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Abstract

A new mixed finite element approximation of Maxwell’s problem is proposed,
its main features being that it is based on a novel augmented formulation of the con-
tinuous problem and the introduction of a mesh dependent stabilizing term, which
yields a very weak control on the divergence of the unknown. The method is shown
to be stable and convergent in the naturalH(curl; Ω) norm for this unknown. In
particular, convergence also applies to singular solutions, for which classical nodal
based interpolations are known to suffer from spurious convergence upon mesh
refinement.

1 Introduction

The simulation of electromagnetic phenomena with increasing complexity demands
accurate and efficient numerical methods suitable for large-scale computing. Finite el-
ement (FE) methods are commonly used in this context becausethey can easily handle
complicated geometries by using unstructured grids, provide a rigorous mathematical
framework and allow adaptation.

In many applications of current interest, the electromagnetic problem is coupled
to other physical processes. Salient examples of multiphysics phenomena that include
electromagnetics are magnetohydrodynamics and plasma physics. These two problems
have experienced increasing attention due to the need to develop numerical laborato-
ries in fusion technology design. The simulation of these problems (and many others)
would benefit of an all-purpose FE method that would be suitable for the different sub-
problems at hand, simplifying the implementation issues and the enforcement of the
coupling conditions. In particular, an all-purpose continuous nodal-based formulation
would be a favored candidate. E.g. the Navier-Stokes equations are commonly solved
with stabilized FE approximations that can deal with the singularly perturbed nature
of the system for high Reynolds numbers and circumvent the restrictions related to the
corresponding inf-sup condition (see e.g. [8, 9]). In plasma physics, fields computed
by discontinuous FE Maxwell solvers create a considerable numerical noise when em-
bedded in a plasma code, e.g. using the particle-in-cell method (see [2]). Furthermore,
nodal approximations are particularly well-suited for time-dependent electromagnetic
problems because the mass matrix can be consistently lumpedwithout loss of accuracy,
leading to inexpensive transient solvers.

The Maxwell operator has a saddle-point structure, with theparticularity that the
Lagrange multiplier introduced to enforce the divergence-free constraint is identically
zero. Existing FE methods that satisfy the discrete counterpart of the inherent inf-sup
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condition for this problem are based on Nedelec’s or edge elements (see e.g. [20, 28]);
edge elements lead to fields with discontinuous normal component on element edges
or faces. We also refer to alternative formulations based ondiscontinuous Galerkin
approximations [21, 17, 16, 29]. With the aim to solve the Maxwell problem with
Lagrangian finite elements (FEs), the differential operator of the problem can be trans-
formed into an elliptic one, by adding an exact penalty term containing the divergence
(see [19]); the penalty is exact because the Lagrange multiplier vanishes. The result-
ing method satisfies the compatibility conditions over the element faces in a pointwise
sense. Unfortunately, this method is not able to converge tononsmooth solutions that
appear in nonconvex domains, e.g. domains with re-entrant corners (see [18, 12] and
Section 3).

Using an innovative idea, Costabel and Dauge proposed in [12] a rehabilitation of
H1-conformingC0 nodal (i.e. Lagrangian) FEs based on a weighted version of the
penalty term that was able to converge to the“good” solutionin nonconvex domains.
In order to use the resulting numerical method, singularityregions have to be identi-
fied a priori, and proper weighted functions constructed, based on this information.
In the negative side, it clearly complicates the numerical integration (of the weighted
term), loses computational efficiency and complicates the automatization of the simu-
lations. An alternative approach to solve the Maxwell problem is the decomposition
of the solution into singular and smooth part (see [2, 19]) but this method is harder
to generalize, specially in three dimensions. Very recently, Duanet al. have designed
in [13] a method based on local projections that uses a FE space composed of cubic
nodal elements enriched with edge and element bubbles. The introduction of the local
projection in the penalty term allows to converge to nonsmooth solutions, but the same
projection weakens convergence, which is only attained in the L2 norm. There are
other nodal-based FE methods, but they converge to spurioussolutions in nonconvex
domains (see e.g. [23, 24]).

In this work, we aim at developing a new mixed FE formulation for Lagrangian
finite elements, based on a stabilized approximation of a novel augmented formulation
of the Maxwell problem. The compatibility condition associated to the inf-sup con-
dition can be avoided by the introduction of the stabilization and exact penalty terms.
The method can be understood as a residual-based FE method heuristically motivated
in a variational multiscale framework [22]. On the other hand, the resulting numerical
algorithm is able to capture nonsmooth solutions, so it is suitable for problems in non-
convex domains. The method is stable and convergent for any pair of nodal FE spaces
for the unknown and the Lagrange multiplier. The implementation is straightforward,
since the extra terms are standard and can be integrated numerically like the Galerkin
terms. It can be implemented in a stabilized FE solver for theNavier-Stokes equations
with minor modifications. Thus, the method is an excellent candidate for being used in
magnetohydrodynamics.

The outline of the paper is as follows. In Section 2 we introduce the Maxwell prob-
lem and different augmented and/or penalized formulations. Section 3 is devoted to
the numerical approximation of the problem by Lagrangian FEs. The problem related
to nonconvex domains is discussed and the new formulation introduced. A complete
stability and convergence analysis is also provided. In Section 4 we present some nu-
merical experiments that confirm the theoretical analysis.Section 5 closes the article
drawing some conclusions.
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2 The Maxwell problem

In this section, we introduce some notation and state the Maxwell problem. We con-
sider different augmented and penalized formulations thatwill be used throughout the
paper.

2.1 Notation

LetΩ be a bounded domain inRd, with d = 2, 3 the space dimension. Given a Banach
spaceX , we denote its associated norm by‖ · ‖X ; for the sake of conciseness, we
will omit the subscript for theL2(Ω) space of square integrable functions. The space
of vector-valued functions with components inX is denoted byXd. The dimension
superscript will be omitted in the norm, i.e. we will simply denote its norm by‖ · ‖X
instead of‖ · ‖Xd . The dual space ofX is denoted asX ′. The inner product between
two scalar or vector functionsf1, f2 ∈ L2(Ω) is denoted by(f1, f2), whereas〈f1, f2〉
is used for a duality pairing.

W s,m(Ω) is used for the standard Sobolev space, with real coefficients s ≥ 0 and
m ≥ 1. Hilbert spacesW s,2(Ω) are denoted byHs(Ω). We writeH1

0 (Ω) for the space
of functions inH1(Ω) with null trace on∂Ω. We will make use of the following spaces
of vector fields:

H(div; Ω) :=
{

v ∈ L2(Ω)d such that ∇ · v ∈ L2(Ω)
}

,

H(curl; Ω) :=
{

v ∈ L2(Ω)d such that ∇× v ∈ L2(Ω)d
}

,

and the subspaces

H(div 0; Ω) := {v ∈ H(div; Ω) such that ∇ · v = 0} ,

H0(curl; Ω) := {v ∈ H(curl; Ω) such that n× v = 0 on ∂Ω} .

We use the notationA . B to indicate thatA ≤ CB, whereA andB are expres-
sions depending on functions that in the discrete case may depend on the discretization
as well, andC is a positive constant.

2.2 Problem statement

In this work, we consider the Maxwell problem, which physically describes magne-
tostatics in a bounded domainΩ surrounded by a perfect conductor. Let us consider
Ω ⊂ Rd to be a simply connected nonconvex polyhedral domain with a connected
Lipschitz continuous boundary∂Ω. Besides its range of applicability, this system of
partial differential equations exhibits the mathematicalcomplications encountered in
more involved model problems (see e.g. [13, 25]). The Maxwell problem can be stated
as a minimization problem that consists in finding the vectorial field u (magnetostatic
field) that minimizes the potential

E(v) =

∫

Ω

(

λ
1
2 |∇ × v|2 − 2v · f

)

dx,

with the constraint∇·v = 0 and the homogeneous boundary conditionn×v = 0 over
the boundary∂Ω, for some divergence-free datumf ; λ is a positive physical parameter.
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2.3 Augmented and penalized formulations

The Maxwell problem can be recasted as a saddle-point problem by enforcing the di-
vergence constraint with a Lagrange multiplierp. The Euler-Lagrange equations read
as follows: seek a pair(u, p) solution of

λ∇× (∇× u)−∇p = f , (1a)

∇ · u = 0, (1b)

with n×u = 0 andp = 0 on∂Ω. As we will see later on,p vanishes in the appropriate
functional setting. Thus, the problem consists of findingu such thatλ∇ × ∇ × u =
f and∇ · u = 0 on Ω. It has motivated theexact penaltyapproach, in which the
divergence constraint is penalized and the Lagrange multiplier eliminated; it consists
of seekingu solution of

λ∇×∇× u− λ∇(∇ · u) = f in Ω. (2)

This re-statement of the problem is (in principle) very appealing from a numerical point
of view. However, as we will see in the next section, this exact penalty modifies the
functional setting of the original problem, leading to spurious solutions for nonconvex
domains.

The variational interpretation of the mixed problem (1) admits two functional set-
tings. The so-called curl formulation reads as: findu ∈ H0(curl; Ω) andp ∈ H1

0 (Ω)
such that

(λ∇× u,∇× v) − (∇p,v) = (f ,v) , ∀v ∈ H0(curl; Ω), (3a)

(∇q,u) = 0, ∀q ∈ H1
0 (Ω), (3b)

wheref ∈ H(div 0; Ω) is assumed. However, this is not the only functional settingin
which the problem is well-posed; theH1(Ω) regularity forp can be “transferred” tou,
leading to a curl-div variational formulation: findu ∈ H0(curl; Ω) ∩ H(div; Ω) and
p ∈ L2(Ω)/R such that

(λ∇× u,∇× v) + (p,∇ · v) = (f ,v) , ∀v ∈ H0(curl; Ω) ∩H(div; Ω), (4a)

− (q,∇ · u) = 0, ∀q ∈ L2(Ω). (4b)

On the other hand, the exact penalty method only allows a curl-div formulation. Thus,
its variational form reads as: seeku ∈ H0(curl; Ω) ∩H(div; Ω) such that

(λ∇× u,∇× v) + (λ∇ · u,∇ · v) = (f ,v), (5)

for anyv ∈ H0(curl; Ω) ∩H(div; Ω). For the sake of conciseness, we introduce the
bilinear forms

a(u,v) = (λ∇× u,∇× u) , b(v, p) = − (∇p,v) ,

andc(u, p;v, q) = a(u,v) + b(v, p) − b(u, q). Let us also denote the Hilbert spaces
H0(curl; Ω) andH1

0 (Ω) by V andQ respectively, supplemented with the norms

‖v‖V := ‖v‖H(curl;Ω) =
1

ℓ
‖v‖+ ‖∇× v‖, (6)

‖q‖Q := ‖q‖H1
0
(Ω) =

1

ℓ
‖q‖+ ‖∇q‖, (7)
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whereℓ = ℓ(Ω) is a constant with dimensions of length that makes the norms dimen-
sionally consistent. In the following,ℓ will denote a length scale, not necessarily the
same at different appearances. The norm associated to the product spaceV × Q is
denoted by

|||v, q||| = λ
1
2 ‖v‖V + ℓλ− 1

2 ‖q‖Q.

From the standard theory of saddle-point problems, well-posedness of the curl formu-
lation (3) is proved in the next theorem.

Theorem 2.1. The following inf-sup condition is satisfied,

inf
(u,p)∈V×Q\{0,0}

sup
(v,q)∈V×Q\{0,0}

c(u, p;v, q)

|||u, p||||||v, q|||
≥ β > 0. (8)

As a consequence, formulation (3) is well-posed.

Proof. The forma : V × V → R is bilinear, and coercive when it is restricted to
V ∩ H(div 0; Ω) (the closed subspace ofV in the kernel ofb(·, q) for any q ∈ Q),
sincea(v,v) ≥ λ‖∇ × v‖2 for anyv ∈ V ∩H(div 0; Ω). TheL2(Ω) control ofv is
consequence of the Poincaré-Friedrichs inequality

1

ℓ
‖v‖ ≤ cF ‖∇ × v‖, ∀v ∈ V ∩H(div 0; Ω)

(see [27, Corollary 3.51]). On the other hand,b(v, p) is a continuous bilinear form
such that, for anyp ∈ Q, there existsvp ∈ V with ‖vp‖V = 1 that satisfiesb(vp, p) ≥
βb‖p‖Q. This is true, since∇p ∈ V for anyp ∈ Q. The coercivity ofa in the kernel
of b, and the inf-sup condition satisfied byb are necessary and sufficient conditions
for proving (8) (see [14, Proposition 2.36]). We know from the theory of saddle-point
problems that (3) is well-posed if and only if condition (8) is satisfied (see [14, Theorem
2.34]).

The curl-div formulations are equivalent to the curl formulation (3).

Proposition 2.1. Formulations (4) and (5) are well-posed. Furthermore, theyare
equivalent to (3) in the sense that they lead to the sameu.

Proof. Let us only show thatp ≡ 0 in (3), which will be systematically used along
the paper. Takingv = ∇p (which clearly belongs toV ) in (3), and using the fact that
∇×∇p = 0 and∇ · f = 0 a.e. inΩ, we obtain‖∇p‖ = 0. Sincep vanishes on∂Ω, it
impliesp ≡ 0 a.e. inΩ by virtue of Poincaré’s inequality. We refer to [18, Propositions
3.4 and 3.5] for the completion of the proof.

2.4 A novel augmented formulation for the Maxwell problem

In this work, we propose a novel numerical approximation of the Maxwell problem
whose starting point is a different augmented formulation.Since we are interested in
a curl formulation for reasons that will become obvious in the next section, the idea
consists of adding the termℓ

2

λ ∆p to (1b); ℓ > 0 is the penalty value, with dimension
of length. A length scale is inherent to the problem, since itis needed to define dimen-
sionally consistent norms in (6)-(7). Theoretically, thislength scale comes from the
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Poincaré-Friedrichs inequality of the problem at hand. The augmented formulation in
strong form consists of findingu andp such that

λ∇×∇× u−∇p = f ,

−∇ · u−
ℓ2

λ
∆p = 0,

in Ω, satisfyingn × u = 0 andp = 0 on ∂Ω. Sincep ∈ Q is identically zero, the
penalty is exact. The weak form of the new formulation reads as: findu ∈ V and
p ∈ Q such that

a(u,v) + b(v, p) = (f ,v) , ∀v ∈ V, (9a)

−b(u, q) + sp(p, q) = 0, ∀q ∈ Q, (9b)

where

sp(p, q) =
ℓ2

λ

∫

Ω

∇p · ∇qdx.

We now show the equivalence of the new formulation (9).

Proposition 2.2. Formulation (9) is well-posed and its solution(u, p) is the solution
of (3).

Proof. Well-posedness is simply verified by proving thatp ≡ 0 in (9) (using the ideas
introduced above) and testing the system against(v, q) = (u, p). The new formulation
is clearly stable in the norm|||·|||, because of the stability of the original curl formulation
and the positivity of the term added. Equivalence is now straightforward.

3 Numerical approximation

3.1 Finite element approximation

Let Th be a partition ofΩ into a set of finite elements{K}. For every elementK, we
denote byhK its diameter, and set the characteristic mesh size ash = maxK∈Th

hK .
For simplicity, we consider a regular and quasi-uniform family {Th}h>0 of finite ele-
ment partitions. The space of polynomials of degree less or equal tok > 0 in a finite
elementK is denoted byPk(K). The space of continuous piecewise polynomials is
defined as

Nk(Ω) =
{

vh ∈ C0(Ω) such that vh|K ∈ Pk(K) ∀K ∈ Th
}

. (10)

This type of finite element space is the one that we consider inthis work for both scalar
fields and every component of vectorial fields. These approximations are usually called
H1-conforming approximations, because of the inter-elementcontinuity. Any function
Nk(Ω) can be uniquely determined by its values on a set of points (nodes) inΩ (see
[4, 14]), and so this is a nodal finite element approximation.

For quasi-uniform partitions, there is a constantCinv, independent of the mesh size
h (the maximum of all the element diameters), such that

‖∇vh‖L2(K) ≤ Cinvh
−1‖vh‖L2(K), ‖∆vh‖L2(K) ≤ Cinvh

−1‖∇vh‖L2(K) (11)

for all finite element functionsvh defined onK ∈ Th. This inequality can be used for
scalars, vectors or tensors.
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3.2 The corner paradox

Although all the formulations introduced above are equivalent, stable and consistent,
numerical approximations of the curl-div formulations (4)and (5) lead to spurious solu-
tions for nonconvex domains, e.g. domains with re-entrant corners. Costabel provided
in [10] a mathematical justification to this surprising observation.

Lemma 3.1. If Ω is not convex,V ∩ H1(Ω)d is a closed proper subspace ofV ∩
H(div; Ω).

After reading the previous lemma, one could think that aH1-conforming finite
element space cannot be used, since the finite element space is a closed proper subspace
of V ∩H(div; Ω) and the solutionu ∈ V ∩H(div; Ω) (see e.g. [18] or [14, Corollary
2.30]). However, this reasoning is wrong in general. The approximability lost only
happens when the sequence of solutions{uh}h>0 is uniformly boundedin H1(Ω)d,
which is only true for curl-div formulations. These read as follows: finduh ∈ Xh ⊂
H1(Ω)d ∩ V such that

(λ∇× uh,∇× vh) + (λ∇ · uh,∇ · vh) = (f ,vh), ∀vh ∈ Xh, (12)

whereXh is aH1-conforming finite element space. From Lemma 3.1 we then have:

Corollary 3.1. If Ω is not convex

lim
h→0

‖u− uh‖V ∩H(div;Ω) 6= 0,

in general.

Proof. Every element of the sequence{uh}h>0 belongs toH1(Ω)d. On the other
hand, everyuh is solution of (12) and thus,λ

1
2 ‖∇ × uh‖+ λ

1
2 ‖∇ · uh‖ ≤ C‖f‖, for

C uniform with respect toh. From [10, Theorem 4.1], we have that

‖∇uh‖ . ‖∇ × uh‖+ ‖∇ · uh‖,

for Ω being a polyhedron (see also [10, Corollary 2.2] in case of∂Ω ∈ C1,1). Thus,
{uh}h>0 is uniformly bounded inH1(Ω)d ( V ∩H(div; Ω) and cannot approximate
an element inV ∩H(div; Ω) which is not inH1(Ω)d.

This result implies that approximations based on (4) and (5)cannot capture so-
lutionsu 6∈ V ∩ H1(Ω)d of the Maxwell problem (3), and so, are not suitable for
numerical purposes. This kind of solutions are callednonsmoothor singular solu-
tions. Note thatthe key for this negative result is the spurious control on the divergence
of the approximations based on (4) and (5), which implies that the whole gradient is
uniformly boundedin L2(Ω), sinceuh is aH1(Ω)d function for all h. It is not an
approximability problem of finite elements spacesXh ⊂ H1(Ω)d for h fixed, which
may well approximateH(curl; Ω), as we will see later. These finite element spaces
are dense not only inH(curl; Ω), but also inL2(Ω)d.

Let us consider conforming finite element approximations ofthe spacesV and
Q, denoted byVh andQh respectively. A crude Galerkin approximation of the curl
conforming mixed problem (3) reads as: finduh ∈ Vh andph ∈ Qh such that

a(uh,vh) + b(vh, ph) = (f ,vh) , ∀vh ∈ Vh, (13a)

−b(uh, qh) = 0, ∀qh ∈ Qh. (13b)
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The well-posedness of this finite dimensional problem relies on the discrete version of
the inf-sup condition (8):

inf
(uh,ph)∈Vh×Qh\{0,0}

sup
(vh,qh)∈Vh×Qh\{0,0}

c(uh, ph;vh, qh)

|||uh, ph||||||vh, qh|||
≥ βd > 0, (14)

for βd > 0 uniform with respect toh (see e.g. [5]). As far as we know, it is not
known whether there is any nodal interpolation forVh × Qh satisfying this inf-sup
condition. This is satisfied byVh built by the celebrated Nedelec’s (or edge) elements;
those elements are only conforming inH(curl; Ω), since they do not satisfy normal
continuity over the element faces. A nodal finite element space can be used forQh (see
e.g. [30]).

As a result, nodal finite elements have only been used with the“bad” formula-
tion (12), leading to spurious solutions for nonconvex domains, e.g. domains with
re-entrant corners. On the other hand, the “good” formulation (13) has been restricted
to edge elements, since they do satisfy (14). Since the problem is the fact that a curl-
div formulation is not suitable for numerical purposes, a rehabilitation of nodal finite
elements has been proposed in [12]. The key idea of this approach is to introduce a
weight in the penalty div-div term in (12) which depends on the distance to the singu-
larities. The resulting problem is posed in a weighted Sobolev space that does satisfy
an approximability property.

For the previous reasons, nodal elements have always been related to curl-div con-
forming formulations, whereas edge elements have always been related to curl for-
mulations. In this article, we claim that this correspondence is false and misleading.
We prove this assertion by constructing a new curl-conforming mixed formulation
and a corresponding residual-based stabilized finite element approximation that can
be solved with nodal finite elements. Thus, our approach is very different to the one in
[12]. Since we have designed a curl-conforming numerical approximation of (13), the
correspondence commented above is proved to be incorrect. Furthermore, the formu-
lation we propose can be automatically used for any problem without the need to know
where the singularities are and to define a weight function around every singularity.

3.3 A mixed finite element formulation suitable for nodal approxi-
mations

It is obvious that a nodal finite element approximation that would always provide the
“physical” solution would be favored in many situations. Inparticular, the original
motivation of this work lies in the multi-physics magnetohydrodynamics (MHD) prob-
lem. The numerical application of this phenomenon, with increasing interest in fusion
reactor design, couples Navier-Stokes and Maxwell solvers. The ability to solve both
problems with an all-purpose stabilized finite element method would make the exten-
sion of existing fluid solvers to MHD multi-physics very easy.

Our approach can be motivated as a residual-based stabilized discretization of the
exact augmented formulation (9), although we will simply state the method without
further heuristic motivation. The finite element formulation we propose is designed
for H1-conforming finite element spaces. Then,Vh = N d

k ∩ V andQh = Nl/R, for
k, l > 0 the order of approximation foru andp, respectively; there is no restriction
betweenk andl, and equal-order approximations are allowed. The method consists of
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seekingvh ∈ Vh andph ∈ Qh solution of

a(uh,vh) + b(vh, ph) + su(uh,vh) = (f ,vh) , ∀vh ∈ Vh, (15a)

−b(uh, qh) + sp(ph, qh) = 0, ∀qh ∈ Qh, (15b)

where the stabilization term reads

su(uh,vh) =
∑

K∈Th

cuλ

∫

K

h2
K

ℓ2
∇ · uh∇ · vhdx, (16)

cu being an algorithmic constant. We can easily see that (15) isa residual-based FE
approximation of the augmented formulation (9) (see e.g. [22, 7]). The stabilization

parametercuλ
h2
K

ℓ2 must provide a dimensionally consistent method and it can beheuris-
tically justified by using Fourier transform techniques (see e.g. [3]). The benefit of this
approach is twofold: it allows to circumvent the need of a discrete inf-sup condition
and stabilizes singular perturbed problems (see e.g. [14]).

The reason why thesu term is needed becomes evident from both theoretical anal-
ysis and numerical experimentation. Obviously, ash → 0 this term vanishes, and the
method is not a div-curl conforming algorithm. In the sequel, we analyze this method.
We denote by

cs(uh, ph;vh, qh) = c(uh, ph;vh, qh) + su(uh,vh) + sp(ph, qh)

the stabilized counterpart ofc.

3.3.1 Stability analysis

In the next theorem we establish stability of the bilinear form introduced above with
respect to the mesh-dependent norm

|||vh, qh|||h = λ
1
2 ‖∇× vh‖+ λ

1
2

(

∑

K∈Th

h2
K

ℓ2
‖∇ · uh‖

2
K

)
1
2

+
ℓ

λ
1
2

‖∇ph‖. (17)

Lemma 3.2. The bilinear formcs : Vh ×Qh × Vh ×Qh → R is coercive with respect
to the mesh-dependent norm (17).

The proof of the lemma is straightforward. However, this norm is not enough
for numerical purposes; e.g. the linear form(f ,v) ≤ ‖f‖‖v‖ is continuous forv ∈
L2(Ω)d. We show in the next lemma that the “continuous” norm|||uh, ph||| for the FE
solution can be bounded by its mesh-dependent norm.

Lemma 3.3. The solution(wh, αh) ∈ Vh ×Qh of the discrete problem

cs(wh, αh;vh, qh) = 〈f ,vh〉+ 〈g, qh〉, ∀(vh, qh) ∈ Vh ×Qh (18)

for f ∈ V ′ andg ∈ Q′, satisfies:

|||wh, αh|||h . |||wh, αh||| . |||wh, αh|||h + ‖g‖Q′.

Proof. SinceVh × Qh ⊂ V × Q, by virtue of the continuous inf-sup condition (8),
there exists(w̃, α̃) ∈ V ×Q such that|||w̃, α̃||| = 1 and

c(wh, αh; w̃, α̃) ≥ β|||wh, αh|||.
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Let us denote bySZh(·) the Scott-Zhang interpolator (see e.g. [4]) into the corre-
sponding finite element space; the space (eitherVh or Qh) is easily understood by the
context. We have

c(wh, αh; w̃, α̃) = c(wh, αh; w̃, α̃− SZh(α̃)) + c(wh, αh;0,SZh(α̃)). (19)

We bound the first term in the right-hand side as follows:

c(wh, αh; w̃, α̃− SZh(α̃))

≤ λ‖∇ ×wh‖‖∇× w̃‖+ ‖∇ ·wh‖‖α̃− SZh(α̃)‖+ ‖∇αh‖‖w̃‖

. λ‖∇ ×wh‖‖∇× w̃‖+ h‖∇ ·wh‖‖α̃‖H1(Ω) + ‖∇αh‖‖w̃‖

. |||wh, αh|||h|||w̃, α̃|||, (20)

where we have used the interpolation properties of the Scott-Zhang projector (see e.g.
[4]). Using the fact that(wh, αh) is the solution of the stabilized problem (18), the
second term in (19) can be treated as

c(wh, αh;0,SZh(α̃)) = 〈g,SZh(α̃)〉+ sp(αh,SZh(α̃))

≤ ‖g‖Q′‖SZh(α̃)‖Q +
ℓ2

λ
‖∇αh‖‖∇SZh(α̃)‖

≤ (|||wh, αh|||h + ‖g‖Q′) |||w̃, α̃|||,

by using the continuity ofSZh(·) in H1(Ω). Since|||w̃, α̃||| = 1 by construction, we
get the upper bound for||| · ||| in the lemma. The lower bound is easily obtained using
an inverse inequality (see (11)).

Remark 3.1. We infer from the previous lemma the importance of theh‖∇ · wh‖
stability, which is essential for the bound over(∇ ·wh, α̃− SZh(α̃)) in (20). In fact,
the requirement of this stability is not only technical, as it is shown in Section 4 using
numerical experimentation.

The following corollaries are consequences of Lemmata 3.2 and 3.3.

Corollary 3.2. The stabilized bilinear formcs : Vh×Qh×Vh×Qh → R is continuous
with respect to the norm||| · |||.

Corollary 3.3. The solution(uh, ph) of problem (15) satisfies

|||uh, ph||| . ‖f‖. (21)

Proof. The coercivity in Lemma 3.2 implies that|||uh, ph|||2h . cs(uh, ph;uh, ph). On
the other hand, we have that(f ,uh) ≤ β‖f‖2 + 1

4β |||uh, ph|||2 for β > 0. Combining
these results with the upper bound in Lemma 3.3 forg = 0 and takingβ large enough,
we prove the result.

Thus, the numerical approximation (15) is stable in the “continuous” norm. On the
other hand, the consistency of the method is easily checked by the fact that bothp and
∇ · u are zero a.e. inΩ.
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3.3.2 Error estimates

As commented above, numerical methods based on the curl-divformulation fail to con-
verge to singular solutions due to the lack of an approximability condition (see Corol-
lary 3.1). Formulation (15) avoids this problem, since bothstability and continuity hold
for the same norm||| · ||| in which the continuous problem is well-posed. The interpo-
lation error for the new formulation, which comes from the subsequent convergence
analysis, is defined as

Eh(u) (22)

:= inf
(wh,rh)∈Vh×Qh



|||u−wh, p− rh|||+ λ
1
2

(

∑

K

hK

ℓ2
‖u−wh‖

2
L2(∂K)

)
1
2



 .

Theorem 3.1. The solution(uh, ph) of problem (15) for the family of finite element
partitions{Th}h>0 approximates the continuous solution(u, p) of problem (3) in the
following sense

|||uh − u, ph − p||| . Eh(u).

Proof. On one hand, the Galerkin orthogonality, the consistency ofthe method and the
fact that the finite element approximation is conforming lead to

cs(uh −wh, ph − rh;vh, qh) = cs(u−wh, p− rh;vh, qh)

= c(u−wh, p− rh;vh, qh) + su(u−wh,vh) + sp(p− rh, qh) (23)

for any (wh, rh) and(vh, qh) in Vh × Qh. On the other hand, using integration by
parts within each element domainK ∈ Th for thesu term, we get:

su(u−wh,vh) =
∑

K∈Th

cuλ

∫

K

h2
K

ℓ2
∇ · (u−wh)∇ · vhdx

= −
∑

K∈Th

cuλ

∫

K

h2
K

ℓ2
(u−wh) · ∇∇ · vhdx

+
∑

K∈Th

cuλ

∫

∂K

h2
K

ℓ2
(u−wh) · n∇ · vhdx

.
∑

K∈Th

cuλ
h2
K

ℓ2
‖u−wh‖L2(K)‖∇∇ · vh‖L2(K)

+
∑

K∈Th

cuλ
h2
K

ℓ2
‖u−wh‖L2(∂K)‖∇ · vh‖L2(∂K).

Using the inverse inequalities (11) and the relation‖φh‖L2(∂K) . h
− 1

2

K ‖φh‖L2(K), that
holds for any piecewise polynomial function, together withYoung’s inequality and the
continuity ofc andsp, we get

cs(uh −wh, ph − rh;vh, qh)

|||vh, qh|||
.|||u−wh, p− rh|||

+ λ
1
2

(

∑

K

hK

ℓ2
‖u−wh‖

2
L2(∂K)

)
1
2

. (24)

11



By virtue of Lemma 3.3 with(f , g) = cs(u−wh, p− rh; ·, ·) and the fact that

‖g‖Q′ = sup
q∈Q\{0}

−b(u−wh, q) + sp(p− rh, q)

‖q‖Q
. |||u−wh, p− rh|||,

we get:

|||uh −wh, ph − rh||| . |||uh −wh, ph − rh|||h + |||u−wh, p− rh|||. (25)

Testing (24) against(vh, qh) = (uh −wh, ph − rh) and using the coercivity ofcs in
Lemma 3.2, we obtain

|||uh −wh, ph − rh|||2h
|||uh −wh, ph − rh|||

. |||u−wh, p− rh|||+ λ
1
2

(

∑

K

hK

ℓ2
‖u−wh‖

2
L2(∂K)

)
1
2

.

(26)

Combining (25), (26) and the triangle inequality, we get thebound

|||uh − u, ph − p||| . |||u−wh, p− rh|||+ λ
1
2

(

∑

K

hK

ℓ2
‖u−wh‖

2
L2(∂K)

)
1
2

(27)

for any (wh, rh) ∈ Vh × Qh. Taking the infimum forwh ∈ Vh andrh ∈ Qh, and
invoking the expression for the interpolation error (22), we prove the theorem.

In the following, we obtain somea priori error estimates. Let us consider the
interpolation estimates:

inf
wh∈Vh

‖v−wh‖Hs(ω) . ht−s‖v‖Ht(ω), 0 ≤ s ≤ t ≤ k + 1, (28)

inf
rh∈Qh

‖q − rh‖Hs(ω) . ht−s‖q‖Ht(ω), 0 ≤ s ≤ t ≤ l + 1, (29)

for any bounded setω ⊂ Ω (see [12]). We get the following order of convergence for
regular solutions, which in fact does not depend on the orderl of the approximation
for p:

Corollary 3.4. Let the solution of the continuous problem (3) beu ∈ Hr(Ω)d, with
r ≥ 1. Then, the solution(uh, ph) of problem (15) satisfies the error estimate

|||u− uh, p− ph||| . λ
1
2ht−1‖u‖Ht(Ω),

wheret := min{r, k + 1}.

Proof. We infer from (28) that

inf
(wh,rh)∈Vh×Qh

|||u−wh, p− rh||| . λ
1
2ht−1‖u‖Ht(Ω),

where we have used the fact thatp = 0 a.e. inΩ. On the other hand, the trace inequality

‖v‖L2(∂K) . h
−1/2
K ‖v‖L2(K) + h

1/2
K ‖∇v‖L2(K) (30)

that holds forv ∈ H1(K), K ∈ Th, allows us to obtain
∑

K∈Th

h
1
2

K‖u−wh‖L2(∂K) . h− 1
2 ‖u−wh‖+ h

1
2 ‖u−wh‖H1(Ω).

The proof follows by taking the infimum with respect to(wh, rh) in (27), the previous
result and (28).

12



We can prove a sharpera priori error estimate that is also applicable to nonsmooth
solutions, under some assumptions over the partitionTh and/or the polynomial degree
k of Vh. In order to do that, we will make use of the following lemmata.

Lemma 3.4. If v ∈ V ∩ H(div; Ω) thenv ∈ Hr(Ω)d for some real numberr > 1
2 ,

and there holds
ℓr−1‖v‖Hr(Ω) . ‖∇× v‖ + ‖∇ · v‖.

Lemma 3.5. Letu ∈ V ∩H(div; Ω) be the solution of (3). Then,u can be decomposed
into a regular part and a singular part as follows:

u = u0 +∇ϕ,

whereu0 ∈ H1+r(Ω)d ∩H0(curl; Ω), ϕ ∈ H1
0 (Ω) ∩H1+r(Ω) for some real number

r > 1
2 .

We refer to [1, Proposition 3.7] for the proof of Lemma 3.4 (see also [20, Lemma
4.2]). Lemma 3.5 is a consequence of the deep analysis about the singularities for the
Maxwell problem due to Costabel and Dauge in [11] (see also [12, Section 6]).

Error estimates for nonsmooth solutions can be proved, relying on an assumption
over the finite element spaceVh:

Assumption 1. There exists a finite element spaceGh defined over the mesh partition
Th such that, for any functionφh ∈ Gh, ∇φh ∈ Vh. Furthermore, this space satisfies
the approximability property

inf
φh∈Gh

‖φ− φh‖Hs(ω) . ht−s‖φ‖Ht(ω)

in any bounded setω ⊂ Ω, for φ ∈ Ht(ω) and0 ≤ s ≤ t ≤ 1 + k.

Lemma 3.4 proves that the solutionu of the Maxwell problem (3) for a forcing
term f ∈ H(div 0; Ω) belongs toHr(Ω)d for r > 1

2 . Without any assumption over
the regularity of the solution, we get the following error estimate that is based on the
decomposition in Lemma 3.5:

Corollary 3.5. Under Assumption 1, the solution(uh, ph) of problem (15) satisfies the
error estimate

|||u− uh, p− ph||| . λ
1
2 ht‖u0‖H1+t(Ω) +

λ
1
2

ℓ1−ǫ
ht−ǫ‖ϕ‖H1+t(Ω),

for anyǫ ∈]0, t− 1/2[ and fort = min{r, k}.

Proof. Following [12], we use the decompositionu = u0 + ∇ϕ in Lemma 3.4 and
consider optimal interpolations̃u0,h ∈ Vh and ϕ̃ ∈ Gh for u0 andϕ, respectively.
Then, we have

‖u0 − ũ0,h‖Hs(Ω) . h1+t−s‖u0‖H1+t(Ω),

‖ϕ− ϕ̃h‖Hs(Ω) . h1+t−s‖ϕ‖H1+t(Ω), (31)

for 0 ≤ s ≤ t+ 1, with t := min{r, k}. These estimates also hold locally, within each
element. Now, we pickwh = ũ0,h +∇ϕh ∈ Vh. We can easily see that

|||u−wh, p− p̃h||| .
λ

1
2

ℓ
‖u0 − ũ0,h‖+

λ
1
2

ℓ
‖∇(ϕ− ϕ̃h)‖

+ λ
1
2 ‖∇ × (u0 − ũ0,h)‖,
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where the contribution fromp has been neglected becausep = 0. For the second term
in Eh(u) we use

h
1
2

K‖u−wh‖L2(∂K) . h
1
2

K‖u0 − ũ0,h‖L2(∂K) + h
1
2

K‖∇(ϕ− ϕ̃h)‖L2(∂K).

The first term in the right hand side of the previous inequality can be treated as above,
using the trace inequality (30). For the second term, we use the embedding ofW ǫ,m(∂K)

intoW ǫ+ 1
m

,m(K) (see [15]) forǫ > 0 andm = 2, getting:

h
1
2

K‖∇(ϕ− ϕ̃h)‖L2(∂K) . h
1
2

Kℓǫ‖∇(ϕ− ϕ̃h)‖Hǫ(∂K)

. h
1
2

Kℓǫ‖∇(ϕ− ϕ̃h)‖
H

1
2
+ǫ(K)

. h
1
2

Kℓǫ‖ϕ− ϕ̃h‖
H

3
2
+ǫ(K)

. h
1
2

Kℓǫh
1+t− 3

2
−ǫ

K ‖ϕ‖H1+t(K),

where in the last step we have used the second interpolation estimate in (31) with
s = 3

2 + ǫ < 1 + t. Note also that in the first step the fractional derivative inthe norm
in Hǫ(∂K) would scale ashǫ

K , but we need to introduce a length scaleℓ independent
of the element size to bound the wholeHǫ(∂K)-norm.

Combining the previous results, we easily get the desired error estimate.

Remark 3.2. Assumption 1 is known to hold fork ≥ 4 in dimension 2. In this case, we
can takeGh as the finite element space obtained for the Argyris triangle. For k ≥ 2,
Gh can be constructed by using the Bogner-Fox-Schmidt triangle; in order to do this,
the triangulationTh should admit a coarser mesh of macroelements. Under the same
kind of restriction over the mesh topology, the discrete space recently introduced in
[31], based on a Powell–Sabin interpolant (see Figure 1 right), makes true Assumption
1 for k ≥ 1, both in two and three dimensions (see also [12, 6, 26]). Furthermore, we
have observed from numerical experiments that a mesh with the crossed-box typology
(see Figure 1 left) also satisfies this assumption. In a numerical code, it implies to
perform a pre-processing of the original mesh. Given an original triangular mesh, the
Powell-Sabin mesh is obtained by introducing additional nodes on the mid-points of the
edges and the element barycentes, and re-connecting the nodes properly. On the other
hand, crossed-box meshes are obtained from a quadrilateralmesh by placing a node on
its center, and creating four triangles; in fact, the additional node can be condensed.
These are the two typologies of meshes considered in Section4. Other typologies may
fail to converge for singular solutions not belonging toH1(Ω). Three-dimensional
extensions of these elements have already been designed andimplemented, showing
excellent results for singular solutions.

Figure 1: Crossed-box (left) and Powell-Sabin (right) macro-element typologies.
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Remark 3.3. When Assumption 1 is satisfied, the previous result is very strong, in
the sense that we have not only proved convergence towards the goodsolution, but
an (almost) optimal order of convergence, even for nonsmooth solutions. We can also
weaken the approximability assumption overGh, and in the limit case

lim
h→0

inf
φh∈Gh

‖φ− φh‖Hs(Ω) = 0, s ≤ 1 + r,

we would get strong convergence towards the solution without order. Alternatively,
instead of considering the decomposition ofu, an interpolation result

lim
h→0

inf
wh∈Vh

(

ℓr−1‖u−wh‖Hr(Ω) + ‖∇× (u−wh)‖
)

= 0,

for Vh would also lead to convergence towards the good solution, without the need to
introduceGh.

4 Numerical experiments

4.1 Stabilized curl formulation

In order to check, using numerical experimentation, that the nodal-based finite element
approximation proposed in this article converges to both smooth and nonsmooth phys-
ical solutions, we take the datumf such that the solution of (3) in polar coordinates
(r, θ) is:

u = ∇

(

r
2n
3 sin

2nθ

3

)

(32)

in the nonconvex domainΩ ≡ [−1, 1]2 \ [0, 1]2, with one re-entrant corner. We have
thatu ∈ H

2n
3
−ǫ(Ω), for anyǫ > 0. Since forn = 1 we have thatu 6∈ H1(Ω), by virtue

of Corollary 3.1, curl-div based finite element approximations converge to spurious
solutions. On the other hand, as proved in Theorem 3.1, the solution of formulation
(15) must converge to the physical solution (32) by usingh-refinement and appropriate
meshes. In order to observe this, we have considered a familyof structured triangular
meshes obtained by a partition of the domain into squares anda subsequent division
of the squares in the crossed-box fashion (see Figure 1). Thenumber of divisions in
every direction has been set to2i with i = 3, 4, 5, 6; the characteristic mesh sizeh is
2−i and the number of triangular elements2i+1. In Figure 2(a), we show the numerical
errorseu = uh − u andep = ph − p for different norms ash → 0. The convergence
rate at every refinement level and numerical values of the error have been provided in
Table 1. From these results, it is clear that the method we propose herein is capable
to approximate numerically nonsmooth solutions, as Theorem 3.1 says. In fact, the
order of convergence of the method is surprisingly high whencompared to those for
the weighted regularization in [10] and the discontinuous Galerkin technique in [21]
(for the same test problem).

Now, in order to stress the importance of theh‖∇ ·uh‖ stability, we have switched
off the term

(

h2
K∇ · uh,∇ · vh

)

from the formulation (15). In the previous stability
analysis, this term is crucial for recoveringL2(Ω)-control ofuh. We perform the same
convergence test as above and show the plots in Figure 2(b). As expected, convergence
is not attained for the quantity‖eu‖. So, the introduction of this term is motivated by
both theoretical and numerical observations.
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Figure 2: Error plots for different quantities inL2(Ω) norm for Formulation (15) and
the problem with analytical solution (32), with different values ofn. Plot (b) corre-
sponds to (15) without the stabilization termsu(uh,vh).

Going back to the full formulation (15), we perform the same convergence anal-
ysis withn = 2 andn = 4 in (32). In the casen = 2, the solutionuh belongs to
H

4
3
−ǫ(Ω) ⊂ H1(Ω). Then, both curl-div and curl formulations are able to capture the

solution. In any case, the smoothness of the solution does not allow us to obtain the-
oretically optimal convergence for first order approximation of bothuh andph, since
u 6∈ H2(Ω). The convergence plot and convergence rates at every level of refinement
can be found in Figure 2(c) and Table 2, respectively. The method exhibits some super-
convergence. Finally, forn = 4 the solutionu belongs toH

8
3
−ǫ(Ω) and the optimal

error estimate should apply. We can see that this is in fact the case for bothu andp in
the continuous norm|||eu, ep||| in Figure 2(d) and Table 1. Again, the method exhibits
super-convergence.

Finally, we solve the singular problem (withn = 1) with a Powell-Sabin mesh. As
expected, the method shows a very similar convergence orderas the one obtained for
crossed-box meshes. The numerical errors and slopes with respect toh are shown in
table 3.
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Table 1: Experimental errors for Method (15) foruh and rate of convergence (in brack-
ets). Piecewise linear finite elements for bothuh andp.

n = 1 n = 2 n = 4
h ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖ ‖eu‖ ‖∇ × eu‖

2−3 2.67e-1 (-) 3.92e-1 (-) 6.75e-2 (-) 9.96e-2 (-) 7.31e-3 (-) 2.66e-2 (-)

2−4 1.51e-1 (0.82) 2.03e-1 (0.95) 2.49e-2 (1.44) 3.20e-2 (1.64) 1.93e-3 (1.92) 3.44e-3 (2.95)

2−5 8.11e-2 (0.90) 9.22e-2 (1.14) 8.68e-3 (1.52) 9.08e-3 (1.82) 4.89e-4 (1.98) 4.34e-4 (2.99)

2−6 4.52e-2 (0.84) 3.98e-2 (1.21) 3.12e-3 (1.48) 2.44e-3 (1.89) 1.22e-4 (2.00) 5.43e-5 (3.00)

Table 2: Experimental errors for Method (15) forph and rate of convergence (in brack-
ets). Piecewise linear finite elements for bothuh andp.

n = 1 n = 2 n = 4
h ‖ep‖ ‖∇ep‖ ‖ep‖ ‖∇ep‖ ‖ep‖ ‖∇ep‖

2−3 1.56e-1 (-) 1.05e+0 (-) 3.72e-2 (-) 2.68e-1 (-) 8.69e-4 (-) 1.14e-2 (-)

2−4 8.70e-2 (0.83) 8.75e-1 (0.27) 1.30e-2 (1.51) 1.39e-1 (0.95) 1.01e-4 (3.10) 2.10e-3 (2.44)

2−5 4.09e-2 (1.09) 6.29e-1 (0.48) 3.85e-3 (1.76) 6.27e-2 (1.15) 1.09e-5 (3.22) 3.56e-4 (2.56)

2−6 1.76e-2 (1.22) 4.19e-1 (0.59) 1.04e-3 (1.89) 2.63e-2 (1.25) 1.10e-6 (3.30) 5.88e-5 (2.60)

Table 3: Experimental errors for Method (15) foruh and rate of convergence (in brack-
ets) for the test problem withn = 1 and Powell-Sabin triangle meshes. Piecewise linear
finite elements for bothuh andp.

n = 1
h ‖eu‖ ‖∇ × eu‖

2−3 2.13e-1e-1 (-) 2.99e-1 (-)

2−4 1.13e-1 (0.91) 1.40e-1 (1.10)

2−5 5.98e-2 (0.92) 5.99e-2 (1.22)

2−6 3.34e-2 (0.84) 2.48e-2 (1.27)
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4.2 Stabilized curl-div formulation

Following the same idea as at the continuous level, in which we went from (3) to (4)
passing regularity fromp to u, we can pass from (15) to a curl-div stabilized finite
element formulation. Proceeding this way, we get the discrete problem: finduh ∈ Vh

andph ∈ Qh solution of

a(uh,vh) + b(vh, ph) + (cuλ∇ · uh,∇ · vh) = (f ,vh) , ∀vh ∈ Vh, (33a)

−b(uh, qh) +
∑

K∈Th

∫

K

h2
K

λ
∇ph · ∇qhdx = 0, ∀qh ∈ Qh. (33b)

Again, this method is a residual-based finite element method, in which the stabiliza-
tion parameter has been chosen to becuλ. The second term in the right-hand side

comes from the penalty term in (9) but takingh2
K

λ as penalty coefficient. The numerical
analysis of this method uses similar arguments to the ones for (15). Since we have
control over both the curl and the divergence ofuh, and the controlh‖∇ph‖ only leads
to L2(Ω) stability for ph, this problem is well-posed for the curl-div norm, for which
there is no approximability property. Thus, this formulation is not able to deal with the
singular solution (32) withn = 1; we show this in Figure 3(a). However, as expected,
the method converges forn = 2 andn = 4 to the good solution, sinceu ∈ H1(Ω).
We show the error plots in Figures 3(b) and 3(c). Let us point out that in the curl-div
formulation there is no control over∇ph, and so, no convergence can be expected for
it (see Figure 3(b)).

5 Conclusions

The finite element formulation proposed in this paper to approximate Maxwell’s prob-
lem has been shown to allow one to use continuous Lagrangian interpolations for the
unknown, yielding stable and convergent approximations toany solution of the con-
tinuous problem, including singular solutions. Convergence to smooth solutions is
reached with optimal order.

The essential point to converge to singular solutions is to avoid the spurious control
on theL2(Ω)-norm of the divergence of the unknown, typical of penalizedor curl-div
formulations. Instead of avoiding this by using weightedL2(Ω)-inner products, we
resort to the introduction of a Lagrange multiplier to enforce the zero divergence re-
striction. However, to ensure stability of this in the appropriate functional setting, a
novel augmented formulation has been introduced, which consists of adding a Lapla-
cian of the multiplier in the zero divergence restriction. Since the multiplier is zero in
the continuous problem, consistency remains unaltered. The final ingredient is to use a
stabilized formulation at the discrete level, in our case consisting only in adding a least-
square form of the zero divergence condition. The stabilizing term is multiplied by the
square of the mesh size, so that it mimics stability of the divergence of the unknown
in H−1(Ω), not inL2(Ω), as curl-div formulations wrongly do. This new term is also
responsible for obtaining stability in theL2(Ω) part of the wholeH(curl; Ω) norm
of the unknown. Finally, in order to have approximability, particular mesh typologies
must be used for singular solutions, at least for linear Lagrangian elements, that can
easily be generated post-processing any original triangular or quadrilateral mesh.

A classical numerical test has been used to check the theoretical predictions. No-
tably, very good convergence has been observed in the case when the solution is singu-
lar, as compared to other formulations that can be found in the literature.
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Figure 3: Error plots for different quantities inL2(Ω) norm for Formulation (33) and
the problem with analytical solution (32), with different values ofn.

The practical interest of our approach is clear. Even if tailored approximations for
Maxwell’s problem may be afforded at a reasonable computational cost when it is an
isolated problem, it is obvious that a classical Lagrangiantype approximation greatly
simplifies its implementation in situations where this problem is coupled to others, as
in MHD. On the other hand, our approach may be viewed as an alternative to the use
of the so called compatible discretization, satisfying theappropriate inf-sup conditions.
In simple model problems, such as Stokes’, Maxwell’s and Darcy’s, our formulation
allows us to use the same interpolation for the unknowns in all cases, instead of one
compatible for each case.
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like problems.Comptes Rendus-Ḿecanique, 330(1):57–68, 2002.

20



[19] C. Hazard and M. Lenoir. On the solution of time-harmonic scattering prob-
lems for Maxwell’s equations.SIAM Journal on Mathematical Analysis, 6(1597–
1630):1996, 27.

[20] R. Hiptmair. Finite elements in computational electromagnetism.Acta Numerica,
11(237–339), 2003.

[21] P. Houston, I. Perugia, and D. Schötzau. Mixed discontinuous Galerkin ap-
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