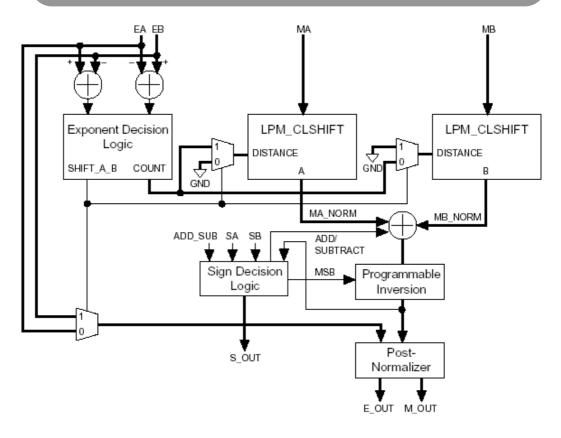
Departamento de Ingeniería Electrónica

SISTEMAS DIGITALES DE INSTRUMENTACIÓN Y CONTROL

TEMA 3Diseño de Subsistemas Aritméticos



Rafael Ramos Lara Febrero 2007

TEMA 3

Diseño de Subsistemas Aritméticos

Indice (I)

- 3.1. Formatos de representación numérica
- 3.2. Arquitecturas serie, paralelo y pipelined
- 3.3. Sumadores/restadores
 - 3.3.1. Sumadores/restadores Serie-Serie
 - 3.3.2. Sumadores/restadores Paralelo
- 3.4. Multiplicadores
 - 3.4.1. Multiplicadores Array (Paralelo)
 - 3.4.1.1. Multiplicadores Array Unsigned
 - 3.4.1.2. Multiplicadores Array c.a.2
 - 3.4.2. Multiplicadores Serie-Paralelo
 - 3.4.2.1. Multiplicadores Serie-Paralelo *Unsigned* con algoritmo CSAS
 - 3.4.2.2. Multiplicadores Serie-Paralelo *Unsigned* con algoritmo FSP
 - 3.4.2.3. Multiplicadores Serie-Paralelo c.a.2 con algoritmo CSAS
 - 3.4.2.4. Multiplicadores Serie-Paralelo c.a.2 con algoritmo FSP
 - 3.4.2.5. Multiplicadores Serie-Paralelo MSB-primero Tema 3: Diseño de Subsistemas Aritméticos

Indice (II)

- 3.4.3. Multiplicadores Serie Secuencial
- 3.4.4. Multiplicadores Serie-Serie
- 3.4.5. Multiplicadores Pipelined
- 3.4.6. Algoritmo L-Booth
- 3.4.7. Multiplicadores de hardware reducido
- 3.5 Divisores
 - 3.5.1. Divisor Paralelo-Paralelo
 - 3.5.2. Divisor secuencial

Tema 3: Diseño de Subsistemas Aritméticos

3

Indice (III)

- 3.6. Operaciones aritméticas en coma flotante
 - 3.6.1. Formatos de representación en coma flotante
 - 3.6.2. Suma/Resta en coma flotante
 - 3.6.3. Multiplicación en coma flotante
- 3.7. Funciones especiales
 - 3.7.1. Multiplicación por una constante
 - 3.7.2. Raíz cuadrada
 - 3.7.3. Cuadrado de un número: X²
 - 3.7.4. Multiplicación de complejos

Indice (IV)

- 3.8. Bloques aritméticos en FPGA's
 - 3.8.1. Multiplicadores de la familia *Spartan-3*
 - 3.8.2. XtremeDSP de la familia Virtex-4: DSP48
 - 3.8.3. *XtremeDSP* de la familia *Virtex-5*: DSP48E

Tema 3: Diseño de Subsistemas Aritméticos

5

3.1 Formatos de representación numérica

Formatos normales de datos numéricos

- Existen diversos formatos de representación numérica de uso común en los sistemas digitales
- El formato concreto a utilizar dependerá de las características (magnitud, signo y precisión) de los número que intervienen en el proceso

Los tipos de representaciones más habituales son:

- Números enteros sin signo
- Números negativos: signo más magnitud absoluta
 - complemento a 1
 - complemento a 2
- BCD (números Decimales Codificados en Binario)
- Coma flotante

Tema 3: Diseño de Subsistemas Aritméticos

7

Números enteros sin signo

Es la forma más sencilla de representar números

El rango de números que se puede representar depende de la longitud del dato:

- 8 bits: rango de representación: 0 <-> 255
- *16 bits*: rango de representación: 0 <-> 65535

Ventajas:

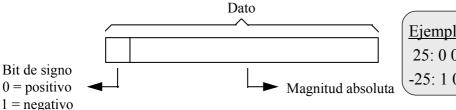
• Los circuitos lógicos que realizan operaciones con este formato son sencillos de diseñar y realizar

Inconvenientes:

- El intervalo de números está limitado a la longitud del dato
- No se puede representar números negativos o fraccionarios

Números negativos: signo más magnitud absoluta

El bit de mayor peso es el bit de signo, y el resto de bits representa su magnitud absoluta



Ejemplo:

25:00011001

-25: 1 0 0 1 1 0 0 1

Si, por ejemplo, el dato es de 8 bits, se pueden representar los siguientes números:

- positivos: del 0000 0000 al 0111 1111 (0 al 127)
- negativos: del 1000 0000 al 1111 1111 (0 al -127)

Tema 3: Diseño de Subsistemas Aritméticos

9

Números negativos: complemento a 1

El valor negativo de un número en complemento a 1 se obtiene invirtiendo todos los dígitos $(d_{n-1}...d_0)$ del número expresado en positivo:

Bit de signo
$$N = -\left(2^{n-1} - 1\right)d_{n-1} + \sum_{i=0}^{n-2} d_i \cdot 2^i \longrightarrow \text{Resto de bits}$$

Si, por ejemplo, el dato es de 8 bits, el rango de representación es:

- positivos: del 0000 0000 al 0111 1111 (0 al 127)
- negativos: del 1111 1111 al 1000 0000 (0 al -127)

Números negativos: complemento a 2

Con este formato y con un dato de N bits, un número negativo -M se representa como: $2^{\rm N}$ - M

Bit de signo
$$N = -2^{n-1} \cdot d_{n-1} + \sum_{i=0}^{n-2} d_i \cdot 2^i$$
 Resto de bits

Si, por ejemplo, el dato es de 8 bits, se pueden representar los siguientes números:

- positivos: del 0000 0000 al 0111 1111 (0 al 127)
- negativos: del 1111 1111 al 1000 0000 (-1 al -128)

Tema 3: Diseño de Subsistemas Aritméticos

11

Código BCD: Números Decimales Codificados en Binario

- Es un código binario utilizado para representar números decimales
- Cada dígito decimal se expresa con cuatro bits
- Permite representar de forma directa números decimales

Dígito Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- El rango de valores representable es pequeño
- Con 8 bits se puede representar: 0....99d

Decimal: 7 5 BCD: 0111 0101 Binario: 101011

Tema 3: Diseño de Subsistemas Aritméticos

Coma Flotante

- El formato de números en coma flotante se define como: \pm A · 2 \pm B
- A: mantisa, B: exponente
- Permite representar números fraccionarios, enteros, positivos y negativos
- La precisión depende del número de bits de la mantisa
- Inconveniente: la complejidad de los circuitos que realizan operaciones con este formato

Tema 3: Diseño de Subsistemas Aritméticos

13

3.2 Arquitecturas serie, paralelo y pipelined

Arquitecturas para el procesado aritmético

El tipo de arquitectura adecuada para implementar un subsistema de procesado aritmético depende de:

- *Velocidad de muestreo*: varia entre las velocidades muy bajas propias de aplicaciones de voz o comunicaciones, y velocidades muy altas propias de sistemas de radar, sonar, video y procesado de imagen
- *Recursos hardware*: el número y tipo de componentes digitales que incorpora un PLD, así como la arquitectura interna (distribución de componentes y recursos de interconexión)

Tipos de arquitectura:

- Arquitectura serie: procesan un bit del dato por cada ciclo de reloj
- Arquitectura paralelo: procesan un dato por cada ciclo de reloj
- Arquitectura pipelined: permite realizar en paralelo varias operaciones a la vez

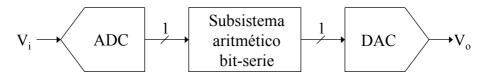
Tema 3: Diseño de Subsistemas Aritméticos

15

Arquitectura serie

- Procesa un bit del dato por cada ciclo de reloj
- Requiere menos recursos hardware que otras arquitecturas
- Necesita menos interconexiones y menos pines de entrada/salida
- Son idóneas en aplicaciones de baja frecuencia donde la velocidad de proceso no es un parámetro restrictivo
- Normalmente se utilizan junto con ADC y DAC serie

Esquema arquitectura serie

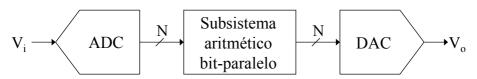


Tema 3: Diseño de Subsistemas Aritméticos

Arquitectura paralelo

- Procesa un dato por cada ciclo de reloj
- Es la arquitectura que requiere mas recursos hardware
- Necesita mas interconexiones y pines de entrada/salida
- Son idóneas en aplicaciones de muy alta frecuencia
- Normalmente se utilizan junto con ADC y DAC paralelo con elevada velocidad de conversión (ADC Flahs)

Esquema arquitectura paralelo



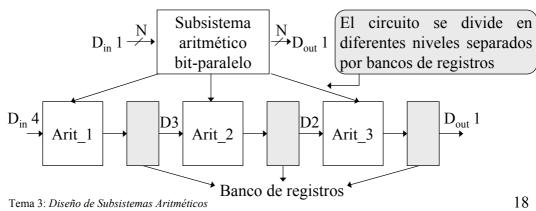
Tema 3: Diseño de Subsistemas Aritméticos

17

Arquitectura Pipelined

- Se introducen bancos de registros entre los niveles de lógica
- Permite procesar varias muestras a la vez
- Aumenta la velocidad de cálculo en estructuras bit-paralelo

Esquema arquitectura pipelined



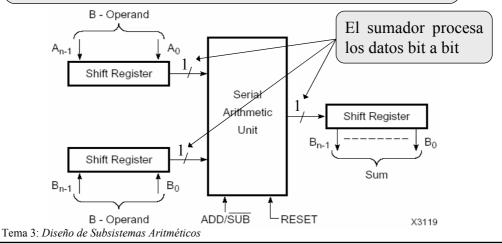
3.3 Sumadores/restadores

19

3.3.1 Sumadores/restadores Serie-Serie

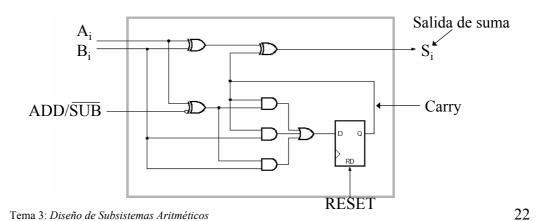
Esquema sumador/restador Serie-Serie

- Los dos operandos se introducen en registros de desplazamiento
- La unidad aritmética procesa los operandos bit a bit
- Se procesa primero el bit de menor peso



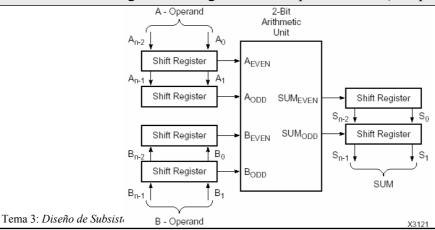
Esquema de la célula básica sumador/restador serie

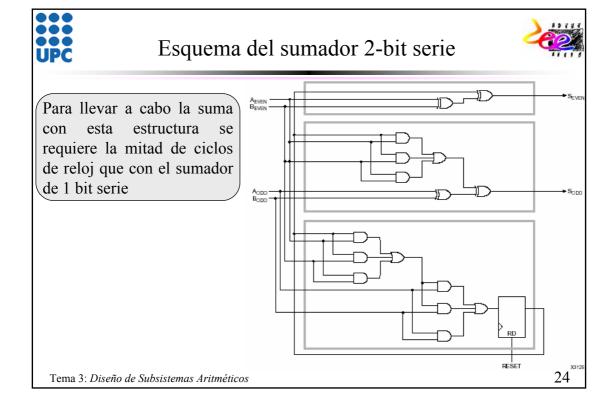
- Sumador/restador de 1 bit con salida de suma y bit de carry/borrow registrado
- Para completar la suma de dos datos de N bits se requieren N ciclos de reloj
- La unidad aritmética se puede implementar en un solo CLB



Arquitectura 2-bit serie

- Se puede aumentar la velocidad procesando dos bits simultáneamente
- Los bits pares e impares se cargan en registros de desplazamiento separados
- La unidad aritmética suma dos bits en cada ciclo de reloj
- El resultado se carga en dos registros de desplazamiento (bits par e impar)



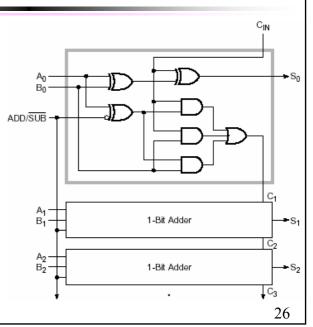


3.3.2 Sumadores/restadores Paralelo

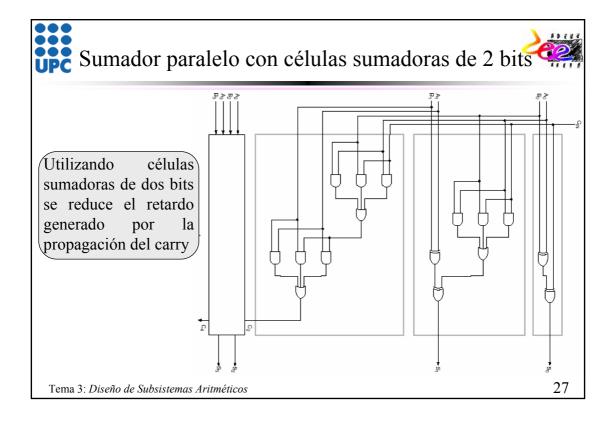
25

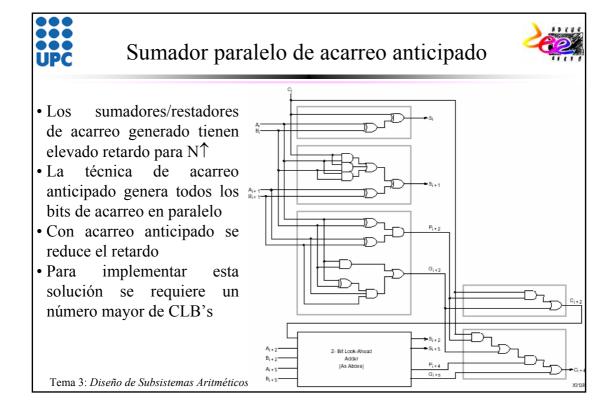
Sumador paralelo con acarreo propagado

- Compuesto básicamente de N células sumadoras de 1 bit donde se ha suprimido la báscula que almacena el acarreo
- Utiliza un CLB por bit (menos que otros sumadores paralelo)
- El retardo es N veces el equivalente a un CLB
- Utilizando células sumadoras de dos bits se puede reducir el retardo



Tema 3: Diseño de Subsistemas Aritméticos





3.4 Multiplicadores

29

Introducción

- El multiplicador es un componente fundamental en algoritmos *DSP*
- El producto de un número *A* de "*n*" bits por otro número *B* de "*m*" bits genera un producto *P* de "*m*+*n*" bits
- Tipos de multiplicadores:
 - Array (paralelo): los operandos de entrada y el resultado se procesan en paralelo
 - Serie-paralelo: un operando se carga en paralelo y el otro se introduce en serie, el resultado se obtiene en serie
 - Serie-Serie: los dos operandos entran en serie, el resultado aparece en serie
 - Multiplicadores pipelined: procesan varios productos a la vez
 - Multiplicadores de hardware reducido

3.4.1 Multiplicadores Array (Paralelo)

31

3.4.1.1 Multiplicadores Array Unsigned

Multiplicación binaria unsigned

- El producto se obtiene multiplicando (función AND) bit a bit los operandos X e Y y sumando los resultados parciales (función suma)
- Para operandos de "n" y "m" bits, el resultado es de "n+m" bits

El producto de dos números enteros positivos viene dado por:

$$X = x_{n-1} x_{n-2} x_{n-3} \dots x_0 = \sum_{i=0}^{n-1} x_i 2^i$$

$$Y = y_{n-1} y_{n-2} y_{n-3} \dots y_0 = \sum_{j=0}^{n-1} y_j 2^j$$

$$XY = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} 2^{i+j} x_i y_j \leftarrow \text{Productos y sumas}$$

Tema 3: Diseño de Subsistemas Aritméticos

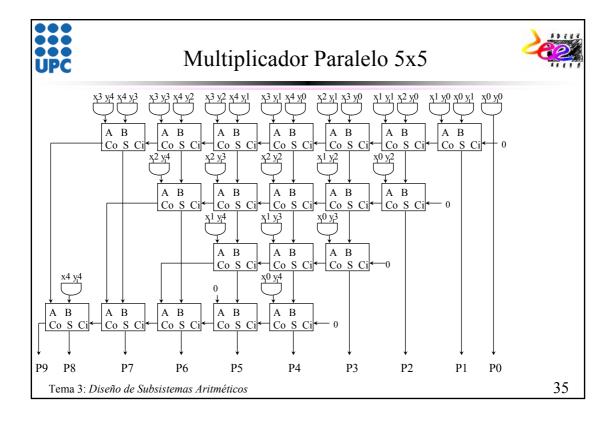
33

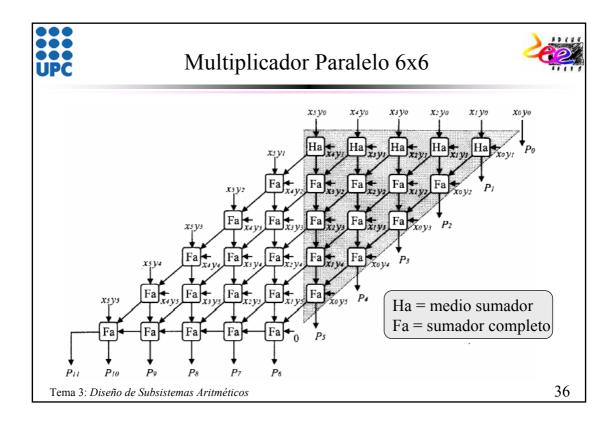
Implementación multiplicador paralelo unsigned

- Se implementan directamente todos las puertas AND y sumadores que intervienen en la realización del producto
- Emplea más recursos hardware que otras soluciones pero el producto se obtiene sin señal de reloj

Multiplicand	>					X3	X2	X1	X0
Multiplier	>				х	Y3	Y2	Y1	Y0
1st partial product	>		AND			Y0X3	Y0X2	Y0X1	Y0X0
2nd partial product	>				Y1X3	Y1X2	Y1X1	Y1X0	
3rd partial product	>		\downarrow	Y2X3	Y2X2	Y2X1	Y2X0		
4th partial product	>	+	Y3X3	Y3X2	Y3X1	Y3X0			
Final product	>	P7	P6	P5	P4	P3	P2	P1	P0

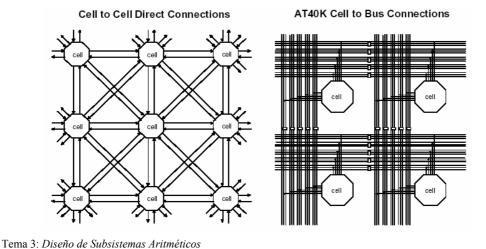
Tema 3: Diseño de Subsistemas Aritméticos





Implementación con FPGA AT40K de Atmel

Las conexiones diagonales entre células de la FPGA *AT40K* permite la fácil implementación de multiplicadores haciendo uso de menos puertas lógicas



37

3.4.1.2 Multiplicadores Array c.a.2

Multiplicación binaria en c.a.2

El producto de dos números expresados en complemento a dos viene dado por:

$$X = x_{n-1} x_{n-2} x_{n-3} \dots x_0 = -2^{n-1} x_{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

$$Y = y_{n-1} y_{n-2} y_{n-3} \dots y_0 = -2^{n-1} y_{n-1} + \sum_{j=0}^{n-2} y_j 2^j$$

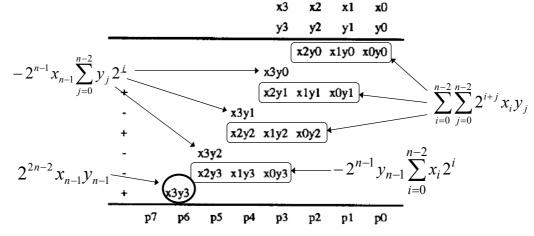
$$XY = \left(-2^{n-1} x_{n-1} + \sum_{i=0}^{n-2} x_i 2^i \right) \cdot \left(-2^{n-1} y_{n-1} + \sum_{j=0}^{n-2} y_j 2^j \right) =$$

$$\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} 2^{i+j} x_i y_j + 2^{2n-2} x_{n-1} y_{n-1} - 2^{n-1} x_{n-1} \sum_{j=0}^{n-2} y_j 2^j - 2^{n-1} y_{n-1} \sum_{j=0}^{n-2} x_i 2^j$$

Implementación multiplicador paralelo en c.a.2

39

En este caso se necesitan sumadores y restadores para realizar el producto



Tema 3: Diseño de Subsistemas Aritméticos

Tema 3: Diseño de Subsistemas Aritméticos

Algoritmo Baugh-Wooley para multiplicar en *c.a.2* (I)

Permite realizar el producto utilizando sólo sumadores y puertas AND, NAND

$$\begin{split} AB = & \left(-2^{n-1}a_{n-1} + \sum_{i=0}^{n-2}a_{i}2^{i} \right) \cdot \left(-2^{n-1}b_{n-1} + \sum_{j=0}^{n-2}b_{j}2^{j} \right) = \\ & \sum_{i=0}^{n-2}\sum_{j=0}^{n-2}2^{i+j}a_{i}b_{j} + 2^{2n-2}a_{n-1}b_{n-1} - 2^{n-1}a_{n-1}\sum_{j=0}^{n-2}b_{j}2^{j} - 2^{n-1}b_{n-1}\sum_{i=0}^{n-2}a_{i}2^{i} = \\ & \sum_{i=0}^{n-2}\sum_{j=0}^{n-2}2^{i+j}a_{i}b_{j} + 2^{2n-2}a_{n-1}b_{n-1} + 2^{n-1}\sum_{j=0}^{n-2}a_{n-1}b_{j}2^{j} + 2^{n-1}\sum_{i=0}^{n-2}b_{n-1}a_{i}2^{i} + 2^{n} - 2^{2n-1} \right) \end{split}$$

Tema 3: Diseño de Subsistemas Aritméticos

41

Algoritmo Baugh-Wooley para multiplicar en *c.a.2* (II)

$$2^{n-1} \sum_{j=0}^{n-2} \overline{a_{n-1}b_{j}} 2^{j} \underbrace{\overline{a_{3}b_{1}} \ a_{2}b_{1} \ a_{1}b_{1} \ a_{0}b_{1}}_{\overline{a_{3}b_{2}} \ a_{1}b_{2} \ a_{1}b_{2} \ a_{0}b_{2}} \underbrace{\sum_{i=0}^{n-2} \sum_{j=0}^{n-2} 2^{i+j} a_{i}b_{j}}_{i=0} 2^{i+j} a_{i}b_{j}$$

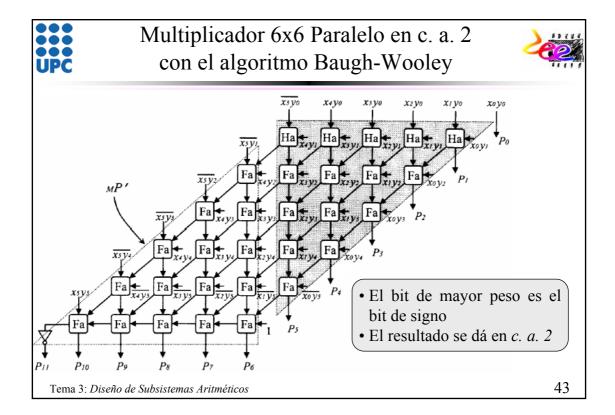
$$-2^{2n-1} \longrightarrow 1 \underbrace{a_{3}b_{3}}_{\overline{a_{2}b_{3}} \ \overline{a_{1}b_{3}} \ \overline{a_{0}b_{3}}}_{\overline{a_{2}b_{3}} \ \overline{a_{1}b_{3}} \ \overline{a_{0}b_{3}}} \underbrace{-2^{n-1} \sum_{i=0}^{n-2} \overline{b_{n-1}a_{i}} 2^{i}}_{i=0} 2^{i-1} \underbrace{\sum_{i=0}^{n-2} \overline{b_{n-1}a_{i}} 2^{i}}_{i=0}$$

 p_2

 p_1

 p_0

Tema 3: Diseño de Subsistemas Aritméticos



3.4.2 Multiplicadores Serie-Paralelo

Multiplicadores Serie-Paralelo (SPM)

- Dispone de una entrada de operando serie, otra entrada de operando paralelo y salida del resultado serie
- El hardware empleado en su diseño es más reducido que el multiplicador paralelo
- El producto se realiza secuencialmente bajo el control de una señal de reloj

Tema 3: Diseño de Subsistemas Aritméticos

45

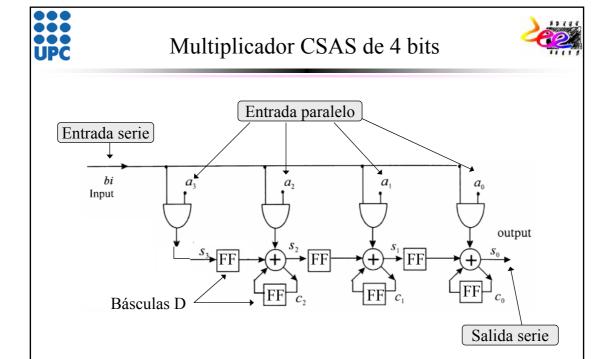
3.4.2.1 Multiplicadores Serie Paralelo Unsigned con algoritmo CSAS

SPM con algoritmo CSAS

- CSAS: Carry-Save Add-Shift
- Su funcionamiento se basa en el algoritmo de suma-desplazamiento:
 - El dato paralelo se multiplica por cada uno de los bits del dato serie mediante puertas AND
 - El resultado de cada producto se desplaza una posición a la derecha
 - Cada nuevo producto parcial se suma con la acumulación desplazada de los anteriores productos
- Si N es el número de bits del dato serie y M del dato paralelo, el resultado de N+M bits se obtiene después de N+M ciclos de reloj
- Durante los primeros N ciclos se introduce el dato serie empezando por el LSB
- Durante los *M* ciclos siguientes se aplica un cero en la entrada serie y se propagan los bits de carry almacenados en los registros hacia la salida

Tema 3: Diseño de Subsistemas Aritméticos

47



Ejemplo multiplicación Serie-Paralelo CSAS (I)

Ejemplo: multiplicador SPM de 4 bits, producto de 9d x 5d

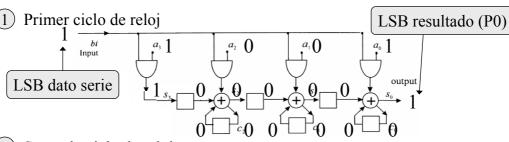
El resultado de 8 bits se obtiene después de 8 ciclos de reloj:

- 4 ciclos para hacer los 4 productos parciales
- 4 ciclos para propagar los bits de carry hacia la salida serie

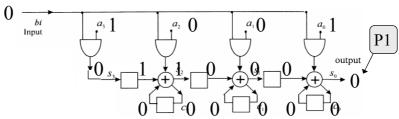
Tema 3: Diseño de Subsistemas Aritméticos

49

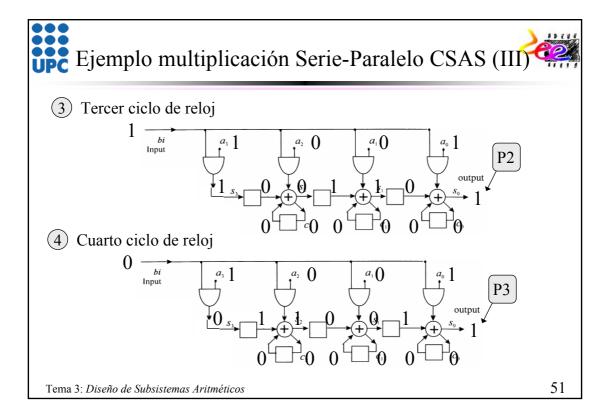
Ejemplo multiplicación Serie-Paralelo CSAS (II)

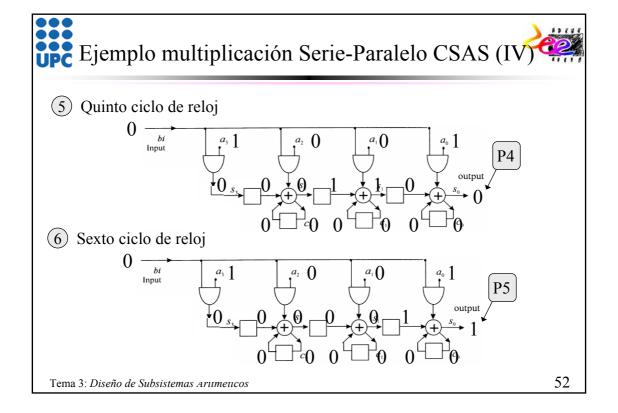


2 Segundo ciclo de reloj



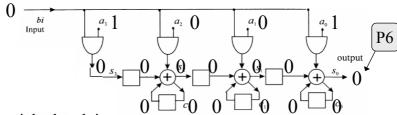
Tema 3: Diseño de Subsistemas Aritméticos



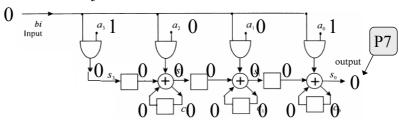


Ejemplo multiplicación Serie-Paralelo CSAS (V

(7) Séptimo ciclo de reloj



(8) Octavo ciclo de reloj



Tema 3: Diseño de Subsistemas Aritméticos

53

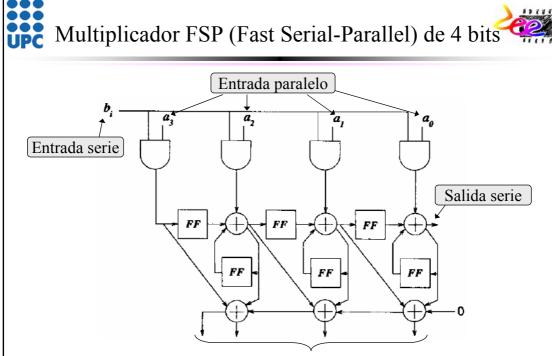
3.4.2.2 Multiplicadores Serie-Paralelo Unsigned con algoritmo FSP

SPM con algoritmo FSP

- FSP: Fast Serial-Parallel
- Realiza el producto en tan solo N ciclos de reloj (igual al número de bits del multiplicador u operando serie)
- Durante los primeros *N-1* ciclos funciona como una multiplicador *CSAS*, en el siguiente ciclo funciona como un sumador de *M-1* bits para extraer en paralelo los bits de carry remanentes

Tema 3: Diseño de Subsistemas Aritméticos

55



Tema 3: Diseño de Subsistemas Aritméticos Salida paralelo suma de acarreos remanentes 56

Ejemplo multiplicación serie-paralelo FSP (I)

Ejemplo: multiplicador SPM de 4 bits, producto de 9d x 5d

El resultado de 8 bits se obtiene después de 4 ciclos de reloj:

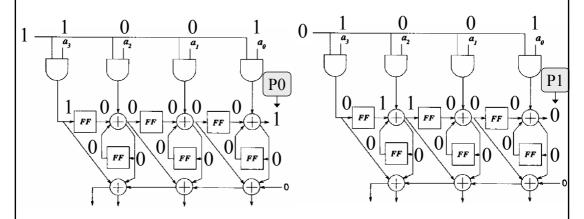
- 3 ciclos para hacer los 3 primeros productos parciales
- 1 ciclo para hacer el último producto parcial y extraer en paralelo los 4 bits de mayor peso

Tema 3: Diseño de Subsistemas Aritméticos

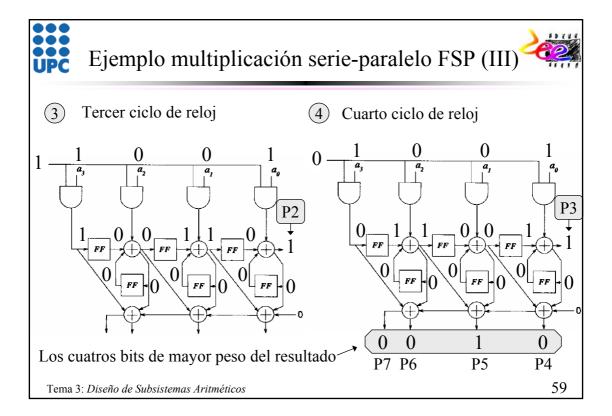
57

Ejemplo multiplicación serie-paralelo FSP (II)

- 1) Primer ciclo de reloj
- 2 Segundo ciclo de reloj



Tema 3: Diseño de Subsistemas Aritméticos



3.4.2.3 Multiplicadores Serie Paralelo c.a.2 con algoritmo CSAS

Multiplicador SPM c.a.2

Para realizar el producto serie-paralelo se utilizan dos técnicas:

- Extensión de signo: requiere más recursos hardware
- Algoritmo de Baugh-Wooley

Tema 3: Diseño de Subsistemas Aritméticos

61

Algoritmo de extensión de signo

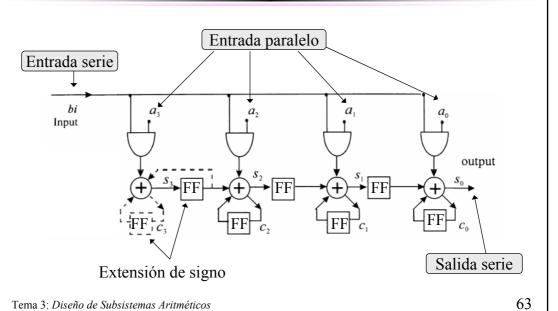
Se extiende el signo de ambos números N+I veces donde N es la longitud de los operandos que intervienen en el producto

										_ 人							
							1	x3	x 3	x3	x3	x 3	x 3	x 2	x1	x 0	
								у3	у3	у3	у3	у3	у3	y2	y1	y 0	
								x3y0	x3y0	x3y0	x3y0	x3y0	x3y0	x2y0	x1y0	x0y0	7
٠							x3y1	x3y1	x3y1	x3y1	x3y1	x3y 1	x2y1	x1y1	x0y1		
+							-			-	-	x2y2	-	x0y2			
+					-	-	- 1		-	-	-	x1y3		$/_{\rm T}$	érm	inos	que intervienen en el
+					x3y3								/ĸ	` -	•		cálculo del resultado
+				x3y3										`,	r		
+				x3y3										1	Las	opera	aciones a realizar son
+				x3y3											1	las m	ismas que en caso de
+ x3y3	x3y3	x3y3	x3y3	x3y3	x3y3	x2y3	x1y3	x0y3	_								números positivos
								p7	p7	р6	p 5	p 4	р3	p2	p1	p0	nameros positivos
										- D	1.	1	1 1		1		

Tema 3: Diseño de Subsistemas Aritméticos

Resultado del producto

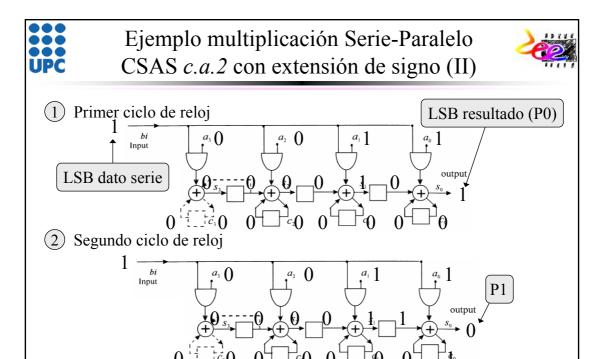
Multiplicador Serie-Paralelo *c.a.2* CSAS de 4 bits con extensión de signo



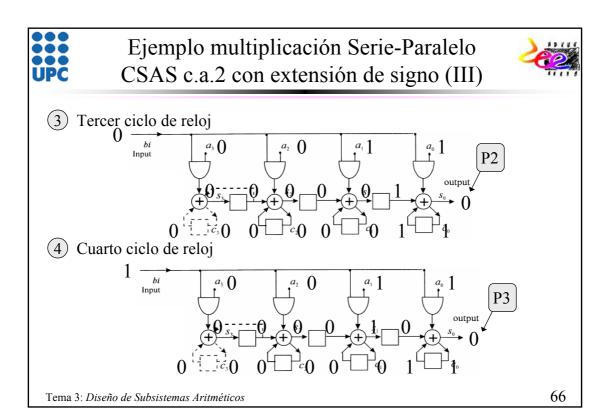
Ejemplo multiplicación Serie-Paralelo CSAS *c.a.2* con extensión de signo (I)

Ejemplo: multiplicador SPM de 4 bits, producto de -5d x 3d

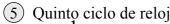
Tema 3: Diseño de Subsistemas Aritméticos



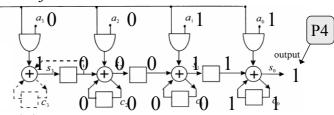
Tema 3: Diseño de Subsistemas Aritméticos



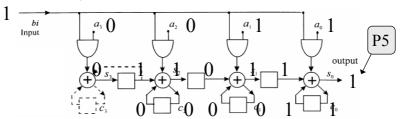
Ejemplo multiplicación Serie-Paralelo CSAS c.a.2 con extensión de signo (IV)



Input



6) Sexto ciclo de reloj

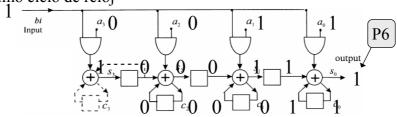


Tema 3: Diseño de Subsistemas Aritméticos

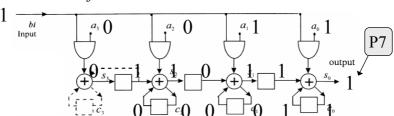
67

Ejemplo multiplicación Serie-Paralelo CSAS c.a.2 con extensión de signo (V)

7 Séptimo ciclo de reloj



(8) Octavo ciclo de reloj



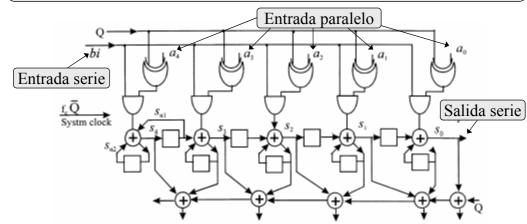
Tema 3: Diseño de Subsistemas Aritméticos

3.4.2.4 Multiplicadores Serie Paralelo c.a.2 con algoritmo FSP

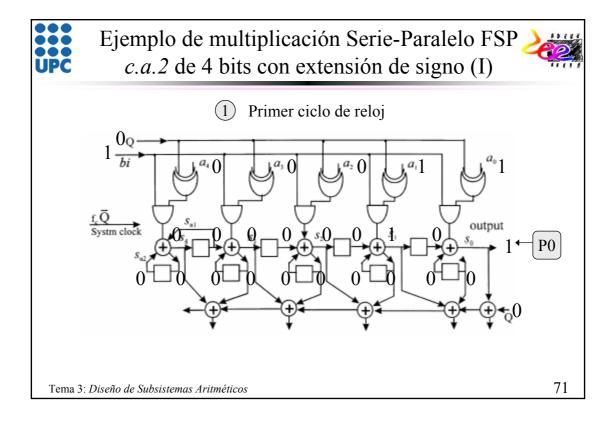
69

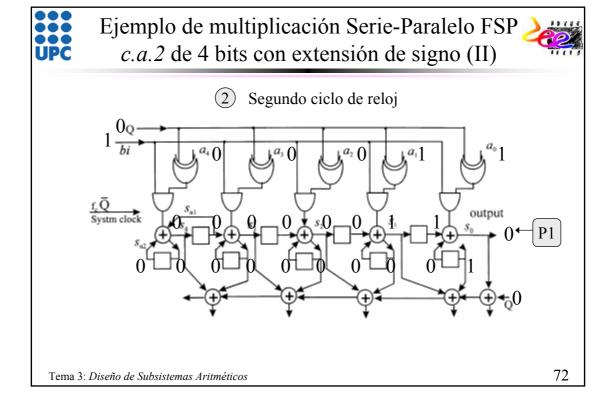
Multiplicación Serie-Paralelo FSP *c.a.2* de 4 bits con extensión de signo

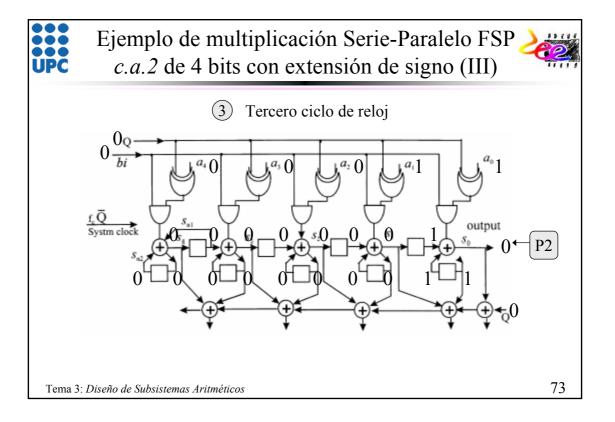
- Vale cero el resto durante los *N-1* primeros periodos de reloj y el circuito actúa como un CSAS
- La entrada Q vale uno en el ciclo N de reloj

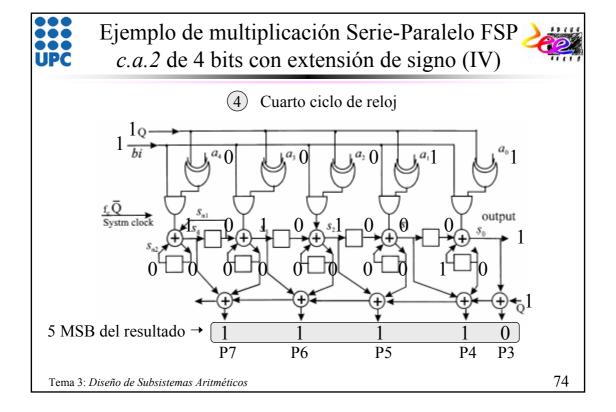


Tema 3: Diseño de Subsistemas Aritméticos







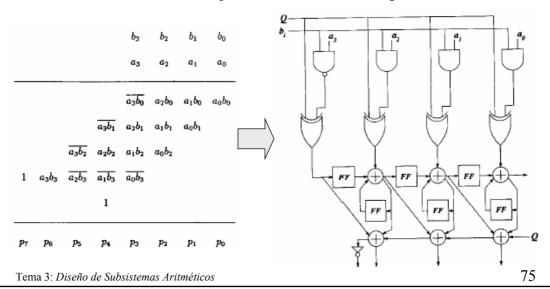


UPC

Multiplicación Serie-Paralelo FSP

c.a.2 de 4 bits con algoritmo Baugh-Wooley (I)

El hardware es más reducido que en caso de FSP con signo extendido



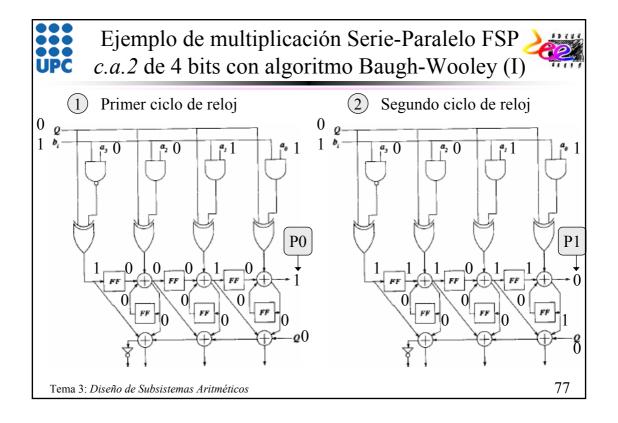
Multiplicación Serie-Paralelo FSP c.a.2 de 4 bits con algoritmo Baugh-Wooley (II)

- Durante los N-1 primeros productos parciales Q = 0, y se realizan una operación NAND y N-1 AND
- En el último producto parcial, Q = 1 y se realiza una operación AND y *N-1* NAND

Ejemplo: multiplicador SPM de 4 bits, producto de 3d x -5d

$$\begin{array}{c}
0011 \quad (3d) \longleftarrow \text{ Dato paralelo} \\
\underline{x \quad 1011} \quad (-5d) \longleftarrow \text{ Dato serie} \\
1011 \\
+ \quad 1000 \\
10100 \\
\hline
P_7P_6P_5P_4P_3P_2P_1P_0 \longrightarrow 11110001 \quad (-15d)
\end{array}$$

Tema 3: Diseño de Subsistemas Aritméticos



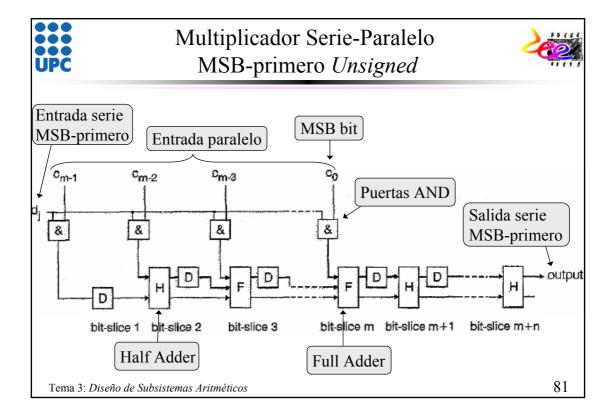


3.4.2.5 Multiplicadores Serie Paralelo MSB-primero

79

Introducción

- El en SPM MSB-primero, el operando serie se introduce en el multiplicador empezando por el bit de mayor peso y el resultado se obtiene empezando por el MSB
- Ventajas:
 - Los convertidores ADC de aproximaciones sucesivas y pipelined proporcionan el resultado de la conversión empezando por el MSB
 - Los algoritmos que calculan la raíz cuadrada y la división son del tipo MSB-primero
 - Con el multiplicador MSB-primero es más fácil truncar el resultado o eliminar los bits menos representativos
 - La ausencia de realimentación en la estructura de este tipo de multiplicadores permite incrementar la velocidad del reloj



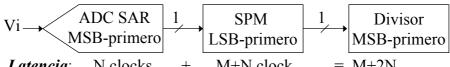
Latencia en el SPM MSB-primero Unsigned

Latencia: nº de ciclos de reloj desde que entra el MSB del dato hasta que sale el MSB del resultado

- En el multiplicador MSB-primero *Unsigned* la latencia es igual al número de bits del operando serie
- En el multiplicador LSB-primero la latencia es de un ciclo de reloj

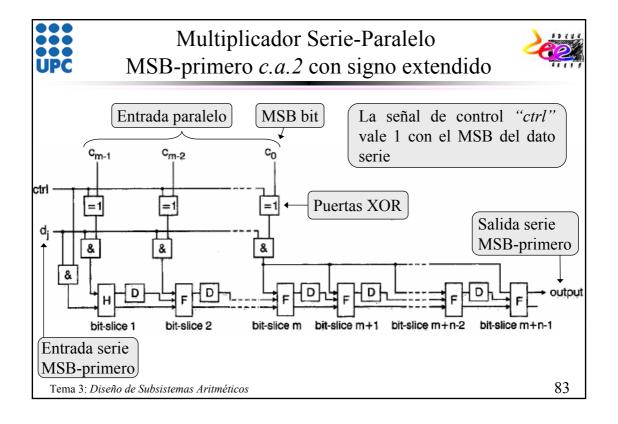
En determinados casos es conveniente utilizar el MSB-primero ya que la latencia global del diseño es menor

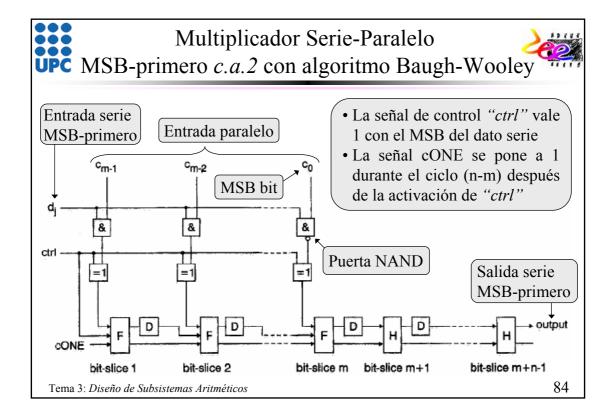
 $\it Ejemplo:$ Cálculo de la latencia global de un sistema procesador con multiplicador de $\it MxN$



Latencia: N clocks + M+N clock = M+2N

Con multiplicador MSB-primero la latencia es: $1 \operatorname{clock} + \operatorname{N} \operatorname{clock} = \operatorname{N+1}$



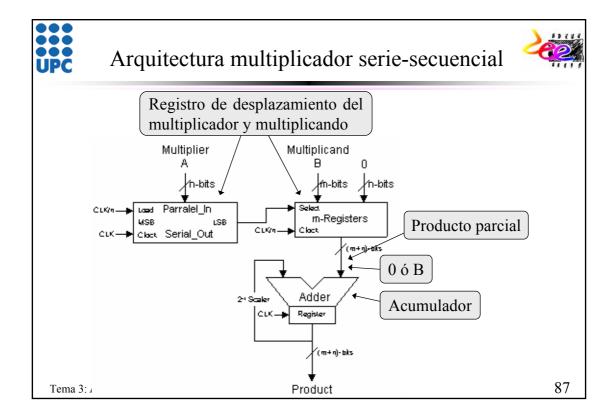


3.4.3 Multiplicadores Serie Secuencial

85

Algoritmo multiplicador Serie Secuencial

- El algoritmo de funcionamiento es similar al multiplicador Serie-Paralelo
- La diferencia está en la utilización de un sumador paralelo en lugar de un sumador serie para sumar los productos parciales
- Algoritmo:
 - El multiplicando (M bits) y el multiplicador (N bits) se cargan en sendos registros de desplazamiento
 - Se realizan los productos parciales de los bits del multiplicador (bit a bit) con el multiplicando empezando por el LSB
 - Los sucesivos productos parciales se suman con el acumulador
 - El resultado definitivo se obtiene después de N+M ciclos de reloj



3.4.4 Multiplicadores Serie-Serie

Algoritmo del multiplicador Serie-Serie

- Mediante un cálculo iterativo se puede extraer el valor del producto de dos números X e Y de N bits de longitud
- El algoritmo es válido para números positivos y para números en c.a.2
- Si los dos números no son de igual longitud, se debe igualar su longitud:
 - No's Unsigned: se rellena con ceros a la izquierda
 - No's Signed: se extiende el signo
- El resultado se obtiene después de 2N iteraciones

Algoritmo de cálculo de producto

$$\overline{Q}_i = \left[\frac{1}{2} \cdot \left(\overline{Q}_{i-1} + x_i \cdot Y_{i-1} + y_i \cdot X_{i-1} + 2^i \cdot x_i \cdot y_i \right) \right] \quad para \quad i < N$$

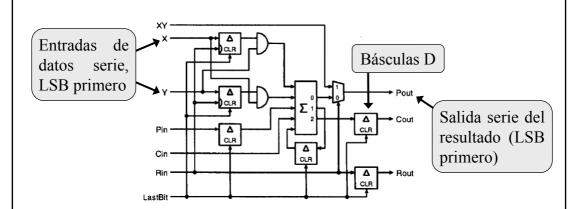
$$\overline{Q}_{i} = \left[\frac{1}{2} \cdot \left(\overline{Q}_{i-1} + x_{N-1} \cdot Y_{N-2} + y_{N-1} \cdot X_{N-2} \right) \right] \quad para \quad i \ge N$$

 x_i : entrada actual, X_i : entrada anterior

Tema 3: Diseño de Subsistemas Aritméticos

89

Célula básica del multiplicador Serie-Serie

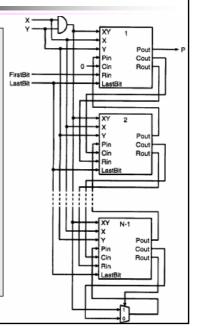


Tema 3: Diseño de Subsistemas Aritméticos

Multiplicador Serie-Serie

- Se necesitan *N-1* células básicas para hacer el producto de dos números de *N* bits
- El resultado se obtiene después de 2N ciclos de reloj
- Durante los *N* primeros ciclos se introducen los 2 operandos (*LSB* primero) por las entradas serie
- Durante el resto de ciclos se introducen ceros (nº positivos) o se extiende el signo (nº c.a.2)
- Entradas de control del multiplicador:
 - *FirsBit:* Se pone a nivel alto durante el primer ciclo de señal de reloj
 - *LastBit*: Se pone a 1 durante el ciclo que precede a la siguiente multiplicación

Tema 3: Diseño de Subsistemas Aritméticos



3.4.5 Multiplicadores Pipelined

Multiplicación 8x8 (I)

- Los multiplicadores pipelined permiten aumentar la velocidad de cálculo realizando varios productos en paralelo
- El producto se puede realizar mediante con 4 multiplicadores y 2 etapas de sumadores

X[7..4] parte alta del dato X

X[3..0] parte baja del dato X

Y[7..4] parte alta del dato Y

Y[3..0] parte baja del dato Y

X[7..4] X[3..0] $\times Y[7..4]Y[3..0]$

 $X[7..4] \times Y[3..0]$

 $X[3..0] \times Y[3..0]$

 $X[7..4] \times Y[7..4]$

 $X[3..0] \times Y[7..4]$

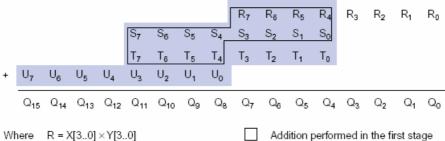
 $X[7..4] \times Y[7..4] \times 16^{2} + ((X[7..4] \times Y[3..0]) + (X[3..0] \times Y[7..4])) \times 16^{1} + X[7..4] \times Y[3..0] \times 16^{0}$

Tema 3: Diseño de Subsistemas Aritméticos

93

Multiplicación 8x8 (II)

- Cada producto parcial se realiza con un multiplicador de 4x4 bits
- Los resultados parciales de los productos se suman con 2 etapas de sumadores de 4+4 bits



Where $R = X[3..0] \times Y[3..0]$

 $S = X[3..0] \times Y[7..4]$

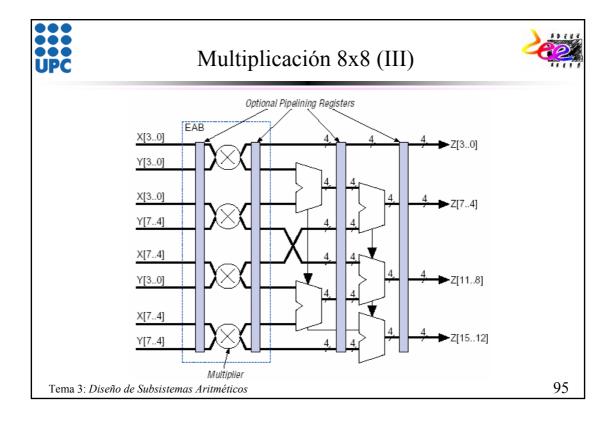
 $T = X[7..4] \times Y[3..0]$

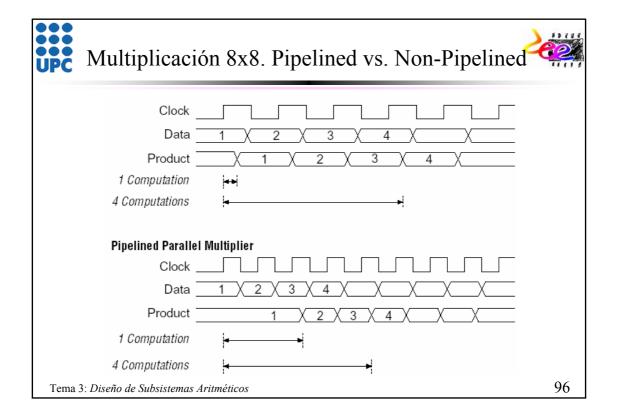
 $U = X[7..4] \times Y[7..4]$

Tema 3: Diseño de Subsistemas Aritméticos

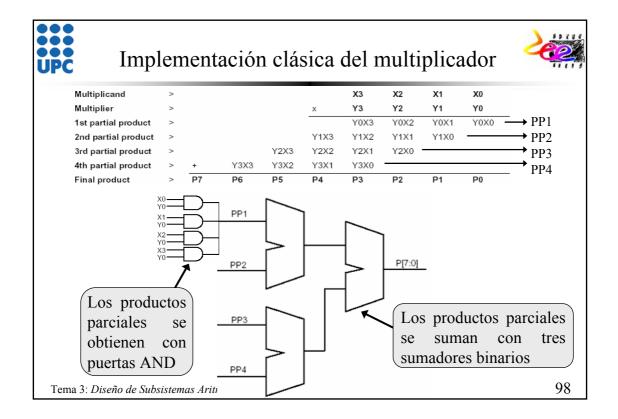
94

Addition performed in the second stage





3.4.6 Algoritmo L-Booth



Producto 4x4 con algoritmo L-Booth

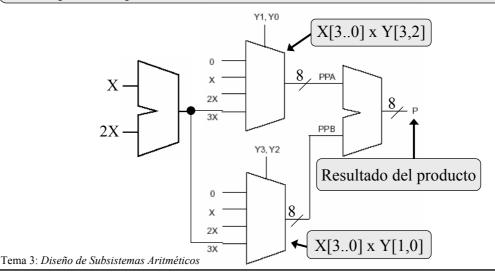
El producto se realiza en dos partes: X[3..0] x Y[1,0] y X[3..0] x Y[3,2]

						X3	X2	X1	X0
Only 2 LSB used	>				x			Y1	Y0
if Y1=0,Y0=0	1	0	0	0	0	0	0	0	0
ifY1=0,Y0=1	1	0	0	0	0	Х3	X2	X1	X0
if Y1=1, Y0=0	1	0	0	0	Х3	X2	X1	XO	0
ifY1=1, Y0=1	- 1	0	0	0	Х3	X3+X2	X2+X1	X1+X0	0
Multiplexer A result	>	0	0	PPA5	PPA4	PPA3	PPA2	PPA1	PPA0
Draduates maraiales			,						
Productos parciales						X3	X2	X1	X0
Only 2 MSB used	>				x	Y3	Y2		
if Y3=0,Y2=0	1	0	0	0	0	0	0	0	0
if Y3=0, Y2=1		0	0	X3	X2	X1	X0	0	0
if Y3=1, Y2=0		0	Х3	X2	X1	X0	0	0	0
if Y2=1, Y2=1		0	Х3	X3+X2	X2+X1	X1+X0	0	0	0
Multiplexer B result	>	PPB7	PPB6	PPB5	PPB4	PPB3	PPB2	0	0
El producto final es la sun	าล								
_		0	0	PPA5	PPA4	PPA3	PPA2	PPA1	PPA0
de los dos productos parciale	S +	PPB7	PPB6	PPB5	PPB4	PPB3	PPB2	0	0
Final product	_> _	P7	P6	P5	P4	P3	P2	P1	P0
Tema 3: Diseño de Subsistemas Aritmétic	OS								99

Implementación del multiplicador con el algoritmo L-Booth

100

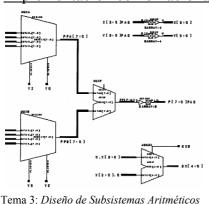
La implementación del algoritmo *L-Booth* está basada en multiplexores que es ideal para la arquitectura interna de las FPGAs de *Actel*



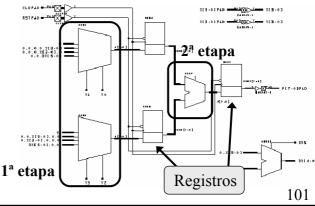
Multiplicador L-Booth Pipelined

- Para aumentar la velocidad se introducen registros entre los niveles de lógica
- La distribución de registros es óptima cuando cada etapa tiene un retardo similar

Implementación combinacional

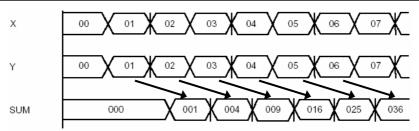


Implementación pipelined



Latencia y velocidad de cálculo con implementación Pipelined

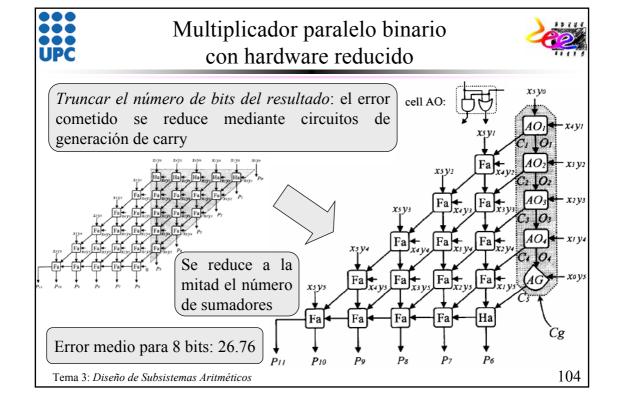
- Con la implementación pipelined el resultado se retarda tantos ciclos de reloj como etapas de registros se añaden.
- En este caso la latencia o retardo que existe entre las entradas de datos y la salida del sumador es de un ciclo de reloj

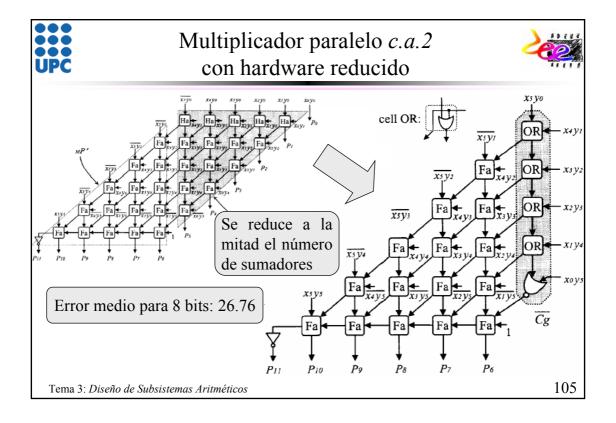


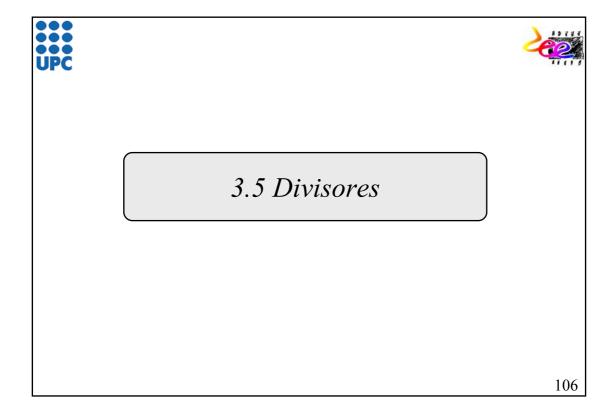
Velocidad de cálculo del multiplicador implementado con la FPGA de *Actel* 1225XL-1: combinacional -> 24 MHz

pipelined -> 57MHz

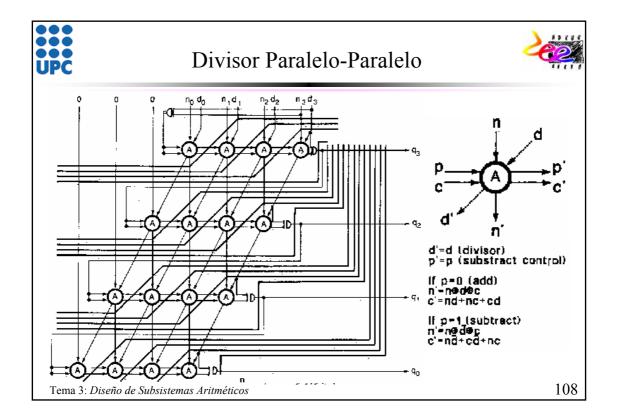
3.4.7 Multiplicadores de hardware reducido



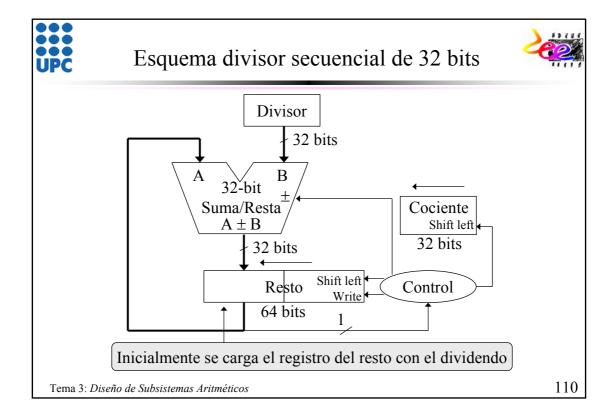


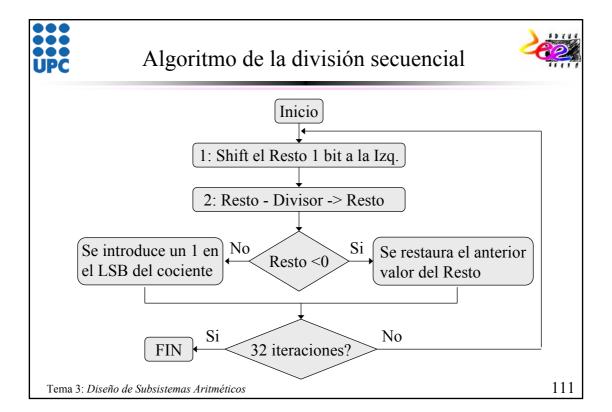


3.5.1 Divisor Paralelo-Paralelo



3.5.2 Divisor secuencial





Ejemplo de división con el algoritmo secuencial

División de 0000 0111 por 0010: cociente = 0011

Iteración	Paso	Cociente	Divisor	Resto
0	Valor inicial	0000	0010	0000 0111
1	1: Shift Resto Izq.	0000	0010	0000 1110
	2: Resto = Resto-Divisor	0000	0010	1110 1110
	3b: Resto $<0 \Rightarrow$ +Div, sll Q, Q0=0	0000	0010	0000 1110
2	1: Shift Resto Izq.	0000	0010	0001 1100
	2: Resto = Resto-Divisor	0000	0010	1111 1100
	3b: Resto $<0 \Rightarrow$ +Div, sll Q, Q0=0	0000	0010	0001 1100
3	1: Shift Resto Izq.	0000	0010	0011 1000
	2: Resto = Resto-Divisor	0000	0010	0001 1000
	3a: Resto≥0 => sll Q, Q0=1	0001	0010	0001 1000
4	1: Shift Resto Izq.	0001	0010	0011 0000
	2: Resto = Resto-Divisor	0001	0010	0001 0000
	3a: Resto≥0 => sll Q, Q0=1	0011	0010	0001 0000

sll: desplazamiento a la izquierda

3.6 Operaciones aritméticas en coma flotante

113

3.6.1 Formatos de representación en coma flotante

Representación en coma flotante Standard IEEE 754 (I)

Existen diferentes formatos para representar números en coma flotante Formato IEEE 754:

 $(-1)^{S}$ x (1+Mantisa) x 2^{E}

Simple precisión:	1 bit	8 bits	23 bits
	Signo 1	Exponente	Mantisa
	1 bit	11 bits	20 bits

Doble precisión:

Signo	Exponente	Mantisa	
		32 bits	
		Mantisa	

Tema 3: Diseño de Subsistemas Aritméticos

115

Representación en coma flotante Standard IEEE 754 (II)

Signo (S): $\begin{cases} 0 \text{ para números positivos} \\ 1 \text{ para números negativos} \end{cases}$

Mantisa:

- Representa un número *unsigned* fraccionario entre 0 y 1
- El MSB de la mantisa tiene peso 2⁻¹

Exponente:

- Se utiliza formato llamado biased notation
- Este formato permite representar números positivos y negativos utilizando solo números positivos
- Al manejar solo números positivos se simplifica el cálculo del exponente en operaciones aritméticas

Exponente en formato Bias Notation

- Para simple precisión se debe sumar al exponente el valor 127 y para doble precisión el valor 1023
- Para simple precisión el margen de valores del exponente con formato *Bias Notation* y en valor real es:

Formato *Bias* del exponente: 0 < -> 255 Valor real del exponente: -127 < -> 128

• Para doble precisión el margen de valores del exponente con formato *Bias Notation* y en valor real es:

Formato Bias del exponente: 0 <-> 2047Valor real del exponente: -1023 <-> 1024

Tema 3: Diseño de Subsistemas Aritméticos

117

Ejemplos de formato IEEE 754 (I)

Ejemplo 1: El número -0.75 decimal en binario sería -1.1 x 2-1

• La representación en coma flotante con simple precisión es:

$$(-1)^S$$
 x $(1 + Mantisa)$ x $2^{(exponente real+127)}$

lo que dá lugar:

$$(-1)^1$$
 x $(1 + .1000\ 0000\ 0000\ 0000\ 0000\ 000)$ x $2^{(-1+127)}$

Signo: 1

Mantisa: 1000 0000 0000 0000 0000 000

Exponente: 0111 1110

- Con doble precisión:

Signo: 1

0000 0000

Exponente: 01111111110

Ejemplos de formato IEEE 754 (II)

Ejemplo 2: Cúal es el valor del número siguiente en decimal

Signo: 1

Mantisa: 0100 0000 0000 0000 0000 000

Exponente: 1000 0001

 $(-1)^1$ x $(1 + .0100\ 0000\ 0000\ 0000\ 0000\ 000)$ x $2^{(129-127)}$

$$(-1)^1 \times (1 + 0.25) \times 2^{(129-127)} = -1 \times 1.25 \times 2^2 = -1.25 \times 4 = -5.0$$

Tema 3: Diseño de Subsistemas Aritméticos

119

Notación coma flotante de Altera

Signo (S): $\begin{cases} 1 & \text{para números positivos} \\ 0 & \text{para números negativos} \end{cases}$

Mantisa:

- Representa un número *unsigned* fraccionario entre 0 y 1
- El MSB de la mantisa tiene peso 2⁻¹
- El resultado de las operaciones se ajusta para que MSB = 1 y aprovechar al máximo la precisión que proporciona la mantisa

Exponente:

- Se utiliza el formato llamado *offset 2*⁽ⁿ⁻¹⁾
- Este formato permite representar números positivos y negativos utilizando solo números positivos
- Al manejar solo números positivos se simplifica el cálculo del exponente en operaciones aritméticas

Exponente en formato offset 2⁽ⁿ⁻¹⁾

- Se debe sumar al exponente el valor $2^{(n-1)}$, donde n es el número de bits utilizados para expresar el exponente
- Por ejemplo para n = 7, $2^{(n-1)} = 64$, y el margen de valores del exponente en formato *offset* $2^{(n-1)}$ y en valor real es:

Formato *offset* del exponente: 0 < > 127Valor real del exponente: -64 < > 63

• Ejemplos:

Exponente real Formato offset $2^{(n-1)}$ 10 74 -10 54

Tema 3: Diseño de Subsistemas Aritméticos

121

Ejemplos de coma flotante con formato de Altera (I)

Mantisa de 8 bits y exponente de 7 bits

Ejemplo 1: Mayor número positivo:

+ 1111 1111b 1111111b

 $= +0.1111 \ 11111b \ x \ 2^{(11111111b-1000000b)}$

 $= +0.1111 \ 11111b \ x \ 2^{01111111b}$

 $= +0.1111 \ 11111b \ x \ 2^{63d}$

 $= +1111 \ 1111.0b \ x \ 2^{55d}$

 $= +255 d \times 2^{55 d} = +9.187343239836 e+18$

Ejemplo 2: Mayor número negativo:

-1111 1111b 1111111b

 $= -255 d \times 2^{55 d} = -9.187343239836 e + 18$

Ejemplos de coma flotante con formato de Altera (II)

Ejemplo 3: Menor número (próximo a cero):

 $\pm 1000\ 0000b\ 0000000b$

 $= \pm \ 0.1000 \ 0000b \ x \ 2^{(0000000b-1000000b)}$

 $= \pm 0.1000~0000b~x~2^{(0d - 64d)}$

 $= \pm 0.1000~0000b \text{ x } 2^{-64d}$

 $= \pm 1000\ 0000.0b \ x \ 2^{-72d}$

 $= \pm 128 d \times 2^{-72 d} = \pm 2.71050543121 \text{ e-}20$

Ejemplo 2: Valor típico:

-1100 0111b 1001001b

 $= +0.1100\ 0111b\ x\ 2^{(1001001b-1000000b)}$

 $= +0.1100\ 0111b\ x\ 2^{1101b}$

 $= +0.1100 \ 0111b \ x \ 2^{9d}$

 $=+1100\ 0111.0b\ x\ 2^{1d}$

 $= +199 d \times 2 = +398$

Tema 3: Diseño de Subsistemas Aritméticos

123

3.6.2 Suma/Resta en coma flotante

Suma/resta en coma flotante

El proceso de suma/resta en coma flotante involucra los siguientes pasos:

- Paso 1: se igualan los exponentes
 - Se comparan los exponentes para determinar el número mayor
 - Se desplaza a la derecha la mantisa del número menor tantas posiciones como resulte de la diferencia de exponentes (se pierde resolución en el número menor)
 - Si el número de desplazamientos es superior al número de bits de la mantisa se desprecia el operando menor (= 0)
- Paso 2: Se realiza la suma/resta de las mantisas con un restador binario convencional
- Paso 3: Si el resultado de la suma/resta de las mantisas es negativo se invierte para obtener la mantisa en positivo

Tema 3: Diseño de Subsistemas Aritméticos

125

Ejemplos de suma/resta en coma flotante (I)

Ejemplo 1: suma de dos números positivos:

 $0.3046875d \times 2^{45} + 0.34375 \times 2^{44}$

 $= +0.01001110b \times 2^{45} + +0.01011000b \times 2^{44}$

 $= +0.01001110b \times 2^{45} + +0.00101100b \times 2^{45}$

 $= +0.01111010b \times 2^{45}$

 $= +0.11110100b \times 2^{44}$

 $= +0.953125 d \times 2^{(44-64)} = +0.953125 d \times 2^{-20} = +9.089708328 e-7$

Ejemplo 2: número negativo más número positivo:

 $-0.82421875d \times 2^{76} + +0.25390625 \times 2^{75}$

 $= -0.11010011b \times 2^{76} + +0.01000001b \times 2^{75}$

= $-0.11010011b \times 2^{76} + +0.00100000b \times 2^{76}$

 $= -0.10110011b \times 2^{76}$

= $-0.69921875 d \times 2^{(76-64)} = -0.69921875 d \times 2^{12} = -2.864 e3$

126

El desplazamiento de

pérdida de resolución

mantisa

Ejemplos de suma/resta en coma flotante (II)

Ejemplo 3: número negativo más número positivo (insignificante):

 $-0.5d \times 2^{89} + +0.5d \times 2^{68}$

= -0.100000000b x $2^{89} + +0.100000000$ b x 2^{68}

 $= -0.100000000 \text{ x } 2^{89} + +0.000000000 \text{ x } 2^{89}$

 $= -0.100000000 \text{ x } 2^{89}$

 $= -0.5 d \times 2^{89} = -0.5 d \times 2^{(89-64)} = -1.6777216 e7$

El operando positivo es insignificante comparado con el negativo

Ejemplo 4: número positivo más número negativo:

 $+0.5 \times 2^{64} + -0.875 \times 2^{63}$

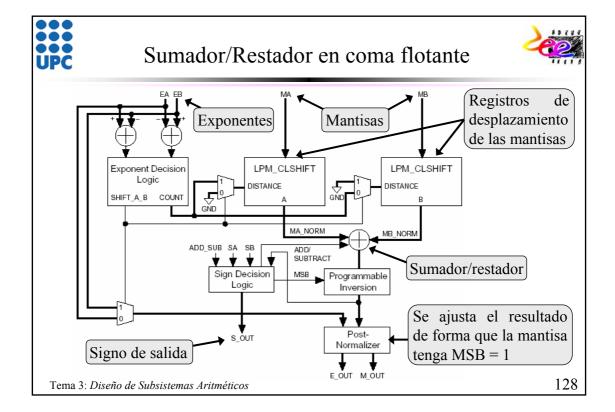
 $= +0.100000000b \times 2^{64} + -0.111000000b \times 2^{63}$

 $= +0.100000000 \text{ x } 2^{64} + -0.011100000 \text{ x } 2^{64}$

 $= +0.00010000b \times 2^{64}$

= +0.100000000b x 2^{61} = +0.5 x $2^{(61-64)}$ = +0.5 x 2^{-3} = 0.0625d

Tema 3: Diseño de Subsistemas Aritméticos



3.6.3 Multiplicación en coma flotante

129

Multiplicación en coma flotante

El proceso de multiplicación en coma flotante involucra los siguientes pasos:

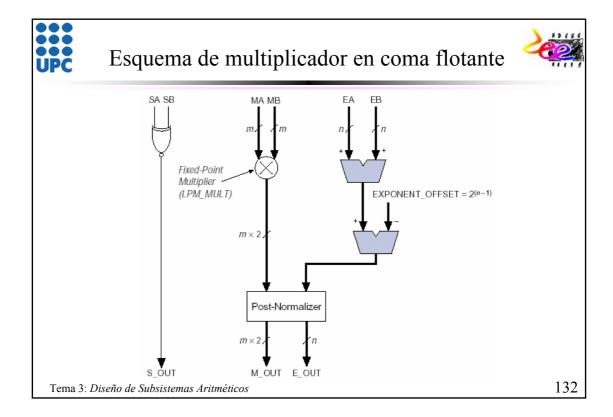
- Paso 1: Se multiplican las mantisas con un multiplicador convencional
- *Paso 2:* Se suman los exponentes y se resta el offset del resultado: $(EA-2^{(n-1)}) + (EB-2^{(n-1)}) = EA+EB -2 \times 2^{(n-1)}$ $(EA+EB -2 \times 2^{(n-1)}) 2^{(n-1)} = EA+EB -2^{(n-1)}$
- *Paso 3:* El signo del resultado se obtiene con la operación XNOR entre el signo de número A (SA) y el signo del número B (SB)
- *Paso 4:* Si es necesario se ajusta el resultado para que la mantisa tenga MSB=1

Ejemplo de multiplicación en coma flotante

Multiplicación de 39936 y 13303808

Decimal Equivalent (Exponent in Excess 0)	Binary (Exponent in Excess 64)
$(39 \times 2^{10d}) \times (203 \times 2^{6d})$	$(00100111.0 \times 2^{74}) \times (11001011.0 \times 2^{70})$
$(0.609375 \times 2^{16d}) \times (0.79296875 \times 2^{14d})$	$(0.10011100 \times 2^{80}) \times (0.11001011 \times 2^{78})$
7917 × 2 ^{16d}	0.0001111011101101 × 280
63336 × 2 ^{13d}	0.1111011101101000 × 2 ⁷⁷
518,848,512	_

Tema 3: Diseño de Subsistemas Aritméticos



Detección de errores en coma flotante

Errores habituales en operaciones en coma flotante:

- *Overflow*: cuando el valor del exponente sobrepasa el número de bits disponibles.
 - Por ejemplo, para 7 bits de exponente se tiene *overflow* cuando el exponente es mayor de 63.
- *Underflow*: cuando el valor del exponente está por debajo del valor mínimo.
 - Por ejemplo, para 7 bits de exponente se tiene *underflow* cuando el exponente es menor de -64.

Tema 3: Diseño de Subsistemas Aritméticos

133

3.7 Funciones especiales

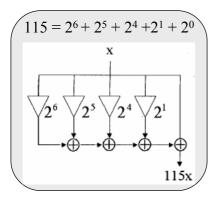
3.7.1 Multiplicación por una constante

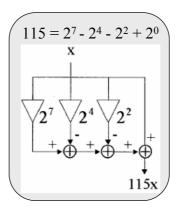
135

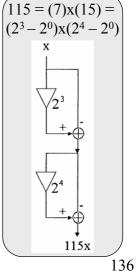
Algoritmo Dempster-Macleod

Permite diseñar un multiplicador mediante un número mínimo de sumadores/restadores

Ejemplo: multiplicación por 115

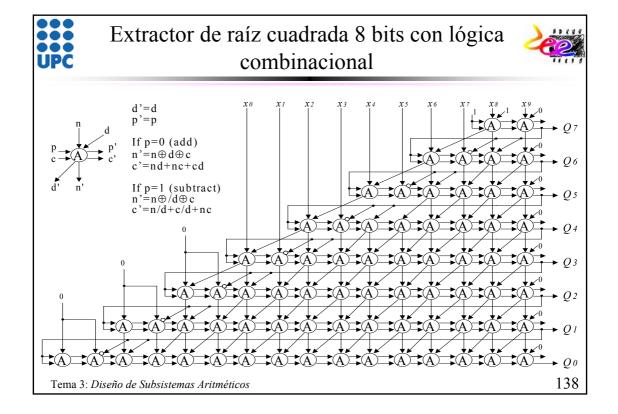






Tema 3: Diseño de Subsistemas Aritméticos

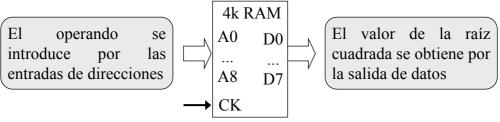
3.7.2 Raíz cuadrada



Extractor de raíz cuadrada 8 bits basado en LUT

- Se almacena en una LUT implementada mediante memoria RAM los valores de la raíz cuadrada
- La velocidad de calculo se incrementa considerablemente ya que equivale al tiempo de acceso de la memoria RAM
- La memoria RAM de las FPGA's de Xilinx permiten implementar con LUT este tipo de funciones aritméticas

Bloque memoria RAM



Tema 3: Diseño de Subsistemas Aritméticos

139

3.7.3 Cuadrado de un número: X²

Algoritmo de X² Serie-Serie

- Mediante un cálculo iterativo se puede extraer el valor de X²
- El algoritmo es un caso particular del multiplicador Serie-Serie, pero utilizando un hardware simplificado
- El resultado correcto se obtiene después de 2N iteraciones

Algoritmo de cálculo de X²

$$\overline{Q}_{i} = \left[\frac{1}{2} \cdot \left(\overline{Q}_{i-1} + 2 \cdot x_{i} \cdot X_{i-1} + 2^{i} \cdot x_{i}\right)\right] \quad para \quad i < N$$

$$\overline{Q}_{i} = \left[\frac{1}{2} \cdot \left(\overline{Q}_{i-1} + 2 \cdot x_{N-1} \cdot X_{N-2}\right)\right] \quad para \quad i \ge N$$

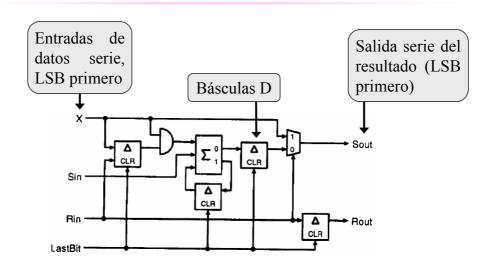
 x_i : entrada actual

 X_i : entrada anterior

Tema 3: Diseño de Subsistemas Aritméticos

141

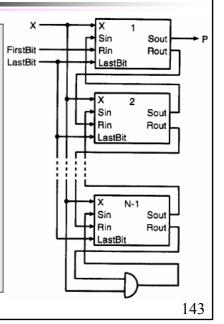
Célula básica del algoritmo X²



Multiplicador X²

- Se necesitan *N-1* células básicas para obtener el cuadrado de un número de *N* bits
- El resultado se obtiene después de 2N ciclos de reloj
- Durante los *N* primeros ciclos se introduce el operando (*LSB* primero) por la entrada serie
- Durante el resto de ciclos se introducen ceros (nº positivos) o se extiende el signo (nº c.a.2)
- Entradas de control del elevador al cuadrado:
 - *FirsBit*: Se pone a nivel alto durante el primer ciclo de señal de reloj
 - *LastBit*: Se pone a 1 durante el ciclo que precede a la siguiente multiplicación

Tema 3: Diseño de Subsistemas Aritméticos

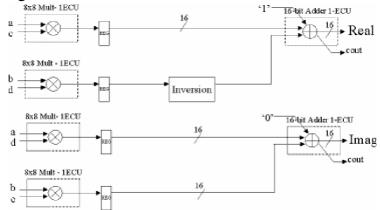


3.7.4 Multiplicación de complejos

Multiplicación de complejos

La multiplicación de números complejos viene dada por:

- (a + jb)(c + jd) = (ac-bd) + j(ad + bc)
- Parte Real = ac-bd
- Parte Imaginaria = ad+bc



Tema 3: Diseño de Subsistemas Aritméticos

145

3.8 Bloques aritméticos en FPGA's

3.8.1 Multiplicadores de la familia Spartan-3

147

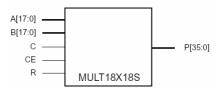
Características generales

- La familia Spartan-3 dispone de multiplicadores 18x18 bits (c.a.2) integrados
- Prestaciones:
 - ➤ Realizan el producto con y sin signo (17x17 bits unsigned)
 - Se pueden conectar en cascada o con CLB's para realizar funciones complejas
 - ➤ Pueden realizar funciones adicionales: desplazamiento, generación de valor absoluto, generación del complemento a 2 de un número, etc...

<u>Multiplicador Combinacional</u>

A[17:0] — P[35:0] B[17:0] — MULT18X18

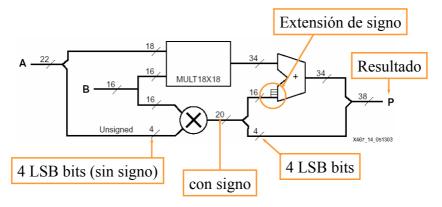
Multiplicador con registro



Tema 3: Diseño de Subsistemas Aritméticos

Multiplicación expandida

- Es posible multiplicar números mayores de 18 bits descomponiendo el producto en procesos más simples
- Ejemplo: producto 22 x 16 bits con signo



Tema 3: Diseño de Subsistemas Aritméticos

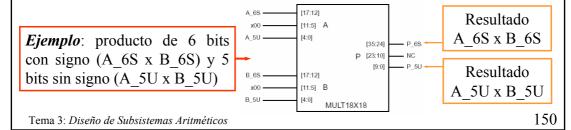
149

Dos productos en un Multiplicador

• Es posible realizar dos multiplicaciones de dos números pequeños con un solo multiplicador siempre y cuando no se solapen los resultados

Tamaños permitidos para los operandos

X * X		Y * Y	
Signed Size	Unsigned Size	Signed Size	Unsigned Size
7 X 7	6 X 6	-	4 X 4
6 X 6	5 X 5	-	5 X 5
5 X 5	4 X 4	3 X 3	6 X 6
4 X 4	3 X 3	3 X 3	7 X 7
3 X 3	2 X 2	4 X 4	8 X 8



Aplicaciones alternativas: desplazamiento

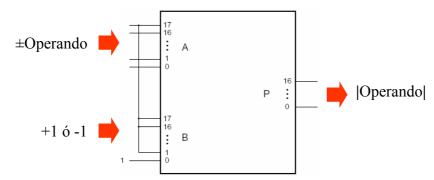
- Un multiplicador se puede utilizar para desplazar un operando de 0 a 16 posiciones multiplicando por 2ⁿ
- Dos tipos de desplazamiento:
 - ➤ Lógico → el bit de mayor peso del dato a desplazar es cero (positivo) ⇒ los bits de mayor peso del resultado son cero
 - ➤ Aritmético → se extiende el bit de signo del dato a desplazar ⇒ los bits de mayor peso del resultado tienen el signo del dato desplazado

Tema 3: Diseño de Subsistemas Aritméticos

151

Aplicaciones alternativas: valor absoluto

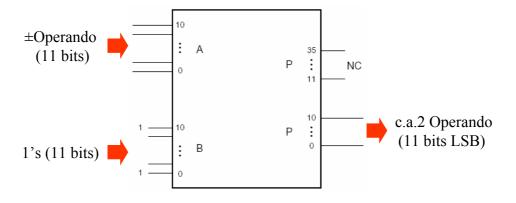
- Para calcular el valor absoluto de un número se multiplica por 1 si es positivo y por -1 si es negativo
- En c.a.2:
 - ➤ 1 positivo ⇒ 00 0000 0000 0000 0001
 - ➤ 1 negativo ⇒ 11 1111 1111 1111



Tema 3: Diseño de Subsistemas Aritméticos

Aplicaciones alternativas: generación c.a.2

• Para generar el c.a.2 de un operando se multiplica por un número de 1's de la misma longitud que el operando



Tema 3: Diseño de Subsistemas Aritméticos

153

Aplicaciones alternativas: producto de complejos producto en coma flotante

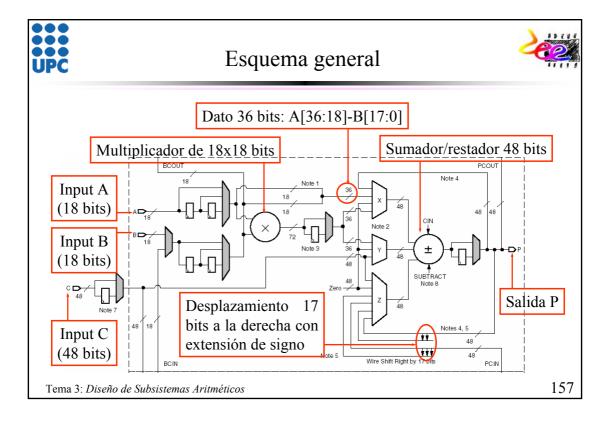
- Producto de dos números complejos: $(a+ib)\cdot(c+id) = ac-bd + i(ad+cb)$
- Se puede solucionar con tres productos reales: ac, bd y (a+b)(c+d)
 - ➤ Parte real del resultado: ac-bd
 - ➤ Parte imaginaria del resultado: (a+b)(c+d)-ac-bd = ad+cb
- Se puede implementar un multiplicador en coma flotante de 32 bits con 4 multiplicadores y algunos CLB

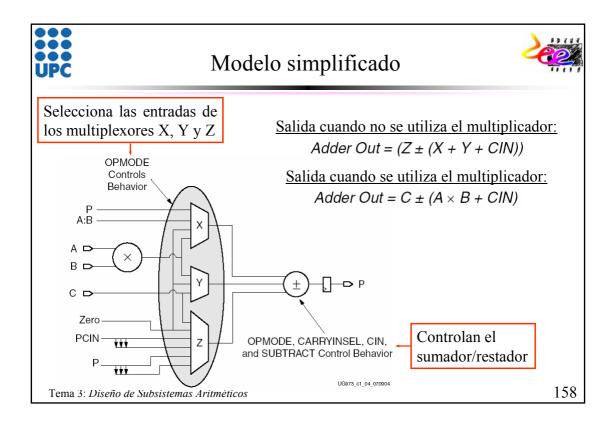
3.8.2 XtremeDSP de la familia Virtex-4: DSP48

155

Características generales

- La familia *Virtex-4* dispone de 32 a 192 elementos de procesado digital de señal denominados *XtremeDSP*
- Cada *XtremeDSP* incorpora 2 DSP48 *slices* que pueden realizar múltiples funciones:
 - ➤ Multiplicación
 - ➤ Multiplicación y acumulación (MACC)
 - ➤ Multiplicación y suma
 - > Sumador de tres entradas
 - **≻** Comparador

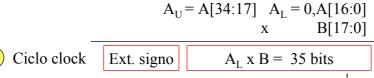


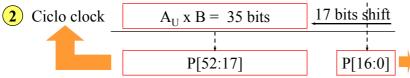


Aplicaciones: producto 35x18 bits c.a.2 (I)

Un *slice* puede realizar múltiples operaciones parciales durante sucesivos periodos de reloj que combinadas den lugar a operaciones complejas Ejemplo: Producto 35x18 bits = A[34:0] x B[17:0] en dos ciclos de reloj

A se descompone en dos números: uno negativo $A_U = A[34:17]$ y otro positivo $A_L = 0, A[16:0]$





Tema 3: Diseño de Subsistemas Aritméticos

159

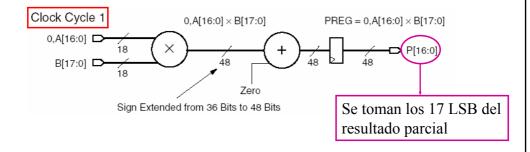
1 Ciclo clock

Aplicaciones: producto 35x18 bits c.a.2 (II)

1 Ciclo clock

En el primer ciclo de reloj se realiza el producto parcial $P = (0,A[16:0]) \times B[17:0]$

OPMODE: Multiplicación



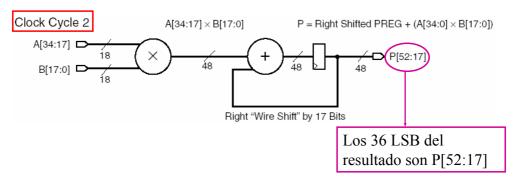
Tema 3: Diseño de Subsistemas Aritméticos

Aplicaciones: producto 35x18 bits c.a.2 (III)

Ciclo clock

En el segundo ciclo de reloj se realiza el producto parcial $P = A[34:17] \times B[17:0]$

OPMODE: 17-bits Shift P y Multiplicación con suma



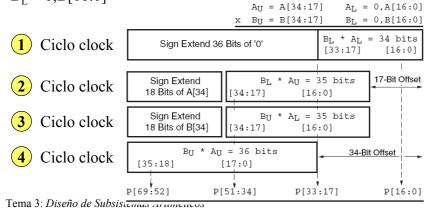
Tema 3: Diseño de Subsistemas Aritméticos

161

Aplicaciones: producto 35x35 bits c.a.2 (I)

Ejemplo: 35x35 bits \Rightarrow A[34:0] x B[34:0]=P[69:0] en cuatro ciclos de reloj

- A se descompone en dos números: uno negativo $A_U = A[34:17]$ y otro positivo $A_U = 0, A[16:0]$
- B se descompone en dos números: uno negativo $B_U = B[34:17]$ y otro positivo $B_U = 0, B[16:0]$

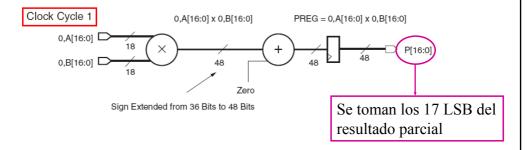


Aplicaciones: producto 35x35 bits c.a.2 (II)

Ciclo clock

Se realiza el producto parcial P = 0, $A[16:0] \times 0$,B[16:0]

OPMODE: Multiplicación



Tema 3: Diseño de Subsistemas Aritméticos

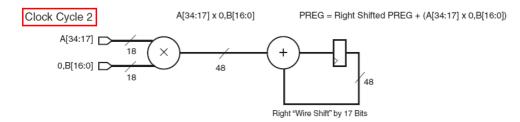
163

Aplicaciones: producto 35x35 bits c.a.2 (III)

Ciclo clock

Se realiza el producto parcial $P = A[34:17] \times 0,B[16:0]$

OPMODE: 17-bits Shift P y Multiplicación con suma

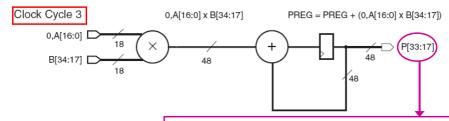


Aplicaciones: producto 35x35 bits c.a.2 (IV)

Ciclo clock

Se realiza el producto parcial P = 0, $A[16:0] \times B[34:17]$

OPMODE: Multiplicación con suma



Se toman los 17 LSB del resultado parcial que se corresponden con P[33:17]

Tema 3: Diseño de Subsistemas Aritméticos

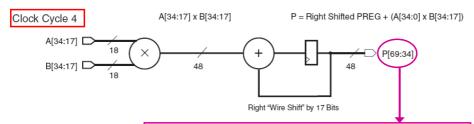
165

Aplicaciones: producto 35x35 bits c.a.2 (V)

Ciclo clock

Se realiza el producto parcial $P = A[34:17] \times B[34:17]$

OPMODE: 17-bits Shift P y Multiplicación con suma



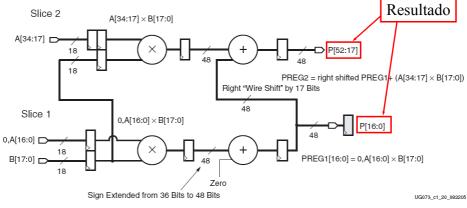
Se toman los 36 LSB del resultado parcial que se corresponden con P[69:34]

Tema 3: Diseño de Subsistemas Aritméticos

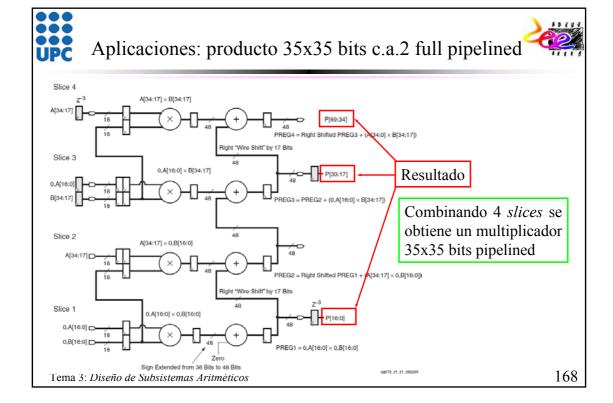
Aplicaciones: producto 35x18 bits c.a.2 full pipelined

- Muchas aplicaciones DSP requieren alta velocidad de proceso
- Combinando varios DSP48 slice se puede realizar operaciones pipelined
- \bullet Pipelined \Rightarrow con cada periodo de reloj se obtiene un nuevo resultado

Ejemplo: 35x18 bits = A[34:0] x B[17:0]



Tema 3: Diseño de Subsistemas Aritméticos



Otras funciones matemáticas básicas

Con un DSP48 *slice* se pueden realizar muchas funciones matemáticas básicas como:

- Sumar/restar
- Acumulación
- MAC: multiplicación mas suma
- Multiplexado
- Registro de desplazamiento
- Contador
- Multiplicador/divisor
- Raiz cuadrada

Tema 3: Diseño de Subsistemas Aritméticos

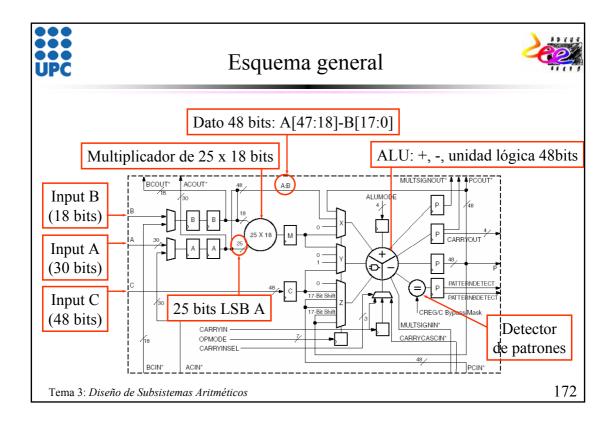
169

3.8.3 XtremeDSP de la familia Virtex-5: DSP48E

Características generales

- La familia *Virtex-5* dispone de 32 a 192 elementos DSP denominados DSP48E que pueden realizar múltiples funciones:
 - ➤ Multiplicación
 - ➤ Multiplicación y acumulación (MACC)
 - > Sumador de tres entradas
 - ➤ Comparador
 - > Funciones lógicas
 - ➤ Detección de patrones
- Colocando en cascada múltiples DSP48E se pueden generar funciones matemáticas complejas, filtros digitales, etc sin tener que utilizar recursos generales de la FPGA

Tema 3: Diseño de Subsistemas Aritméticos



Bibliografía (I)

- Ernest Jamro, Kazimierz Wiatr, "Constant Coefficient Convolution Implemented in FPGAs", Proceedings of the Euromicro Symposium on Digital System Design (DSD'02)
- Keshab K. Parhi, "A Systematic Approach for Design of Digit-Serial Signal Processing Architectures", IEEE Transactions on Circuits and Systems, Vol. 38, no. 4, pp. 358-375, April 1991.
- Paolo Ienne and Marc A. Viredaz, "*Bit-Serial Multipliers and Squarers*", IEEE Transactions on Computers, Vol. 43, no. 12, pp. 1445-1450, Dec. 94.
- Richard Hartley and Peter Corbett, "*Digit-Serial Processing Techniques*", IEEE Transactions on Circuits and Systems, Vol. 37, no. 6, pp. 707-719, June 1990.
- Luigi Dadda, "*On Serial-Input Multipliers for Two's Complement Numbers*", IEEE Transactions on Computers, Vol. 38, no. 9, pp. 1341-1345, Sep. 89.
- Fuminori Kobayashi, Taro Tsujino, and Hirokazu Saitoh, "Efficient FPGA Implementation of Multiplier-Adder, Quotient-Remainder Approach", IEEE, pp. 227-230, 1998.

Tema 3: Diseño de Subsistemas Aritméticos

173

Bibliografía (II)

- Javier Valls and Eduardo Boemo, "Efficient FPGA-Implementation of Two's Complement Digit-Serial/Parallel Multipliers", IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 50, no. 6, pp. 317-322, June 2003.
- Jer Min Jou, Shiann Rong Kuang, and Ren Der Chen, "*Design of Low-Error Fixed-Width Multipliers for DSP Applications*", IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 50, no. 6, pp. 836-842, June 1999.
- R. H. Turner, T. Courtney and R. Woods, "Implementation of Fixed DSP Functions Using the Reduced Coefficient Multiplier", IEEE, pp. 881-884, 2001.
- Ray Andraka, "A Survey of CORDIC Algorithms for FPGA Based Computers"
- J. C. Majithia, "A cellular array for the nonrestoring extraction of square roots", IEEE Transactions on Computers, Vol. C-20, pp. 1617-1618, Dec. 71.
- M. A. Ashour, H. I. Saleh, "An FPGA implementation guide for some different types of serial-parallel multiplier structures", Microelectronics Journal 31, pp. 161-168, 2000.

Bibliografía (III)

- S. Sunder, F. El-Guibaly, A. Antoniou, "Two's-complement fast serial-parallel multiplier", IEE Proc.-Circuits Devices Syst., Vol. 142, no 1, pp. 41-44, Feb. 1995.
- K. Adaos, G. Alexiou, N. Kanopoulos, "Development of reusable serial FIR filters with reprogrammable coefficients designed for serial dataflow architectures", IEEE 2000.
- Leland B. Jackson, James F. Kaiser, Henry S. McDonald, "An Approach to the *Implementation of Digital Filters*", IEEE Trans. on Audio and Electroacoustics, Vol. AU-16, no 3, pp. 413-421, Sep. 1968.
- P. Larsson-Edefors, W. P. Marnane, "Most-significant-bit-first serial/parallel multipliers", IEE Proc.-Circuits Devices Syst., Vol. 145, no 4, pp. 278-284, Aug. 1998.
- Kiamal Z. Pekmestzi, "*Multiplexer-Based Array Multipliers*", IEEE Trans. On Computers, Vol. 48, no 1, pp. 15-23, Jan. 1999.

Tema 3: Diseño de Subsistemas Aritméticos

175

Bibliografía (IV)

www.actel.com

- Application Note: Synchronous Dividers in Actel FPGAs
- Application Note: Implementing Multipliers with Actel FPGAs
- Application Note: Designing FIR Filters with Actel FPGAs

- Altera Corporation, "Using Soft Multipliers with Stratix and Stratix GX Devices", Stratix Device Handbook, Volume 2, Cap 9, 2003.
- AN053: Implementing Multipliers in Flex 10K Devices
- PIB21: Implementing Logic with the Embedder Array in Flex 10K Devices
- FS02: Floating-Point Adder-Subtractor
- FS04: Floating-Point Multiplier

Bibliografía (V)

www.xilinx.com

- XAPP022: Adders, Subtracters and Accumulators in XC3000
- *DSPX5DEV*: Gregory R. Goslin, "Using Xilinx FPGA's to Design Custom Signal Processing Devices"
- XAPP054: Constant Coefficient Multipliers for the XC4000E
- XAPP018: Estimating the Performance of XC4000E Adders and Counters
- DS099: Spartan-3 FPGA Family: Complete Data Sheet
- XAPP467: Using Embedded Multipliers in Spartan-3 FPGAs
- GS093: XtremeDSP for Virtex-4 FPGAs User Guide

Tema 3: Diseño de Subsistemas Aritméticos

177

Bibliografía (VI)

www.atmel.com

- *Application Note:* FPGA-based FIR Filter Using Bir-Serial Digital Signal Processing
- Application Note: Implementing Bit-Serial Digital Filters in AT6000 FPGAs

www.latticesemiconductor.com

• AN8014: Adder and Subtractor Macros Using Lattice Design Tools

Bibliografía (VII)

• APPNOTE53: Wai-Leng Lim, "QuickDSP Complex Multiplier"

Tema 3: Diseño de Subsistemas Aritméticos