
i=1

(distGi
(xi, 0) + εi). (11)

Then, the minimum eccentricity (that is the radius) is attained when x = xN00 . . . 0
and eccGN

(xN) = rN , (such vertices constitute the center of H), proving (8).
Moreover, the maximum eccentricity (the diameter) is attained for any vertex
xNxN−1 . . . x1 satisfying eccGN

(xN) = DN and distGi
(xi, 0) = εi, 1 ≤ i ≤ N − 1,

which proves (9). 2

Concerning the mean distance of the hierarchical product, we next give a result
for the case of two factors, for simplicity reasons. The case of more factors can be
solved by recursively applying such a result because of the associativity property
(2). First, we introduce the following notation. For a given graph G = (V, E) with
order n and a root vertex, say 0, let d0

G denote the average distance between 0 and
all the other vertices in G (including 0 itself); that is, d0

G = 1
n

∑
v∈V distG(0, v).

Proposition 2.5 Let Gi be two graphs with orders ni = |Vi|, root vertices 0, local
mean distances (from 0) d0

i = d0
Gi

and (global standard) mean distances di, i = 1, 2.
Then their hierarchical product H = G2 uG1, with order n = n1n2 and root vertex
00, has the following parameters:

d00
H = d0

1 + d0
2, (12)
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dH =
1

n− 1

[
(n1 − 1)d1 + n1(n2 − 1)(d2 + 2d0

1)
]
. (13)

Proof. In computing all the distances in H, we distinguish two cases, depending
on whether the two vertices are in the same or different copy of G1; that is, k = 1, 2
respectively. The, using (10) we have:

dH =
1(
n
2

)
∑

x2

∑
x1,y1

distH(x2x1, x2y1) +
∑

x2 6=y2

∑
x1,y1

distH(x2x1, y2y1)


=

1(
n
2

)n2

∑
x1 6=y1

distG1(x1, y1)

+
1(
n
2

) ∑
x2 6=y2

∑
x1,y1

[distG2(x2, y2) + distG1(x1, 0) + distG1(0, y1)]

=
1(
n
2

)
n2

(
n1

2

)
d1 +

∑
x2 6=y2

n2
1 distG2(x2, y2) +

∑
x1,y1

[distG1(x1, 0) + distG1(0, y1)]


=

1(
n
2

) (n2

(
n1

2

)
d1 + n2

1

(
n2

2

)
d2 +

(
n2

2

)∑
x1

[n1 distG1(x1, 0) +
∑
y1

distG1(0, y1)]

)

=
1(
n
2

) (n2

(
n1

2

)
d1 + n2

1

(
n2

2

)
d2 +

(
n2

2

)
n2

1d
0
1 +

(
n2

2

)∑
x1

n1 distG1(0, y1)

)

=
1(
n
2

) (n2

(
n1

2

)
d1 + n2

1

(
n2

2

)
d2 + 2

(
n2

2

)
n2

1d
0
1

)
,

which gives (13). 2

As a corollary of the preceding results, we get the following result concerning the

N -th hierarchical power GN = G uGu N· · · uG.

Corollary 2.6 Let G be a graph on n vertices, having a root vertex 0 with eccen-
tricity ε and local mean distance d0. Let G have radius r, diameter D, and mean
distance d. Then the N-th hierarchical power GN , N ≥ 2, with root vertex 0, has
the following parameters:

(a) Eccentricity and local mean distance: eccN(0) = Nε; d0N = Nd0;

(b) Radius and diameter: rN = r + (N − 1)ε; DN = D + 2(N − 1)ε;

(c) Mean distance: dN = d + 2
(

(N−1)nN+1
nN−1

− 1
n−1

)
d0.

Proof. The first equality in (a) and the result in (b) are direct consequences of (7)
and Proposition 2.4. The second equality in (a) is also easily obtained by applying
(12) recursively and using the associativity law. Finally, the same technique can be
used for proving (c) from (13). Indeed, since GN = GN−1 u G, Eq. (13) yields the
following recursive formula (where d1 = d and d0

1 = d0):
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Figure 3. Two views of the hierarchical product K3
3 .

dN =
n(nN−1 − 1)

nN − 1
dN−1 +

n− 1

nN − 1
d1 +

n(nN−1 − 1)

nN − 1
2d0

1

=
n(nN−1 − 1)

nN − 1

(
n(nN−2 − 1)

nN−1 − 1
dN−2 +

n− 1

nN−1 − 1
d1 +

n(nN−2 − 1)

nN−1 − 1
2d0

1

)

+
n− 1

nN − 1
d1 +

n(nN−1 − 1)

nN − 1
2d0

1 = · · ·

=
nN−1(n− 1)

nN − 1
d1 +

nN−1 − 1

nN − 1
d1

+
1

nN − 1

(
(N − 1)nN − nN−1 − nN−2 − · · · − n

)
2d0

1

= d1 +

(
(N − 1)nN + 1

nN − 1
− 1

n− 1

)
2d0

1.

2

In particular, note that, when N increases the mean distance of such a N -th power
graph is

dN ∼ d + 2d0
(
N − n

n− 1

)
which, for large values of n, gives in turn a mean distance of the order of

dN ∼ d + 2Nd0.

Example 2.7 The complete graph K2 has radius and diameter r = D = 1, local
mean distance d0 = 1/2 and mean distance d = 1. Then, for the hypertree Tm = Km

2 ,
with order 2m and root vertex 0, the above parameters turn to be:

(a) eccm(0) = m; d0m = m/2;

(b) rm = m; Dm = 2m− 1;

(c) dm = m2m

2m−1
− 1 ∼ m− 1.
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3 Algebraic properties

In this section we study some algebraic properties of the hierarchical product in
terms of the corresponding properties of the factors. In particular, we derive re-
sults about the spectra of hierarchical products of two different graphs and the
hierarchical power (repeated product) of a given graph.

Let us begin by recalling that the Kronecker product of two matrices A and B,
usually denoted by A ⊗ B, is the matrix obtained by replacing each entry aij of
A by the matrix aijB for all i and j. Recall also that the Kronecker product is
not commutative in general. However, if A and B are square matrices, A ⊗ B
and B ⊗ A are permutation similar, denoted by A ⊗ B ∼= B ⊗ A; that is, there
exist a permutation matrix P such that A ⊗ B = P (B ⊗ A)P>. (In terms of
graphs, assuming that both matrices are adjacency matrices, we would say that the
corresponding graphs are isomorphic.) Here the Kronecker product allows us to give
the adjacency matrix of the hierarchical product of two graphs:

Lemma 3.1 Let Gi be two graphs on ni vertices, i = 1, 2, and with adjacency
matrices Ai. Then, the adjacency matrix of its hierarchical product H = G2 u G1,
under some appropriate labeling of its vertices, can be written as

AH = A2 ⊗D1 + I2 ⊗A1 (14)
∼= D1 ⊗A2 + A1 ⊗ I2 (15)

where D1 = diag(1, 0, . . . , 0) and I2 (the identity matrix) have size n1 × n1 and
n2 × n2, respectively.

For instance, let G be a graph of order N , and consider the product H = G uKn.
Then, using (15),

AH = D1 ⊗AG + AKn ⊗ IN =



AG IN · · · IN

IN 0 · · · IN

...
...

...

IN IN · · · 0


, (16)

which is an n× n matrix of N ×N blocks.

The following result of Silvester is also used in our study:

Theorem 3.2 [14] Let R be a commutative subring of F n×n, the set of all n × n
matrices over a field F (or a commutative ring), and let M ∈ Rm×m. Then,

detF M = detF (detR M),

(the subindex indicates where the determinant is computed).
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This theorem gives a method to compute the determinant of a certain 2× 2 block
matrix:

Corollary 3.3 Let M =

A B

C D

 be a block matrix where A, B, C, D are n×n

matrices over a field which all commute with each other. Then,

det M = det(AD −BC).

3.1 Spectral properties of G uKm
2

In this section we study the characteristic polynomial and the spectrum of GuKm
2 .

Let us concentrate first on H = G u K2. Then, if G has order n and adjacency
matrix A, the adjacency matrix of H is

AH =

 A In

In 0

 ,

with characteristic polynomial

φH(x) = det(xI2n −AH) = det

xIn −A −In

−In xIn

 .

Then, using Corollary 3.3, we get

φH(x) = det((x2 − 1)In − xA)

= det(x[(x− 1
x
)In −A])

= xnφG(x− 1
x
), (17)

where φG stands for the characteristic polynomial of G. In fact this result corre-
sponds to a particular case (r = 2) of a theorem in [2] that gives the characteristic
polynomial of the graph corresponding to our hierarchical product G u Sr, with
Sr = K1,r−1 (the star graph on r vertices).

Going back to our case, note that, since φG is monic polynomial of degree n, the
coeficient of 1/xn in φG(x−1/x) is 1, and hence so it is the constant term of φH(x).
Consequentely, 0 is never an eigenvalue of H. More precisely, we obtain the following
result:

Proposition 3.4 Let G be a graph on n vertices, with spectrum

sp G = {λm0
0 , λm1

1 , . . . , λmd
d }

11



Figure 4. From ◦ ∈ sp G to • ∈ sp(G uK2)

where the supraindexes denote multiplicities (m0 = 1 if G is connected) and λ0 <
λ1 < · · · < λd. Then the spectrum of the hierarchical product H = G uK2 is

sp H = {λm0
00 , λm1

01 , . . . , λmd
0d , λm0

10 , λm1
11 , . . . , λmd

1d },

where

λ0i = f0(λi) =
λi−
√

λ2
i +4

2
, λ1i = f1(λi) =

λi+
√

λ2
i +4

2
(0 ≤ i ≤ d), (18)

and

λ00 < λ01 < · · · < λ0d < 0 < λ10 < λ11 < · · · < λ1d. (19)

Proof. From (17) and the subsequent comments we get the following implications:

λ ∈ sp H ⇔ φH(λ) = λnφG(λ− 1
λ
) = 0 ⇔ λ− 1

λ
∈ sp G.

Thus, for every λi ∈ sp G we can obtain two eigenvalues of H, which are the solutions
λ0i = f0(λi), λ1i = f1(λi) of the second degree equation λ2 − λiλ − 1 = 0 (coming
from λi = λ− 1/λ), satisfying

λ0i =
λi−
√

λ2
i +4

2
< 0 <

λi+
√

λ2
i +4

2
= λ1i. (20)

Besides, notice that λi < λi+1 implies λ0i < λ0,i+1 and λ1i < λ1,i+1. (See Fig. 4 for
a “proof without words” [7].) 2
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In particular, if G is bipartite its spectrum is symmetric with respect to 0: λi =
−λd−i, i = 0, 1, . . . , bd/2c, (see, for instance, [1]); and so it is H = G u K2 with
eigenvalues

λ0i =
λi−
√

λ2
i +4

2
=

−λd−i−
√

λ2
d−i

+4

2
= −λ1,d−i (0 ≤ i ≤ bd

2
c). (21)

Let us now consider the case of the multiple product Hm = G u Km
2 with m ≥ 0

where, by convention, H0 = G. Since, by Lemma 2, Hm = Hm−1 uK2, we can deal
with this case by recursively applying m times (17) or Proposition 3.4. However,
an alternative recurrence procedure to get the characteristic polynomial φm of Hm

can be obtained from another simple consequence of Theorem 3.2. Namely,

Lemma 3.5 If p and q are arbitrary polynomials, then

det

 pIn − qA −qIn

−qIn pIn

 = det((p2 − q2)In − pqA).

This leads to a double recurrence relation for φm(x), derived by recursively applying
Lemma 3.5. With this aim, notice that the adjacency matrix of Hm is

Am =

Am−1 Im−1

Im−1 0

 (22)

for m ≥ 1, with A0 = A being the adjacency matrix of H0 = G and Im denoting
the identity matrix of size n2m (the same as Am).

Proposition 3.6 Let {pi, qi}i≥0 be the family of polynomials satisfying the recur-
rence equations

pi = p2
i−1 − q2

i−1 , (23)

qi = pi−1qi−1 , (24)

with initial conditions p0 = x and q0 = 1. Then, for every m ≥ 0, the characteristic
polynomial of Hm = G uKm

2 is

φm(x) = qm(x)nφ0

(
pm(x)

qm(x)

)
,

where φ0 is the characteristic polynomial of G.

Proof. Since q0(x) = 1 and p0(x) = x, the result trivially holds for m = 0. Let
m ≥ 1. First we prove that, for every i, 0 ≤ i ≤ m,

φm = det(piIm−i − qiAm−i). (25)

13



The proof is by induction on i. By definition of the characteristic polynomial,

φm = det(xIm −Am) = det(p0Im−1 − q0Am−1),

we see that (25) holds for i = 0. Assuming that it holds for i − 1, and considering
the structure of Am in (22), we get

φm = det(pi−1Im−i+1 − qi−1Am−i+1)

= det

pi−1Im−i+1 − qi−1

Am−i Im−i

Im−i 0




= det

 pi−1Im−i − qi−1Am−i −qi−1Im−i

−qi−1Im−i pi−1Im−i


= det((p2

i−1 − q2
i−1)Im−i − pi−1qi−1Am−i)

= det(piIm−i − qiAm−i),

where we have used Lemma 3.5 and the recurrence relations for pi and qi.

In particular, the case i = m gives

φm(x) = det(pm(x)I0 − qm(x)A0) = det

(
qm(x)

(
pm(x)

qm(x)
I0 −A0

))

= qm(x)nφ0

(
pm(x)

qm(x)

)
.

This completes the proof. 2

3.2 The spectra of the binary hypertree

Now we study the case of the m-tree Tm = Km
2 , which is obtained when we consider

G = K1 in the above family of graphs, with n = 1 and A0 = (0) (the “adjacency
matrix” of the singleton graph). As a consequence of Proposition 3.6 we have the
following corollary.

Corollary 3.7 Let {pi, qi}i≥0 the family of polynomials obtained from the recur-
rence relations of Proposition 3.6. Then, the characteristic polynomials of the m-
tree Tm, m ≥ 0 (with T0 = K1), and the graph T ∗

m = Tm − 0, (with m ≥ 1 and
0 = 00 . . . 0) are, respectively,

φTm(x) = pm(x), (26)

φT ∗m(x) = qm(x). (27)

14



Proof. To prove (26), we simply apply Proposition 3.6 with G = K1, which implies
n = 1, φ0 = x, and

φTm(x) = qm(x)nφ0

(
pm(x)

qm(x)

)
= pm(x).

Then, the equality in (27) follows from the above and the fact that, by applying
recursively (24), we have

qm(x) =
m−1∏
i=0

pi(x).

(Recall that, from Lemma 2.3, T ∗
m =

⋃m−1
i=0 Ti.) 2

The following result is then a consequence of Proposition 3.4 when taking G = K1.

Proposition 3.8 The m-tree Tm, m ≥ 1, has eigenvalues λm
0 ≤ λm

1 ≤ · · · ≤ λm
n−1,

with n = 2m, satisfying the following recurrence relation:

λm
k =

λm−1
k

+
√

(λm−1
k

)2+4

2
, (28)

λm
n−k−1 = −λm

k , (29)

for m > 1 and k = n
2
, n

2
+ 1, . . . , n− 1. Moreover, all the eigenvalues are distinct.

Proof. The recurrence (28) and the symmetry property (29) follow from (18) and
(21), respectively, since G = K1 is trivially bipartite. Moreover, as K1 has only the
eigenvalue 0 with multiplicity m0 = 1, the eigenvalue multiplicities of the subsequent
iterations T1 = K1

2 = K1 uK2, T2 = K2
2 = K1 uK2 uK2, etc. are also equal to 1

(Proposition 3.4), and so all eigenvalues are different. 2

Note that, with λ0
0 = 0 (the unique eigenvalue of K0

2 = K1, the above result applies
even for m = 1, giving the eigenvalues of K2: λ0 = −1 and λ1 = 1. This suggests
the following more appealing notation: Let denote the above eigenvalue λm

i of Tm

just as λi, where i = im−1 . . . i1i0 is the number i written in base two. Then, the
higher the number i the greater the eigenvalue λi, which is obtained from (18) by
applying successively one of the functions f0, f1 to λ0

0 = 0, as follows:

λi = (fm−1 ◦ · · · ◦ f1 ◦ f0)(0). (30)

To visualize the eigenvalue distribution obtained by the above procedure, Fig. 5
shows the spectra of Tm for 0 ≤ m ≤ 6 and how “each parent gives birth to two off-
spring”. Note that the maximum eigenvalue (in absolute value) increases unbound-
edly with m, whereas the minimum eigenvalue tends to zero and the successive
eigenvalues distribute along the real line filling it.

More precisely, we have the following result:
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Figure 5. The distinct eigenvalues of the hypertree Tm for 0 ≤ m ≤ 6.

Proposition 3.9 The assimptotic behaviors, as k → ∞, of the maximum eigen-
value λk (spectral radius), the second largest eigenvalue θk, and the minimum (in
absolute value) eigenvalue τk of the hypertree Tk are:

λk ∼
√

2k, θk ∼
√

2k, τk ∼ 1/
√

2k.

Proof. According to (30), the above eigenvalues correspond to:

λk = λ111...1, θk = λ11...10, τk = λ10...00.

Thus, for k > 1 the two maximum eigenvalues λk and θk verify the recurrence

λk+1 = f1(λk) = 1
2
(λk +

√
λ2

k + 4). This function tends to a power law, λk = αkβ

for k → ∞, for some constants α and β. Indeed, if we put this expression of λk in
the equation, we get:

α(k + 1)β ∼ αkβ +
√

α2k2β + 4

2
⇒ α2(k + 1)β[(k + 1)β − kβ] ∼ 1,

and it is easy to check that λk =
√

2k is a solution when k →∞ since,

2(k + 1)
1
2 [(k + 1)

1
2 − k

1
2 ] =

2(k + 1)
1
2

(k + 1)
1
2 + k

1
2

→ 1.

The behavior of τk is proved similarly or noting that λkτk = 1. 2

In Fig. 6 we plot λk and θk in terms of k for all Tk such that 1 ≤ k ≤ 128. Note that
both scales are logarithmic, so that the straight line asymptote is, in both cases,
y = 1

2
log 2 + 1

2
log x.
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2nd largest eigenvalues of T m

m

Figure 6. The two largest eigenvalues of Tm for 1 ≤ m ≤ 128.

3.3 The spectrum of a generic two-term product

Theorem 3.10 Let G1 and G2 be two graphs on ni vertices, with adjacency ma-
trix Ai and characteristic polynomial φi(x), i = 1, 2. Let G1 have root vertex 0
and consider the graph G∗

1 = G1 − 0, with adjacency matrix A∗
1 and characteristic

polynomial φ∗1. Then the characteristic polynomial φH(x) of the hierarchical product
H = G2 uG1 is:

φH(x) = φ∗1(x)n2φ2

(
φ1(x)

φ∗1(x)

)
. (31)

Proof. Without loss of generality, index the rows (and columns) of Ai as 0, 1, 2, . . .,
and assume that the vertices adjacent to the root vertex 0 in G1, with degree δ,
say, are 1, 2, . . . , δ. Then, using (15), the adjacency matrix of H can be written as
an n1 × n1 block matrix, where each block has size n2 × n2, as follows:

AH = D1 ⊗A2 + A1 ⊗ I2 =

 A2 B

B> A∗
1 ⊗ I2

 ,

(To be compared with (16)), where

B =
(

I2

(δ)
· · · · · · I2 0 0 · · · · · · 0

)
.

Thus, the characteristic polynomial of H is
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φH(x) = det(xI −AH) = det

xI2 −A2 −B

−B> (xI∗1 −A∗
1)⊗ I2


where the n2

1 blocks are of three types: One xI2−A2, n1−1 like xI2, and several (as
many as edges of G1) like −I2. Consequently, Theorem 3.2 applies (since every block
commutates with each other) and we can obtain φH by computing the determinant
in Rn2×n2 expanding by the first row (the blocks of B):

φH(x) = det([xI2 −A2]φ
∗
1(x)I2 + φ1(x)I2 − xI2φ

∗
1(x))

= det(φ1(x)I2 − φ∗1(x)A2)

= det

(
φ∗1(x)

[
φ1(x)

φ∗1(x)
I2 −A2

])

= φ∗1(x)n2φ2

(
φ1(x)

φ∗1(x)

)
,

as claimed. 2

In fact, a much more lengthy proof of this result was first given by Schwenk [13] in
another context, without mentioning the underlying graph operation.

An interesting particular case occurs when G1 is a walk-regular graph [5] since then
the so-called local characteristic function [3] is the same for every vertex and

φ∗1(x) =
1

n1

φ′1(x),

where, as usual, the prime indicates derivative.

Corollary 3.11 With the same notation as above, if G1 is a walk-regular graph,
we have

φH(x) =

(
φ′1(x)

n1

)n2

φ2

(
n1φ1(x)

φ′1(x)

)
. (32)

Some well-known instances of walk-regular graphs are the vertex-transitive graphs
and the distance-regular graphs.

A particular case of the above is when G2 is the (walk-regular) complete graph Kn.

Corollary 3.12 Let G be a graph of order n2 = N and characteristic polynomial
φG. Then the characteristic polynomial of H = G uKn is:

φH(x) = (x + 1)N(n−2)(x− n + 2)NφG

(
(x + 1)(x− n + 1)

(x− n + 2)

)
.

Proof. Apply Eq. 32 with n1 = n, φ1 = (x− n + 1)(x + 1)n−1 (the characteristic
polynomial of Kn) and φ′1 = (x + 1)n−1 + (n− 1)(x− n + 1)(x + 1)n−2. 2
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Figure 7. Two views of a generalized hierarchical product K3
3 with U1 = U2 = {0, 1}.

4 Generalizations of the hierarchical product

A natural generalization of the hierarchical product is as follows. Given N graphs
Gi = (Vi, Ei) and (nonempty) vertex subsets Ui ⊆ Vi, i = 1, 2, . . . , N − 1, the
generalized hierarchical product H = GN uGN−1(UN−1)u · · · uG1(U1) is the graph
with vertex set VN × · · ·V2 × V1, as above, and adjacencies:

xN . . . x3x2x1 ∼



xN . . . x3x2y1 if y1 ∼ x1 in G1,

xN . . . x3y2x1 if y2 ∼ x2 in G2 and x1 ∈ U1

xN . . . y3x2x1 if y3 ∼ x3 in G3 and xi ∈ Ui, i = 1, 2
...

...

yN . . . x3x2x1 if yN ∼ xN in GN and xi ∈ Ui, i = 1, 2, . . . , N − 1.

In particular, notice that the two “extreme” cases are when all Ui are singletons, in
which case we obtain the (standard) hierarchical product; and when Ui = Vi for all
1 ≤ i ≤ N − 1, and the resulting graph is the cartesian product of the Gi’s.

Another possible generalization of the hierarchical product is obtained by using an
appropriate factorization of the graphs Gi. In this way, some properties such as a
higher connectivity or a specific (scale-free) degree distribution, can be obtained in
the hierarchical product.

Notice also that the hierarchical product can be defined for infinite graphs and
digraphs.
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