Some problems involving fractional order operators

María del Mar González

Universitat Politècnica de Catalunya

December 9th, 2009

Definition $(-\Delta)^{\gamma}$

- Infinitesimal generator of a Levy process
- Pseudo-differential operator, principal symbol $|\xi|^{2\gamma}$.

•

$$(-\Delta)^{\gamma}f(x)=C_{n,\gamma}\int_{\mathbb{R}^n}\frac{f(x)-f(\xi)}{|x-\xi|^{n+2\gamma}}d\xi$$

• Caffarelli-Silvestre's extension: For $\gamma \in (0, 1)$, $\gamma = \frac{1-a}{2}$,

$$\begin{cases} \operatorname{div}(y^a \nabla u) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ u = f, & \text{at } y = 0 \end{cases}$$

Definition $(-\Delta)^{\gamma}$

- Infinitesimal generator of a Levy process
- Pseudo-differential operator, principal symbol $|\xi|^{2\gamma}$.

•

$$(-\Delta)^{\gamma}f(x)=C_{n,\gamma}\int_{\mathbb{R}^n}\frac{f(x)-f(\xi)}{|x-\xi|^{n+2\gamma}}d\xi$$

• Caffarelli-Silvestre's extension: For $\gamma \in (0, 1)$, $\gamma = \frac{1-a}{2}$,

$$\begin{cases} \operatorname{div}(y^{a}\nabla u) = 0 & \text{in} \quad \mathbb{R}^{n+1}_{+} \\ u = f, & \text{at} \quad y = 0 \end{cases} \Rightarrow (-\Delta)^{\gamma} f = d_{n,\gamma} \lim_{y \to 0} y^{a} \partial_{y} u$$

Definition $(-\Delta)^{\gamma}$

- Infinitesimal generator of a Levy process
- Pseudo-differential operator, principal symbol $|\xi|^{2\gamma}$.

•

$$(-\Delta)^{\gamma}f(x)=C_{n,\gamma}\int_{\mathbb{R}^n}\frac{f(x)-f(\xi)}{|x-\xi|^{n+2\gamma}}d\xi$$

• Caffarelli-Silvestre's extension: For $\gamma \in (0, 1)$, $\gamma = \frac{1-a}{2}$,

$$\begin{cases} \operatorname{div}(y^{a}\nabla u) = 0 & \text{in} \quad \mathbb{R}^{n+1}_{+} \\ u = f, & \text{at} \quad y = 0 \end{cases} \Rightarrow (-\Delta)^{\gamma} f = d_{n,\gamma} \lim_{y \to 0} y^{a} \partial_{y} u$$

- Dirichlet-to-Neumann operator, non-local
- $\gamma = 1/2$ (half-Laplacian)

Riemannian manifold: (M^n, g) Conformal \longleftrightarrow angle preserving

Conformal change of metric: $\tilde{g} = fg$, f > 0

Riemannian manifold: (M^n, g) Conformal \longleftrightarrow angle preserving Conformal change of metric: $\tilde{g} = fg, f > 0$

• **Def:** A_g is a *conformally covariant* operator of bidegree (a,b) if under the change of metric $g_w=e^{2w}g$, $A_{g_w}\phi=e^{-bw}A_g(e^{aw}\phi)$ for all $\phi\in\mathcal{C}^\infty(M)$.

Riemannian manifold: (M^n, g) Conformal \longleftrightarrow angle preserving Conformal change of metric: $\tilde{g} = fg, f > 0$

• **Def:** A_g is a *conformally covariant* operator of bidegree (a,b) if under the change of metric $g_w=e^{2w}g$, $A_{g_w}\phi=e^{-bw}A_g(e^{aw}\phi)$ for all $\phi\in\mathcal{C}^\infty(M)$.

Associated curvature: Q_A ??

Riemannian manifold: (M^n, g) Conformal \longleftrightarrow angle preserving

Conformal change of metric: $\tilde{g} = fg$, f > 0

• **Def:** A_g is a *conformally covariant* operator of bidegree (a, b) if under the change of metric $g_w = e^{2w}g$,

$$A_{g_w}\phi=e^{-bw}A_g(e^{aw}\phi) \quad ext{for all} \quad \phi\in\mathcal{C}^\infty(M).$$

- Associated curvature: Q_A ??
- Examples:
 - Conformal Laplacian (order 2), $L_g := -\Delta_g + c_n R_g$
 - Paneitz operator (order 4), $P_g := (-\Delta_g)^2 + ...$
 - Order 2k (Graham-Jenne-Mason-Sparling)

Conformally compact Einstein manifolds

 (X^{n+1},g) smooth manifold of dimension n+1 with metric g Smooth boundary $M^n=\partial X$ Defining function: $\rho>0$ in X, $\rho=0$ on M, $d\rho\neq 0$ on M.

Conformally compact Einstein manifolds

 (X^{n+1},g) smooth manifold of dimension n+1 with metric g Smooth boundary $M^n=\partial X$

Defining function: $\rho > 0$ in X, $\rho = 0$ on M, $d\rho \neq 0$ on M.

Def: (X, g) is conformally compact if there exists ρ such that (X, \bar{g}) is compact for $\bar{g} = \rho^2 g$.

Def: Conformal infinity: (M, [h]), $h = \bar{g}|_{M}$

Def: (X, g) is conformally compact Einstein if, in addition,

$$Ric_g = -ng$$

Conformally compact Einstein manifolds

 (X^{n+1},g) smooth manifold of dimension n+1 with metric gSmooth boundary $M^n=\partial X$

Defining function: $\rho > 0$ in X, $\rho = 0$ on M, $d\rho \neq 0$ on M.

Def: (X, g) is conformally compact if there exists ρ such that (X, \bar{g}) is compact for $\bar{g} = \rho^2 g$.

Def: Conformal infinity: (M, [h]), $h = \bar{g}|_{M}$

Def: (X, g) is conformally compact Einstein if, in addition,

$$Ric_g = -ng$$

Model example: Hyperbolic space

$$(\mathbb{H}^{n+1}, g_{\mathbb{H}}) = \left(B^{n+1}, \left(\frac{2}{1-|y|^2}\right)^2 |dy|^2\right) = \left(\mathbb{R}^{n+1}_+, \frac{|dx|^2 + dy^2}{y^2}\right)$$

Theorem (Graham-Zworski, Mazzeo)

There exists a meromorphic family of pseudo-differential operators on M, called $\{S(s)\}$, $s\in\mathbb{C}$, Re(s)>n/2 such that

$$\sigma\left(S(s)\right) = c_{n,s}\sigma\left((-\Delta_M)^{s-n/2}\right)$$

Theorem (Graham-Zworski, Mazzeo)

There exists a meromorphic family of pseudo-differential operators on M, called $\{S(s)\}$, $s \in \mathbb{C}$, Re(s) > n/2 such that

$$\sigma\left(S(s)\right) = c_{n,s}\sigma\left((-\Delta_M)^{s-n/2}\right)$$

• **Construction:** Given *f* on *M*, solve the eigenvalue equation

$$-\Delta_g u_s - s(n-s)u_s = 0 \text{ in } X$$
 (1)

$$u_s = F \rho^s + G \rho^{n-s}, \quad F|_{\rho=0} = f.$$
 (2)

Then $S(s)f = G|_M$.

Theorem (Graham-Zworski, Mazzeo)

There exists a meromorphic family of pseudo-differential operators on M, called $\{S(s)\}$, $s \in \mathbb{C}$, Re(s) > n/2 such that

$$\sigma\left(S(s)\right) = c_{n,s}\sigma\left((-\Delta_M)^{s-n/2}\right)$$

• **Construction:** Given *f* on *M*, solve the eigenvalue equation

$$-\Delta_g u_s - s(n-s)u_s = 0 \text{ in } X \tag{1}$$

$$u_s = F \rho^s + G \rho^{n-s}, \quad F|_{\rho=0} = f.$$
 (2)

Then $S(s)f = G|_{M}$.

Operators of fractional order:

Define
$$P_{\gamma}:=c_{n,\gamma}\mathcal{S}\left(rac{n}{2}+\gamma
ight)$$

Conformal:
$$g_u = u^{\frac{4}{n-2\gamma}}g \rightarrow P_{\gamma}^{g_u} = u^{-\frac{n+2\gamma}{n-2\gamma}}P_{\gamma}^g(u\cdot)$$

Theorem (Graham-Zworski, Mazzeo)

There exists a meromorphic family of pseudo-differential operators on M, called $\{S(s)\}$, $s \in \mathbb{C}$, Re(s) > n/2 such that

$$\sigma\left(S(s)\right) = c_{n,s}\sigma\left((-\Delta_M)^{s-n/2}\right)$$

• Construction: Given *f* on *M*, solve the eigenvalue equation

$$-\Delta_g u_s - s(n-s)u_s = 0 \text{ in } X \tag{1}$$

$$u_s = F \rho^s + G \rho^{n-s}, \quad F|_{\rho=0} = f.$$
 (2)

Then $S(s)f = G|_{M}$.

Operators of fractional order:

Define
$$P_{\gamma} := c_{n,\gamma} \mathcal{S}\left(rac{n}{2} + \gamma
ight)$$

Conformal:
$$g_u = u^{\frac{4}{n-2\gamma}}g$$
 \rightarrow $P^{g_u}_{\gamma} = u^{-\frac{n+2\gamma}{n-2\gamma}}P^g_{\gamma}(u\cdot)$

• Model example: in \mathbb{R}^n , $\gamma \notin \mathbb{Z}$: $P_{\gamma} = (-\Delta)^{\gamma}$

Results (Chang-G.)

Theorem A

Caffarelli-Silvestre extension problem in \mathbb{R}^{n+1}_+ , $\gamma \in (0,1)$

scattering theory in \mathbb{H}^{n+1}

Results (Chang-G.)

Theorem A

Caffarelli-Silvestre extension problem in \mathbb{R}^{n+1}_+ , $\gamma \in (0,1)$

scattering theory in \mathbb{H}^{n+1}

Theorem B

For $\gamma \in (0, 1)$, on general c.c. Einstein manifolds,

$$\left\{ \begin{array}{ll} \operatorname{div}(\rho^a \nabla U) + E(\rho)U = 0 & \text{ in } (X, \bar{g}) \\ U = f, & \text{at } \rho = 0 \end{array} \right. \Rightarrow$$

$$P_{\gamma}f = c_{\gamma} \lim_{\rho \to 0} \rho^{a} \partial_{\rho} U, \quad \gamma = \frac{1-a}{2}$$

Here
$$E(
ho)=-\Delta_{ar{g}}\left(
ho^{rac{a}{2}}
ight)
ho^{rac{a}{2}}+\left(\gamma^2-rac{1}{4}
ight)
ho^{-2+a}+rac{n-1}{4n}R_{ar{g}}
ho^a$$

Theorem C

For
$$\gamma = m + \alpha$$
, $m \in \mathbb{N}$, $\alpha \in (0, 1)$

$$\begin{cases} \operatorname{div}(y^a \nabla u) = 0 & \text{in } \mathbb{R}^{n+1}_+ \\ u = f, & \text{at } y = 0 \end{cases} \Rightarrow$$

$$P_{\gamma} f = c_{\gamma} \lim_{y \to 0} y^{1-2\alpha} \underbrace{\partial_y \left(y^{-1} \left(\partial_y \left(\dots y^{-1} \partial_y u \right) \right) \right)}_{m+1 \text{ derivatives}}$$

Q_{γ} curvature

Def: $Q_{\gamma}^g := P_{\gamma}^g(1)$.

Conformal invariance:

$$g_w = w^{rac{4}{n-2\gamma}}g \quad \leftrightarrow \quad P^g_{\gamma}(w) = w^{rac{n+2\gamma}{n-2\gamma}}Q^{g_w}_{\gamma}.$$

 γ -Yamabe problem: find $g_w = w^{\frac{4}{n-2\gamma}}g$ such that $Q_{\gamma}^{g_w} = cst$

Proposition (Qing-G.)

If the γ -Yamabe constant of M is strictly less than S^n , then there exists a minimizer for $I_{\gamma}[U] = \frac{\int_X \rho^a |\nabla U|^2 + \int_X \rho^a E(\rho) U^2}{\left(\int_M U^{\frac{2n}{n-2\gamma}}\right)^{\frac{n-2\gamma}{n}}}$

- Second order degenerate elliptic equations
- Weighted Sobolev trace inequalities
- $\gamma = 1/2$: constant mean curvature on the boundary (Escobar)

Theorem: (G.-Mazzeo-Sire)

The model case $S^n \setminus S^k$ with the metric given by $S^{n-k-1} \times \mathbb{H}^{k+1}$ has constant Q_{γ} -curvature. Moreover, if k < n/2, Q_{γ} is positive when $k < \frac{n-2\gamma}{2}$.

Renormalized volume

We have that

$$vol_{g^+}(\{\rho > \epsilon\}) = c_0\epsilon^{-n} + c_2\epsilon^{-n+2} + \ldots + c_{n-1}\epsilon^{-1} + V + o(1)$$

Computation (Fefferman-Graham)

Let u_s be the solution of

$$-\Delta_g u_s - s(n-s)u_s = 0 \text{ in } X$$
 (3)

$$u_s = F \rho^s + G \rho^{n-s}, \quad F|_{\rho=0} = 1.$$
 (4)

Define $v = -\frac{d}{ds}|_{s=n} u_s$. It is a solution of $-\Delta_{g^+} v = n$ in X. Integrate on $\rho > \epsilon$. Then

$$V=\frac{1}{d_{\frac{n}{2}}}\int_{M}Q_{\frac{n}{2}}.$$

Weighted renormalized volume

How about if we use u_s instead??

Then we define $\mathit{vol}_{g^+,\gamma}(\{\rho>\epsilon\}):=\int_{\{\rho>\epsilon\}}(\rho^*)^{\frac{n}{2}-\gamma}\,\mathit{dvol}_{g^+}$

Chang-G

It has an asymptotic expansion

• If $\gamma < \frac{1}{2}$, then

$$\operatorname{vol}_{g^+,\gamma}(\{\rho > \epsilon\}) = \epsilon^{-\frac{n}{2}-\gamma} \left[\left(\frac{n}{2} + \gamma\right)^{-1} \operatorname{vol}(M) + \epsilon^{2\gamma} V_{\gamma} + I.o.t. \right]$$

where
$$V_{\gamma}:=rac{1}{d_{\gamma}}rac{1}{rac{n}{2}-\gamma}\int_{M}Q_{\gamma}.$$

• If $\gamma > \frac{1}{2}$, then

$$\operatorname{vol}_{g^+,\gamma}(\{\rho>\epsilon\}) = \epsilon^{-\frac{n}{2}-\gamma} \left[\left(\frac{n}{2}+\gamma\right)^{-1} \operatorname{vol}(M) + \epsilon W_0 + I.o.t. \right]$$

for
$$W_0 := (\frac{n}{2} + \gamma)^{-1} (2n - 1) \int_M J_0$$
.

Thank you!!