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Abstract—This work expands the model proposed by Krimtholz,
Leedom, and Matthaei (KLM) model to account for the nonlinear
effects occurring in acoustic devices due to the nonlinear stiffened
elasticity. We show that a nonlinear distributed capacitance in the
acoustic transmission line of the KLM model can account for the
distributed nature of the nonlinear effects. Specifically, we use the
nonlinear telegrapher’s equation to find closed-form equations for
intermodulation distortion and harmonic generation. We confirm
the validity of these equations by comparing their results with those
provided by a KLM equivalent circuit in which the nonlinear trans-
mission line is implemented by cascading many cells having
a voltage-dependent capacitance. To further confirm the model, we
show measured nonlinear effects in a thin film bulk acoustic res-
onator in close agreement with the equivalent circuit simulations.

Index Terms—Bulk acoustic wave (BAW), film bulk acoustic
resonator, harmonic generation, intermodulation distortion,
nonlinear Krimtholz, Leedom, and Matthaei (KLM), nonlinear
stiffened elasticity, nonlinearities.

I. INTRODUCTION

B ULK ACOUSTIC WAVE (BAW) technology is capable
of producing miniature high resonators, which are es-

sential elements in compact filters having low-insertion loss and
high-frequency selectivity. A widespread use of this technology
is expected in the ever-growing wireless market, where hand-
held devices need to accommodate for requirements such as
spectrum crowding, high bandwidth demand, miniaturization,
and low cost [1].

However, there are still limitations that may exclude the use of
BAW resonators in some microwave applications. In particular,
their inherent nonlinear behavior [2] may cause intermodulation
distortion (IMD), harmonic generation, and detuning and/or sat-
uration of the filter frequency response.

Manuscript received December 29, 2008; revised August 26, 2009. First pub-
lished November 13, 2009; current version published December 09, 2009. This
work was supported in part by the Spanish Government (CICYT) under Grant
TEC-2006-13248-C04-02/TCM.

C. Collado, E. Rocas, A. Padilla, and J. M. O’Callaghan are with the
Department of Signal Theory and Communications, Universitat Politècnica
de Catalunya (UPC), Barcelona 08034, Spain (e-mail: collado@tsc.upc.edu;
eduard.rocas@tsc.upc.edu; alberto.padilla@tsc.upc.edu; joano@tsc.upc.edu).

J. Mateu is with the Department of Signal Theory and Communications, Uni-
versitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain and also with
the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Castellede-
fels, Barcelona 08860, Spain (e-mail: jmateu@tsc.upc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2009.2034211

Although the nonlinear effects may be due to several causes,
most previous publications point to thermal effects and the non-
linearity in stiffness, piezoelectric coefficient, and permittivity
as the dominant ones [3]. Quantifying such nonlinear effects
with material parameters such as the nonlinear stiffened elas-
ticity is crucial to fully understand the nonlinear behavior of
BAW resonators. On the other hand, equivalent circuits of BAW
resonators are needed to predict the nonlinear effects occur-
ring in more complex devices, such as filters with several res-
onators. A definition of the equivalent circuit elements (such as
a voltage-dependent capacity) consistent with the material pa-
rameters (such as the nonlinear stiffened elasticity) would be
very useful to relate material properties with the final system
performance.

Tiersten [4] reported on a nonlinear lumped equivalent cir-
cuit for rotated Y-cut quartz resonators and its corresponding
closed-form expressions to predict the third-order IMD. There-
after, other works [5]–[9] used lumped approaches based in Tier-
sten’s equations or in nonlinear versions of the Butterworth-
van-Dike equivalent circuit (BVD) [10] in which one or several
lumped elements of the acoustic branch (series cir-
cuit) are nonlinear. Some of our previous work [11] also uses a
phenomenological approach based on the BVD circuit to model
the IMD occurring in a film bulk acoustic resonator (FBAR).

These different approaches based on lumped element equiv-
alent circuits are simple and useful for modeling some limited
manifestations of the nonlinear effects. However, the values of
the lumped elements in these equivalent circuits are jointly af-
fected by material parameters and device-specific parameters,
such as resonator size and geometry. In these conditions, it is
hard to consistently relate the values of equivalent circuit ele-
ments to material parameters.

A distributed model can be found in [12], in which the au-
thors extend Mason’s linear circuit to the nonlinear region. In
this paper, we address this problem by extending our prelimi-
nary work in [13], which proposes a distributed nonlinear equiv-
alent circuit based on the lineal model proposed by Krimtholz,
Leedom, and Matthaei (KLM) [14]. As stated in [14], the roles
of the mechanical and electrical parts of the circuit are more
clearly distinguished in the KLM equivalent circuit than in the
Mason’s one, which simplifies the nonlinear extension.

Our version of equivalent circuit is made by replacing the
acoustic line in the KLM model with many cascaded elemental

cells. These cells have nonlinear elements that are consis-
tent with the stress–strain curve of the piezoelectric layer in the
BAW resonator. With this model we are able to relate the non-
linearities in the equivalent circuit (specifically a voltage-depen-
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dent distributed capacitance in a transmission line) with nonlin-
earities in the material (stiffened elasticity).

An additional advantage of the model we are proposing is its
validity over wide frequency ranges, which makes the model
valid for predicting the generation of second harmonics and
out-of-band intermodulation products. This is unlike the sim-
pler version of the BVD model, which is limited to a narrow
frequency range if no additional acoustic branches are consid-
ered.

As an example, we use the equivalent circuit to fit measured
linear and nonlinear data in a thin film bulk acoustic resonator.
Furthermore, we use the equivalent circuit to derive closed-form
equations for some of the most relevant nonlinear effects: inter-
modulation distortion and second harmonic generation.

II. NONLINEAR ACOUSTIC TRANSMISSION LINE MODEL

As mentioned above, the proposed equivalent circuit is based
on an extension of the linear KLM model to account for the
distributed nonlinear effects in the acoustic wave. This section
reviews the basic concepts of the KLM model and details the
additional considerations used to include the nonlinear effects
in the model.

A. Linear KLM Model

The conventional KLM model [14] (see Fig. 1) includes a
transmission line that accounts for the usual equivalences in
acoustic wave devices (voltage is equivalent to force and
current to velocity). The characteristic impedance and
phase velocity in this transmission line are given by

(1)

(2)

where and are, respectively, the area of the electrodes and
the density of the piezoelectric material. The term repre-
sents the stiffened elasticity and is obtained from the constitu-
tive equations describing the stress–strain curve in a piezoelec-
tric material [15]. Its value is equal to the elasticity under con-
stant electric field plus an additional term that depends on
the piezoelectric constant and the dielectric constant as

(3)

The transformation ratio , electrical capacity , and reac-
tance shown in Fig. 1 are given by

(4)

(5)

(6)

Fig. 1. Equivalent KLM circuit of a BAW resonator [14]. The acoustic trans-
mission line of length � extends along the �-axis and is connected to an electrical
network at � � �. Ports 1 and 2 are the input and output ports.

where is a piezoelectric constant of the crystal
and is its thickness.

The telegrapher’s equations of the equivalent transmission
line [15] for an acoustic wave propagating along the -axis can
be written as

(7)

(8)

being the distributed capacitance and
the distributed inductance.

B. Nonlinear KLM Model

Although it is supposed that the elasticity, which relates the
stress with the strain at constant electric field, is the main con-
tribution to the nonlinear response [16], there are also other
sources that may be considered, such as the piezoelectric con-
stant or the permittivity [3]. These sources may be drawn to-
gether in a unique term in (3) which depends on the stress
as

(9)

This function models the piezoelectric stress–strain curve,
which for weak nonlinearities can be expanded in a Taylor’s
series as

(10)

where account for the strength of the nonlinear
effects.

In the KLM model, the voltage is equivalent to the force,
which is uniform in a cross section of the acoustic transmis-
sion line for the propagating mode of interest. Therefore, we
can scale the independent variable in with the area
using [15]. We can then denote

(11)
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Since, in the equivalent circuit, the distributed capacitance in
the transmission line depends on through

can be modeled by a nonlinear capacitance

(12)

where represents the linear term of the distributed capaci-
tance. The additional nonlinear term can also be expanded in a
Taylor’s series as , where,
for example, the first two terms and can be written as

(13)

(14)

Note that (13) and (14) relate the device-independent non-
linear terms of the piezoelectric constants and with
the nonlinear terms of the equivalent circuit and .

Using the nonlinear distributed capacitance (12) into the te-
legrapher’s (7) and (8), we obtain

(15)

(16)

with

(17)

Equations (15)–(17) describe the nonlinear behavior of an
acoustic transmission line and will be used in Section III to
derive closed-form expressions that relate nonlinear measured
IMD and harmonics with the stiffened elasticity of the piezo-
electric layer.

Before going into details on the formulation, we summarize
the assumptions considered throughout the paper.

1) The equivalent circuit of an elemental section of an
acoustic transmission line used in this work is outlined
in Fig. 2. For simplicity, we do not consider the series
resistance and shunted conductance that would model
the losses in an acoustic transmission line [15], however
note that those elements could be easily included in the
electrical model of Fig. 2.

2) Other sources of nonlinearities beyond those included in
the definition of in (3), such as self-heating effects,
changes in the density, or nonlinear friction effects are not
considered. If necessary, the model could be easily ex-
panded with a nonlinear distributed inductance, series re-
sistance, or shunted conductance.

3) We are not taking into account the nonlinearities arising
from nor those arising from and (4)–(6). We as-
sume that the nonlinearity in due to and the changes
in and with the stress are negligible compared with
those arising inside the resonator due to the nonlinear stiff-
ened elasticity.

Fig. 2. Lossless transmission line cell modeling and infinitesimal length sec-
tion of the acoustic transmission line.

III. CLOSED-FORM EXPRESSIONS FOR IMD
AND SECOND HARMONIC

In this section, we derive the equations for power of the in-
termodulation distortion and second harmonic signals gener-
ated in the nonlinear acoustic line having a voltage-dependent
distributed capacitance (12). We assume that the line is
driven by two tones at fundamental
frequencies being .

If both driving tones are at resonance, their spatial distribution
will be that of a standing wave pattern

(18)

(19)

where the reference is taken at the center of the resonant
line of length (see Fig. 1).

For simplicity, only the first two nonlinear terms of ,
i.e., first-order nonlinearities and second-order nonlin-
earities will be considered. Note however that the pro-
cedure could be extended to consider different nonlinear depen-
dences if necessary [17].

The term causes third-order intermodulation products,
occurring at and , referred here as IMD3,
whereas the nonlinear term produces second-order inter-
modulation products, at and , referred here
as IMD2, second harmonic at and , and also ad-
ditional contribution to IMD3 due to the mixing of the second
harmonic with the fundamental signals.

A. Second-Order Nonlinearities

Assuming a quadratic nonlinear dependence of the nonlinear
distributed capacitance, (12) becomes

(20)

We obtain the IMD3 occurring in a nonlinear acoustic trans-
mission line following a similar procedure to that in [17]. Using
(20) into (17), we may write the nonlinear differential current as

(21)

which can be Fourier transformed to obtain the fre-
quency component at . This results in

where indicates the Fourier
transform at .

For the third-order intermodulation (denoted as
), we can write

(22)
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Note that this term might be seen as a current generator dis-
tributed along the acoustic line and following a spatial distribu-
tion given by the standing-wave pattern at resonance

affected by the order of the nonlinearities resulting in a
term .

This nonlinear source (22) gives rise to a voltage ,
whose spatial distribution should match, except for a multiplica-
tive constant, the one at resonance as in (18). Note that this is
true as long as the driving frequencies are both at resonance, i.e.,

.
The voltage can be analytically obtained by equating

the power generated at to the sum of the power dis-
sipated in the resonator and loads, and times the net
reactive stored energy: . Since
at resonance , we can write [17]

(23)

where is the loaded quality factor. The voltage at can
be written as where describes its
spatial dependence normalized to a maximum value, and
is the magnitude to obtain.

Define the normalized stored energy in the resonator as
a function of the maximum voltage as

(24)

and the spatial coefficient as

(25)

We may substitute (24) and (25) into (23) to obtain

(26)

Using the assumption , i.e.,
, the normalized stored energy (24) and the spatial co-

efficient (25) can be analytically obtained as
and , respectively. Then, (26) becomes

(27)

Note that this formulation requires that and be at res-
onance. In fact, if we consider the resonance frequency as the
frequency where the current (or voltage) is maximum, this fre-
quency is slightly shifted to higher frequencies than the
maximum (usually called series resonance) [18]. This is be-
cause the acoustic transmission line is loaded by the external
components. However, we can assume that both frequencies are
close enough to consider and that follows a
standing wave pattern as done in (18).

By using conventional network analysis (Appendix I), we ob-
tain the dissipated power to the load from the maximum
voltage into the acoustic transmission line (27). From this
analysis, we have derived the power dissipated at the load for

Fig. 3. Left axis: Simulated � (dashed line) and � (dotted line) of an AlN-
FBAR. Right axis: maximum current reached into the resonator (solid line).

TABLE I
COMPARISON OF (27) AND (28) WITH SIMULATIONS

the case of a two-port FBAR with 50 at the source and load
ports

(28)
where and are the input power at and , re-
spectively, and is the external coupling coefficient defined as
the ratio between the dissipated power at one of the external
loads and the dissipated power inside the resonator. This cou-
pling coefficient can be calculated from the scattering parame-
ters as , being the maximum
in the frequency response of .

Equations (27) and (28) have been validated by performing
harmonic balance simulations with commercial software [19].
The simulated resonator has 2 m of AlN thickness and an
area of 3500 m . The maximum of occurs at 2.7145
GHz (see Fig. 3), which is slightly shifted down from the fre-
quency that gives maximum current ( 2.719 GHz) at the
ends of the acoustic transmission line ( and in
Fig. 1). The unloaded quality factor is set to 970 by loading
the ends of the transmission lines with 0.1-m lumped resis-
tances. The nonlinearities are set to 10 F/(V m)
which corresponds in order of magnitude to the nonlinear
reported in [22]. The 2- m length of the acoustic transmission
line is modeled by 160 nonlinear cells like the one in Fig. 2 (min-
imum 100 cells per half-wavelength are required to obtained ac-
curate results [17]). The resonator is then fed with two 10-dBm
tones spaced 1 kHz and centered at 2.7145 GHz. Table I com-
pares the results of the simulations with those from (27) and
(28).

From Table I, we see that the agreement is very good although
the predicted phase of the voltage differs slightly from the sim-
ulated one. If simulations are done at the frequency that gives
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Fig. 4. Voltage (left axis) and current (right axis) distribution in a 1-�m length
acoustic transmission line from � � � to ��� for the fundamental signals
(squares) and for the 2H (circles). Dotted line is the distribution corresponding
to ��������� and �	
������.

maximum voltage ( 2.719 GHz) the phase error is lower
than 0.5 . This small error is due to the assumption
made in our analytical calculations, which does not fully hold
in the simulations.

B. First-Order Nonlinearities

For the analysis of the 2H and IMD2 generation, we only
consider the first term of Taylor’s series expansion of

(29)

The spurious signals occurring at and by (29)
are due to the mixing of the fundamentals at and . On the
other hand, the spurious signal at is due to the mixing
of the second harmonic at with the fundamental at .

1) Second Harmonic and Generation: To obtain
the second harmonic, we need to consider the nonlinear current
generators at as

(30)

Unlike in the case described in Section III-A, the nonlinear
sources at (30) are weakly coupled to the second reso-
nant mode. This is because the impedance seen at from the
center of the acoustic transmission line ( in Fig. 1) to the
electrical part of the circuit is very high so the current flowing
through the transformer is very small. This high impedance and
the symmetrical distribution of the nonlinear sources
along the line, with a maximum at the center of the acoustic line,
forces a zero current at as occurring at the fundamental
frequency in the middle of a line with shorts at both ends.
Fig. 4 shows the simulated distribution (from to )
of the voltage and current at and in the FBAR assessed
in Section III-A with and .

The spatial pattern of results from the combination be-
tween the conditions set by the signal generators distributed
along the transmission line (30) and the standing wave pattern

TABLE II
VALIDATION OF (31), (33), AND (34) WITH SIMULATIONS

corresponding to . Therefore, since the current at is
almost zero at the center of the line, the generated in a

at flows directly through the distributed capacitance
(see Fig. 2) generating a voltage drop given by

(31)

This is the voltage that directly couples to the electrical
circuit part producing measurable second harmonic at the load.

The same procedure is used for the IMD2 at but
replacing the of (30) by

(32)

which implies that

(33)

that is, the dissipated power at the load at should be 6
dB greater than that at if the source signals and are
kept balanced .

The power coupled to the load is obtained by analyzing the
linear circuit at (or adding 6 dB) as described in
Appendix I, resulting in

(34)

where is the source and load impedance, is (4) evalu-
ated at , and is given by (48). The normalized energy
will be .

Expressions (31), (33), and (34) have been validated by per-
forming harmonic balance simulations [19], using the FBAR
described in Section III-A, where the nonlinear terms are now

and 10 F/(V m). Comparison between
simulated results and closed-form expressions are summarized
in Table II, showing very good agreement.

2) Third-Order Intermodulation Product : The
results of mixing the spurious signal at (and ) with
the fundamental signal at (and ) give rise to IMD3 at

(and ), both within the resonance band of
the FBAR structure. We have checked that no other components
like contribute significantly to the IMD3 since the volt-
ages reached inside the resonator at these low frequencies are
very low.
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The equation for the third-order intermodulation distortion
produced by a first-order nonlinear effect can be derived fol-
lowing steps similar to those used in Section III-A. In this case,
the nonlinear sources are

(35)

where is a standing wave pattern described by a func-
tion which resembles a cosine function as shown in
Fig. 4. Its maximum value is given by (31).

As done in Section III-A, we equate the power generated at
with the power dissipated using (23). This results in

(36)

where and
.

We can also write this equation as

(37)

where the factor is defined by

(38)

The term quantifies the error assuming that the second
harmonic follows the standing-wave pattern at , i.e.,

(see Fig. 4). We have numerically evalu-
ated (38) for several examples being always less than 1.15.
Therefore, the error will be within 15% if the approximation

is used to avoid numerical procedures.
Again we are interested in obtaining the dissipated power to

the load. In this case, we can write (see Appendix I)

(39)

It is remarkable to note that the power of the IMD3 generated
by a nonlinear model of first-order (39) can be larger than the
measured power 2H or IMD2 (34). For example, the ratio be-
tween maximum voltages at IMD3 and 2H results in

(40)

From (40), we see that the ratio between IMD3 and 2H is pro-
portional to the fundamental signal , the nonlinear coeffi-
cient , and the loaded quality factor. This is because, unlike
2H signals, the IMD3 spurious signals are at resonance, so their
amplitude is affected by the quality factor of the resonator.

Again we use circuit simulations [19] to validate (37) and
(39). Table III summarizes the comparison between simulated

TABLE III
VALIDATION OF (37) AND (39) WITH SIMULATIONS

values and the values obtained analytically, showing good
agreement. In this case, (38) has also been numerically
solved resulting in , therefore .

Note than the IMD3 is 10 dB higher than the IMD2 (see
Table II) despite the fact that we are only considering nonlinear
effects due to first-order nonlinearities.

IV. EXPERIMENTAL RESULTS

The following section uses the circuit model and the closed-
form expressions presented in Sections II and III to extract the
nonlinear material parameters of a BAW resonator from mea-
surements of the spurious signals at IMD3, IMD2, and 2H.

A. Test Device

The FBAR resonator tested has a 1- m-thick aluminum ni-
tride (AIN) membrane having an area of 4000 m . The elec-
trodes are made of titanium (30 nm thick) and platinum (150
nm thick). All materials are deposited onto a silicon substrate.
Fabrication details are given in [20]. The resulting resonant fre-
quency is around 2.3 GHz.

B. Scattering Parameters and Linear Circuit Model

A preliminary fitting of the linear response (scattering param-
eters) is required for a proper modeling and characterization of
the nonlinear effects occurring in the FBAR presented above. To
do that, we measured the scattering parameters from 2 to 6 GHz
to include the fundamental resonance and second harmonic fre-
quencies in the analysis. The input power was fixed to 10 dBm
to ensure that the FBAR is operating in linear regime, and we
performed on-wafer line-reflect-reflect-match calibrations [21].
Fig. 5 depicts the frequency response of the transmission
and reflection coefficient , for a narrow frequency range
(from 2.2 to 2.4 GHz).

The effective electromechanical coupling coefficient is
2.2% and the loaded quality factor is at the resonance
(maximum ), and at the antiresonance (minimum

). This low causes high insertion losses which are incre-
mented by the parasitic effects of the pads [20].

Fig. 6 shows the proposed linear model containing parasitic
elements to account for the substrate and pads [20]. The FBAR
is modeled using the KLM model (Fig. 1) and the acoustic trans-
mission line is divided into 160 cells containing the distributed
linear and nonlinear parameters, like that in Fig. 2. The acoustic
line is loaded with two transmission line sections at each side
modeling the electrodes. These two transmission lines have a
significant impact on the FBARs resonance frequency but we
will consider that these electrodes do not contribute to the non-
linearities since the titanium and the platinum have a much more
linear strain–stress curve than the AlN [22]. For simplicity, each
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Fig. 5. Simulated (dotted) and measured (solid line) scattering parameters.

Fig. 6. KLM equivalent circuit including electrodes and parasitic elements
(� , � , and � ).

180-nm Ti/Pt electrode is modeled as a unique linear transmis-
sion line with 3440 m/s and 0.207 , which is addi-
tionally loaded by a lumped resistor whose value is higher than
that of the air impedance, and accounts for acoustic losses.

The values of the circuital components are adjusted by using
optimization routines to fit the measured scattering parameters
especially at frequencies close to resonance. Fig. 5 shows the
frequency response of the simulated circuit model of Fig. 6 and
the measurements.

The acoustic losses are modeled with 4 10 at the
ends of the electrodes and the values of the parasitic elements
are 9.8 , 282 and 9 pF. These par-
asitic elements are consistent with those extracted from other
resonators on the same wafer [11].

C. Nonlinear Characterization

To characterize the nonlinear response of our device under
test (Fig. 6), we performed intermodulation and second har-
monic measurements. For these experiments, we kept both
sources balanced in power (i.e., ) and swept
their powers from 10 to 10 dBm. Both tones and
are set at resonance with a frequency spacing

Fig. 7. Measured output power at resonance frequency versus input power for:
fundamental power (circles), IMD3 (squares), IMD2 (diamonds), and 2H (tri-
angles). The solid lines represent the simulated results of Section IV-D.

Fig. 8. Normalized current (dotted) and voltage (solid) distribution along the
acoustic transmission line: piezoelectric layer and electrode (see Fig. 6).

ranging from 100 Hz to 1 MHz. From these
experiments, we obtain the output power of IMD2 ,
IMD3 ( and ), and 2H ( and ) as
a function of the input power of the fundamental signal. The
dependence of the spurious signals on the fundamental tone
frequency spacing is also evaluated.

Fig. 7 outlines the measured spurious and fundamental sig-
nals, when the two fundamental tones are centered at 2.292 GHz
(resonance frequency) and 100 Hz apart. The slope of the fun-
damental tones is 1 : 1 in log–log scale up to 8 dBm, indicating
that saturation effects do not occur. As one may expect from (28)
or (39), and (34), the measured power dependence of IMD3 is
3 : 1 (in log–log scale), and 2 : 1 (in log–log scale) for 2H and
IMD2.

Next, we extract the nonlinear capacitance that fits
the measurements. We first extract from the measured 2H
and IMD2 experiments using (34); we evaluate if the IMD3 is
consistent with this using (39), and if not, we obtain
using (28).

The parasitic elements will be considered as part of the res-
onator in order to apply the formulation based on the analysis of

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on January 22, 2010 at 06:26 from IEEE Xplore.  Restrictions apply. 



3026 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 12, DECEMBER 2009

resonators for the third-order intermodulation. See Appendix II
for further details.

1) Second Harmonic 2H and IMD2: We use (34) to obtain
the value of that better fits the 2H dissipated power at the
external load 50 . To do that, we first obtain:

and using (4) and (51), respectively,
from the fitted parameters, 6.44 10 F/m from the
properties of the material, using

[24], and using [25],
where is the phase of .

To calculate the normalized energy , we need to know
the standing wave pattern in the acoustic transmission line for
the fundamental frequencies. Fig. 8 shows this distribution for
the voltage and current along the acoustic line and the elec-
trodes. Since the distributions of Fig. 8 do not follow a cosine
function, we need evaluate (24) numerically to obtain (see
Appendix II for more details). This results in

, that is, a value 54% larger than the value we would ob-
tain if we would consider an acoustic transmission line of total
length , where is the thickness of piezoelectric plus elec-
trodes.

Using (34), we find a value of that fits a measured point
of Fig. 7. We obtain 1.1 10 F/(Vm). This value also
fits the measured IMD2 since the measured value is
6 dB larger than .

2) IMD3 From First Order Nonlinearities : Applying
the value of 1.1 10 F/(Vm) obtained above into (39)
and using , we obtain an IMD3 output power of

120 dBm, which is much smaller than the measured
value. This indicates that the IMD3 cannot be only due to
and there must be an additional contribution due to .

3) IMD3 From Second-Order Nonlinearities : Now
we use (28) to extract from the measured IMD3. In this
case, the geometrical factor is calculated using (25) from
the voltage shown in Fig. 8. Only nonlinear contributions from
the piezoelectric layer are considered, since we assume that the
electrodes do not contribute to the nonlinearities. This results in

, where is the piezoelectric thickness.
Doing so we obtain 2.5 10 F/(V m), and the re-
sulting nonlinear capacitance is

.

D. CAD-Based Nonlinear Characterization

To validate the data obtained from closed-form expressions,
we have found by fitting the measured data to com-
puter-aided design (CAD) simulations of the equivalent circuit
[19]. These simulations are not subject to the simplifying as-
sumptions made in the derivation of (28), (34), and (39). Fur-
thermore, they can easily account for changes in the equivalent
circuit due to electrodes and other extraneous elements. For ex-
ample, the equivalent circuit may be easily modified from that in
Fig. 1 to the one in Fig. 6 to include the effect of the electrodes.

Using the same input power than in Section IV-C as a fitting
point, we obtain , which
is within a 8% error in both and . This agreement in-
dicates that (28) and (34) are quite general as long as the para-
sitic effects and electrodes are considered when evaluating some
terms used in these equation (see details in Appendix II). Fig. 7

Fig. 9. IMD3 and 2H output power as a function of the tone spacing �� for
an input power of �5.5 dBm. Triangles correspond to �� � � , circles to
�� � � , squares to �� , and stars to �� .

shows the measured and simulated results with these extracted
nonlinear parameters versus input power.

V. DISCUSSION AND FURTHER EXPERIMENTS

The nonlinear coefficients extracted from the measurements
and can then be related with the material nonlinear

parameter through (13) and (14). From (13), we ob-
tain 1.1 10 F/(Vm) and the value of the first-order
nonlinear elastic stiffness . This value is six times
greater than that reported in [22], which was obtained from the
simulations of mechanical displacements.

Using (14) with 2.3 10 F/(V m), we ob-
tain the second-order nonlinear elastic stiffness

2.1 10 N m . This value is three orders of magnitude
greater than the one reported in [22]. In fact the value reported
in [22] would not be measurable doing IMD experiments since
the IMD3 generated by would be greater than that gener-
ated by such small . The difference between measured and
reported results suggests the existence of other causes for the
second-order nonlinear effects.

In order to further investigate the nonlinear effects, we per-
formed additional IMD and 2H measurements versus the fre-
quency spacing between the fundamental tones .
The dependence of IMD power level on the frequency spacing
between tones is an indication of dependence with the period
of the envelope, and may give additional information to discern
between different sources of nonlinear effects.

Fig. 9 depicts the IMD3, IMD2, and 2H as a function of the
frequency spacing for an input power of 5.5 dBm. While 2H
and IMD2 show to be independent of the frequency spacing, that
is a constant value of , IMD3 decreases when the frequency
spacing increases, which would result in depending on the
frequency spacing between the input tones. This later effect is
not considered in the circuit model presented in this paper.

The observed IMD3 dependence on the frequency spacing be-
tween the fundamental tones and the difference in the extracted
quadratic nonlinear stiffness is an added indication that
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additional sources may contribute to the second-order nonlinear
circuit term such as, for example, thermal effects. In ad-
dition, Fig. 9 shows asymmetries between the lower and upper
( and ) intermodulation products. This be-
havior is also characteristic of self-heating effect as shown in
[23] which is consistent with the low quality factor of the de-
vice. Note that as pointed out before, the stiffened elasticity (10)
used in this model fails to predict these thermal effects.

VI. CONCLUSION

In this paper, we present a novel nonlinear distributed equiv-
alent circuit based on the KLM model. Our new model is useful
to account for the linear and nonlinear behavior of BAW res-
onators in a broad frequency band. We have used it to obtain
closed-form expressions for the most relevant nonlinear effects:
intermodulation distortion and second harmonic generation. We
have checked these expressions with equivalent circuit simula-
tions using harmonic balance techniques.

We have shown that the new equivalent circuit can be easily
modified to model the effects of the electrodes and other para-
sitic elements existing in FBAR. With this modified version of
the equivalent circuit, we are able to fit the linear and nonlinear
measurements in an FBAR (i.e., s-parameters, intermodulation
distortion, and second harmonic generation). The measurements
can be fitted to the closed-form expressions for intermodulation
distortion and second harmonic generation derived in the paper.

Once the model is fitted to the measurements, we can extract
the nonlinear material parameters. The value obtained for
is consistent in order of magnitude with the ones reported in the
literature, whereas the gives a larger value than the ones
reported. We suggest that this disagreement on is because
there are other nonlinear effects contributing to the IMD3 gen-
eration such as self-heating mechanisms.

The work presented in this paper may now be used in the
following aspects.

1) The equivalent circuit could also be used as a basic building
block to model more complex devices, such as filters con-
taining several resonators.

2) Evaluation of additional nonlinear effects, such as satura-
tion or detuning, which may also be performed by simu-
lating the equivalent circuit proposed.

3) Inclusion of other nonlinear sources in the model. For ex-
ample, a nonlinear viscosity could be considered adding a
shunted nonlinear distributed conductance to the nonlinear
transmission line in the model.

4) Extension of the model to consider self-heating mecha-
nisms.

Although the proposed circuit model has been particularly
developed for FBARs with longitudinal propagating wave, this
can be generally used for modeling the nonlinear performance
in other BAW devices using other propagating modes, for ex-
ample, quartz crystal resonator operating at the shear mode or
even surface acoustic wave resonators, being therefore useful in
other applications beyond the scope of this paper.

APPENDIX I
IMD AND 2H POWER COUPLED TO THE LOAD

The power coupled to the load connected at port 2 (Fig. 1) at
, , can be written as

(41)

where [24] and is the dissipated
power into the resonator. Then, (41) can be written as a function
of the unloaded quality factor and the normalized stored
energy as

(42)

The dissipated power into the resonator at the fundamental
frequency is given by

(43)

where is the incident power to the resonator. The max-
imum voltage at results in

(44)

For second-order nonlinearities , replacing (44) into
(26) and the resulting into (42), the IMD3 load power gives

(45)
The IMD3 coupled to the load for first-order nonlinearities

is calculated using (44), (42), and (36)

(46)

Note that this formulation is based on the definition of the
quality factor and the coupling coefficient and it does not
depend on the origin of the losses. Therefore, it can be used to
account for losses modeled as lumped resistances at the ends of
the acoustic transmission line, or for acoustic distributed losses
which could be modeled adding a series distributed resistance
and/or a shunted distributed conductance in the elemental seg-
ment of Fig. 2.

The maximum voltage at the center of the acoustic
transmission line is coupled to the electrical part of the circuit
through the transformer 1: (see Fig. 1) resulting in a electrical
voltage , thus the current at flowing to the source
impedance and load will be

(47)

where corresponds to (4) evaluated at and

(48)
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with obtained from (6) at . Therefore, the dissipated
power at the load will be

(49)

which, by using (49), (44), and (31), can be written as

(50)

APPENDIX II
PARASITIC AND ELECTRODE EFFECTS

The parasitic elements may be included as part of the res-
onator, by using as a quality factor the one obtained from mea-
surements instead of the inherent quality factor of the resonator.
The term accounts for the acoustic power dis-
sipated in the resonator plus the power dissipated in the parasitic
resistances. Note that this does not affect (45) and (46) since the
parasitic elements are included in the coupling coefficients and
quality factor of the whole device.

However, for the second harmonic power calculation, we
need to consider the parasitic elements in the circuit analysis.
The electrical voltage causes a current
flowing to the load impedance following (47), although in this
case, the impedance does not follow (48) and it is obtained
by conventional circuit analysis of the electrical part of the
device including the electrodes (see Fig. 6). This results in

(51)
where .

In addition, the electrodes may have a significant impact in
the spatial distribution of the voltage and current inside the res-
onator as shown in Fig. 8, so these spatial current and voltage
distributions must be considered for the calculation of the nor-
malized energy .

The electrical energy corresponding to (25) for an ideal
acoustic transmission line will be in this case

(52)
where and are the distributed conductance, normal-
ized voltage distribution and layer thickness, respectively, and
the sub index “ ” and “ ” denote piezoelectric layer and elec-
trode, respectively.

The normalized magnetic energy will be

(53)

where indicates the normalized spatial current distribution.
is the ratio of maximum voltage and maximum current

in a acoustic line loaded with electrodes. This constant can be

calculated using conventional microwave analysis of the loaded
transmission lines

(54)

where and are the characteristic impedance and electrical
length, respectively.

The normalized energy will be then

(55)
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