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Abstract: The main objective of this paper is to present the MATLAB block-set that can be used for fault-

tolerant control of linear-parameter varying systems. In particular, the introductory part of the paper 

presents a theoretical background regarding the fault identification and control strategy. Subsequently, it 

is shown how to implement these theoretical results in Matlab/Simulink. The final part of the paper 

presents the experimental study regarding the twin-rotor system, which confirms the effectiveness of the 

developed tool. 
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1. INTRODUCTION 

Fault-Tolerant Control (FTC) is a relatively new idea that 

makes possible to develop a control feedback that allows 

keeping the required system performance in the case of 

faults. The control strategy can be perceived fault tolerant 

when there is an adaptation mechanism that changes the 

control law in the case of faults. Another solution is to use 

hardware redundancy in sensors and/or actuators.  

The main objective of the work is to develop a FTC block-

set, based on the strategy proposed by Jai and Hamzaoui 

[2009]. In particular, the goal is to develop an observer that 

estimates an unknown state of the system. Subsequently a 

fault identification system is implemented that is based on the 

states estimates, and finally the control strategy is 

implemented. 

The class of the systems being investigated is a Linear 

Parameter Varying (LPV) one. This class of systems is 

widely used in the literature and practice. The work contains 

also a comprehensive experimental study regarding a twin-

rotor MIMO System, which confirms the effectiveness of the 

implemented technique. 

 

2. THEORETICAL BACKGROUND 

2.1  Linear Systems Case 

The main objective of this point is to give a brief description 

of FTC technique developed by Dziekan, Witczak, Puig and 

Korbicz [2007]. The considered approach relies on the 

general idea of a virtual actuator. 

Let us consider the following reference model: 

���� = ��� + �	� ,                             (1) 

���� = �����,                                     (2) 

where �� ∈ ℝ� stands up for the reference state, �� ∈ ℝ� is 

the reference output, and 	� ∈ ℝ� denotes the nominal 

control input. Let us also consider a possibly faulty system 

described by following equations: 

���� = ��� + �	� + ���,                  (3) 

���� = �����,                                    (4) 

where  ��,� ∈ ℝ� stands for the system state, ��,� ∈ ℝ� is the 

system output, 	�,� ∈ ℝ� denotes the system input, �� ∈ ℝ�, 

(� ≤ �) is the fault vector, and � stands for its distribution 

matrix which is assumed to be known. 

The main objective is to design a control strategy which can 

be used for determining the system input 	�,� such that: 

- the control loop for the system (3)-(4) is stable, 

- ��,��� converges asymptotically to ���� irrespective of 

the presence of the fault ��. 
 

The subsequent part of this section shows the development 

details of the scheme that is able to settle such a challenging 

problem.  



The crucial idea is to use the following control strategy: 

 	�,� = −���� + ����� − ��,�� + 	�               (5) 

 

where  ��� is the fault estimate. Note that, due to the 

separation principle, it is not assumed that ��,� is available, 

i.e. an estimate � �,� can be used instead. Thus, the following 

problems arise: 

    - to determine ��� 

    - to design �� in such a way that the control loop is stable, 

i.e. the stabilization problem. 

 

The necessary condition for a existence of a solution is: 

 !"#$%��& = !"#$%�& = �.                              (6) 

 

This implies that it is possible to calculate  

 ' = %��&� = [%��&)��]+�%��&) 

 

By multiplying (4) by ' and then substituting (3) it can be 

shown that: 

 �� = '���,��� − ����,� − ��	�,��.                (7) 

 

Thus, if � �,� is used instead of ��,� then the fault estimate is 

given as follows: 

  �-� = '���,��� − ��� �,� − ��	�,��.                 (8) 

 

Unfortunately, the crucial problem with practical 

implementation of (8) is that it requires ��,��� and 	�,� to 

calculate ��� and hence it cannot be directly used to obtain (5). 

To settle this problem, it is assumed that there exists a 

diagonal matrix .� such that ��� = .����+� and hence the 

practical form (5) boils down to 

 	�,� =  −�.����+� +  ��%�� −  ��,�&.                     (9) 

 

Consequently, by substituting (7) into (3) it is possible to 

show that  ��,��� =  �/��,� + �0	�,� + �0��,���                (10) 

where  �/ = %1 − �'�&�,   �2 = %1 − �'�&�,  �2 = �'. 
 

Thus, the observer structure, which can be perceived as an 

unknown input observer is given by 

 � �,��� = �/� �,� + �0	�,� + �0��,��� + �3���,� − �� �,��.   (11) 

 

 

The main objective is to summarize the presented results 

within an integrated framework for the development of fault 

identification and fault tolerant control scheme. First, let us 

start with following two crucial assumptions: 

-  the pair %�/, �& is detectable, 

-  the pair %�, �& is stabilizable. 

 

Under these assumptions, it is possible to design the matrices �� and �3 in such a way that the extended error 4/� = 5 4�4�,�6,                                          (12) 

with 4� = �� − ��,�,    4�,� = ��,� − � �,�,  

described by 

4/��� = 7� − ��� �'��0 �/ − �3�9 4/� = �:4/�,       (13) 

 

converges asymptotically to zero. 

 

2.2  Extension to LPV 

This section presents an extension of the above-described 

strategy to Linear-Parameter Varying System that was 

developed by Montes de Oca, Puig, Witczak and Quevedo 

[2008]. 

The main objective is to summarize the presented results 

within an integrated framework for the development of fault 

identification and fault tolerant control scheme. First, let us 

start with following two assumption that are required to apply 

existing results on LPV gain scheduling control: 

    -  the pair %�/%;&, �%;&& is detectable, 

    -  the pair %�%;&, �%;&& is stabilizable, 

for all ; ∈  Θ. 

Moreover, note that the first assumption is typical for 

unknown input observers. Under these assumption, it is 

possible to design the matrices K1,j and K2,j in such a way that 

the extended error: 

4/� =  5 4�4�,�6      
described by 

4/��� = ∑ .�=>=?� @�= − �=��,= �='=�=�=0 �/= −  �3,=�=A 4/� =
∑ .�=>=?� �:,=4/�                                                                   (14) 

 

converges asymptotically to zero. 

The ability and stability of the closed loop system is design  

using an efficient LMI pole placement designed. For many 

problems, an exact pole assignment may not be necessary and 

it suffices to locate the poles of the closed-loop system in a 

sub region of the unit circle. 

Consequently, define a disk region LMI called D included in 

the unit circle with an affix (-q, 0) and a radius r such that    

(q + r) < 1. These two scalars q and r are used to determine a 

specific region included in the unit circle so as to place 

closed-loop system eigenvalues. The pole placement of the 

closed-loop system (Rodrigues et al. [2007]): 

 



         ��,��� =  ∑ .�=>=?� %;&B�=��,� + �=	�,� +  �=��C,      
         ��,� =  ∑ .�=>=?� %;&B�=��,�C    
 

for all models D ∈ [1, … , G] in the LMI region can be 

expressed as follows: 

 

H −!I= JI= + %�:,=I=&)JI= + �:,=I= −!I= K < 0 .          (15) 

 �:,=  is stable if and only if there exists a symmetric matrix 

such that I= =  I=) > 0. 

Assuming that I= has the block diagonal form                   I= =  NO"P%I�,= , I3,=& and defining �:,=   of (15) as: 

 

�:,= =  H�= −  �=��,= �='=�=�=0 �/=) − �=)�3,=) K  .               (16) 

 

It can be observed from the structure of �:,= in (16) that the 

eigenvalues of matrix �:,=  are the union of �= −  �=��,= and �/=) − �=)�3,=) . This clearly indicates that the design of the 

state feedback and the observer can be carried out 

independently (separation principle). Thus, the inequalities 

are: 

 

@ −!I�,= JI�,= + I�,=) %�=) − ��,=) �=)&%J + �= − �=��,=&I�,= −!I�,= A < 0,     (17) 

 

@ −!I3,= JI3,= + I3,=) %�/=) − �3,=�=&%J + �/=) − �=)�3,=) &I3,= −!I3,= A < 0.     (18) 

 

We should note that expression (17) and (18) are Bilinear 

Matrix Inequalities (BMIs) which cannot be solved with LMI 

tools, but substituting   Q�,= =  ��,=I�,=  and    Q3,= =  �3,=) I3,= 

it is possible to transform into: 

 

@ −!I�,= JI�,= + I�,=) �=) − Q�,=) �=)&%J + �=&I�,= − �=Q�,= −!I�,= A < 0,      (19) 

 

@ −!I3,= JI3,= + I3,=) �/=) − Q3,=�=&%J + �/=)&I3,= − �=)Q3,=) −!I3,= A < 0.      (20) 

 

Finally, the design procedure boils down to solving the LMIs 

(19) and (20), and then determining ��,= =  Q�,=%I�,=&+� and �3,= =  %Q3,=%I3,=&+�&). 

 

3. DESCRIPTION OF THE TWIN-ROTOR SYSTEM 

The Twin-Rotor MIMO System (TRMS) is a laboratory set-

up developed by Feedback Instruments Limited for control 

experiments. The system is perceived as an engineering 

problem owing to its high non-linearity, cross-coupling 

between its two axes and inaccessibility of some of its states 

and outputs for measurements. TRMS is available at the 

laboratories of the Advanced Control Systems in the 

Automatic Control Department (ESAII) of Technical 

University of Catalonia, where this work was conducted. The 

TRMS is shown on Fig. 1.  

 

Fig. 1. Aero-dynamical model of the Twin Rotor MIMO 

System 

 

The block which is a representation of TRMS in Simulink is 

given with equipment by the producer (Feedback Instruments 

Limited [1998]) along with comprehensive mathematical 

description. The mathematical model of TRMS becomes a 

sets of four non-linear differential equations with two linear 

differential equations and four non-linear functions. Some of 

the parameters of this model can be obtained from (13), while 

some others should be obtained by experiments such as 

magnitudes of physical propeller, length, mass, inertia, 

coefficients of friction and impulse force. The system can be 

defined by the input vector R = [	S, 	T])  where 	S is the 

input voltage of the tail motor and 	T is the input voltage of 

the main motor. Also can be defined the output vector U = [ΩS , .S, WX , ΩT , .T, W�]) where ΩS is the angular 

velocity around the vertical axis, .S is the azimuth angle of 

beam, WX is the rotational velocity of the tail rotor, ΩT  is the 

angular velocity around the horizontal axis, .T is the pitch 

angle of beam and W� is the rotational velocity of the main 

rotor. It should be pointed out that in the remaining part of 

this paper a reduced output vector is utilized, which is U = [.S, .T , W�]). Moreover, two kind of faults are 

considered, namely f1 – main rotor fault, f2 – tail rotor fault. 

The LPV model was obtained by linearization of the non-

linear system around different operating points:  

(	S = 0, 	T� = 0, 	T3 = 0.05, 	TZ = 0.1, 	T[ = 0.15, 	T\ = 0.2). 

 

4. IMPLEMENTATION 

 

The scope of this point is focused on development of the state 

observer, fault identification and control scheme for the 

TRMS described in Section II. Thus the design problem is to 

develop Simulink blocks implementing state observer 

described by (11) for LPV systems with N=5 is given in Fig. 

2,  whilst Fig. 3 presents a detailed insight view of the blocks 



described by the name “Model”. All the parameters being 

used in the scheme can be easily obtained by solving (20).  

 

 

 

 

 

 

 

 
Fig. 2. Observer scheme 

 

The block “Comparison” (cf. Fig. 2) contains the switching 

 rules  between  the  five models.    Since  the    observer  is  

available,   it   is   possible  to   estimate  the  faults. Indeed,  

the  fault  identification  strategy described in the preceding  

part of this paper is implemented as shown in Fig. 4.  

 

 

 
 

Fig. 3. Observer scheme – a detailed view 

 

 

 

 

 

 



 

 

Fig. 4. Fault estimate scheme – a detailed view 

Since the state and fault estimates are available, it is possible 

to  develop  the  control  strategy.  Fig. 5 presents a complete 

implementation,  while  Fig. 6 presents a detailed view of the 

blocks described by the name “Model”. 

 

 

 

 

 

 

 

 

 

Fig. 5. Control scheme 



 

 

 
Fig. 6. Strategy control scheme – a detailed view 

 

 

 

Finally, Fig. 7. presents a completely connected FTC scheme. 

 

 
 

Fig. 7. Completely  connected  FTC scheme 

 

 

 

 

 

 

 



 

 

5. EXPERIMENTAL RESULTS 

 

5.1. Fault of Tail Rotor 

 

The first fault scenario and the results are presented as 

follows: 

�S = ��,Z = ^ 0,   �_! $ < 3000.1,   �_! 300 ≤ $ < 3400,   �_! $ ≥ 340 c 
where $ = 0, … ,400 with d = 0.05�. 

 

 
Fig. 8. Azimuth angle of beam (horizontal position) with 

Fault Tolerant Control and without Fault Tolerant Control 

 

 

 

 

 

 
Fig. 9. Pitch angle of beam (vertical position) with FTC and 

without FTC 

 

Fig. 8. represents the performance of control strategy 

proposed and the response of the azimuth angle of beam 

without FTC. The system is stabilized with the FTC in spite 

of actuator fault. Fig. 9. shows the pitch angle of beam and its 

trajectory was not changed significantly after the fault.  

 

5.2. Fault of Main Rotor 

 

�S = ��,[ = ^ 0,   �_! $ < 220−0.03,   �_! 220 ≤ $ < 3200,   �_! $ ≥ 320 c 

where $ = 0, … ,400 with d = 0.05�. 

Fig. 10. illustrates an exemplary fault estimation. In 

particular, it shows that the input voltage fault of the main 

rotor can be estimated with very high accuracy. Figs. 11-12 

represent the azimuth and the pitch angle of the beam, 

respectively. It can be observed that in the presents of the 

fault, the performance was not impaired with FTC, unlike 

without it.  

 

 
Fig. 10. (Top) Control input voltage of the main rotor. 

(Bottom) Input voltage fault of the main rotor and its 

estimate. 

 

Fig. 11. Azimuth angle of beam (horizontal position) with 

Fault Tolerant Control and without Fault Tolerant Control 

 

Fig. 12. Pitch angle of beam (vertical position) with Fault 

Tolerant Control and without Fault Tolerant Control 

 

 



 

6. CONCLUSIONS 

 

As a new emerging area in automatic control, fault tolerant 

control has attracted more and more attention in recent years. 

The main objective of the thesis was to develop a fault-

tolerant control (FTC) toolbox. An active FTC strategy for 

LPV system was presented in this paper. First, this new 

approach was presented in the context of linear systems and 

emphasizes the importance of non-linear system based on 

LPV representation. Controllers were designed for each 

separate linear model trough LMIs pole placement. This 

method was suitable for partial actuator faults. The proposed 

approach was an integrated FTC design procedure of the fault 

identification and control scheme. Fault identification was 

based on the use of the observer. The FTC toolbox for 

Simulink was designed, included library. The experiments 

took place in the Laboratory of Advance Control Systems 

Research in the Automatic Control Department (ESAII) of 

Technical University of Catalonia (UPC).  
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