
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fast and flexible determination of force-closure 
independent regions to grasp polygonal objects 
  
 
Jordi Cornellà, Raúl Suárez 
 
 
IOC-DT-P-2005-2 
Gener 2005 
 



Fast and Flexible Determination of Force-Closure
Independent Regions to Grasp Polygonal Objects∗

Jordi Cornellà Raúl Suárez
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Abstract

Force-closure independent regions are parts of the object edges such that a grasp with a finger in
each region ensures a force-closure grasp. These regions are useful to provide some robustness to
the grasp in the presence of uncertainty as well as in grasp planning. Most of the approaches to the
computation of these regions for N fingers work on the contact space, implying a N -dimensional
problem. This paper presents a new approach to determine independent regions on polygonal
objects considering N friction or frictionless contacts. The approach works on the object space,
implying that it is always a two-dimensional problem and, since it is not necessary to compute
all the force-closure space, it becomes a very fast approach. Besides, the approach is also flexible
since constraints on the fingers placement can be easily introduced. Some graphical examples are
included in the paper showing the simplicity of the methodology.

1 Introduction

The obtention of grasps capable of ensuring the immobility of the object despite external
disturbances has been a topic of great interest in grasping and manipulation of objects. These
grasps are characterized by the properties of form-closure (the position of the fingers ensures
the object immobility) or force-closure (the forces applied by the fingers ensure the object
immobility) [1]. In order to select a grasp among all the possible force-closure grasps (hereafter
FC grasps), algorithms that optimize a quality criterion (for instance, [2], [3], [4]) or algorithms
based on heuristics criterions (for instance, [5], [6]) were developed. These algorithms determine
fingertips or “precision” grasps, i.e., grasps formed by a set of contacts points on the object where
the fingertips will be placed, and they require a good precision in the fingertip placements (in [2]
and [3] the robustness in front of the fingers positioning errors is partially treated). In a real
execution, the final grasp and the theoretical grasp may differ due to fingers positioning errors. A
metric for measuring the sensitivity of a grasp to positioning errors can be found in [7]. In order
to provide robustness to the grasp in front of these errors, Nguyen [8] introduced the concept of
independent regions, i.e, regions on the object boundary such that a finger in each region ensures
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a FC grasp independently of the exact contact point, and he developed a geometrical approach to
determine the maximum independent regions on polygonal objects using four frictionless contacts
and two friction contacts. The problem of determining independent regions using four frictionless
contacts was also treated in [9]. Ponce and Faverjon [10] and Ponce et al. [11] extended Nguyen’s
approach to three finger grasps on polygonal objects and to four finger grasps on polyhedral
objects, respectively. These works are based on a sufficient condition implying that only a subset
of FC grasps are evaluated and they are specific for a given number of fingers. Liu [12] and Li, Yu
and Tsujio [13] proposed algorithms to determine all the N -finger FC grasps on polygonal objects.
These algorithms have not been used to compute independent regions, although in [13] the most
stable grasp considering fingers positioning errors is determined. Recently, Pollard [14] presented
an approach to determine independent regions on 3D objects based on initial examples, but the
selection of a good initial example for a given object is a critical step.

This paper deals with the problem of determining independent regions on polygonal objects
considering N friction or frictionless contacts. Since the space defined by all the FC grasps may
be concave (this result can be obtained from [12] and [13] and it will be also shown here) it
is decomposed into a set of convex subspaces, establishing each one a necessary and sufficient
condition for the existence of a FC grasp and, in order to obtain it, at least one of these conditions
must be satisfied. The computational cost of the decomposing algorithm for N fingers is O(N3).
A condition to determine independent regions on each subspace is also presented and, using its
geometrical interpretation, the problem of determining independent regions is reduced to find two
particular points on the object space. The approach is very fast since it is applied on the object
space and it is not necessary to compute the N -dimensional space of all the FC grasps, whose
computational cost is at least O(N3 log N). Besides, other constraints on the fingers placement can
be easily introduced, providing flexibility to the algorithm. The approach developed here follows
a previous work of the authors [15] where linear programming were used to obtain maximum
independent region on the contact space, while in this paper a faster approach is presented.

The main assumptions considered in this work are:

1. Grasped objects are planar and polygonal-shaped.
2. The object edges where the fingers will contact are given.
3. Forces applied by the fingers act only against the object boundary.
4. The fingertip is a point.

Note that in this approach there is no constraint regarding the number of fingers neither the
number of fingers per edge.

2 Wrench Space

2.1 Representation of forces and torques

Let f i be the maximum force exerted by each finger on the object boundary at each contact
point. In the absence of friction, f i is the applied force normal to the object boundary and it
produces a torque τi with respect to the object’s center of mass. Considering that f i is normalized
to be ‖f i‖ = 1, the components of f i (respect to the reference frame of the object) and τi form
the wrench vector ωi = [cos θi sin θi τi]

T , where θi indicates the direction normal tho the contact
edge. Since ‖f i‖ = 1, τi is equal to the distance di from the object’s center of mass (CM) to the
line of action of f i (see Fig. 1.a).
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Figure 1: a) Frictionless contact; b) Friction contact, where f i,l and f i,r are the primitive forces,
f i,n is the normal force and f i,t is the tangential force.

When friction is taken into account, f i can be decomposed in two components f i,n and f i,t

which are respectively normal and tangent to the contact edge (see Fig. 1.b). In order to avoid
that the finger slips on the edge, the Coulomb’s law must be accomplished: |f i,n| ≥ µ|f i,t|, where
µ is the friction coefficient. This implies that f i can be applied in a range of directions around
the normal of the contact edge, determining the friction cone. Then, f i can be expressed as a
positive linear combination of two forces:

f i = αi,lf i,l + αi,rf i,r (1)

where f i,l and f i,r are the forces along the boundaries of the friction cone, usually called primitive
forces.

Then, the wrench produced in a contact point can be expressed as a linear combination of two
primitive wrenches:

ωi = αi,lωi,l + αi,rωi,r (2)

with
ωi,r = [cos(θi − ϕ) sin(θi − ϕ) τi,r]

T (3)

ωi,l = [cos(θi + ϕ) sin(θi + ϕ) τi,l]
T (4)

where θi indicates the direction normal to the contact edge, ϕ = arctan µ and τi,r and τi,l are the
torques produced by f i,r and f i,l, respectively.

Considering that the torque component of each primitive wrench is produced by the
corresponding force components tangential and normal to the edge (see Fig. 1.b), we obtain:

τi,r = τi,n + τi,t (5)

τi,l = τi,n − τi,t (6)

where τi,n and τi,t are the torques produced by f i,n and f i,t, respectively. Therefore, the relation
between the two primitive torques is

τi,r = τi,l + 2τi,t (7)
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2.2 Constraint on the finger forces

The forces applied by the fingers can be subject to different constraints [16]. The constraint
considered in this work is that the total force exerted by all the fingers is limited, for instance, due
to a maximum available power for all the finger actuators. Then, the applied forces can generate
a resultant wrench

ω =
N∑

i=1

αiωi with
N∑

i=1

αi ≤ 1 (8)

where N is the number of contacts. If friction contacts are considered, then αi = αi,l + αi,r is a
linear approximation.

Geometrically, the resultant wrench produced by a grasp can be any one inside the polyhedron
P1 defined in the wrench space as:

P1 = ConvexHull(
N⋃

i=1

{ωi}) (9)

and, for a FC grasp, P1 must contain the origin [17].

3 Force-closure space

Definition 1 The contact space is the space defined by N paramaters that represent the contact
points on a given edges of an object. �

Since the direction of the normal force and the primitive forces are known when the contact
edge is given, there is a univocal relation between the torque produced by these forces and the
exact contact point. Thus, the parameters used in this paper to define the contact space will
be the torques produced by the normal forces when frictionless contacts are considered and the
torques produced by the primitive forces when friction contacts are considered.

Definition 2 The force-closure space, FC-space, is the subset of the contact space where FC grasps
are produced. �

A methodology to obtain the FC-space as the union of a set of convex subspaces is presented in
this section. The obtained result is similar to the result in [13], although the initial considerations
are different (in [13] there is not any constraint on the finger forces). Besides, the approach
developed here determine additional information on the finger forces that is quite useful in the
determination of the independent regions.

3.1 Convex FC-subspace using frictionless contacts

Consider four frictionless contacts applying forces f i, i=1, ..., 4. Let Pf be the polygon defined
by these forces (it coincides with the projection of P1 on the force space). In order to obtain a
FC grasp, 0 ∈ Pf must be satisfied.

The following terms will be used in the determination of the FC-subspaces.

Definition 3 The Real Range of τi, Ri, is the set of values of τi produced by the contact force f i

that are physically possible due to the length of the contact edge. �
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Definition 4 The Directional Range of τi, Rfci
, is the set of values of τi produced by the contact

force f i that allow a FC grasp considering that the contact edge has infinite length (i.e. only the
“direction” of the edge is considered). �

From the two above definitions, the existence of a FC grasp implies that Ri ∩ Rfci
�= Ø. Since

Ri is known, the set of valid torques that produces a FC grasp can be determined by finding Rfci
.

Four frictionless contacts generate the minimum number of wrenches necessary to obtain a FC
grasp [18], generating a convex hull P1 with minimum number of faces. Since a FC grasp must
satisfy 0 ∈ P1 [17] and P1 is convex, the Directional Range Rfci

, i = 1, ..., 4, is a continuous set
that has one or two finite extremes. Then, the type of Directional Range can be:

Infinite: Rfci
has only one finite extreme τim . Then, Rfci

= [τim ,∞) or Rfci
= (−∞, τim ].

Limited : Rfci
have two finite extremes τim and τim′ . Then, Rfci

=
[
τim , τim′

]
or Rfci

=
[
τim′ , τim

]
.

Proposition 1 Consider four applied contact forces f i, i = 1, ..., 4. The number of extremes and,
therefore, the type of the Directional Range Rfci

of each torque τi, can be determined knowing
how many pairs of the following coefficients are non-positive:

βi,jk =
sin(θi − θk)

sin(θj − θk)
(10)

βi,kj =
sin(θj − θi)

sin(θj − θk)
(11)

where θi, θj and θk are the directions of the respective forces. �

Proof: Let τim be an extreme of Rfci
. Since P1 is convex, if τim defines a vertex of P1, then

0∈∂P1, ∂P1 being the boundary of P1, and 0 can be expressed as a positive linear combination
of the three vertices that define the face of ∂P1 containing 0, i.e. 0 = αiωim + αjωj + αkωk with
αi, αj, αk ≥ 0 and αi+αj+αk =1. Solving this expression for ωim results

cos θi = βi,jk cos θj + βi,kj cos θk (12)

sin θi = βi,jk sin θj + βi,kj sin θk (13)

τim = βi,jkτj + βi,kjτk (14)

with βi,jk≤0 and βi,kj ≤0 (since ωim �=0, βi,jk and βi,kj can not be simultaneously null). Then,
there are three equalities with only two unknowns, βi,jk and βi,kj.

If the forces f j and fk are not parallel, equalities (12) and (13) are independent, and the two
unknowns βi,jk and βi,kj can be obtained from them as equations (10) and (11). If f j and fk are
parallel (i.e. θj = θk + tπ, t ∈ {0, 1}, meaning that there are two fingers on the same edge or
on parallel edges) equalities (12) and (13) have no solution for βi,jk and βi,kj, and therefore, from
equation (14), τim does not exist. Since no more than two forces can have the same direction in a
four frictionless FC grasp, a minimum of one extreme always exist.

As a result, the number of extremes of Rfci
are determined using information related only with

the applied forces without taking into account the values of the torques. �

Proposition 2 Given four applied forces, there are the following number of each type of Directional
Ranges:
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Figure 2: Examples of the determination of the types of Directional Ranges from the applied forces:
a) General case: Rfci

and Rfcj
are Infinite and Rfch

and Rfck
are Limited; b) Particular case:

Rfck
is Limited and Rfch

, Rfci
and Rfcj

are Infinite; c) Particular case: the four Directional
Ranges are Infinite.

General case: If all the angles between the applied forces are different from π, there are two Infinite
and two Limited Directional Ranges (Fig. 2a).

Particular cases: If the angle between two forces is π, there are three Infinite and one Limited
Directional Ranges (Fig. 2b), and if the angles between two pairs of forces are π, the four
Directional Ranges are Infinite (Fig. 2c). �

Proof: From Proposition 1 the type of Directional Range of τi is determined by the number of
pairs of coefficients βi,jk and βi,kj that are non-positive, for {i, j, k}∈{1, 2, 3, 4} and i �=j �=k. From
equations (10) and (11), these coefficients depend on the directions of three applied forces, which
also define the coefficients βj,ik and βj,ki, and βk,ji and βk,ij, with the following relations between
them

βi,jk =
1

βj,ik

= −βk,ji

βk,ij

(15)

βi,kj = −βj,ki

βj,ik

=
1

βk,ij

(16)

These relations imply that if one pair of coefficients is non-positive so are the other two pairs,
determining one extreme for Rfci

, Rfcj
and Rfck

. Then, a valid subset of three forces generates
three extremes. Since each force appears in three from the four possible subsets of forces, two
subsets of forces determine the extremes, otherwise there would be a Directional Range with more
than two extremes or without any extreme, which is not possible.

In the general case, the two subsets of forces generate six different finite extremes for the four
Directional Ranges. Therefore, there are two Directional Ranges with two extremes (so they are
Limited), and two Directional Ranges with one extreme (so they are Infinite). In the particular
case that the angle between two forces is π, the two subsets of forces generate five different finite
extremes and one infinite extreme. Therefore, there are one Directional Range with two finite
extremes (so it is Limited), and three Directional Ranges with one extreme (so they are Infinite).
In the particular case that the angle between two pairs of forces is π, the two subsets of forces
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generate four different finite extremes and two infinite extremes. Therefore, the four Directional
Ranges have one finite extreme (so they are Infinite). �

Knowing the directions of four applied forces, it can be easily identified which torques have
Limited and which ones have Infinite Directional Ranges (it can be checked from equations (10)
and (11)): in the general case, the two Infinite Directional Ranges correspond to the torques
generated by the two forces that lie between the negated of the other two (as in Fig 2a), and
in the particular case that the angle between to forces is π, the three Infinite Directional Ranges
correspond two the torques generated by the other two forces and the force that lies between them
(as in Fig 2b).

Lemma 1 Let Rfci
and Rfcj

be two Infinite Directional Ranges with f i and f j defining two
consecutive vertices of Pf . If Rfci

tends to ±∞ then Rfcj
tends to ∓∞. �

Proof: Consider first the general case with two Infinite and two Limited Directional Ranges.
Let Rfck

be one of the two Limited Directional Ranges. It is not known a priori if Rfck
= [τk1 , τk2 ]

or Rfck
= [τk2 , τk1 ], then the two cases must be considered. If Rfck

=[τk1 , τk2 ] then τk1 ≤τk≤τk2 .
Substituting τk1 and τk2 by their expressions derived from equation (14), we obtain

βk,hjτh + βk,jhτj ≤ τk ≤ βk,ihτi + βk,hiτh (17)

If τi and τj are solved from equation (17), then

τi ≤ 1

βk,ih

(τk − βk,hiτh) (18)

τj ≥ 1

βk,jh

(τk − βk,hjτh) (19)

Therefore, τi has an upper bound while τj has a bottom bound implying that Rfci
tends to −∞

and Rfcj
tends to +∞. If Rfck

= [τk2 , τk1 ] then, with the same reasoning, equivalent equations
to (18) and (19) are obtained with swapped inequalities. Then, τi has a bottom bound while τj

has an upper bound implying that Rfci
tends to +∞ and Rfcj

tends to −∞.
The two particular cases can be tackle as limits of the general case. Adding δθ arbitrarily small

to one of the aligned forces, the particular cases are transformed into the general case. Then, the
above procedure can be applied obtaining the same results when δθ → 0. �

From Lemma 1, the following necessary and sufficient condition for the existence of a FC grasp
can be enunciated.

Necessary and sufficient condition: Four frictionless contacts allow a FC grasp if and only if

sign(σ) �= sign(ε) (20)

with

σ = βi,hkτh + βi,khτk − τi (21)

ε = βj,hkτh + βj,khτk − τj (22)

where τi and τj have Infinite Directional Ranges and f i and f j define two consecutive vertices of
Pf �
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Considering the Real Range of each torque, the geometrical interpretation of this necessary
and sufficient condition is:

(S+
i ∩ S−

j ) ∪ (S−
i ∩ S+

j ) �= Ø (23)

where S+
i , S−

i , S+
j and S−

j are the following polytopes:

S+
i = {{τh, τi, τj, τk}|τh ∈ Rh, τi ∈ Ri, τk ∈ Rk, σ ≥ 0}

S−
i = {{τh, τi, τj, τk}|τh ∈ Rh, τi ∈ Ri, τk ∈ Rk, σ ≤ 0}

S+
j = {{τh, τi, τj, τk}|τh ∈ Rh, τj ∈ Rj, τk ∈ Rk, ε ≥ 0}

S−
j = {{τh, τi, τj, τk}|τh ∈ Rh, τj ∈ Rj, τk ∈ Rk, ε ≤ 0}

These polytopes can be represented as polyhedrons in two different 3-dimensional subspaces
defined by {τh, τi, τk} and {τh, τj, τk}, as in Fig. 3. By construction S+

i ∩ S−
j and S−

i ∩ S+
j are

convex sets. Therefore, four applied forces determine two convex FC-subspaces.
Equations (21) and (22) have another useful geometrical property on the object space: the lines

of action of fh, f i and f k intersect at the same point when σ = 0, and the lines of action of fh,
f j and fk intersect at the same point when ε = 0. Grasps with this property was called critical
grasps in [9] since it separates the FC grasps from the non-FC grasps. In [9] it was considered that
any intersection of three forces may determine a critical grasp. Equations (21) and (22) restrict
this result determining only two intersections and the three forces that intersect in each one.

3.2 Convex FC-subspaces using friction contacts.

The procedure developed to obtain the necessary and sufficient condition for frictionless contacts
is based on the knowledge of four applied forces. Since the primitive forces that define the friction
cones are also known given the contact edges, the procedure developed in the previous subsection
can also be applied with four primitive forces when friction is considered. Note that the primitive
torques are not independent of each other and they must satisfy equation (7) to obtain a real FC
grasp.
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Let f i,p∈{f i,l,f i,r} and τi,p∈{τi,p, τi,l} be a primitive force and a primitive torque, respectively.
The following necessary and sufficient condition to obtain a FC grasp can be enunciated for friction
contacts.

Necessary and sufficient condition: Considering friction contacts, a FC grasp exists if and
only if four primitive torques satisfy equation (7) and

sign(σ) �= sign(ε) (24)

with

σ = βi,hkτh,p + βi,khτk,p − τi,p (25)

ε = βj,hkτh,p + βj,khτk,p − τj,p (26)

where τi,p and τj,p have Infinite Directional Ranges and f i,p and f j,p define two consecutive vertices
of Pf �

The geometrical interpretation of this necessary and sufficient condition without considering
equation (7) is identical to the geometrical interpretation of the necessary and sufficient
condition for frictionless contacts but, in this case, considering the primitive forces. Then,
(S+

i,p ∩ S−
j,p) ∪ (S−

i,p ∩ S+
j,p) �= Ø. Equation (7) is a 2-dimensional subspace of the contact space,

and its intersection with (S+
i,p ∩ S−

j,p) and (S−
i,p ∩ S+

j,p) determines the convex FC-subspaces.
Considering friction contacts, a critical grasp is obtained when three primitive forces intersect

at the same point [19] and, as well as in the case of frictionless contacts, it happens when σ = 0
or ε = 0.

3.3 Decomposition of the FC-space

The previous subsections determine two convex FC-subspaces limited by critical grasps considering
four normal forces (frictionless contacts) or four primitive forces (friction contacts). When there
are more than four normal or primitive forces, there may be several convex FC-subspaces limited
by critical grasps. In order to obtain the combinations of four normal or primitive forces that
determine convex FC-subspaces the following algorithm is used (the algorithm is described using
the nomenclature of friction contacts but it can also be applied considering frictionless contacts
changing the primitive forces by normal forces).

Algorithm 1 Let nf be the number of primitive forces and consider that fh,p and fk,p are two
primitive forces that generate torques whose Directional Ranges are Limited.
The following steps are applied for each combination of two primitive forces:

1. Consider the two forces as fh,p and fk,p.
2. Obtain f i,p ∈ [−fh,p,−f k,p] for i = 1, ..., nf and i �= h �= k.
3. Let ni be the number of f i,p that satisfy step 2:

3.1. If ni ≤ 1 Then discard this combination of forces.
3.2. If ni > 1 Then two convex FC-subspaces are obtained with each combination of fh,p, fk,p

and any two forces from the ni obtained in step 2. �

As a result, all the convex FC-subspaces and the type of Directional Range of each torque are
determined with a computational cost of O(N3). The FC-space is the union of these subspaces
and it may be concave.
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4 Independent regions

Since the independent regions are segments on the object boundary such that a finger in each
segment ensures a FC grasp, they define a N -parallelepiped fully contained in the FC-space.
Then, the problem of determine the independent regions is equivalent to the problem of finding a
N -parallelepiped fully contained in the FC-space. Since the FC-space may be concave, it is not
possible to assure that a N -parallelepiped is fully contained in it just by testing if its vertices
belong to the FC-space, as it is done in [10] (remember that in [10] a sufficient condition is used,
therefore the total FC-space is not considered). Using the convex FC-subspaces determined in the
previous section and the following proposition (it is enunciated considering friction contacts) the
complexity of the problem is reduced.

Proposition 3 Consider a convex FC-subspace limited by the planes represented in equation (25)
with σ=0 and equation (26) with ε=0 (thus, τi,p and τj,p have Infinite Directional Ranges and
f i,p and f j,p define two consecutive vertices of have Pf ). The set (τ−

ν,p, τ
+
ν,p), with ν ∈ {h, i, j, k}, is

an independent region in the Directional Range Rfcν if the primitive torques satisfy equation (7)
and one of the two following conditions is satisfied:

1) τ+
h,p, τ+

k,p and τ+
i,p in equation (25) make σ=0 and τ−

h,p, τ−
k,p and τ−

j,p in equation (26) make ε=0.

2) τ−
h,p, τ−

k,p and τ−
i,p in equation (25) make σ=0 and τ+

h,p, τ+
k,p and τ+

j,p in equation (26) make ε=0.
�

Proof: The meaning of equation (7) has been discussed in Section 2, therefore only
conditions 1 and 2 need to be proved here. Proposition 1 determines that the coefficients of
equations (25) and (26) are non-positive, implying that these two equations represent two planes
with negative slope (see Fig. 4).

Consider condition 1. If τ+
h,p, τ+

k,p and τ+
i,p are the maximum torques generate on their respective

independent regions and they make σ=0 in equation (25), then it is not possible to obtain other
values of τh,p, τk,p and τi,p that belong to the independent region (i.e., values smaller than τ+

h,p, τ+
k,p

that τ+
i,p) that make σ=0, since the slope of the plane represented in equation (25) is negative. In

the same way, if τ−
h,p, τ−

k,p and τ−
i,p are the minimum torques generate on their respective independent

region and they make ε=0 in equation (26), then it is not possible to obtain other values of τh,p,
τk,p and τi,p that belong to the independent region (i.e., values bigger than τ−

h,p, τ−
k,p and τ−

i,p)
that make ε=0, since the slope of the plane represented in equation (26) is negative. The same
reasoning is applied considering condition 2.

As a result, the two conditions of this Proposition assure that τν,p ∈ (τ−
ν,p, τ

+
ν,p), with

ν ∈ {h, i, j, k}, cannot make σ=0 neither ε=0, implying that critical grasps can not belong to
(τ−

ν,p, τ
+
ν,p). Therefore, since the subspace is convex, either condition 1 or condition 2 determine

the extremes of the independent regions. �
On the object space, σ = 0 (equation (25)) and ε = 0 (equation (26)) imply that the lines of

action of fh,p, fk,p and f i,p, and the lines of action of fh,p, fk,p and f j,p, intersect, respectively,
at the same point. As a consequence, the condition 1 of Proposition 3 is equivalent to say that
the lines of action of fh,p, f k,p and f i,p intersect at the same point when they are applied on
the extremes of their respective independent regions where the maximum torque is produced, and
the lines of action of fh,p, fk,p and f j,p intersect at the same point when they are applied on the
extremes of their respective independent regions where the minimum torque is produced. The same
reasoning can be applied for condition 2. Note that the independent regions determined according
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Figure 4: Two dimensional slice of a contact convex FC-subspace where τh,p and τk,p have Limited
Directional Range and the other torques are constants. The independent region IR1 satisfies
condition 1 of Proposition 3, and the independent region IR2 satisfies condition 2 of Proposition 3.

to Proposition 3 are defined on the Directional Ranges, so (τ−
ν,p, τ

+
ν,p) ∩ Rν,p �= Ø, ν ∈ {h, i, j, k},

must be satisfied to obtain the independent region on the real edge. The following algorithm is
used to obtain the independent regions on the object edges:

Algorithm 2 Consider a convex FC-subspace limited by the planes represented in equation (25)
with σ=0 and equation (26) with ε=0.

1. Select two arbitrary points on the corresponding object edges where τ+
h,p and τ+

k,p will be
produced.

2. Determine the point where τ+
i,p is produced (the lines of action of the primitive forces applied

on the two points selected in step 1 and on this point intersect at the same point).
3. Check if Rfci,p

∩ Ri,p �= Ø. From the initial consideration Rfci,p
is Infinite and its finite extreme

has been determined in step 2. If this condition is not satisfied a FC grasp is not possible and
the position of the points must be adjusted in order to satisfy this condition.

4. Determine the region where the intersection of the lines of action of fh,p, fk,p and f j,p must
lie. This region must satisfy the following conditions: τ+

h,p > τ−
h,p, τ+

k,p > τ−
k,p, Rfcj,p

∩ Rj,p �= Ø
and equation (7). If these conditions are incompatible, then the independent regions do not
exist for the initial selected points.

5. Select an arbitrary point of this region and project it on the edges, obtaining the extremes
where τ−

h,p, τ−
k,p and τ−

j,p are produced.
6. Intersect the independent regions with the real edge to obtain the actual independent regions

(by construction these intersections are always not null). �
In analogous way, the algorithm can be applied selecting in the first step τ−

h,p and τ−
k,p. Criteria

to select the points in steps 1 and 5 are not discussed here, but it can be done considering other
constraints on the finger placements (for instance, kinematics constraints or task requirements),
providing flexibility to the algorithm.

Proposition 3 and Algorithm 2 are also applicable considering frictionless contacts, exchanging
the primitive forces for the normal forces and without considering equation (7). Figure 5 shows
examples considering frictionless contacts and friction contacts. It can be checked in these figures
that it is not possible to intersect the lines of action of three forces when they are applied on an
independent region, so critical grasps are not possible.
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Figure 5: Examples of the determination of independent regions (black segments) on the edges of
an object and the region determined in step 4 of algorithm 2 (shaded region): a) Four frictionless
contacts where Rfc1 and Rfc2 are Limited and Rfc3 and Rfc4 are Infinite; b) Four frictionless
contacts where Rfc1 is Limited and Rfc2, Rfc3 and Rfc4 are Infinite; c) Three friction contacts
where Rfc1,r and Rfc2,r are Limited and Rfc3,r and Rfc3,l

are Infinite (the primitive forces considered
in this case are f 1,r, f 2,r, f 3,r and f 3,l); d) Three friction contacts where Rfc1,l

and Rfc3,l
are

Limited and Rfc2,r and Rfc3,r are Infinite (the primitive forces considered in this case are f 1,l, f 3,l,
f 2,r and f 3,r and the region is the shaded part of the contact edge).
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5 Conclusions and future works

In this paper a new approach to determine independent regions on 2D polygonal objects that allow
a force-closure grasp considering any number of fingers has been presented. Since the FC-space may
be concave, it is decomposed in a set of convex FC-subspaces establishing each one a necessary and
sufficient condition for the existence of a FC grasp. A condition to obtain independent regions
in each FC-subspace is also presented and using its geometrical interpretation the problem of
determining independent region is reduced to find two particular points on the object space. The
main advantages of the proposed algorithm are that it is applied on the object space, therefore the
problem is always two-dimensional, and that it is not necessary to compute the N -dimensional
FC-space. Besides, the algorithm is flexible and other constraints on the finger placements can be
easily introduced.

The simplicity of the methodology and the fact that the algorithm is applied on the object
space encourage to extend this work to non-polygonal objects and to 3D objects as future works.
All the methodology presented here is based on the relative positions of the applied forces, and
we consider that this concept can also be applied in the future work.
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