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Abstract

A new mixed finite element approximation of Maxwell's proflés proposed,
its main features being that itis based on a novel augmeatedifation of the con-
tinuous problem and the introduction of a mesh dependebiligtag term, which
yields a very weak control on the divergence of the unknowre method is shown
to be stable and convergent in the natuiilcurl; 2) norm for this unknown. In
particular, convergence also applies to singular solstifor which classical nodal
based interpolations are known to suffer from spurious emyence upon mesh
refinement.

1 Introduction

The simulation of electromagnetic phenomena with increpsomplexity demands
accurate and efficient numerical methods suitable for taage computing. Finite el-
ement (FE) methods are commonly used in this context be¢hegean easily handle
complicated geometries by using unstructured grids, peogi rigorous mathematical
framework and allow adaptation.

In many applications of current interest, the electromégnEoblem is coupled
to other physical processes. Salient examples of multipeygenomena that include
electromagnetics are magnetohydrodynamics and plasnsicghirhese two problems
have experienced increasing attention due to the need &lafeaumerical laborato-
ries in fusion technology design. The simulation of thesgbfsms (and many others)
would benefit of an all-purpose FE method that would be slgtidy the different sub-
problems at hand, simplifying the implementation issued ue enforcement of the
coupling conditions. In particular, an all-purpose coutins nodal-based formulation
would be a favored candidate. E.g. the Navier-Stokes egumtire commonly solved
with stabilized FE approximations that can deal with theyslarly perturbed nature
of the system for high Reynolds numbers and circumvent tsteicdons related to the
corresponding inf-sup condition (see e.g. [8, 9]). In plagrhysics, fields computed
by discontinuous FE Maxwell solvers create a consideralnearical noise when em-
bedded in a plasma code, e.g. using the particle-in-cehatefsee [2]). Furthermore,
nodal approximations are particularly well-suited for éidependent electromagnetic
problems because the mass matrix can be consistently luwiffezlit loss of accuracy,
leading to inexpensive transient solvers.

The Maxwell operator has a saddle-point structure, withpieticularity that the
Lagrange multiplier introduced to enforce the divergefree-constraint is identically
zero. Existing FE methods that satisfy the discrete copatéof the inherent inf-sup



condition for this problem are based on Nedelec's or edgeais (see e.g. [20, 28]);
edge elements lead to fields with discontinuous normal compioon element edges
or faces. We also refer to alternative formulations basediscontinuous Galerkin
approximations [21, 17, 16, 29]. With the aim to solve the Mak problem with
Lagrangian finite elements (FEs), the differential oparatéhe problem can be trans-
formed into an elliptic one, by adding an exact penalty teomtaining the divergence
(see [19]); the penalty is exact because the Lagrange rieltimnishes. The result-
ing method satisfies the compatibility conditions over tlegrent faces in a pointwise
sense. Unfortunately, this method is not able to converg®tsmooth solutions that
appear in nonconvex domains, e.g. domains with re-entanecs (see [18, 12] and
Section 3).

Using an innovative idea, Costabel and Dauge proposed ire[iehabilitation of
H!-conformingC® nodal (i.e. Lagrangian) FEs based on a weighted versioneof th
penalty term that was able to converge to the“good” soluitiononconvex domains.
In order to use the resulting numerical method, singulagtions have to be identi-
fied a priori, and proper weighted functions constructed, based onrifasmation.
In the negative side, it clearly complicates the numerictddration (of the weighted
term), loses computational efficiency and complicates theraatization of the simu-
lations. An alternative approach to solve the Maxwell peoblis the decomposition
of the solution into singular and smooth part (see [2, 19})this method is harder
to generalize, specially in three dimensions. Very regebtlanet al. have designed
in [13] a method based on local projections that uses a FEespamposed of cubic
nodal elements enriched with edge and element bubbles.nfiteeluction of the local
projection in the penalty term allows to converge to nonstmsolutions, but the same
projection weakens convergence, which is only attainedén/t* norm. There are
other nodal-based FE methods, but they converge to spws@usons in honconvex
domains (see e.g. [23, 24]).

In this work, we aim at developing a new mixed FE formulation fagrangian
finite elements, based on a stabilized approximation of @renygmented formulation
of the Maxwell problem. The compatibility condition assateid to the inf-sup con-
dition can be avoided by the introduction of the stabili@atand exact penalty terms.
The method can be understood as a residual-based FE metiastibelly motivated
in a variational multiscale framework [22]. On the other atihe resulting numerical
algorithm is able to capture nonsmooth solutions, so itisble for problems in non-
convex domains. The method is stable and convergent for ainppnodal FE spaces
for the unknown and the Lagrange multiplier. The implemgaitais straightforward,
since the extra terms are standard and can be integratedicatydike the Galerkin
terms. It can be implemented in a stabilized FE solver folNheier-Stokes equations
with minor modifications. Thus, the method is an excellendidate for being used in
magnetohydrodynamics.

The outline of the paper is as follows. In Section 2 we intrlthe Maxwell prob-
lem and different augmented and/or penalized formulatidection 3 is devoted to
the numerical approximation of the problem by Lagrangias.FEhe problem related
to nonconvex domains is discussed and the new formulatioodauced. A complete
stability and convergence analysis is also provided. IrtiG&ed we present some nu-
merical experiments that confirm the theoretical analySiection 5 closes the article
drawing some conclusions.



2 The Maxwell problem

In this section, we introduce some notation and state thewfproblem. We con-
sider different augmented and penalized formulationswlilabe used throughout the
paper.

2.1 Notation

LetQ be a bounded domain iR¢, with d = 2, 3 the space dimension. Given a Banach
spaceX, we denote its associated norm py || x; for the sake of conciseness, we
will omit the subscript for thel.?(2) space of square integrable functions. The space
of vector-valued functions with componentsinis denoted byX?. The dimension
superscript will be omitted in the norm, i.e. we will simplgmbte its norm by - || x
instead off| - || x«. The dual space ok is denoted as(’. The inner product between
two scalar or vector functionfy, fo € L(2) is denoted by f1, f2), whereag fi, fo)
is used for a duality pairing.

wem(Q) is used for the standard Sobolev space, with real coeffiieht 0 and
m > 1. Hilbert space$V*:2(2) are denoted by7*(2). We write H} (2) for the space
of functions inH () with null trace or$2. We will make use of the following spaces
of vector fields:

H(div; Q) == {v € L*(Q)" such that V- v € L*(Q)},
H(curl; Q) := {v € L*(?)% such that V x v € L*(Q)*},

and the subspaces

H(div 0;9) := {v € H(div; ) such that V- v = 0},
Hy(curl; Q) := {v € H(curl; Q) such that n x v =0 on 9Q} .

We use the notatiod < B to indicate thatd < C'B, whereA and B are expres-
sions depending on functions that in the discrete case nyagndion the discretization
as well, and”' is a positive constant.

2.2 Problem statement

In this work, we consider the Maxwell problem, which phydlicalescribes magne-
tostatics in a bounded domaih surrounded by a perfect conductor. Let us consider
Q c R? to be a simply connected nonconvex polyhedral domain witbranected
Lipschitz continuous bounda®f?. Besides its range of applicability, this system of
partial differential equations exhibits the mathematimainplications encountered in
more involved model problems (see e.g. [13, 25]). The Makpreblem can be stated
as a minimization problem that consists in finding the veatdield u (magnetostatic
field) that minimizes the potential

E(v) = /Q (A%|V x v[Z — 2v-f) dx,

with the constrain¥ - v = 0 and the homogeneous boundary conditiohv = 0 over
the boundary?, for some divergence-free datuin\ is a positive physical parameter.



2.3 Augmented and penalized formulations

The Maxwell problem can be recasted as a saddle-point probjeenforcing the di-
vergence constraint with a Lagrange multiplierThe Euler-Lagrange equations read
as follows: seek a pafu, p) solution of

AV x (V xu)—Vp=T1, (1a)
V-u=0, (1b)
withn x u = 0 andp = 0 ondf). As we will see later orp vanishes in the appropriate
functional setting. Thus, the problem consists of findinguch thah\V x V x u =
fandV -u = 0 on (. It has motivated thexact penaltyapproach, in which the

divergence constraint is penalized and the Lagrange rliattigliminated; it consists
of seekingu solution of

AV X Vxu—AV(V-u)=f in Q. 2

This re-statement of the problemis (in principle) very adjmgy from a numerical point
of view. However, as we will see in the next section, this éxmnalty modifies the
functional setting of the original problem, leading to spus solutions for nonconvex
domains.

The variational interpretation of the mixed problem (1) d@drtwo functional set-
tings. The so-called curl formulation reads as: find Hy(curl; Q) andp € HJ ()
such that

AV xu,Vxv)—(Vp,v) = (f,v), Vv € Hy(curl; Q2), (3a)
(Vg,u) =0, Vg € H}(Q), (3b)

wheref € H(div 0; ) is assumed. However, this is not the only functional sefiing
which the problem is well-posed; thé! (Q2) regularity forp can be “transferred” ta,
leading to a curl-div variational formulation: final € Hy(curl; Q) N H(div; ) and
p € L?(2)/R such that

AV xu,Vxv)+(p,V-v)=(f,v), VveHy(curl;Q)N H(div;QQ), (4a)

—(¢.V-u) =0, Vg € L¥(Q). (4b)

On the other hand, the exact penalty method only allows adiuiformulation. Thus,
its variational form reads as: seake Hy(curl; Q) N H(div; €?) such that

AV xu,Vxv)+(AV-u,V-v)=(fv), (5)

for anyv € Hy(curl; Q) N H(div; ). For the sake of conciseness, we introduce the
bilinear forms

a(u,v) = (AV xu,V x u), b(v,p) = —(Vp,v),

andc(u,p; v, q) = a(u,v) + b(v,p) — b(u, ¢). Let us also denote the Hilbert spaces
Hy(curl; Q) andH{ (2) by V and@ respectively, supplemented with the norms

1
VIl = Vil aeuriey = FIVI+ IV < v, (6)

1
lallq = llallay @) = llall + Vall, (@)



wherel = ¢(2) is a constant with dimensions of length that makes the noimert
sionally consistent. In the followind, will denote a length scale, not necessarily the
same at different appearances. The norm associated to dadeqgtrspacd’” x @ is
denoted by

L 1
v, gl = A= [[vllv + €A~ =|glle-

From the standard theory of saddle-point problems, wedkepgoess of the curl formu-
lation (3) is proved in the next theorem.

Theorem 2.1. The following inf-sup condition is satisfied,

inf sup M >p>0. (8)
(u,p)€VXQ\{0,0} (v q)eVxQ\{0,0} [Ilw, pll{I[v, gl

As a consequence, formulation (3) is well-posed.

Proof. The forma : V x V — R is bilinear, and coercive when it is restricted to
V N H(div 0; Q) (the closed subspace ®f in the kernel ofb(-, q) for anyq € Q),
sincea(v,v) > A||V x v||? for anyv € V N H(div 0; Q). The L?(Q2) control ofv is
consequence of the Poincaré-Friedrichs inequality

1
VIl S er|Vx vl vveVnH(diveQ)

(see [27, Corollary 3.51]). On the other haridy, p) is a continuous bilinear form
such that, for any € @, there existsr, € V with ||v, |y = 1 that satisfie$(v,,p) >
Bvllpllq- Thisis true, sincd/p € V for anyp € Q. The coercivity ofa in the kernel

of b, and the inf-sup condition satisfied Ibyare necessary and sufficient conditions
for proving (8) (see [14, Proposition 2.36]). We know frore theory of saddle-point
problems that (3) is well-posed if and only if condition (8 satisfied (see [14, Theorem
2.34)). O O

The curl-div formulations are equivalent to the curl foratign (3).

Proposition 2.1. Formulations (4) and (5) are well-posed. Furthermore, tlzeg
equivalent to (3) in the sense that they lead to the same

Proof. Let us only show thap = 0 in (3), which will be systematically used along
the paper. Taking = Vp (which clearly belongs t&") in (3), and using the fact that
V xVp=0andV-f =0a.e.in, we obtain|Vp|| = 0. Sincep vanishes o2, it
impliesp = 0 a.e. inQ by virtue of Poincaré’s inequality. We refer to [18, Projiosis
3.4 and 3.5] for the completion of the proof. O O

2.4 A novel augmented formulation for the Maxwell problem

In this work, we propose a novel numerical approximationha&f Maxwell problem

whose starting point is a different augmented formulati®imce we are interested in
a curl formulation for reasons that will become obvious ia tfext section, the idea
consists of adding the ter@Ap to (1b); ¢ > 0 is the penalty value, with dimension
of length. A length scale is inherent to the problem, sinieriteeded to define dimen-
sionally consistent norms in (6)-(7). Theoretically, théagth scale comes from the



Poincaré-Friedrichs inequality of the problem at hande @hgmented formulation in
strong form consists of finding andp such that

AV XxVxu—Vp=f,
62
—-V-u——Ap=0
V-u Y Ar=0,
in , satisfyingn x u = 0 andp = 0 on 92. Sincep € @ is identically zero, the
penalty is exact. The weak form of the new formulation reaglsfandu € V' and
p € @ such that

a(u,v) +b(v,p) = (f,v), Vv eV, (9a)
_b(u7 Q) + Sp(p7 Q) =0, Vq € Q, (gb)

where

62
sp(p,q) = < /Q Vp - Vgdx.

We now show the equivalence of the new formulation (9).

Proposition 2.2. Formulation (9) is well-posed and its solutign, p) is the solution
of (3).

Proof. Well-posedness is simply verified by proving thet 0 in (9) (using the ideas
introduced above) and testing the system agdinst) = (u, p). The new formulation
is clearly stable in the norifi-|||, because of the stability of the original curl formulation
and the positivity of the term added. Equivalence is nowigiitforward. [ O

3 Numerical approximation

3.1 Finite element approximation

Let 7;, be a partition of2 into a set of finite elementsK'}. For every elemenk’, we
denote byh k its diameter, and set the characteristic mesh size asmaxxe7, hix.

For simplicity, we consider a regular and quasi-uniformifgrg 7; } »~o of finite ele-
ment partitions. The space of polynomials of degree lesgjoalgok > 0 in a finite
elementK is denoted byP,(K). The space of continuous piecewise polynomials is
defined as

Ni(Q) = {v;, € C%(Q) such that vy |k € Py(K) VK € T} (10)

This type of finite element space is the one that we considéisrwork for both scalar
fields and every component of vectorial fields. These apprations are usually called
H'-conforming approximations, because of the inter-eleroentinuity. Any function
N () can be uniquely determined by its values on a set of pointdgg)oin{ (see
[4, 14]), and so this is a nodal finite element approximation.

For quasi-uniform partitions, there is a constahy,, independent of the mesh size
h (the maximum of all the element diameters), such that

IVonllLzcr) < Cinvh ™ onlliziry,  [1AvllL2) < Cinh™ [ Vonllrze)  (11)

for all finite element functions;, defined onK € 7;,. This inequality can be used for
scalars, vectors or tensors.



3.2 The corner paradox

Although all the formulations introduced above are eqeingl stable and consistent,
numerical approximations of the curl-div formulations &y (5) lead to spurious solu-
tions for nonconvex domains, e.g. domains with re-entranmers. Costabel provided
in [10] a mathematical justification to this surprising ohsgion.

Lemma 3.1. If © is not convex}V N H'(2)¢ is a closed proper subspace bfN
H(div; ).

After reading the previous lemma, one could think thalf &conforming finite
element space cannot be used, since the finite element spacksed proper subspace
of V'N H(div; ) and the solutiom € V N H(div; Q) (see e.g. [18] or [14, Corollary
2.30]). However, this reasoning is wrong in general. Theraximability lost only
happens when the sequence of solutidng} -~ is uniformly boundedn H! ()4,
which is only true for curl-div formulations. These read aldws: findu;, € X;, C
H(Q)? NV such that

()\Vth,VXVh)+()\V-uh,v-Vh) Z(f,Vh), Vv, € X, (12)
whereX, is a H'-conforming finite element space. From Lemma 3.1 we then:have

Corollary 3.1. If Q is not convex
li - . 0
h{}%”“ up||vam@ivo) 70,

in general.

Proof. Every element of the sequenéey;, },~o belongs toH!(Q)?. On the other
hand, everyuy, is solution of (12) and thus\z ||V x uy|| + A2 ||V - u,|| < C|/f]], for
C uniform with respect t&. From [10, Theorem 4.1], we have that

V|| S IV X upll + [V - un,

for 2 being a polyhedron (see also [10, Corollary 2.2] in cas@fc C*'). Thus,
{uy, } >0 is uniformly bounded in71(Q)¢ C V N H(div; Q) and cannot approximate
an element i/ N H(div; Q) which is not inH*(Q)<. O O

This result implies that approximations based on (4) andcésnot capture so-
lutionsu ¢ V N H'(Q)? of the Maxwell problem (3), and so, are not suitable for
numerical purposes. This kind of solutions are cal@thsmoothor singular solu-
tions. Note thathe key for this negative result is the spurious control andivergence
of the approximations based on (4) and,(&hich implies that the whole gradient is
uniformly boundedn L2(12), sinceuy, is a H(Q)? function for all h. It is notan
approximability problem of finite elements spacés ¢ H*'(Q)? for h fixed, which
may well approximatdd (curl; ), as we will see later. These finite element spaces
are dense not only i/ (curl; ), but also inL?(2)4.

Let us consider conforming finite element approximationshef spaced” and
Q, denoted by}, and @, respectively. A crude Galerkin approximation of the curl
conforming mixed problem (3) reads as: fingl € V}, andp;, € Q;, such that

a(up, vi) +b(vi,pn) = (£, vn), Vv € Vi, (13a)
—b(up, qn) =0, Yan € Qn. (13b)



The well-posedness of this finite dimensional problem satie the discrete version of
the inf-sup condition (8):

. c(Un, Pn; Vi, qn)
inf sup
(un,pr)€VaXQn\{0,0} (v, q1)EVi x Q1 \{0,0} [lan, pallllve, anl

for 54 > 0 uniform with respect to: (see e.g. [5]). As far as we know, it is not
known whether there is any nodal interpolation gy x Q) satisfying this inf-sup
condition. This is satisfied by, built by the celebrated Nedelec’s (or edge) elements;
those elements are only conformingif(curl; 2), since they do not satisfy normal
continuity over the element faces. A nodal finite elementsan be used f@p,, (see
e.g. [30]).

As a result, nodal finite elements have only been used withH'ihd” formula-
tion (12), leading to spurious solutions for nonconvex dmsae.g. domains with
re-entrant corners. On the other hand, the “good” formaiatl 3) has been restricted
to edge elements, since they do satisfy (14). Since the @mold the fact that a curl-
div formulation is not suitable for numerical purposes, laafglitation of nodal finite
elements has been proposed in [12]. The key idea of this appris to introduce a
weight in the penalty div-div term in (12) which depends oe tlistance to the singu-
larities. The resulting problem is posed in a weighted Sebepace that does satisfy
an approximability property.

For the previous reasons, nodal elements have always blessdreo curl-div con-
forming formulations, whereas edge elements have alwaga belated to curl for-
mulations. In this article, we claim that this correspontteis false and misleading.
We prove this assertion by constructing a new curl-confagmhixed formulation
and a corresponding residual-based stabilized finite elemgproximation that can
be solved with nodal finite elements. Thus, our approachrig diferent to the one in
[12]. Since we have designed a curl-conforming numericpt@xmation of (13), the
correspondence commented above is proved to be incorrethefmore, the formu-
lation we propose can be automatically used for any probléhowt the need to know
where the singularities are and to define a weight functionma every singularity.

3.3 A mixed finite element formulation suitable for nodal appoxi-
mations

It is obvious that a nodal finite element approximation thatld always provide the
“physical” solution would be favored in many situations. particular, the original
motivation of this work lies in the multi-physics magnetalngdynamics (MHD) prob-
lem. The numerical application of this phenomenon, witlréasing interest in fusion
reactor design, couples Navier-Stokes and Maxwell solvEng ability to solve both
problems with an all-purpose stabilized finite element métivould make the exten-
sion of existing fluid solvers to MHD multi-physics very easy

Our approach can be motivated as a residual-based stahiligeretization of the
exact augmented formulation (9), although we will simplgtstthe method without
further heuristic motivation. The finite element formutatiwe propose is designed
for H'-conforming finite element spaces. Théf, = N,gl NV andQ, = N;/R, for
k,l > 0 the order of approximation fon andp, respectively; there is no restriction
betweenk andl, and equal-order approximations are allowed. The methodists of



seekingvy, € V;, andpy, € @y, solution of

a(up, va) + b(vr, pn) + su(un, vi) = (£,vn), Vv € Vi, (15a)
—=b(un, qn) + sp(pn,qn) = 0, Yan € Qn., (15b)
where the stabilization term reads
h2
su(ap, vp) = Z cu)\/ E—I;V cup Vo vidx, (16)
KeTh K

¢, being an algorithmic constant. We can easily see that (1&)résidual-based FE
approximation of the augmented formulation (9) (see e.g, 12). The stabilization
2

parametecu)\’;—f; must provide a dimensionally consistent method and it cdrebe's-
tically justified by using Fourier transform techniques(geg. [3]). The benefit of this
approach is twofold: it allows to circumvent the need of adite inf-sup condition
and stabilizes singular perturbed problems (see e.g..[14])

The reason why the, term is needed becomes evident from both theoretical anal-
ysis and numerical experimentation. Obviouslyhas> 0 this term vanishes, and the
method is not a div-curl conforming algorithm. In the sequed analyze this method.
We denote by

cs(Un, Vi, an) = c(Un, Pr; Vi, qn) + su(Wn, Vi) + 5p(Ph, Gn)

the stabilized counterpart of

3.3.1 Stability analysis

In the next theorem we establish stability of the bilineanfantroduced above with
respect to the mesh-dependent norm

A f h2 2oy
IV, anlln = A2[|V X v + A2 <Z g—flv-uhli> +A—%|\Vph||- 17)
KeTy,

Lemma 3.2. The bilinear forme; : V, x Qp x Vi, x Q) — R is coercive with respect
to the mesh-dependent norm (17).

The proof of the lemma is straightforward. However, thismds not enough
for numerical purposes; e.g. the linear foffav) < ||f||||v] is continuous fow €
L2(2)4. We show in the next lemma that the “continuous” ndfy,, p, ||| for the FE
solution can be bounded by its mesh-dependent norm.

Lemma 3.3. The solutionw,, ay,) € V}, x @y, of the discrete problem
cs(Whyan; Vi, qn) = (£, vi) +(g,qn),  V(Vh,qn) € Va X Qp (18)
forf € V' andg € @', satisfies:
lwn, anlln S liwn, cnll S liwn, anlln + llgller-

Proof. SinceV;, x Q, C V x @, by virtue of the continuous inf-sup condition (8),
there existgw, @) € V x @Q such that|w, a|| = 1 and

c(Wh, an; W, &) > B[wp, an|.



Let us denote bySZ,,(-) the Scott-Zhang interpolator (see e.g. [4]) into the corre-
sponding finite element space; the space (eitheor ();,) is easily understood by the
context. We have

(Wh, ap; W, &) = c(Wp, ap; W, & — SZp(Q)) + ¢(Wh, ap; 0,82, (Q)). (29)
We bound the first term in the right-hand side as follows:
c(Wn,ap; W, — SZp(a))
SV x wil[[|[V x W + [|V - wy || — SZ5 ()] + [[ Vo | | W]|

SV xwill[V > w + 2|V - wallllal mr o) + IVanl[[W]]
S 1w, anllnllw, all, (20)

where we have used the interpolation properties of the Sdwihg projector (see e.g.
[4]). Using the fact thatwy, o) is the solution of the stabilized problem (18), the
second term in (19) can be treated as

c(Wn, ;0,525 (a)) = (9, SZn(@)) + sp(an, SZr(@))
) I i
< llglellsZn(@lle + +lIVar VS Zn(a)]
< (Iwh, anlln + llgllg:) 1w, &ll,

by using the continuity o8 Z,(-) in H'(Q2). Since||w, || = 1 by construction, we
get the upper bound fdf - || in the lemma. The lower bound is easily obtained using
an inverse inequality (see (11)). O O

Remark 3.1. We infer from the previous lemma the importance of ii& - wy,||
stability, which is essential for the bound oV& - wj,, & — SZ(&)) in (20). In fact,
the requirement of this stability is not only technical, tisishown in Section 4 using
numerical experimentation.

The following corollaries are consequences of Lemmata i3c23a3.

Corollary 3.2. The stabilized bilinear form, : V}, x Q, XV}, x Q;, — R is continuous
with respect to the norrj - ||.

Corollary 3.3. The solution(uy, p;,) of problem (15) satisfies

llan, pull < 1€l (21)

Proof. The coercivity in Lemma 3.2 implies thgltry,, pr |2 < cs(un, pr; un, pr). ON
the other hand, we have thdt u,) < 3||f]|? + ﬁ|||uh,ph|||2 for 5 > 0. Combining
these results with the upper bound in Lemma 3.3fer 0 and takings large enough,
we prove the result. O O

Thus, the numerical approximation (15) is stable in the towrous” norm. On the
other hand, the consistency of the method is easily checkéuebfact that bothy and
V -u are zero a.e. ifl.

10



3.3.2 Error estimates

As commented above, numerical methods based on the cuidrdivlation fail to con-
verge to singular solutions due to the lack of an approxititglgiondition (see Corol-
lary 3.1). Formulation (15) avoids this problem, since ksitbility and continuity hold
for the same nornfj| - ||| in which the continuous problem is well-posed. The interpo-
lation error for the new formulation, which comes from thésequent convergence
analysis, is defined as

Ep(u) (22)

1

. 1 hK 2 :
= inf u—wp,p—rn|| + Az —||lu— w72
= wip =] (; = v} @K))

)

Theorem 3.1. The solution(uy, py) of problem (15) for the family of finite element
partitions {7 } ,~o approximates the continuous solutiom, p) of problem (3) in the
following sense

llan =, pp = pl| < En(u).

Proof. On one hand, the Galerkin orthogonality, the consistent@fmethod and the
fact that the finite element approximation is conforminglléa

cs(Up — Wh, D — Thi Vi qn) = ¢s(W — Wi, P — 705 Vi, Gn)
= c(u —Wp,p = 7h; Vi, qn) + su(0 = Wh, Vi) + 8,(p — T, qn) (23)
for any (wy, ) and (v, qn) in Vi, X Q. On the other hand, using integration by
parts within each element domafn € 7, for the s, term, we get:

h2
su(a—wp,vp) = Z cu)\/K E—I;V.(ufwh)v.vhdx

KeTy,
h2
= Z cu)\/ g—g(ufwh)~VV~vhdx
KeTy, K
h2
+ Z cu)\/aKE—I;(u—wh).nV.vhdx
KeTn

h2
<S> cuxe—gnm Wil L2 | VV - Vil L2
KeTh

h2
+ ) Cu)\g—I;Hu = Wall20:)IV - Vil z2(05).-
KeTy,

Using the inverse inequalities (11) and the relation || .2 o x) S h;(% |0l L2 k), that
holds for any piecewise polynomial function, together witung’s inequality and the
continuity ofc ands,,, we get

Cs(uh — Wh, Ph — Th;Vm(Ih)

Slla = wi,p — 7|
|||Vh, Qh|||

2

1 h

K

11



By virtue of Lemma 3.3 with(f, g) = ¢s(u — wy, p — rp; -, -) and the fact that

—b(u —wp,q) +5,(p =71, q)

lgllgr = sup S e —wh, p— 7l
7€Q\{0} lallq
we get:
llwr — wr,pn — rrll S llaw — Wiy pn — rallln + o — Wi, p — 4] (25)

Testing (24) againgtvy,, gn) = (un — wy, pr, — 1,) @nd using the coercivity of; in
Lemma 3.2, we obtain

llwn = wa, pn =l sy e , )]
Sha—wh,p =7l + A2 u—wy .
|||uh — Wh,Ph — rh”l ||| ||| . /2 H HLZ(BK)
(26)

Combining (25), (26) and the triangle inequality, we gethbend

1 hk :
llan —u,pr = plll S e —wh,p—rafl + A2 <Z 2 llu = Wh||%2(az<)> (27)
K

for any (wy,,r,) € Vi, x Qp. Taking the infimum forw;, € Vj, andr, € @, and
invoking the expression for the interpolation error (22, pvove the theorem.0 O

In the following, we obtain soma priori error estimates. Let us consider the
interpolation estimates:

inf - R . <s<t<k+1 28

o of v —Whll s w) S VI Ee o) 0<s<t<k+1, (28)

inf lg—7allms @) S B gl ae e 0<s<t<Il+1, (29)
ThEQR

for any bounded set C Q (see [12]). We get the following order of convergence for
regular solutions, which in fact does not depend on the oidefrthe approximation
for p:

Corollary 3.4. Let the solution of the continuous problem (3)Wes H" ()¢, with
r > 1. Then, the solutiolfuy, py) of problem (15) satisfies the error estimate
e = wn,p = pull S AZRH |l ge oy,
wheret := min{r, k + 1}.
Proof. We infer from (28) that

inf u-—w - < A2ptHu
ol ) S A o,

where we have used the fact that 0 a.e. in{2. On the other hand, the trace inequality
—-1/2 1/2
lollzomy < b2l + B[ 90] 2oy (30)
that holds forn € H!(K), K € T, allows us to obtain
1 _1 1
D hillu—wallz2or) Sh72 u— wal + b2 lu— Wil g o).
KeTy,

The proof follows by taking the infimum with respect(te}, r ) in (27), the previous
result and (28). O O

12



We can prove a sharparpriori error estimate that is also applicable to nonsmooth
solutions, under some assumptions over the partifjpand/or the polynomial degree
k of V},. In order to do that, we will make use of the following lemmata

Lemma 3.4. If v € V N H(div; ) thenv € H"(Q)? for some real number > 1,
and there holds
Va9 SV x V] + (V- v,

Lemma3.5. Letu € VN H(div; 2) be the solution of (3). Them,can be decomposed
into a regular part and a singular part as follows:

u=ug+ Vo,

whereuy € H'*7(Q)4 N Hy(curl; Q), ¢ € HY(Q) N H*7(Q) for some real number
r> 1

We refer to [1, Proposition 3.7] for the proof of Lemma 3.4gsdso [20, Lemma
4.2]). Lemma 3.5 is a consequence of the deep analysis dimairtgularities for the
Maxwell problem due to Costabel and Dauge in [11] (see al2p$ection 6]).

Error estimates for nonsmooth solutions can be provedinglyn an assumption
over the finite element spaég :

Assumption 1. There exists a finite element spa&g defined over the mesh partition
Tn such that, for any function;, € Gy, V¢, € V},. Furthermore, this space satisfies
the approximability property

inf — s(w <ht_s t(w
it 116 = 6ullae) S B ol

in any bounded set C Q, for ¢ € H'(w) and0 < s <t <1+ k.

Lemma 3.4 proves that the solutienof the Maxwell problem (3) for a forcing

termf € H(div0;Q) belongs toH" ()¢ for r > i. Without any assumption over

the regularity of the solution, we get the following errotieste that is based on the
decomposition in Lemma 3.5:

Corollary 3.5. Under Assumption 1, the soluti¢n,,, p;,) of problem (15) satisfies the
error estimate

1

A2

1 —
|||11 — Up,p *ph||| 5 A2 ht||u0HH1+"(Q) + Ji—e X €H<,DHH1+1,(Q),

for anye €]0,¢ — 1/2[ and fort = min{r, k}.

Proof. Following [12], we use the decompositien= uy + V¢ in Lemma 3.4 and
consider optimal interpolationg, , € V3, andg € G, for uy andy, respectively.
Then, we have

ao — Qo nll e (o) S A5 luoll e (o),

o = Bnllas) S P2 llel mve o), (31)

for0 < s <t+1,with¢:= min{r, k}. These estimates also hold locally, within each
element. Now, we pickv;, = 0,5, + Vo, € V3. We can easily see that

1 1

A ) A3 _
= wn,p = prll S lwo = doull + —=IV(p = n)ll

FAZ|V x (ug — o)),

13



where the contribution from has been neglected becawse 0. For the second term
in £}, (u) we use

1 1 . 1 .
hiclla —wallz20x) S hillwo — o nllz2ar) + hi IV (e — @)l 20k

The first term in the right hand side of the previous inequalén be treated as above,
using the trace inequality (30). For the second term, wehesernbedding dit’ <™ (0K)
into W<t (K) (see [15]) fore > 0 andm = 2, getting:

BEIV (e — Bl o) S hEEIV(e = el
S RNV = 8l e
S hle = Gnll e e
S it T gl e e,

where in the last step we have used the second interpolastimage in (31) with
5= % + ¢ < 1+ t. Note also that in the first step the fractional derivativéhi@norm
in H¢(0OK) would scale a%5., but we need to introduce a length scaiedependent
of the element size to bound the whd¥e (0K )-norm.

Combining the previous results, we easily get the desiraat estimate. [0 [

Remark 3.2. Assumption 1 is known to hold fér> 4 in dimension 2. In this case, we
can takeG), as the finite element space obtained for the Argyris triangte £ > 2,
G, can be constructed by using the Bogner-Fox-Schmidt tregriglorder to do this,
the triangulation7, should admit a coarser mesh of macroelements. Under the same
kind of restriction over the mesh topology, the discretecsp@cently introduced in
[31], based on a Powell-Sabin interpolant (see Figure 1 tjgmakes true Assumption
1for k > 1, both in two and three dimensions (see also [12, 6, 26]). [kemnore, we
have observed from numerical experiments that a mesh wathrtssed-box typology
(see Figure 1 left) also satisfies this assumption. In a nigakcode, it implies to
perform a pre-processing of the original mesh. Given anioggtriangular mesh, the
Powell-Sabin mesh is obtained by introducing additionalemon the mid-points of the
edges and the element barycentes, and re-connecting thes poaperly. On the other
hand, crossed-box meshes are obtained from a quadrilateeah by placing a node on
its center, and creating four triangles; in fact, the addital node can be condensed.
These are the two typologies of meshes considered in Séct@ther typologies may
fail to converge for singular solutions not belonging #6'(2). Three-dimensional
extensions of these elements have already been designdthplednented, showing
excellent results for singular solutions.

Figure 1: Crossed-box (left) and Powell-Sabin (right) noaelement typologies.
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Remark 3.3. When Assumption 1 is satisfied, the previous result is veongt in
the sense that we have not only proved convergence towagdyotid solution, but
an (almost) optimal order of convergence, even for nonsmselutions. We can also
weaken the approximability assumption oy, and in the limit case

h%¢§20h|‘¢ Onll e () =0, s<1+r,

we would get strong convergence towards the solution witbeder. Alternatively,
instead of considering the decompositiorugfan interpolation result

lim inf (57'_1”11* Wil gr@) + [V x (u— Wh)“) =0,

h—0wpEV,

for V;, would also lead to convergence towards the good solutiotioui the need to
introduceGy,.

4 Numerical experiments

4.1 Stabilized curl formulation

In order to check, using numerical experimentation, thatthdal-based finite element
approximation proposed in this article converges to botbatimand nonsmooth phys-
ical solutions, we take the datufnsuch that the solution of (3) in polar coordinates
(r,0)is:

n . 2nf
u=V (r23 sin%) (32)
in the nonconvex domaift = [—1,1]2\ [0, 1]?, with one re-entrant corner. We have

thatu € H % (), for anye > 0. Since forn = 1 we have that: ¢ H(Q), by virtue
of Corollary 3.1, curl-div based finite element approxiroa converge to spurious
solutions. On the other hand, as proved in Theorem 3.1, theti@o of formulation
(15) must converge to the physical solution (32) by udirgfinement and appropriate
meshes. In order to observe this, we have considered a fafrslyuctured triangular
meshes obtained by a partition of the domain into squaresaubsequent division
of the squares in the crossed-box fashion (see Figure 1).nihmer of divisions in
every direction has been set2bwith i = 3.4, 5, 6; the characteristic mesh sizgis
2~% and the number of triangular elemefts!. In Figure 2(a), we show the numerical
errorse, = u, — u ande, = p;, — p for different norms ag — 0. The convergence
rate at every refinement level and numerical values of the éave been provided in
Table 1. From these results, it is clear that the method wpqs® herein is capable
to approximate numerically nonsmooth solutions, as Thadsel says. In fact, the
order of convergence of the method is surprisingly high wb@mpared to those for
the weighted regularization in [10] and the discontinuoage®in technique in [21]
(for the same test problem).

Now, in order to stress the importance of #gV - uy,|| stability, we have switched
off the term (hf(v “up, V- vh) from the formulation (15). In the previous stability
analysis, this term is crucial for recovering(2)-control ofu;,. We perform the same
convergence test as above and show the plots in Figure 2¢tBxpected, convergence
is not attained for the quantitje,||. So, the introduction of this term is motivated by
both theoretical and numerical observations.
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Figure 2: Error plots for different quantities i¥(©2) norm for Formulation (15) and
the problem with analytical solution (32), with differerdlues ofn. Plot (b) corre-
sponds to (15) without the stabilization tesg)(uy,, v,).

Going back to the full formulation (15), we perform the sanoavergence anal-
ysis withn = 2 andn = 4 in (32). In the case: = 2, the solutionu;, belongs to
H3~¢(Q) c H'(Q). Then, both curl-div and curl formulations are able to capthe
solution. In any case, the smoothness of the solution doeallogv us to obtain the-
oretically optimal convergence for first order approxiraatof bothu, andpy, since
u ¢ H?(Q). The convergence plot and convergence rates at every |exefimement
can be found in Figure 2(c) and Table 2, respectively. Théotkéxhibits some super-
convergence. Finally, for = 4 the solutionu belongs toH%*f(Q) and the optimal
error estimate should apply. We can see that this is in factéise for botlu andp in
the continuous norrfiey, e,||| in Figure 2(d) and Table 1. Again, the method exhibits
super-convergence.

Finally, we solve the singular problem (with= 1) with a Powell-Sabin mesh. As
expected, the method shows a very similar convergence agdiéfre one obtained for

crossed-box meshes. The numerical errors and slopes sjpecetoh are shown in
table 3.
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Table 1: Experimental errors for Method (15) for and rate of convergence (in brack-
ets). Piecewise linear finite elements for bathandp.

I n =1 n =2 n =4 |
[ r ] lleull [ IV xeull | lleull [ IV xeall | lleu]] [ IV xeull |

23 2.67e-1(-) 3.92e-1 () 6.75e-2 (-) 9.96e-2 (-) 7.31e-3 () 2.66e-2 (-)

274 || 1.51e-1(0.82)| 2.03e-1(0.95)| 2.49e-2 (1.44)| 3.20e-2 (1.64)| 1.93e-3(1.92)| 3.44e-3(2.95)
275 || 8.11e-2(0.90)| 9.22e-2(1.14)| 8.68e-3 (1.52)| 9.08e-3(1.82)| 4.89e-4 (1.98)| 4.34e-4(2.99)
276 || 4.52e-2(0.84)| 3.98e-2(1.21)| 3.12e-3(1.48)| 2.44e-3(1.89)| 1.22e-4(2.00)| 5.43e-5 (3.00)

Table 2: Experimental errors for Method (15) fgr and rate of convergence (in brack-
ets). Piecewise linear finite elements for bathandp.

I n =1 n =2 n =4 |
[~ ] llepll [ IVeoll | llep |l [ Vepll | llepl [ Veol |

-3 1.56e-1 () 1.05e+0 () 3.72e-2 (-) 2.68e-1(-) 8.69e-4 (-) 1.14e-2 (-)

—4 || 8.70e-2(0.83)| 8.75e-1(0.27)| 1.30e-2 (1.51)| 1.39e-1(0.95)| 1.0le-4(3.10)| 2.10e-3 (2.44)
=5 || 4.09e-2(1.09)| 6.29e-1(0.48)| 3.85e-3 (1.76)| 6.27e-2 (1.15)| 1.09e-5(3.22)| 3.56e-4 (2.56)
=6 || 1.76e-2(1.22)| 4.19e-1(0.59)| 1.04e-3 (1.89)| 2.63e-2 (1.25)| 1.10e-6 (3.30)| 5.88e-5 (2.60)

Table 3: Experimental errors for Method (15) iy and rate of convergence (in brack-
ets) for the test problem withh = 1 and Powell-Sabin triangle meshes. Piecewise linear
finite elements for botl;, andp.

| [ n=1 |
| h || leu]| | HV X eul| |
-3 2.13e-1e-1(-)| 2.99e-1(-)
1.13e-1(0.91)| 1.40e-1 (1.10)
5.98e-2 (0.92)| 5.99e-2 (1.22)
—6 || 3.34e-2(0.84)| 2.48e-2(1.27)

|
IS

|
o

NN NN
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4.2 Stabilized curl-div formulation

Following the same idea as at the continuous level, in whiehwent from (3) to (4)
passing regularity fronp to u, we can pass from (15) to a curl-div stabilized finite
element formulation. Proceeding this way, we get the disqeoblem: findu;, € V},
andpy, € @, solution of

a(up, vp) +b0(vh,pn) + (cuAV - up, V- vy) = (£,vp), Vv € Vi,  (33a)
h2

—b(wn,qn) + Y / ~-Vpn - Vardx =0, Vgn € Qn. (33b)
KeTh K A

Again, this method is a residual-based finite element metimodhich the stabiliza-
tion parameter has been chosen tocha. The second term in the right-hand side

comes from the penalty term in (9) but takiﬁ% as penalty coefficient. The numerical
analysis of this method uses similar arguments to the orme@lf). Since we have
control over both the curl and the divergenceigf and the controk||Vpy || only leads

to L2(2) stability for py,, this problem is well-posed for the curl-div norm, for which
there is no approximability property. Thus, this formudatis not able to deal with the
singular solution (32) witlm = 1; we show this in Figure 3(a). However, as expected,
the method converges for = 2 andn = 4 to the good solution, since € H*(Q).

We show the error plots in Figures 3(b) and 3(c). Let us poutttbat in the curl-div
formulation there is no control ovarp,,, and so, no convergence can be expected for
it (see Figure 3(b)).

5 Conclusions

The finite element formulation proposed in this paper to apipnate Maxwell’s prob-

lem has been shown to allow one to use continuous Lagrangtierpdlations for the
unknown, yielding stable and convergent approximationsmy solution of the con-
tinuous problem, including singular solutions. Converg®eto smooth solutions is
reached with optimal order.

The essential point to converge to singular solutions is¢ddathe spurious control
on theL2(Q2)-norm of the divergence of the unknown, typical of penalizedurl-div
formulations. Instead of avoiding this by using weightet{2)-inner products, we
resort to the introduction of a Lagrange multiplier to ecfothe zero divergence re-
striction. However, to ensure stability of this in the apmiate functional setting, a
novel augmented formulation has been introduced, whiclsistsof adding a Lapla-
cian of the multiplier in the zero divergence restrictioinc® the multiplier is zero in
the continuous problem, consistency remains unalteree filhl ingredient is to use a
stabilized formulation at the discrete level, in our caseststing only in adding a least-
square form of the zero divergence condition. The stahtjzerm is multiplied by the
square of the mesh size, so that it mimics stability of thedjence of the unknown
in H=1(Q), notin L?(2), as curl-div formulations wrongly do. This new term is also
responsible for obtaining stability in the?(Q2) part of the wholeH (curl; 2) norm
of the unknown. Finally, in order to have approximabilitgrficular mesh typologies
must be used for singular solutions, at least for linear aagian elements, that can
easily be generated post-processing any original triimguwlquadrilateral mesh.

A classical numerical test has been used to check the theadnetedictions. No-
tably, very good convergence has been observed in the casetiv solution is singu-
lar, as compared to other formulations that can be founddritdrature.
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Figure 3: Error plots for different quantities i¥(©2) norm for Formulation (33) and
the problem with analytical solution (32), with differerglues ofn.

The practical interest of our approach is clear. Even ibtaill approximations for
Maxwell’s problem may be afforded at a reasonable computaticost when it is an
isolated problem, it is obvious that a classical Lagrangyge approximation greatly
simplifies its implementation in situations where this geob is coupled to others, as
in MHD. On the other hand, our approach may be viewed as amatiee to the use
of the so called compatible discretization, satisfyingappropriate inf-sup conditions.
In simple model problems, such as Stokes’, Maxwell's andcipay our formulation
allows us to use the same interpolation for the unknownslinaales, instead of one
compatible for each case.
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