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Part 1

The State of the Art in Friction
Modeling for Systems Identification

1.1 INTRODUCTION
Friction is a complex nonlinear phenomenon. A great deal is known about friction in specific circumstances, but not
in the general case, if there is such a thing. There is still much to be learned about its nature and how it changes under
different circumstances, and how it can be predicted and controlled. Indeed, it is difficult to find a process, in nature or
industry, that is entirely free of friction [1]. Examples of frictional effects in everyday life are, without a doubt, endless.

What is the definition of friction? Before anything else, we must say that the term friction is used more as a
descriptive convenience rather than as a rigorous definition of friction phenomenon. The term friction comes from the
Latin verbfricare, that is, to rub. The word tribology (Greek word for the study of rubbing), however, includes not only
friction but also lubrication and wear. So, tribology is the science of the mechanisms of friction, lubrication, and wear
of interaction bodies that are in relative motion. Tribology addresses and answers questions such as the true contact
area, the relationships between friction, material properties and lubricating processes, wear mechanisms, and so on. In
[2] is presented a timeline of the scientific study of friction starting with Leonardo Da Vinci (1452) giving the 1994
state of the art in friction for control purposes. Until recently, in tribology frictional dynamics has not been a focus
[2]. Nevertheless, for the control engineer thedynamicsof friction is of greatest interest; and here, lately, the control
literature has become a major developer.

We will focus only on just a group of frictional phenomena: static and dynamic friction between solid bodies,
friction modelling, and compensation methods for machines with friction.
Usually friction is not wanted, so a great deal has been done to reduce it by design, or by control. Friction introduces
significant limitations to achieving good performance in controlled mechanical systems. In this respect, a widely
used principle of friction control is model-based friction compensation which is utilized to apply a force or torque
command equal and opposite in sign to the instantaneous friction force. An accurate friction model is needed for
this purpose. Thus, various mathematical relationships have been developed to determine the influence of friction
on machine behavior. Due to the fact that friction is such a common phenomenon, when feedback control methods
are applied to machines and bodies in motion, friction appears invariably among the forces of motion [2] and which,
oftentimes, cannot be simply ignored.

The number of friction models proposed in literature is huge, see [2] for a complete literature survey, and can be
subdivided with respect to their detail in describing surface contact properties occurring on a microscopic and macro-
scopic level. In the past decade major effort and contributions [3], [4], [5] are made in the development of friction
models, suitable for analysis and controller synthesis, which have relatively limited complexity but a relevant similar-
ity to practically observed friction phenomena.

1.2 STATIC FICTION MODELS
Various mathematical models have been proposed in the literature that describe the important friction phenomena
observed. Most of them are still used now, which model is preferred now depends on the purpose of it, but the model
that accurately describes all the observed phenomena is in general to be preferred. Besides the question of effectiveness

3
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also the model efficiency, e.g., the required computational resources in terms of time, can be of importance when for
instance the model will be used in simulation studies. Due to the complexity of the physical mechanisms underlying
friction, most models are of an empirical nature. Furthermore, a distinction was made betweenstatic anddynamic
models depending on the inclusion of frictional memory. For static friction models, this frictional memory is not
take into account, whereas for dynamic friction models this memory behavior is described with additional dynamics
between velocity and the friction force.

The observed friction phenomena during the early days of scientific study of friction, Amontons in [6], then
Coulomb in [7], and then others, have led to models of Coulomb, viscous, static friction (stiction), and their possible
combinations, which are often referred to asclassical models of friction. The Stribeck model, which models the
Stribeck effect [8], can also be classified nowadays as belonging to this set of models. Four possible combinations are
shown below.

(a) Coulomb (b) Coulomb + viscous

(c) Coulomb + viscous + stiction (d) Coulomb + viscous + Stribeck effect

The static friction models are those that give the friction forces a function of velocity. These models only describe
the steady-state behavior between velocity and friction force. One drawback of the above models is discontinuity at
zero velocity that allows the friction rate to take on an infinite number of possible values. The discontinuity does not
reflect the real friction behavior in a good way and causes errors or even instability in the algorithms used to compen-
sate friction.

1.2.1 Coulomb Friction
Independent of the area of contact, the Coulomb friction always opposes relative motion and is proportional to the
normal force of contact. The Coulomb friction is the friction phenomenon that is only dependent of the direction of
the velocity, not of the magnitude of the velocity. It is modelled as a static map between velocity and friction force that
depends on the sign of the velocity.

F = FC sgn(v)

where FC = µ| fn|, µ being the coefficient for friction andfn the normal force.

Coulomb friction is called alsokinetic frictionbecause it defines friction for non-zero velocities. For zero velocities
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the above Coulomb friction depends upon thesignumfunction definition. A common use of the switching function is

sgn(v) =


+1 ∀ v > 0

0 ∀ v = 0

−1 ∀ v < 0

A question that immediately arises is with Coulomb friction and which is very important because can create in-
stability in the algorithms that depend on the true zero velocity to compensate friction is:When precisely the velocity
reaches and crosses the zero level?In fact, this is the fundamental problem with allclassical models of frictionthey
are not causal, i.e., the discontinuity at zero velocity permits friction to take an infinite number of values [9].

1.2.2 Viscous Friction
Viscous friction results from the viscous behavior of a fluid lubricant layer between two rubbing surfaces. As shown
in above, viscous friction is represented as a linear function of velocity.

F = Fv v

Viscous friction is the friction component that is proportional to velocity and goes to zero at zero velocity.

1.2.3 Stiction
Experimentally has been observed that friction force at rest is higher than the kinetic force or Coulomb friction. If the
system is in sticking an externally applied force is need that is equal or greater than the stiction force to put the body
in motion, i.e. in slipping. This has been studied intensely in the 1950s, see the study of Rabinowicz [10] about the
nature of the static and kinetic coefficients of friction. Static friction (stiction) is the force required to initiate motion
from rest. Typically, the magnitude of static friction is greater than the magnitude of Coulomb friction which can lead
to intermittent motion known as stick-slip motion.

Stiction is assumed to be independent of the velocity, however varies as a function of the dwell-time when sticking
and the rate of increase of the applied force. Thus, friction at rest cannot be described as a function of only velocity.
Instead, it has to be captured in the model an external forceFe as in the following description.

F =

 Fe if v = 0 and |Fe|< Fs

FSsgn(Fe) if v = 0 and |Fe| ≥ Fs

1.2.4 Stribeck Effect
Stribeck effect is the friction phenomenon that arises from the use of fluid lubrication and gives rise to decreasing
friction with increasing velocity at low velocity. For low velocities the friction force decreases with increasing velocity.
Stribeck effect is needed to correctly predict initial conditions leading to stick-slip motion.

Stribeck curve [8] is a continuous drop in the friction force for small velocities, which originates from the transi-
tion of boundary lubrication to full fluid lubrication through partial fluid lubrication [2]. The Stribeck effect could not
be ignored for most of the cases and had been introduced and used extensively into the new frictional models developed.

1.2.5 Continuous zero-velocity crossing model
The discontinuity of friction at zero velocity can lead to unwanted consequences such as (1) non-uniqueness of the
solutions to the equations of motion for the system [2] which can occur in real friction and (2) numerical problems if
such a model is used in simulation like numerical chatter. Precautions have to be taken when numerically integrating a
system model that includes discontinuities as introduced by the classical friction models. One approach to overcome



The State of the Art in Friction Modeling for Systems Identification 6

(e) Stribeck curve of steady-state friction force

(f) Continuous zero-velocity crossing model

the discontinuity is approximating or smoothing the map by a curve with finite slope [11] as depicted in the figure
below

Nonetheless, a very steep slope around zero velocity can result in very short integration time steps which slows
down simulation. Moreover, the body connected to the frictional contact surface will accelerate even if the external
forces on the body are less than the peak static friction force Fs and therefore these alternate friction models will not
provide true stiction.

1.2.6 A more general static model
A more general model than the classical models of friction is given in [12] and it covers Coulomb, viscous, stiction,
and Stribeck friction.

F =


F(v) if v 6= 0 and |Fe|< Fs

Fe if v = 0 and |Fe|< Fs

FSsgn(Fe) otherwise

whereF(v) is a nonlinear function, e.g., of the form

F(v) = FC +(FS−FC)e
−

∣∣∣∣∣ v
vs

∣∣∣∣∣
δ

+Fvv

with vs as the Stribeck velocity andδ as the form factor. Such kind of friction models have been used for quite a
long time.

1.2.7 Karnopp Model
For control purposes, the main disadvantage when using a model such as the general model above, is the problem of
detecting when exactly the velocity is zero. Karnopp in [13] developed a model to overcome the problems with zero
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velocity detection and to avoid switching between different state equations for sticking and sliding. The model defines
a zero velocity interval,|v| < DV. For velocities within this interval the internal state of the system the velocity may
change and be non-zero but the output of the block is maintained at zero by a dead-zone.

The drawback with the model is that it is so strongly coupled with the rest of the system. The external force is
an input to the model and this force is not always explicitly given. The model therefore has to be tailored for each
configuration. Variations of the Karnopp model are widely used since they allow efficient simulations. Nevertheless,
the zero velocity interval does not agree with real friction phenomenon and has not been used to extensively.

1.2.8 The seven parameter model
The seven parameter model is a friction model designed to include all relevant experimentally observed friction phe-
nomena and was proposed by Armstrong in [2], [11]. It consists of two separate models: a stiction model and a sliding
model. During stiction, friction is modelled as a stiff spring to account for presliding displacements.

Ff (x) = σx

In sliding, the model is modelled as Coulomb + viscous + Stribeck effect with frictional memory:

Ff (ẋ, t) =

Fc +Fv|ẋ|+Fs(γ, t2)
1

1+
(

ẋ(t− τL)
ẋs

)2

sgn(ẋ)

where Fs(γ, t2) = Fs,a +(Fs,∞ −Fs,a)
t2

t2 + γ

describes the varying friction level at break-away.
The level of the stiction forceFs varies with the time at zero velocityt2 (dwell time). A long dwell time means a

high break-away force. The forceFs,a is the magnitude of the Stribeck friction at the end of the previous sliding period;
γ is an empirical parameter. The friction force for the sliding mode is equivalent to a static friction model where the
velocity has been replaced with a delayed version and which has a time-dependent coefficientFs [14]. The time delay
τL models the desired frictional memory. When used in simulations some mechanism has to be employed to switch
between the two modes for sliding and stiction. Also, the model statesx andẋ have to be initialized appropriately every
time a switch occurs. Although useful for analysis of stick-slip behavior [11], for simulation purposes the model seems
to be less appropriate, see [15] where was performed a simulation study employing, amongst several other friction
models, the seven parameter model.

1.3 FRICTION PHENOMENA
Experimentally has been shown that friction in control applications exhibits phenomena that cannot be modelled with a
static friction model as above, such as presliding displacement, frictional lag, varying break-away force, and stick-slip
motion. In studying friction there is a clear necessity of using dynamic friction models to take those phenomena into
account and, thus, the following properties of a friction model are considered to be very important for the control of
friction in mechanical systems.

1.3.1 Presliding Displacement
If a force is applied to two surfaces in contact a small displacement will always occur due to limited stiffness of
contact asperities [8]. Friction force behaves like a spring (and that causes a displacement linear dependent on the
applied force) if the externally applied force is less than the break-away force. Small motions in the elastic region
in sticking are referred to as presliding displacement or the Dahl effect. Presliding displacement is a consequence
of elastic deformation of the surface asperities where contact and sliding occur and it significantly influences friction
forces during velocity reversal [11]. It is the compliance of presliding displacement that softens the hard nonlinearity
of friction at zero velocity. Presliding displacement is needed to correctly predict small displacements while sticking
(including velocity reversals).
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Contrary to the predictions derived from the classical friction model, researchers including Courtney-Pratt and
Eisner [16] and others have found experimentally that small relative displacements between two bodies in contact
do occur when the applied relative tangential force is less than the static friction. Although the magnitude of this
pre-sliding displacement is small, with sufficient gain, as in a robot with a fairly long link, small displacements at
the rubbing surface can translate into significant displacements elsewhere in the mechanism. Further, the nature of
pre-sliding displacements provides insight into a difficult part of the control problem, the transition between sticking
and sliding. Courtney-Pratt and Eisner interpreted the pre-sliding phenomenon within the framework of the theory of
asperity junction adhesion, asperity junctions being the load bearing interfaces between rubbing surfaces. Specifically,
as the shear force at the contact surfaces increases, the asperity junctions deform elastically and then plastically. When
the applied force finally reaches the stiction level, the asperity junctions break and sliding begins. Because of the
plastic deformation, alternate increases and decreases in applied tangential force result in friction hysteresis loops. The
pre-sliding displacement phenomenon is illustrated in figure below, which shows frictionF as a function of displace-
mentx based on experimental results.

1.3.2 Frictional Lag
Frictional lag is the delay in the change of the friction force as function of a change in the velocity which may have a
significant impact on dynamics as noted by Hess and Soom [17]. There is a hysteresis in the relationship between fric-
tion force and velocity. Namely, the friction force is lower for decreasing velocities than it is for increasing velocities.
The width of the hysteresis loop increases with frequency and with higher rates of velocity changes [3].

Frictional lag is a dynamic behavior that results in a larger friction force for increasing velocities than for decreasing
velocities and becomes more apparent for large acceleration and/or deceleration [17].

We note the considerable empirical evidence that has become available indicating that friction does not respond in-
stantaneously to a change in velocity. The primary work here is due to geophysicists who use stick-slip for earthquake-
related predictions. Hess and Soom also found strong evidence of frictional lag, in their experiments on a flat steel
button rubbing against a rotating steel disk. Frictional lag makes stick-slip instabilities less likely. Because a decrease
in friction occurs slowly when velocity is increased, stiff systems will not experience stick-slip [11].
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1.3.3 Varying Break-Away Force
The break-away force is the force required to overcome stiction and initiate motion and it has been intensely studied
for the last several decades [2]. Varying break-away force or rising static friction (sometimes also called static friction
level) is the dependence of the break-away force on the rate of increase of the applied force [16].

The dwell-time when sticking is always related to the rate of increase of the applied force and the effects cause by
these two connected factors cannot be separated. Also, the break-away force can be interpreted in the control systems
as the minimum open-loop force.

1.3.4 Stick-Slip Motion
Stick-slip motion manifests itself as repeated sequences of sticking between two surfaces with static friction followed
by sliding or slipping of the two surfaces, for instance, when moving slowly, machines are likely to exhibit stick-
slip motion [11]. Stick-slip is a phenomenon which happens when sliding one body over another under a steady
pulling force and the sliding velocity fluctuates widely. These fluctuations consist of sticking where the motion stops
and slipping where the bodies suddenly accelerate again. In most practical sliding systems, these fluctuations of the
sliding velocity are considered a serious nuisance. Eliminating or reducing the amplitude of the fluctuations is usually
necessary. Stick-slip motion is caused by the fact that friction is larger at rest than during motion. When the applied
force reaches the break-away force the body starts to slide and friction decreases rapidly due to the Stribeck effect.

For the servo-mechanism control problem, stick-slip can diminish control accuracy. The stick-slip limit cycling
can be avoided if damping and stiffness are sufficiently high.

1.3.5 Time-dependent, position dependent, and direction-dependent friction
Time-dependent friction- From practical experiments can be seen that friction changes with time [1]. These changes of
friction with time are due to such things as loss of lubricant, deformation of the surface material, change in temperature
due to generated heat and accumulation of wear debris, and the like.

Position-dependent friction- Friction exhibits also a dependence on the positioning of a system. This has been
experimentally observed and is well known by a lot of tribology researchers. This position-dependency is caused by
spatial inhomogeneities [1] in the transmission of the system due to contact geometry and loading which varies as a
function of position. As the load varies, the normal force between the sliding surfaces varies, causing a varying friction.

Direction-dependent friction- Again, experimentally, has been found the friction to be dependent on the direction
of the motion of a system. Different Coulomb and viscous friction levels in the left and right directions of a single,
linear motion have been observed experimentally on many occasions. This may be due to anisotropies in material or
material geometry.
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1.4 DYNAMIC FICTION MODELS
One of the major disadvantage of the discussed static friction models is the limited richness of the models, which
will result in inaccurate friction models for certain regions of interest, such as presliding displacement in the stiction
regime or frictional lag for the sliding regime. For the analysis of friction related problems or controller synthesis these
phenomena may be of importance, which motivated control researchers to make a creative effort in this direction.

The seven parameter model and similar static models try to capture the dynamics of friction by introducing time
dependency or a time delay. A better alternative approach is the use of dynamic models, which are also often referred to
as state variable models. In its general form state variable models were introduced by geophysicists to study stick-slip
phenomena. Interest in these phenomena stems from the hypothesis that earthquakes are stick-slip events, in which the
earth’s tectonic plates in succession stick and slip . The idea is to introduce extra state variables (or internal states) that
determine the level of friction in addition to velocity. The evolution in time of the state variables is governed by a set
of differential equations. Often the introduced state variables can be given a physical interpretation, which depends on
the friction mechanism that the friction model is supposed to describe. Over the past decades a few friction models
belonging to this class have been proposed, i.e., in the late 1960’s the Dahl model [18], but only recently interest seems
to have increased especially within the control community where several dynamic friction models have been proposed
in the 1990’s by Haessig et al. [4], Dupont et al. [19], Canudas de Wit et al. [3] and Bliman et al. [5]. The research
path which starts with the Dahl model will be discussed in more detail, because it resulted in the nowadays widely
used dynamic LuGre friction model [3]. To describe presliding displacements, i.e., elastic and plastic deformations of
the asperity junctions before macroscopic sliding, Dahl thought of exploiting the stress-strain curve of two surfaces
under contact known from solid mechanics. Dahl showed how the stress-strain curve can be transformed into a force-
displacement curve.

1.4.1 Dahl Model
Dahl model is a generalization of the ordinary Coulomb friction, that is, the steady-state version of Dahl model is
Coulomb friction. Dahl [18] started with the following relation for the stress-strain curve.

dF
dt

=
∂F
∂t

+
∂F
∂x

dx
dt

Then he made the assumption that
dF
dx

does not depend on the variablet:

dF
dt

=
∂F
∂x

dx
dt

dF
dt

=
dF
dx

dx
dt

=
dF
dx

v

It can be noted that with
dF
dx

= k, wherek is a positive constant, by integration the expression can be written as

F = kx which is a linear spring model. The general Dahl model is written as:

dF
dx

= σ0

∣∣∣1− F
FC

sgn v
∣∣∣isgn

(
1− F

FC
sgn v

)
or

dF
dt

= σ0

∣∣∣1− F
FC

sgn v
∣∣∣isgn

(
1− F

FC
sgn v

)
v

With i = 1 we get the simplified Dahl model which is used much more.

dF
dx

= σ0

(
1− F

FC
sgn v

)
or

dF
dt

= σ0

(
1− F

FC
sgn v

)dx
dt

= σ0

(
1− F

FC
sgn v

)
v

that is
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dF
dt

= σ0v−σ0
F
FC

sgn(v)v

IntroducingF = σ0 z, which means also that ˙z=
Ḟ
σ0

, we get

ż = v− σ0 z
FC

|v|

F = σ0 z

in steady state Dahl model simplifies to

z=
FC

σ0
sgn v

F = FCsgn v

that is, the Coulomb friction model.
Dahl model does not capture Stribeck effect (which is a rate dependent phenomenon) nor does it capture stiction.

It can be observed also that LuGre model reduces to Dahl model ifg(v) =
FC

σ0
andσ1 = σ2 = 0.

1.4.2 The Bristle Model
The contact of two rough technical surfaces the external forces lead to elastic and plastic deformations of the contact-
ing asperities. The bristle model captures the randomness of friction that originates from the random distribution of
asperities on a surface and was introduced by Haessig and Friedland [4]. They assume friction between two contact
surfaces to be caused by a large number of interacting bristles.

A connected bristle acts as a spring and when the strain|xi −bi | of a certain bristle exceeds a certain level the
connection is broken and a new connection with a random strain is established. Friction is made a function of velocity
by further assuming that the number of bristles depends on the relative velocity of the opposing surfaces. The friction
force is the sum total of the separate spring forces and is

F =
N

∑
i=1

σ0(xi −bi)

where
N - the number of bristles
σ0 - the stiffness of the bristles
xi - the relative position of the bristles
bi - the location where a connection takes place

The model captures the random nature of friction which depends on the number of bristles chosen, the greater
the number the more complex the bristle model. This makes the model inefficient as far as the complexity of the
algorithms is concerned. Numerically, the bristle model is highly ineffective and is therefore normally not be used in
simulations. The merits of this model are found in the interpretation of friction as interacting bristles and the real-life
random behavior that it reproduces.
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1.4.3 The Reset Integrator Model
In the same paper Haessig et al. [4] introduces a more workable and numerically more efficient model for simula-
tion purposes named the reset integrator model. This models the bonding effect during stiction by a single position
variable named presliding displacementz, the local randomness of friction being modelled by averaging the stochastic
properties of the different bristle connections.

This model captures the dynamic effects of friction using an integrator with a reset action to distinguish between
the two casesstickingandslipping. When a characteristic presliding distancez1 is reached macroscopic sliding starts
and the model changes from the sticking mode to the slipping mode. In must observed as was already the case for the
Karnopp model and the seven parameter model, the friction model consists of two different models which are coupled
by a switching variable. The position variablez viewed as a state variable, and its dynamics is given by:

ż=


0 if ẋ > 0 and z≥ z1

0 if ẋ < 0 and z≤−z1

ẋ otherwise

The friction force can be only in two modes, either stiction or sliding:

F =

 σ0(ẋ)(1+a)z+σ1ż |z|< z1

σ0(ẋ)z1 |z| ≥ z1

whereσ1ż is an supplementary damping term introduced physical realism by having damped oscillations during

the sticking mode and introduces the viscous friction effects during presliding. The stiffnessσ0(ẋ) is an arbitrary
function of velocity and the coefficienta is added to give a higher level for stiction. During stiction, the friction force
cancels the driving force through spring-damper system. The reset integrator model is discontinuous in the state vari-
ablez due to switching from stiction to sliding and numerical problems may arise for very large damping values or
spring stiffness.

1.4.4 Models for lubricated contacts
The friction interfaces in most engineering applications are lubricated. Friction interfaces in machineries and real
applications are lubricated and for this reason friction models have been derived in the literature using hydrodynamics,
for instance the viscous friction, but other lubricated models were also developed. Harnoy and Friedland [20] propesed
a model based on the hydrodynamics of a lubricated journal bearing. The model stresses the dynamics of the friction
force. The eccentricity e of the bearing is an important variable in determining the friction force. A simple model is
given by

F = K1(ε− εtr )2∆+
K2√
1− ε2

v

It consists of two terms, first term is due to the shearing of the asperity contacts and the second term is due to the
viscosity of the lubricant and has five parameters.

∆ =

 1 if ε > εtr

0 otherwise

The function∆ implies that for small eccentricities there is no friction due to asperity contacts. The eccentricity
is given by a fourth-order differential equation, which determines the pressure distribution in the lubricant. The model
from the start requires initial values when switching between slipping and sticking occurs.
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1.4.5 Bliman-Sorine Model
Another dynamic friction model inspired by the Dahl model is the Bliman-Sorine friction model [5]. This second order
linear dynamic friction model connects a fast and a slow Dahl model in parallel, where the fast model has the highest
steady-state friction and the force from the slow model is subtracted from the fast model, which results in a stiction
peak. However, comparison studies [21], [22], [14] revealed that the dynamic LuGre model is beneficial with respect to
the ability to model rate dependent friction phenomena, such as varying breakaway force and frictional lag. Moreover,
the model order of the Bliman-Sorine model is higher than for the LuGre model and the damping properties during
stiction is numerically more efficient for the Lugre model. Hence, the Bliman-Sorine friction model will not be used
further.

Bliman-Sorine model generalizes Dahl model to obtain the Stribeck effect. Bliman and Sorine replaced the time
variablet by a space variables through the transformation

ds= |v(t)|dt

or the integral form

s=
∫ t

0
|v(τ)|dτ

The variables is a space variable defined as theabsolute relative displacementof the bodies in contact since the
last change of velocity sign. By applying the above transformation to the simplified Dahl model we get

dF
dt

= σ0v−σ0
F
FC

sgn(v)v

dF
ds

|v(t)|= σ0v−σ0
F
FC

sgn(v)v

dF
ds

=−σ0
F
FC

+σ0sgn(v)

which is a linear first-order system ifsgn(v) is regarded as an input.
Bliman and Sorine replaced the equation above by a second-order model

d2F

ds2
+2ξω

dF
ds

+ω2F = ω2FCsgn(v)

in order to model stiction force as an overshoot in response to sign changes in the velocity. This model gives only
a spatially transient Stribeck effect after a change of the direction of motion and the Stribeck effect is not present in the
steady-state relation between velocity and friction force.

Bliman-Sorine model is rate independent.

1.4.6 LuGre Model
A model that is in line with the considerations of the Dahl model and also employs the idea of an averaged characteristic
presliding displacement, as introduced by Heassig et al. [4], has been proposed by Canudas de Wit et al. [3], where
it is presented as the LuGre model. It combines the Dahl model with arbitrary steady-state characteristics such as the
Stribeck effect. However, the interpretation of the internal state is that of the bristle model, i.e., friction is visualized as
forces produced by bending bristles behaving like springs, but instead of modelling the random behavior of friction it
is based on the average behavior of the bristles. LuGre model is rate dependent.

In the LuGre model the friction force during stiction is modelled as the average force applied by a set of elastic
springs under a tangential microscopic displacement. An interpretation of these elastic springs can be given under the
assumption that the two moving surfaces are in contact by a large number of bristles with a certain stiffness which can
be represented as in the figure below.

Bristle stiffness and microscopic damping are introduced to model the average bristle displacement.

ż = v− σ0

g(v)
z|v| (1)

g(v) = FC +(FS−FC) e−(v/vs)2
(2)

F = σ0 z+σ1 ż+σ2 v (3)
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where

v(t) is the relative velocity of the bodies in contact.
z is the average bristle deflection;z is the internal state of the model.
σ0 is the stiffness of the bristles.
σ1 is the microscopic damping.
σ2 is the viscous friction coefficient.
g(v) is the function that models the Stribeck effect, i.e., the Stribeck curve for steady-state velocities.
f (v) is the viscous friction.
FC is the Coulomb friction level.
FS is the stiction level.
F is the tangential friction force, the output of the model.
vs is the Stribeck velocity and determines howg(v) varies within its boundsFc ≤ g(v)≤ Fs−Fc.
σ2 v is the viscous friction (important only for higher velocities).

LuGre model description is characterized by six parameters:σ0,σ1,σ2,FC,FS, and vs.
σ0,σ1 are thedynamic parameters.
FC,FS,vs, andσ2 are thestatic parameters.

For the same reason as with the reset integrator model an extra damping term is included and viscous friction
is represented byσ2 v. The Stribeck effect is reproduced by assuming that the average deflection of the bristles at
steady-state motion, and therefore the friction force, decreases with increasing velocity. Thus, neglecting for a moment
viscous friction, at steady-state the friction force is given by

F = σ0 z= g(v)sgn(v)

The LuGre friction model is a special case of the model and is denoted as the standard parametrization, which is due
to linear viscous friction and a constant bristle microscopic damping parameterσ1 [14]. This standard parametrization
can be restrictive with respect to the desired passivity property of friction as shown by Barabanov et al. [23] who
present necessary conditions so that the passivity property to hold for the LuGre model. The conditions are expressed
in terms of a simple algebraic inequality involving the parameters of the model. A velocity dependent parametrization
of the bristle damping might result in a model which is dissipative. If the damping coefficient 1 decreases for increasing
velocity, a dissipative model is obtained, which is physically motivated by the change of the damping characteristics
as velocity increases, due to more lubricant being forced into the interface of the two contact surfaces.

In turn, Lugre model has been subjected to several criticisms by Swevers et al. [24], mainly focusing on the relation
imposed in the LuGre model between the friction force during presliding and the state variable of the model. Swevers
et al. showed by experiments that the relation is more complicated, and is characterized by hysteresis behavior with
nonlocal memory. They also modified accordingly the LuGre model into the Leuven model. These findings were also
confirmed in [25]. Later, the stack mechanism used to implement the hysteresis behavior (quite cumbersome to be
implemented in real-time systems) has been replaced by the more efficient. Another criticism to the LuGre model has
been recently raised by Dupont et al. [26], who underline a nonphysical drift phenomenon, arising when the applied
force is characterized by small vibrations, well below the static friction limit.



The State of the Art in Friction Modeling for Systems Identification 15

1.4.7 Leuven Model
The integrated friction model by Swevers et al. in [24] called the Leuven model is a more elaborated friction model
than the LuGre model proposed by Canudas de Wit et al. [3]. Leuven model structure allows accurate modelling both
in the presliding and the sliding regimes without the use of a switching function. The model incorporates a hysteresis
function with nonlocal memory and arbitrary transition curves. This model can account accurately for experimentally
obtained friction characteristics: Stribeck effect in sliding, friction lag, varying break-away, stick-slip behavior and,
hysteretic behavior in presliding. This last property cannot be modeled with the LuGre model.

Leuven model also consists of two equations: a friction force equation and a nonlinear state equation. It uses a
state variablez which can be seen as the average deflection of the asperity junctions.

dz
dt

= v

(
1−sgn

(
Fd(z)

s(v)−Fb

)∣∣∣∣ Fd(z)
s(v)−Fb

∣∣∣∣n)
Ff = Fh(z)+σ1

dz
dt

+σ2v

where

v is the current velocity
n is a coefficient used to shape the transition curves
s(v) is a function that models the constant velocity behavior

s(v) = sgn(v)

FC +(Fs−FC)e
−

( |v|
Vs

)δ
Fh(z) is the hysteresis force, i.e., the part of the friction force exhibiting hysteresis behavior with state variablezas
input. The hysteresis force is a static nonlinearity with a nonlocal memory. The implementation of the hysteresis
force is made of two parts

Fh(z) = Fb +Fd(z)

with Fb being the beginning of a transition curve at velocity reversal andFd(z) the transition curve active at a
certain time.

Leuven Model includes the friction properties of the LuGre model and a more accurate modeling of the presliding
regime using a hysteresis function with nonlocal memory. Leuven model has been improved in [27] by overcoming
the detected problem of a discontinuity in the friction force upon closing a hysteresis loop and by proposing a more
appropriate implementation of the hysteresis force based on the general Maxwell slip model which can eliminate the
problem of stack overflow noted in [24] for the Leuven model implementation.
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1.5 CONCLUSIONS
We have reviewed the mathematical models of friction used in controls literature starting from the simplest to the most
complex, each of them trying in one way or another to capture the complex friction phenomena. It must be stressed
that LuGre model is today one of the most used in the literature. LuGre model exhibits a rich behavior in terms of
observed friction phenomena and in particular is able to model: stiction, the Stribeck effect, frictional lag or hysteresis,
and stick-slip transitions. However, some of the practically observed hysteresis related phenomena can not be predicted
accurately by the LuGre model as noted by Olsson et al. [14] and Swevers et al. [24]. The latter proposes an extension
of the LuGre model to approach these hysteresis problems. The notion of stiction is re-addressed by Dupont et al. [19],
who discusses the difference between stiction and presliding displacement. In their analysis both the dynamic Dahl
and LuGre friction models are considered to possess presliding displacement but no stiction. A new elasto-plastic state
variable friction model is proposed which models both stiction and presliding displacement. However, the proposed
Leuven model by Swevers et al. [24] is more complex than the standard parametrization of the LuGre model due to
the use of a hybrid hysteresis model and therefore more difficult to be used for control design and analysis. On the
other hand, the elasto-plastic state variable friction model proposed by Dupont et al. [19] is mainly based on simulation
studies and the presented ideas are not yet confirmed experimentally. Hence, the standard parametrization of the LuGre
model is still most wildly used nowadays.

All these experimentally observed phenomena and their modelation are necessary to fully understand the problems
present in controlled mechanical systems with friction, since a motion system faces one or more of the above described
frictional stages for each task performed. Moreover, the simplest friction model combining all these properties has to
contain extra dynamics for the modelling of varying static friction and hysteresis due to frictional lag and should at
the same time be nonlinear to capture the Stribeck curve. However, for the analysis of controlled mechanical systems,
simplification of the friction model is often necessary due to the limited applicability of the used analysis tools. On
the other hand, some friction induced phenomena can successfully be described with less complex friction models,
which is desirable from a conceptual point of view and is also an important research issue. The estimation of the model
parameters is important for obtaining quantitatively accurate friction models, which can be used as a mathematical
representation of the friction. In general, it is not possible to measure the friction force directly and therefore the
identification of friction in a mechanical system is far from trivial. Since the friction force can not be observed directly,
experiments for the identification procedure are performed by sensing quantities that are influenced indirectly by the
friction force, such as displacements, velocities or acceleration of the mass connected to the frictional contact surface.
To estimate the model parameters, often extended with parameters to describe other dynamics in the system, such as
mass and stiffness, different dedicated and time-consuming experiments must to be conducted. Each experiment must
be designed to visualize one of the friction phenomena as described above by excluding other dynamics in the system.
However, the time-varying nature of friction due to wear and exogenous variables such as changing load or operating
temperatures might limit the applicability of an estimated friction model considerably. At a macroscopic level friction
forces vary in time due to microscopic effects such as deformation of contact surfaces, accumulation of wear particles
or changes in the properties of the lubricant. Since these influences are hard to measure it is also difficult to model
these time varying phenomena. Hence, the estimated friction model is expected to capture at best an averaged behavior
of the actual friction over time. Validation of the friction model with its estimated parameters can either focus on
the ability of the identified model to predict the friction characteristics of interest or on the closed-loop performance
when the identified friction model is incorporated in the controller design. Typical errors caused by friction in control
loops are steady-state errors in position regulation, tracking lags, and limit cycles. The models can be validated in an
open-loop or closed-loop setting and results might be improved, if desirable, in an iterative procedure, by choosing a
more complex friction model.



Part 2

Summary of the Work Done

2.1 M220 - THE EQUATIONS OF MOTION
For the purpose of studying friction phenomena in all detail our investigation group CoDAlab from UPC Barcelona
has purchased an industrial emulator made by ECP Systems, see [28], which will be referred to from now on as M220.
This machine is a solid tool and testbed used primarily for experimentation in systems identification and control. M220
consists of a drive inertia and a load inertia, namely, it has a motor connected to a first smaller disk or "drive inertia"
which in turn is connected to an idler pulley by an inelastic belt whose shaft is connected to the second larger disk or
"load inertia".

The main advantages offered by M220 are: 1) it can be used for studying the nonlinear dry friction phenomena
that occur in mechanical systems, and 2) it provides accurate and reliable data by means of high resolution encoders
controlled by a DSP controller and a specialized C-like software which interface with a PC.

2.1.1 Two-gear belt mechanism
Let us consider thetwo-gear belt mechanismas shown below.

We have:
θ1 is the angular position of thedriving gear(motored).
θ2 is the angular position of thedriven gear(load).
r1 is theradiusof the driving gear.
r2 is theradiusof the driven gear.
Gear ratio is the number of turns thedriving gear(motored - orfirst gear) does

per one single turn of thedriven gear(load - orsecondgear).

ng =
r2

r1
is thegear ratio, and becauseng > 1 is calledspeed reducer.

J1 is the driving gearinertia.
J2 is the driven gearinertia.

17



Summary of the Work Done 18

T1 is thetorqueof the driving gear (generated by the driving motor).
T2 is thetorqueof the driven gear (load torque).

Definition 1 Inertia is the resistance an object has relative to changes in velocity.

Definition 2 Themoment of inertia J of a body is a measure of how hard it is to get it rotating about some
axis. The momentJ is to rotation as massm is to translation. The larger theJ, the more work
required to get the object spinning, just as the larger the massm, the more work required to get it
moving in a straight line.

We make atorque balance, i.e. aforce balance. A torque balanceis usually done at thedrive motor side, not at,
for instance, theload side. If so, we have to express all the other relevanttorquesin the system to thedrive motor shaft,
i.e. "in terms of" thedrive motor shaft torque.

Definition 3 A reflected inertia is a given inertia (at any point of the system) as seen (through the respective
pulleys and/or belts) by thedrive motor shaft.

Definition 4 Reflected load inertiais theload inertiaas seen by thedrive motor shaftthrough pulleys and/or
belts.

Definition 5 Reflected SR pulley assembly inertiais thecalculated SR pulley assembly inertiaas seen by the
drive motor shaftthrough the respective pulleys and/or belts.

Definition 6 Gears that bothdriveand are, in turn,drivenare calledidler gears.

The driving gearangular displacement and thedriven gearangular displacement and their derivatives (angular
velocity and angular acceleration) are related by the gear rationg in the following manner:

r1θ1 = arc = r2θ2

θ1

θ2
=

r2

r1
= ng

θ̇1

θ̇2
=

r2

r1
= ng

θ̈1

θ̈2
=

r2

r1
= ng

Therefore:

θ1 = ngθ2 (1)
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θ̇1 = ngθ̇2 (2)

θ̈1 = ngθ̈2 (3)

A speed reducergear train is also atorque multiplier.

Power= Torque∗ Angular Velocity

Powerin = Powerout

Torquein ∗ Angular Velocityin = Torqueout ∗ Angular Velocityout

T in θ̇ in = Tout θ̇ out

T1θ̇1 = T2θ̇2

T2 =
θ̇1

θ̇2
T1 =

r2

r1
T1

Therefore:

T2 = ngT1 (4)

The torque balance on the load:

T2 = J2θ̈2 (5)

Substituting (3) and (4), we can rewrite (5) as :

ngT1 =
J2

ng
θ̈1 (6)

rearranging:

T1 =
J2

n2
g

θ̈1 or T1 = Jre f lected θ̈1 (7)

Jre f lected=
J2

n2
g

(8)

Equation (7) is the torque equation in "motor coordinates".
Jre f lected is the driven gear inertia (load inertia) reflected by the driving gear (driving motor) or the load inertia
"felt" by the driving motor.

This means that theload inertiahas been reduced by a factor ofn2
g due to the "gear train" from themotor’s point of

view.

r2

r1
=

N2

N1
=

θ1

θ2
=

θ̇1

θ̇2
=

θ̈1

θ̈2
= ng

T is thetorqueon the shaft of the driving gear (motor torque).

The equation of motion for the free body in diagram (a) is:

J1θ̈1 = T + r1 F1− r1 F2−c1θ̇1

J1θ̈1 +c1θ̇1− r1 F1 + r1 F2 = T

J1θ̈1 +c1θ̇1 + r1 (F2−F1) = T
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Fbelt = F2−F1

J1θ̈1 +c1θ̇1 + r1 Fbelt = T (9)

Respectively, the equation of motion for the free body in diagram (b) is:

J2θ̈2 +c2θ̇2 + r2F2− r2F1 = 0

J2θ̈2 +c2θ̇2− r2 (F1−F2) = 0

J2θ̈2 +c2θ̇2− r2Fbelt = 0 (10)

r2

r1
=

θ1

θ2
=

θ̇1

θ̇2
=

θ̈1

θ̈2
(11)

Fbelt =
J2

r2
θ̈2 +

c2

r2
θ̇2 (12)

Thethree relevantequations are: 
J1θ̈1 +c1θ̇1 + r1 Fbelt = T

J2θ̈2 +c2θ̇2− r2 Fbelt = 0

r2

r1
=

θ1

θ2
=

θ̇1

θ̇2
=

θ̈1

θ̈2
= ng

Substituting (14) in (12)

J1

( r2

r1

)
θ̈2 +c1

( r2

r1

)
θ̇2 +Fbelt r1 = T (13)

Substituting (15) in (16), and then multiplying by
r2

r1

J1

( r2

r1

)
θ̈2 +c1

( r2

r1

)
θ̇2 +J2

( r1

r2

)
θ̈2 +c2

( r1

r2

)
θ̇2 = T

∣∣∣∣∣∗ r2

r1
(14)

It results: [
J1

( r2

r1

)2
+J2

]
θ̈2 +

[
c1

( r2

r1

)2
+c2

]
θ̇2 =

r2

r1
T (15)

or [
J1n2

g +J2

]
θ̈2 +

[
c1n2

g +c2

]
θ̇2 = ngT (16)
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2.1.2 Three-gear belt mechanism - M220 Industrial Emulator
The M220 diagram shows a three-gear belt mechanism and is presented in the figure below:

It can be observed that the system can be decomposed into three parts, seebody-free diagramfor more details.
T is thetorqueon the shaft of the driving gear (motor torque).

Firstly, theequation of motionfor the free body in diagram (a) is:

J1θ̈1 = T + r1 F1− r1 F2−c1θ̇1

J1θ̈1 +c1θ̇1− r1 F1 + r1 F2 = T

J1θ̈1 +c1θ̇1 + r1 (F2−F1) = T

Fbelt1 = F2−F1

J1θ̈1 +c1θ̇1 + r1 Fbelt1 = T (17)
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Secondly, theequation of motionfor the free body in diagram (b) is:

J2θ̈2 = 0− r2F1 + r2F2 + r3F3− r3F4−c2θ̇2

J2θ̈2 +c2θ̇2 + r2F1− r2F2− r3F3 + r3F4 = 0

J2θ̈2 +c2θ̇2− r2 (F2−F1)+ r3 (F4−F3) = 0

Fbelt1 = F2−F1 Fbelt2 = F4−F3

J2θ̈2 +c2θ̇2− r2Fbelt1 + r3Fbelt2 = 0

r2

r1
=

θ1

θ2
=

θ̇1

θ̇2
=

θ̈1

θ̈2
=

npd

n
= n′g

Thirdly, theequation of motionfor the free body in diagram (c) is:

J3θ̈3 = 0+ r4F4− r4F3−c3θ̇3− r5 Fcsgn(θ̇3)

J3θ̈3 +c3θ̇3− r4F4 + r4F3 + r5 Fcsgn(θ̇3) = 0

J3θ̈3 +c3θ̇3− r4 (F4−F3)+ r5 Fcsgn(θ̇3) = 0
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J3θ̈3 +c3θ̇3− r4Fbelt2 + r5 Fcsgn(θ̇3) = 0 (18)

r4

r3
=

θ2

θ3
=

θ̇2

θ̇3
=

θ̈2

θ̈3
=

N
npl

= n′′g (19)

Thefive relevantequations are:

J1θ̈1 +c1θ̇1 + r1 Fbelt1 = T

J2θ̈2 +c2θ̇2− r2 Fbelt1 + r3 Fbelt2 = 0

r2

r1
=

θ1

θ2
=

θ̇1

θ̇2
=

θ̈1

θ̈2
=

npd

n
= n′g

J3θ̈3 +c3θ̇3− r4Fbelt2 + r5 Fcsgn(θ̇3) = 0

r4

r3
=

θ2

θ3
=

θ̇2

θ̇3
=

θ̈2

θ̈3
=

N
npl

= n′′g

And it results:

Fbelt2 =
J3

r4
θ̈3 +

c3

r4
θ̇3 +

r5

r4
Fcsgn(θ̇3)

Fbelt1 =− 1
r2

[
− r3 Fbelt2 −J2θ̈2−c2θ̇2

]
=

1
r2

[
r3 Fbelt2 +J2θ̈2 +c2θ̇2

]
J1θ̈1 +c1θ̇1 + r1

1
r2

[
r3 Fbelt2 +J2θ̈2 +c2θ̇2

]
= T

J1θ̈1 +c1θ̇1 + r1
1
r2

[
r3

(J3

r4
θ̈3 +

c3

r4
θ̇3 +

r5

r4
Fcsgn(θ̇3)

)
+J2θ̈2 +c2θ̇2

]
= T

r2

r1
=

θ1

θ2

r4

r3
=

θ2

θ3

θ2 =
r4θ3

r3

r2

r1
=

θ1

r4θ3

r3

θ1 =
r2r4θ3

r1r3
= n′gn′′gθ3 = ngθ3

θ2 =
r4θ3

r3

J1
r2r4θ̈3

r1r3
+c1

r2r4θ̇3

r1r3 1
+ r1

1
r2

[
r3

(J3

r4
θ̈3 +

c3

r4
θ̇3 +

r5

r4
Fcsgn(θ̇3)

)
+J2

r4θ̈3

r3
+c2

r4θ̇3

r3

]
= T[

J1
r2r4

r1r3
+J3

r1r3

r2r4
+J2

r1r4

r2r3

]
θ̈3 +

[
c1

r2r4

r1r3
+c3

r1r3

r2r4
+c2

r1r4

r2r3

]
θ̇3 +

r1r3

r2r4
r5 Fcsgn(θ̇3) = T

Then multiplying by
r2

r1

r4

r3

[
J1

( r2r4

r1r3

)2
+J3 +J2

( r4

r3

)2]
θ̈3 +

[
c1

( r2r4

r1r3

)2
+c3 +c2

( r4

r3

)2]
θ̇3 + r5 Fcsgn(θ̇3) =

r2

r1

r4

r3
T[

J1n2
g +J2n′′2g +J3

]
θ̈3 +

[
c1n2

g +c2n′′2g +c3

]
θ̇3 + r5 Fcsgn(θ̇3) = ngT
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Jtotal θ̈+cθ̇+ f sgn(θ̇) = ngT

where:
Jtotal = J1n2

g +J2n′′2g +J3

c = c1n2
g +c2n′′2g +c3

f = r5 Fc

θ = θ3

T is thetorqueon the shaft of the driving gear (motor torque).
n is the number of teeth on the drive disk pulley,fixed number; n = 12.
N is the number of teeth on the load disk pulley,fixed number; N = 72.
npd is the number of teeth on the bottom pulley.
npl is the number of teeth on the top pulley.
ng is thetotal gear ratio.

where ng =
N
npl

npd

n
=

72
npl

npd

12
=

6npd

npl

n′g is thepartial first gear ratio.

where n′g =
npd

n
=

npd

12

n′′g is thepartial second gear ratio.

where n′′g =
N
npl

=
72
npl

If we write:
Jtotal = J1n2

g +J2n′′2g +J3
as

Jtotal

n2
g

= J1 +J2
n′′2g

n2
g

+
J3

n2
g

J =
Jtotal

n2
g

= J1 +
J2

n′2g
+

J3

n2
g

Now, if we look at thereflected inertiain the equation (10):

Jd = Jdd +Jwd +
Jp

(n′g)2 +
Jdl +Jwl

(ng)2

We can identify the following:

Jd =
Jtotal

n2
g

= J

J1 = Jdd +Jwd

J2 = Jp

J3 = Jdl +Jwl
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From the M220 manual [28]:

Jdd = 0.00040 kg-m2

Jdrive disk= 0.000381 kg-m2

Jmotor = 3.8∗10−5 kg-m2 - (from manufacturer specifications)
Diameterof thedrive diskis: 13.21 cm.
Thicknessof thedrive disk plate= 0.47 cm. ρaluminum= 2.71g/cm3

A brass weighthas 500 g (includingattachment boltsandnuts).
The inertia of thecutout slotson the drive load and disks is negligible.
The inertia of the encoder, and the belt and pulleys between the motor and the drive disk can
be neglected too.
Thecalculated massof drive disk is 0.174 kg.
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2.1.3 The Inertia Balance
Jd = (Jdd +Jdl +Jwd +Jwl +Jp)re f lected (20)

where
Jdd is the inertia of the bare drive disk plus the drive motor, encoder,

drive disk/motor belt, and pulleys.
Jdl is the inertia of the bare load disk plus the disturbance motor, encoder,

load disk/motor belt, and pulleys.
Jwd is the inertia associated with the brass weights at the drive disk.
Jwl is the inertia associated with the brass weights at the load disk.
Jp is the inertia associated with the pulleys in the SR assembly.

Jdd = Jbare drive disk+Jdrive motor+Jencoder1 +Jdrive disk/motor belt+Jdrive disk pulley+Jdrive motor pulley

Jdl = Jbare load disk+Jdisturbance motor +Jencoder2 +Jload disk/motor belt+Jload disk pulley+Jload motor pulley

Jd = (Jbare drive disk+Jdrive motor+Jencoder1 +Jdrive disk/motor belt+Jdrive disk pulley+Jdrive motor pulley+
+ Jbare load disk+Jdisturbance motor +Jencoder2 +Jload disk/motor belt+Jload disk pulley+
+ Jload motor pulley+Jdrive disk brass weights+Jload disk brass weights+JSR assembly pulleys+
+ Jtop pulley belt+Jbottom pulley belt)re f lected to the drive motor sha f t

Because thereflected inertia of a given component isinversely proportionalto thesquare of its the gear ratioto
the motor shaft - see equation (8) - we have:

Jd = Jdd +Jwd +
Jp

(n′g)2 +
Jdl +Jwl

(ng)2 . (21)

where
n is the number of teeth on the drive disk pulley,fixed number; n = 12.
N is the number of teeth on the load disk pulley,fixed number; N = 72.
npd is the number of teeth on the bottom pulley.
npl is the number of teeth on the top pulley.
ng is thetotal gear ratio(between theDrive Inertia and theLoad Inertia ).

where ng =
N
npl

npd

n
=

72
npl

npd

12
=

6npd

npl

n′g is thepartial gear ratio(between theDrive Inertia andSR Assembly).

where n′g =
npd

n
=

npd

12

rwd is the distance between the center of the drive disk and brass weights on it,
in centimeters.

rwl is the distance between the center of the load disk and brass weights on it
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in centimeters.
mwd is the total mass of the brass weights on the drive disk, inkilograms.
mwl is the total mass of the brass weights on the load disk, inkilograms.

Thus, we can rewrite equation (10) as:

Jd = Jdd +Jwd +
Jp(npd

12

)2 +
Jdl +Jwl(6npd

npl

)2
(22)

The primary types ofresistancein M220 are:

Elastic resistance- resistance proportional todisplacement.
Static friction - initial resistance tothe beginning of motion.
Coulomb friction - resistance tomotion.
Viscous damping- resistance proportional tovelocity.
Inertia - resistance proportional toacceleration.

2.1.4 Plant continuous and discrete transfer functions
Let us ignore the friction force for a moment and calculate the continuous and discrete plant transfer functions.

Continuous time transfer function

J θ̈+cθ̇ = ngT

J
d2θ(t)

dt2
+c

dθ(t)
dt

= ngT(t)

L
{

dθ(t)
dt

}
= sθ(s)−θ(0)

L
{

d2θ(t)
dt2

}
= s2 θ(s)−sθ(0)− θ̇(0)

L
{

T(t)
}

= T(s)

Usingzero initial conditionswe can rewrite:

J s2 θ(s)+c sθ(s) = ngT(s)

Then the plant’s continuous transfer function is:

H(s) =
θ(s)
T(s)

=
ng

J s2 +c s

There are no zeros and two poles at:
ps1 = 0

ps2 =− c
J

The gain is

k =
ng

J
So

H(s) =
k

(s− ps1)(s− ps2)
or H(s) =

k
s(s− ps2)
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Discrete time transfer function

Zero-order hold for our continuous plant gives:

H(z) = (1−z−1)Z

[
L−1

{
H(s)

s

}]
= (1−z−1)Z

[
L−1

{ ng

J s2 +c s

s

}]

L−1

{ ng

J s2 +c s

s

}
= L−1

{
ng

s(J s2 +c s)

}
ng

s(J s2 +c s)
=

P

s2 +
Q
s

+
R

J s+c
=

P(J s+c)
s2 +

Qs(J s+c)
s

+
Rs2

J s+c

P(J s+c)+Qs(J s+c)+Rs2 = ng

(R+QJ)s2 +(PJ+QJ)s+Pc= ng
Pc = ng

R +QJ = 0
PJ+Qc = 0

P =
ng

c

Q =
−PJ

c
=
−R
J

Thus

P =
ng

c
Q =

−ng J

c2 R=
ng J2

c2

So we have

L−1

{
ng

s(J s2 +c s)

}
= L−1

{
P

s2 +
Q
s

+
R

J s+c

}
= L−1

{
P

s2 +
Q
s

+
R
J

s + c
J

}
= P t+Q+

R
J

e
− c

J
t

L−1

{
ng

s(J s2 +c s)

}
= P t+Q+

R
J

e
− c

J
t
=

ng

c
t +

−ng J

c2 +
ng J

c2 e
− c

J
t
=

ng

c
t−

ng J

c2 +
ng J

c2 e
− c

J
t

H(z) = (1−z−1)Z

[
L−1

{
H(s)

s

}]
= (1−z−1)Z

[
ng

c
t−

ng J

c2 +
ng J

c2 e
− c

J
t
]

= (1−z−1)
ng

c2 Z

[
ct−J+Je

− c
J

t
]

H(z) =
ng

c2

z−1
z

[
c

Tsz

(z−1)2 −J
z

(z−1)
+J

z

z−e−
c
J Ts

]
=

ng

c2

[
c Ts

(z−1)
−J+J

z−1

z−e−
c
J Ts

]

H(z)=
ng

c2

c Ts(z−e−
c
J Ts)−J(z−1)(z−e−

c
J Ts)+J(z−1)2

(z−1)(z−e−
c
J Ts)

=
ng

c2

c Ts[z−e−
c
J Ts]−J[z2−ze−

c
J Ts −z+e−

c
J Ts]+J[z2−2z+1]

z2−ze−
c
J Ts −z+e−

c
J Ts

H(z)=
ng

c2

c Tsz−c Tse−
c
J Ts���−Jz2 +Jze−

c
J Ts +Jz−Je−

c
J Ts�

��+Jz2−2Jz+J

z2−z[e−
c
J Ts +1]+e−

c
J Ts

=
ng

c2

z[c Ts+Je−
c
J Ts −J]−c Tse−

c
J Ts −Je−

c
J Ts +J

z2−z[e−
c
J Ts +1]+e−

c
J Ts

=
order 1
order 2

H(z) =
β1z+β2

z2 +α1z+α2
=

order 1
order 2

where:

α1 =−[e
− c

J
Ts

+1]
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α2 = e
− c

J
Ts

β1 =
ng

c2 [c Ts+Je
− c

J
Ts−J]

β2 =
ng

c2 [−c Tse
− c

J
Ts−Je

− c
J

Ts
+J]

Furthermore

H(z) =
β1z+β2

z2 +α1z+α2
=

z(β1 +β2
1
z
)

z2(1+α1
1
z

+α2
1
z2 )

=
1
z

(β1 +β2
1
z
)

(1+α1
1
z

+α2
1
z2 )

or

H(z−1) = z−1 (β1 +β2z−1)
(1+α1z−1 +α2z−2)

=
β1 z−1 +β2 z−2

1+α1 z−1 +α2 z−2

or using thebackward shift operator:

H(q−1) =
β1 q−1 +β2 q−2

1+α1 q−1 +α2 q−2 =
B(q−1)
A(q−1)

There is one zero:

zz1 =−β2

β1
Note that the gain isk = β1 =

ng

c2 [cTs+Je
− c

J
Ts−J]

zz1 =− �
�

ng

c2 [−c Tse
− c

J
Ts−Je

− c
J

Ts
+J]

�
�

ng

c2 [c Ts+Je
− c

J
Ts−J]

=
c Tse

− c
J

Ts
+Je

− c
J

Ts−J

c Ts+Je
− c

J
Ts−J

=
c Tse

− c
J

Ts−c Ts+c Ts+Je
− c

J
Ts−J

c Ts+Je
− c

J
Ts−J

=
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zz1 =
c Tse

− c
J

Ts−c Ts

c Ts+Je
− c

J
Ts−J

+1=

c Ts

[
e
− c

J
Ts−1

]

c Ts+J

[
e
− c

J
Ts−1

]+1=

[
e
− c

J
Ts−1

]

1+

[
e
− c

J
Ts−1

]
c
J

Ts

+1= 1−

[
1−e

− c
J

Ts
]

1−

[
1−e

− c
J

Ts
]

c
J

Ts

{
c
J

Ts = x

}
zz1 = 1−

[
1−e−x

]

1−

[
1−e−x

]
x

' 1−

[
1−1+

x
1!
− x2

2!

]

1−

[
1−1+

x
1!
− x2

2!

]
x

' 1−

[
x
1!
− x2

2!

]
x
2

{
eax = 1+

ax
1!

+
a2x2

2!
+

a3x3

3!
+ . . .

}
zz1 ' 1−

�x

[
1− x

2

]
�x
2

' 1−2

[
1− x

2

]
'−1+x'−1+

c
J

Ts

And two poles:

pz1 =
−α1 +

√
α2

1−4α2

2
pz2 =

−α1−
√

α2
1−4α2

2√
α2

1−4α2 =

√
−[e

− c
J

Ts
+1]2−4e

− c
J

Ts
=

√
e
−2c

J
Ts

+2e
− c

J
Ts

+1−4e
− c

J
Ts

=

√
e
−2c

J
Ts−2e

− c
J

Ts
+1=

=

√
(1−e

− c
J

Ts
)2 = 1−e

− c
J

Ts

pz1 = �
�

�
e
− c

J
Ts

+1+1�
���

−e
− c

J
Ts

2
=

2
2

= 1

pz2 =
e
− c

J
Ts

+�1−�1 +e
− c

J
Ts

2
=

2e
− c

J
Ts

2
= e

− c
J

Ts

So

H(z) =
k (z−zz1)

(z− pz1)(z− pz2)

where

k =
ng

c2 [c Ts+Je
− c

J
Ts−J]

zz1 =−1+
c
J

Ts

pz1 = 1

pz2 = e
− c

J
Ts

Observation 1:
J
c

> 1.

Observation 2: Thetwo polescan be written in two equivalent ways and also thezero.

Thepolescan be written as:

pz1 = 1 pz2 = e
−cTs

J

pz1 =
−α1−

√
α2

1−4α2

2
pz2 =

−α1 +
√

α2
1−4α2

2
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pz1 =
−α1 +

√
α2

1−4α2

2
=

e−λ +1−
√

(−[e−λ +1])2−4e−λ

2
=

e−λ +1−
√

e−2λ +2e−λ−4e−λ +1

2

pz1 =
(e−λ +1)−

√
(e−λ−1)2

2
= �

�e−λ +1���−e−λ +1
2

= 1

pz2 =
(e−λ +1)+

√
(e−λ−1)2

2
=

e−λ��+1+e−λ��−1
2

= e−λ where λ =−cTs

J

And thezeroas:

zz1 =−β1

β2
=−

�
�

ng

c2

[
c Ts+Je

− c
J

Ts−J

]

�
�

ng

c2

[
−c Tse

− c
J

Ts−Je
− c

J
Ts

+J

] =
�J

[
c Ts

J
+e

− c
J

Ts−1

]

�J

[
c Ts

J
e
− c

J
Ts

+e
− c

J
Ts−1

] =
λ+e−λ −1

λe−λ +e−λ −1

zz1 =
λ+e−λ −1

λe−λ +e−λ −1
where λ =−cTs

J
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2.1.5 M220 - DC Brushless Motor
I. DC Brushless Motor Overview

TheDC brushless motoris known also aspermanent magnet synchronous motor.
The main advantage over the conventionalDC brush motoris the elimination of brush friction associated wear. Other
advantage is greater volume-to-power ratio.

The permanent magnets are fixed on the rotor. The three phase windings are distributed in slots of the stator.
In a DC brushless motor, a rotor positioning sensor is used and the commutation procedure is done electronically:

it can berectangularor sinusoidal.
A brushless dc motor is essentially a dc motor turned inside out. However, the basic principle of operation of a

brushless dc motor is similar to that of a normal dc motor. A brushless dc motor has a rotor with permanent magnets
and a stator with windings that are connected to the control electronics. The control electronics act as a replacement
for the commutator and perform its function of energizing the proper winding. The windings are energized in a pattern
which rotates around the stator. Then the energized stator winding leads to the rotor magnet and switches just as the
rotor aligns with the stator. In contrast to the conventional dc motor, the permanent magnets of the brushless dc motor
are affixed directly onto the rotor itself. The phase windings (there are typically 3 phases) are distributed in the slots
found on the stator. This arrangement provides for greater heat dissipation, which in turn leads to improved life and
typically greater volume-to-power ratios for brushless motors than for brush motors. In any continuously rotating
motor, to provide a continuous torque, the current must be successively altered or switched depending on the absolute
position of the rotor. In a dc brushless motor, a rotor-positioning (opto) sensor is used and the commutation procedure
is performed electronically. A brushless dc motor is actually cleaner, faster, more efficient, less noisy, and more reliable
than a brush motor because there are no sparks involved in a brushless dc motor, and because a brushless dc motor is
not restricted by the limitations of brush life, brush residue, maximum speed, and electric noise. One advantage of the
brushless dc motor is its ability to use opto sensors that can provide reliable position sensing in harsh environments
where high vibration, moisture and relatively high temperatures exist and because they are also known for their long
life, fast response time, high repeatability, and zero speed-sensing capabilities.

where

ω(t) - is the motor shaft angular velocity.
T(t) - is the torque of the motor.
va(t) - is the applied voltage.
vb(t) - is the back (induced) voltage.
Kb - is the motor constant.
Kt - is the motor torque constant (called also the motor armature constant).
K f - is the motor viscous friction (damping), a function of motor’s angular velocity.
L - is the armature winding inductance.
R - is the armature resistance.
Jm - is the motor’s moment of inertia.
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2. Electrical Equations

The torqueT(t) seen at the shaft of the motor is proportional to the currenti(t) induced by the applied voltage,
va(t),

T(t) = Kt i(t)

whereKt is the armature constant, is related to physical properties of the motor, such as magnetic field strength, the
number of turns of wire around the conductor coil, and so on.

The back (induced) electromotive force,vb(t), is a voltage proportional to the angular velocityω(t) seen at the
motor shaft,

vb(t) = Kb ω(t)

whereKb, the motor constant, also depends on certain physical properties of the motor.

va(t)−vb(t) = L
di
dt

+R i(t)

va(t) = L
di
dt

+R i(t)+Kb ω(t)

di
dt

=−R
L

i(t)− Kb

L
ω(t)+

1
L

va(t)

II. Mechanical Equations

The mechanical part of the motor equations is derived using Newton’s law, which states that the inertial loadJm

times the derivative of angular rate (i.e. angular velocity) equals the sum of all the torques about the motor shaft.

Jm
dω
dt

= ∑Ti =−K f ω(t)+T(t)

T(t) = Jm
dω
dt

+K f ω(t)

Jm
dω
dt

=−K f ω(t)+Km i(t)

where−K f ω(t) is a linear approximation for viscous friction.

dω
dt

=−
K f

Jm
ω(t)+

Km

Jm
i(t)

III. State-Space Equations for the DC Brushless Motor

Given the two differential equations derived in the last section, we can now develop a state-space representation
of the DC motor as a dynamic system. The currenti(t) and the angular velocityω(t) are the two states of the system.
The applied voltage,va(t), is the input to the system, and the angular velocityω(t) is the output.


di
dt

=−R
L

i(t)− Kb

L
ω(t)+

1
L

va(t)

dω
dt

=−
K f

Jm
ω(t)+

Km

Jm
i(t)
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IV. Block Diagrams

Diagram 1

Applying Laplace transform to the following equation

va(t)−vb(t) = L
di
dt

+R i(t)

we have

Va(s)−Vb(s) = sL I(s)+R I(s)

I(s)
Va(s)−Vb(s)

=
1

sL+R

Diagram 2

From T(t) = Kt i(t)
we get

T(s) = Kt I(s)

Diagram 3

In the same manner, applying Laplace to

T(t) = Jm
dω
dt

+K f ω(t)

it results

T(s) = JmsΩ(s)−K f Ω(s)

Ω(s)
T(s)

=
1

s Jm+K f

Diagram 4

From vb(t) = Kb ω(t)
we get

Vb(s) = Kb Ω(s)
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DC Motor Block Diagram

Connecting all the four block diagrams above we obtain the DC Motor block diagram.

V. Transfer Functions

A. The transfer function between the applied voltage and the angular velocity of the shaft of the motor

From the above diagram block we can write the transfer function between the input of the motor, the applied
voltageVa(s) and its output, the angular velocity of the shaft of the motor,Ω(s) as:

H1(s) =
Ω(s)
Va(s)

=

Kt

(sL+R)
1

(sJm+K f )

1+Kb
Kt

(sL+R)
1

(sJm+K f )

=
Kt

(sL+R)(sJm+K f )+KbKt

B. The transfer function between the applied voltage and the torque of the motor

The transfer function between the input of the motor, the applied voltageVa(s) and its output, the torque of the
motor,T(s) can be written modifying the last diagram block as follows.

H2(s) =
T(s)
Va(s)

=

Kt

(sL+R)

1+Kb
1

(sJm+K f )
Kt

(sL+R)

=
Kt(sJm+K f )

(sL+R)(sJm+K f )+KbKt
=

order 1
order 2

H2(s) =
T(s)
Va(s)

=
s KtJm+KtK f

s2 LJm+s(LK f +RJm)+RKf +KbKt
=

s
Kt

L
+

KtK f

LJm

s2 +s
LK f +RJm

LJm
+

RKf +KbKt

LJm
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2.1.6 Zero-order hold for DC motor and plant together

H(s) = Hm(s)Hp(s) =
s

Kt

L
+

KtK f

LJm

s2 +s
LK f +RJm

LJm
+

RKf +KbKt

LJm

ng

J s2 +c s
=

s ng
Kt

L
+ng

KtK f

LJm

s(J s+c)

(
s2 +s

LK f +RJm
LJm

+
RKf +KbKt

LJm

)
Simplifying the notations

m1 = ng
Kt

L
m2 = ng

KtK f

LJm

n1 =
LK f +RJm

LJm
n2 =

RKf +KbKt

LJm

we have

H(s) =
s m1 +m2

s(J s+c)(s2 +s n1 +n2)

m CASE 1 - The factor s2 +s n1 +n2 has two complex conjugated roots

H(z)= (1−z−1)Z

[
L−1

{
H(s)

s

}]
=(1−z−1)Z

[
L−1

{ s m1+m2
s(J s+c)(s2+s n1+n2)

s

}]
=(1−z−1)L−1

{
s m1 +m2

s2(J s+c)(s2 +s n1 +n2)

}
s m1 +m2

s2(J s+c)(s2 +s n1 +n2)
=

A

s2 +
B
s

+
C

J s+c
+

D s+E

s2 +s n1 +n2

where

A =
m2

c n2

B =
m1c n2−m2 (J n2 +c n1)

c2n2
2

C =
J3 (m2J−m1c)

c2
(
J2n2−J c n1 +c2

)
D =

m1n2 (Jn1−c )+m2
(
c n1−J

(
n1

2−n2
))

n2
2(J2n2−J c n1 +c2)

E =
m1n2

(
J
(
n1

2−n2
)
−c n1

)
−m2

(
Jn1

(
n1

2−2n2
)
+c
(
n2−n1

2
))

n2
2(J2n2−J c n1 +c2)

So we have

H(z) = (1−z−1)Z

[
L−1

{
s m1 +m2

s2(J s+c)(s2 +s n1 +n2)

}]
= (1−z−1)Z

[
L−1

{
A

s2 +
B
s

+
C

J s+c
+

D s+E

s2 +s n1 +n2

}]
From the table above we have

Z

[
L−1

{
A

s2

}]
=

A Tsz

(z−1)2

Z

[
L−1

{
B
s

}]
=

B z
z−1

Z

[
L−1

{
C

J s+c

}]
=

C
J

z

z−e
− c

J
Ts

Let us calculate
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Z

[
L−1

{
D s+E

s2 +s n1 +n2

}]

L−1

{
D s+E

s2 +s n1 +n2

}
= e

−n1

2
t
[

Dcos(bt)+
E−D

n1

2
b

sin(bt)

]

Z

[
e
−n1

2
t
Dcos(bt)

]
= D

z2−ze
−n1

2
Ts

cos(bTs)

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

where b =

√√√√n2−

(
n1

2

)2

Z

[
e
−n1

2
t E−D

n1

2
b

sin(bt)

]
=

E−D
n1

2
b

ze
−n1

2
Ts

sin(bTs)

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

where b=

√√√√n2−

(
n1

2

)2

Z

[
L−1

{
D s+E

s2 +s n1 +n2

}]
= D

z2−ze
−n1

2
Ts

cos(bTs)

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

+
E−D

n1

2
b

ze
−n1

2
Ts

sin(bTs)

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts



Summary of the Work Done 38

Z

[
L−1

{
D s+E

s2 +s n1 +n2

}]
=

D
(

z2−ze
−n1

2
Ts

cos(bTs)
)

+
E−D

n1

2
b

ze
−n1

2
Ts

sin(bTs)

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

Z

[
L−1

{
D s+E

s2 +s n1 +n2

}]
=

Dz2−z

(
e
−n1

2
Ts
[

D cos(bTs)−
E−D

n1

2
b

sin(bTs)

])

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

where b=

√√√√n2−

(
n1

2

)2

H(z) = (1−z−1)

[
A Tsz

(z−1)2 +
B z

z−1
+

C
J

z

z−e
− c

J
Ts

+

Dz2−z

(
e
−n1

2
Ts
[

D cos(bTs)−
E−D

n1

2
b

sin(bTs)

])

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

]

H(z)=
��z−1

�z

[
A Ts�z

(z−1)�2
+

B �z
��z−1

+(z−1)

C
J �z

z−e
− c

J
Ts

+(z−1)

Dz�2− �z

(
e
−n1

2
Ts
[

D cos(bTs)−
E−D

n1

2
b

sin(bTs)

])

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

]

H(z) =
A Ts

z−1
+B +(z−1)

C
J

z−e
− c

J
Ts

+(z−1)

Dz−

(
e
−n1

2
Ts
[

D cos(bTs)−
E−D

n1

2
b

sin(bTs)

])

z2−2ze
−n1

2
Ts

cos(bTs)+e
−2

n1

2
Ts

where b =

√√√√n2−

(
n1

2

)2

Using the notations below, we can rewrite:

H(z) =
A Ts

z−1
+B +(z−1)

C
J

z+α
+(z−1)

Dz+β
z2 + γ z+δ

where

α =−e
− c

J
Ts

β =−

(
e
−n1

2
Ts
[

D cos(bTs)−
E−D

n1

2
b

sin(bTs)

])

γ =−2e
−n1

2
Ts

cos(bTs)

δ = e
−2

n1

2
Ts

H(z)=
A Ts(z+α)(z2 + γ z+δ)+B(z−1)(z+α)(z2 + γ z+δ)+

C
J

(z−1)2(z2 + γ z+δ)+(Dz+β)(z−1)2(z+α)

(z−1)(z+α)(z2 + γ z+δ)

H(z) =
z4(B+

C
J

+D)+z3(ATs+B(α+ γ−1)+
C
J

(γ−2)+D(α−2)+β)+

z4 +z3(α+ γ−1)+z2(α(γ−1)− γ+δ)−z(α(γ−δ)+δ)−αδ

+ z2(ATs(α+ γ)+B(α(γ−1)− γ+δ)− C
J

(2γ−δ−1)+D(1−2α)+β(α−2))+

z4 +z3(α+ γ−1)+z2(α(γ−1)− γ+δ)−z(α(γ−δ)+δ)−αδ
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+ z(ATs(αγ+δ)−B(α(γ−δ)+δ)+
C
J

(γ−2δ)+Dα−β(2α−1))+

z4 +z3(α+ γ−1)+z2(α(γ−1)− γ+δ)−z(α(γ−δ)+δ)−αδ

+ ATsαδ−Bαδ+
C
J

δ+αβ

z4 +z3(α+ γ−1)+z2(α(γ−1)− γ+δ)−z(α(γ−δ)+δ)−αδ

H(z) =
b1z4 +b2z3 +b3z2 +b4z+b5

z4 +a1z3 +a2z2 +a3z+a4
=

order 4
order 4

where

b1 = B+
C
J

+D

b2 = ATs+B(α+ γ−1)+
C
J

(γ−2)+D(α−2)+β

b3 = ATs(α+ γ)+B(α(γ−1)− γ+δ)− C
J

(2γ−δ−1)+D(1−2α)+β(α−2)

b4 = ATs(αγ+δ)−B(α(γ−δ)+δ)+
C
J

(γ−2δ)+Dα−β(2α−1)

b5 = ATsαδ−Bαδ+
C
J

δ+αβ

a1 = α+ γ−1

a2 = α(γ−1)− γ+δ

a3 =−(α(γ−δ)+δ)

a4 =−αδ

m CASE 2 - The factor s2 +s n1 +n2 has two real roots

H(z)= (1−z−1)Z

[
L−1

{
H(s)

s

}]
=(1−z−1)Z

[
L−1

{ s m1+m2
s(J s+c)(s−a)(s−b)

s

}]
=(1−z−1)L−1

{
s m1 +m2

s2(J s+c)(s−a)(s−b)

}
s m1 +m2

s2(J s+c)(s−a)(s−b)
=

A

s2 +
B
s

+
C

J s+c
+

D
s−a

+
E

s−b

where

a =
−n1 +

√
n1

2−4n2

2
and b =

−n1−
√

n1
2−4n2

2

A =
m2

abc

B =
a(b(cm1−Jm2)+cm2)+bcm2

a2b2c2

C =
J3(Jm2−cm1)

c2(aJ+c)(bJ+c)

D =
am1 +m2

a2(a−b)(aJ+c)
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E =
bm1 +m2

b2(b−a)(bJ+c)

H(z) = (1−z−1)Z

[
L−1

{
s m1 +m2

s2(J s+c)(s−a)(s−b)

}]
= (1−z−1)Z

[
L−1

{
A

s2 +
B
s

+
C

J s+c
+

D
s−a

+
E

s−b

}]

From the Laplace table we have

Z

[
L−1

{
A

s2

}]
=

A Tsz

(z−1)2

Z

[
L−1

{
B
s

}]
=

B z
z−1

Z

[
L−1

{
C

J s+c

}]
=

C
J

z

z−e
− c

J
Ts

Z

[
L−1

{
D

s−a

}]
=

D z
z−ea Ts

Z

[
L−1

{
E

s−b

}]
=

E z

z−eb Ts

H(z) =
z−1

z

[
A Tsz

(z−1)2 +
B z

z−1
+

C
J

z

z−e
− c

J
Ts

+
D z

z−ea Ts
+

E z

z−eb Ts

]

H(z) =
A Ts

z−1
+B+

C
J

(z−1)

z−e
− c

J
Ts

+
D (z−1)
z−ea Ts

+
E (z−1)
z−eb Ts

H(z) =
(A Ts)(z+α)(z+β)(z+ γ)+B(z−1)(z+α)(z+β)(z+ γ)+

C
J

(z−1)2(z+β)(z+ γ)+

(z−1)(z+α)(z+β)(z+ γ)

+D (z−1)2(z+α)(z+ γ)+E (z−1)2(z+α)(z+β)
(z−1)(z+α)(z+β)(z+ γ)

where

α =−e
− c

J
Ts

β =−ea Ts

γ =−eb Ts

H(z) =
z4(B+

C
J

+D+E)+z3(ATs+B(α+β+ γ−1)+
C
J

(β+ γ−2))+D(α+ γ−2)+E(α+β−2)+

z4 +z3(α+β+ γ−1)+z2(α(β+ γ−1)+β(γ−1)− γ)+z(α(β(γ−1)− γ)−βγ)−αβγ

+z2(ATs(α+β+ γ)+B(α(β+ γ−1)+β(γ−1)− γ)+
C
J

(β(γ−2)−2γ+1))+D(α(γ−2)−2γ+1)+E(α(β−2)−2β+1)+

z4 +z3(α+β+ γ−1)+z2(α(β+ γ−1)+β(γ−1)− γ)+z(α(β(γ−1)− γ)−βγ)−αβγ

+z(ATs(α(β+ γ)+βγ)+B(α(β(γ−1)− γ)−βγ)+
C
J

(γ−β(2γ−1)))+D(γ−α(2γ−1))+E(β−α(2β−1))+

z4 +z3(α+β+ γ−1)+z2(α(β+ γ−1)+β(γ−1)− γ)+z(α(β(γ−1)− γ)−βγ)−αβγ
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+ATsαβγ−Bαβγ+
C
J

βγ+Dαγ+Eαβ

z4 +z3(α+β+ γ−1)+z2(α(β+ γ−1)+β(γ−1)− γ)+z(α(β(γ−1)− γ)−βγ)−αβγ

H(z) =
b1z4 +b2z3 +b3z2 +b4z+b5

z4 +a1z3 +a2z2 +a3z+a4
=

order 4
order 4

where

b1 = B+
C
J

+D+E

b2 = ATs+B(α+β+ γ−1)+
C
J

(β+ γ−2)+D(α+ γ−2)+E(α+β−2)

b3 = ATs(α+β+γ)+B(α(β+γ−1)+β(γ−1)−γ)+
C
J

(β(γ−2)−2γ+1)+D(α(γ−2)−2γ+1)+

+E(α(β−2)−2β+1)

b4 = (ATs(α(β+ γ)+βγ)+B(α(β(γ−1)− γ)−βγ)+
C
J

(γ−β(2γ−1))+D(γ−α(2γ−1))+

+E(β−α(2β−1))

b5 = ATsαβγ−Bαβγ+
C
J

βγ+Dαγ+Eαβ

a1 = α+β+ γ−1

a2 = α(β+ γ−1)+β(γ−1)− γ

a3 = α(β(γ−1)− γ)−βγ

a4 =−αβγ

m CASE 3 - The motor is considered as being only a constantkM

Hm(s) =
s

Kt

L
+

KtK f

LJm

s2 +s
LK f +RJm

LJm
+

RKf +KbKt

LJm

= kM

And therefore the plant becomes:

H(s) =
ng kM

s(J s+c)
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2.2 STEP RESPONSE IDENTIFICATION

The plant transfer function we use is:
ng kM

s(J s+c)

It can be rewritten as:
k

s(s+a)
where k =

ng kM

J
and a =

c
J

The step response is:
v k

s2(s+a)
=

α1

s2 +
α2

s
+

α3

s +a
where

α1 =
k v
a

α2 =−k v

a2

α3 =
k v

a2

v = 0.25(volts)

The time response of the transfer function above is: θ = α1t +α2 +α3e−a1 t

We perform a step input of 0.25 volts and we measure the output.

Considering two well-chosen points:t1 = 4.44(sec), y1 = 100080(counts) and t2 = 4.91(sec), y2 = 118992(counts)

We can calculate the straight line approximation θ = α1t +α2.
and obtain:

α1 = 40238.299

α2 =−78578.042

With the above values we can calculate all the other parameters:

α3 =−α2 = 78578.042

a =−α1

α2
= 0.512081

k =
α1 a

v
=

40238.299 ∗ 0.512081
0.25

= 82421.020583

The plant seen by software is:
Therefore

θso f tware

uso f tware
= kc

ng kM

s(J s+c)
=

k′

s(s+a)



where

kc =
10

32,762
(V/counts) = 0.000305231(V/counts)

k = 82421.020583

a = 0.512081

k′ = kc k = 0.000305231∗82421.020583= 25.1575058

The identified plant is then:

H(s) = kc
ng kM

s(J s+c)
=

k′

s(s+a)
=

25.1575058
s(s+0.512081)

Based on the values obtained, we can calculate the PI controller parameters (kp andTi) for velocity control of the
closed-loop system as follows:

kp =
1
k′

= 0.0397496 and Ti =
1
a

= 1.9528173

The conversion table for the M220 plant is:

count volt degree radian

1 0.000304879909 0.0225 0.0003927

3279.979987 1 73.7995497 1.2880481

44.44444 0.01355 1 0.0174533

2546.47881 0.776358 57.295779 1



2.3 COULOMB AND VISCOUS FRICTION IDENTIFICATION
To obtain the Coulomb and viscous frictional coefficients we perform, as suggested in [22], steady-state experiments
under closed-loop PI velocity control. We carry through the experiment with the PI parameters obtained in the previous
section for velocities in the range of 150−40000 counts/sec or approximately 0.05−15.7 rad/sec in both directions
of motion. We measure the control signal in each of those instances using high-quality sensors. At small velocities
the data is of poor quality due especially to the stick-slip motion phenomenon. The nonlinear relationship between
control signal (which represents thefriction force) and velocity can be easily noted. There must be indicated that there
has been observed a small steady-state error in the PI velocity control and also a small limit cycle, facts noted in the
literature as occurring in such type of experiments.

The raw dataobtained is:

Control up Velocity up Control down Velocity down

0.13291 158.61993 -0.14306 -131.97614
0.11534 704.68326 -0.15937 -590.80878
0.14277 2637.28385 -0.17850 -2544.77089
0.16287 4588.6473 -0.19833 -4496.91078
0.13006 7677.99788 -0.17119 -7571.57481
0.13586 9666.24951 -0.17769 -9558.1182
0.14242 11652.54720 -0.18464 -11543.3784
0.15192 14632.93197 -0.19133 -14530.96098
0.15529 16627.40154 -0.19537 -16523.79769
0.16253 19613.57036 -0.20336 -19508.016682
0.16513 21610.05688 -0.20703 -21501.80729
0.17404 24591.94361 -0.21588 -24483.82779
0.18018 27580.91909 -0.22185 -27473.34732
0.18855 31565.72812 -0.22920 -31460.84426
0.20073 35540.79387 -0.23521 -35451.76198
0.20307 39541.20573 -0.24493 -39433.13802



Using the data, the two direction-dependent viscous friction coefficients have been obtained by first degree polyno-
mial curve fitting of the data, the points of higher velocities especially, in a least squares sense. This gives the straight
line approximation which represents theviscousfriction force. At the intersection of the line with the vertical zero
velocity axis we obtain the two direction-dependentCoulombfriction coefficients.

For the upper straight line yup = m1x+b1

- the slope is m1 = 2.3517∗10−6

- the y-intercept is b1 = 0.114716

The lower straight line ydown= m2x+b2

- the slope is m2 = 2.4484∗10−6

- the y-intercept is b2 =−0.152784.

Coulomb friction component is: F = FC sgn(v)

Viscous friction component is: F = Fv v

F+
C = 0.114716 (volts)

F+
v = 2.3517∗10−6 (volts·sec/counts)

F−
C =−0.152784 (volts)

F−
v = 2.4484∗10−6 (volts·sec/counts)



2.4 REFERENCES
[1] Blau, P.J.,Friction Science and Technology, L.L. Faulkner (ed.), Marcel Dekker, Inc., New York, 1996.
[2] Armstrong-Hétlouvry B., P. Dupont, and C. Canudas de Wit,A survey of models, analysis tools and

compensation methods for the control of machines with friction, Automatica, 30, 7, pp. 1083-1138, 1994.
[3] Canudas de Wit, C. H. Olsson, K. J. Åström, and P. Lischinsky,A new model for control systems with friction,

IEEE Transactions on Automatic Control, AC-40, pp. 419-425, 1995.
[4] Haessig, Jr. D.A., and Friedland, B.,On the Modeling and Simulation of Friction, Journal of Dynamic

Systems, Measurements, and Control, 113, pp. 354-362, 1991.
[5] Bliman, P. A., and Sorine, M.,Easy-to-use Realistic Dry Friction Models for Automatic Control,

In Proc. of 3rd European Control Conference, Rome, Italy, pp. 3788-3794, 1995.
[6] Amontons, G.,De le résistance causée dans les machines, Mémoires de l’Academie des Sciences,

pp. 203-222, 1699.
[7] Coulomb, C.A.,Théorie des machines simples, Mémoires de Mathématique et de Physique de l’Academie

de Sciences, pp. 161-331, 1785.
[8] Stribeck, R.,Die Wesentlichen Eigenschaften der Gleit - und Rollenlager - the key qualities of sliding and

roller bearings, Zeitschrift des Vereines Seutscher Ingenieure, 46, 38, pp. 1342-48, 46, 39, 1432-1437, 1902.
[9] Johnson C. T. and Lorenz R. D.,Experimental identification of friction and its compensation in precise,

position controlled mechanisms, IEEE Transactions on Industry Applications, 28, 6, pp. 1392-1398, 1992.
[10] Rabinowicz E.,The nature of the static and kinetic coefficients of friction, Journal of Applied Physics,

22, 11, 1373-1379, 1951.
[11] Armstrong-Hétlouvry B.,Stick slip and control in low-speed motion. IEEE Transactions on Automatic

Control, 38, 10, pp. 1483-1496, 1993.
[12] Armstrong-Hétlouvry B.,Control of Machines with Friction, Kluwer Academic Publishers,

Boston, Ma., 1991.
[13] Karnopp D.,Computer simulation of slip-stick friction in mechanical dynamic systems, Journal of Dynamic

Systems, Measurement, and Control, 107, 1, pp. 100-103, 1985.
[14] Olsson, H., Åström, K.J., Canudas de Wit, C., Gäfvert, M., and Lischinsky, P.,Friction Models and Friction

Compensation, European Journal of Control, 4, 3, pp. 176-195, 1998.
[15] Eborn, J., and Olsson, M.,Modelling and simulation of an industrial control loop with friction, Proc. of the

4th IEEE Conference on Control Applications, Albany, New York, pp. 316-322, 1995.
[16] Courtney-Pratt, J., and Eisner, E.,The effect of a tangential force on the contact of metallic bodies,

In Proceedings of Royal Society, vol. A238, pp. 529-550, 1957.
[17] Hess, D.P., and Soom, A.,Friction at a lubricated line contact operating at oscillating sliding velocities,

Journal of Tribology, Vol. 112, pp. 147-152, 1990.
[18] Dahl P. R.,A solid friction model, The Aerospace Corporation, El-Secundo, TOR-158(3107-18),

California, 1968.
[19] Dupont P., Armstrong B., and Hayward V.,Elasto-plastic friction model: contact compliance and stiction,

In Proc. of American Control Conference, Vol. 2, 1072 - 1077, 2000.
[20] Harnoy A. and Friedland B.,Dynamic friction model of lubricated surfaces for precise motion control,

In Preprint No. 93-TC-1D-2. Society of Tribologists and Lubrication Engineers, 1993.
[21] Magnus Gäfvert -Comparison of two Friction Models, Master’s thesis, LUTFD2/TFRT-5561-SE,

Lund Institute Technology, Lund, Sweden, 1996.
[22] Magnus Gäfvert,Comparisons of Two Dynamic Friction Models, Proc. of the 6th IEEE Conference

on Control Applications, Hartford, pp. 386-391, 1997.
[23] Barabanov N., and Ortega R.,Necessary and sufficient conditions for passivity of the LuGre friction model,

IEEE Transactions on Automatic Control, 45, 4, pp. 830-832, 2000.
[24] Swevers J., Al-Bender F., Ganseman C., and Prajogo T.,An integrated friction model structure with

improved presliding behavior for accurate friction compensation, IEEE Transactions on Automatic Control,
45, pp. 675-686, 2000.

[25] Ferretti G., Magnani. G., Manucci. G., Racco P., and Stampacchia V.,Friction model validation in sliding
and presliding regimes with high resolution encoders, in Experimental Robotics VIII, ser. STAR, Siciliano B.
and Dario, Springer., pp. 328-337, 2003.

[26] Dupont P., Hayward V., Armstrong B., and Altpeter F.,Single state elastoplastic friction models,
IEEE Transactions on Automatic Control, 47, 12, pp. 787-792, 2002.

[27] Lampaert V., Swevers J., and Al-Bender F.,Modification of the Leuven Integrated Friction Model Structure,
IEEE Transactions on Automatic Control, 47, 4, pp. 683-687, 2002.

[28] Manual for Model 220 Industrial Emulator/Servo Trainer, Educational Control Products, CA 91367, 1995.


	The State of the Art in Friction Modeling for Systems Identification
	INTRODUCTION
	STATIC FICTION MODELS
	Coulomb Friction
	Viscous Friction
	Stiction
	Stribeck Effect
	Continuous zero-velocity crossing model
	A more general static model
	Karnopp Model
	The seven parameter model

	FRICTION PHENOMENA
	Presliding Displacement
	Frictional Lag
	Varying Break-Away Force
	Stick-Slip Motion
	Time-dependent, position dependent, and direction-dependent friction

	DYNAMIC FICTION MODELS
	Dahl Model
	The Bristle Model
	The Reset Integrator Model
	Models for lubricated contacts
	Bliman-Sorine Model
	LuGre Model
	Leuven Model

	CONCLUSIONS

	Summary of the Work Done
	M220 - THE EQUATIONS OF MOTION
	Two-gear belt mechanism
	Three-gear belt mechanism - M220 Industrial Emulator
	The Inertia Balance
	Plant continuous and discrete transfer functions
	M220 - DC Brushless Motor
	Zero-order hold for DC motor and plant together

	STEP RESPONSE IDENTIFICATION
	COULOMB AND VISCOUS FRICTION IDENTIFICATION
	REFERENCES




