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Abstract— The purpose of this paper is to bring to the
attention of the control community some of the aspects of the
practically important, and mathematically challenging, power
factor compensation problem. Our main contribution is iden-
tifying the key role played by cyclo–dissipativity in the solution
of the problem. Namely, we prove that a necessary condition
for a (shunt) compensator to improve the power transfer is
that the load satisfies a given cyclo–dissipativity property, which
naturally leads to a formulation of the compensation problem as
one of cyclo–dissipasivation. Cyclo–dissipative systems exhibit a
net absorption of (abstract) energy only along closed paths, while
a dissipative system cannot create energy for all trajectories,
henceforth, this concept generalizes the one of passivation.

I. INTRODUCTION TO THE POWER FACTOR
COMPENSATION PROBLEM

We consider the classical scenario of energy transfer from an
q–phase ac generator to a load as depicted in Fig. 1. The voltage
and current of the source are denoted by the column vectors
vs(t), is(t) ∈ R

q and the load is described by a (possibly
nonlinear and time varying) q–port system Σ. We make the
following assumptions:
Assumption A.1 All the signals in the system are periodic with
fundamental period T and belong to the space

L2[0,T ):={x : [0,T )→R
q| ‖x‖2 := 1

T

∫ T

0

|x(τ)|2dτ <∞},

where ‖ · ‖ is called the rms value of x and | · | is the Euclidean
norm.
Assumption A.2 The source is ideal, in the sense that vs(t)
remains unchanged for all loadsΣ.

Assumption A.1 captures the practically reasonable scenario
that the system operates in a periodic, though not necessarily
sinusoidal, steady state regime. This is the case of the vast
majority of applications of interest for the problem at hand.
Assumption A.2 is tantamount to saying that the source has no
impedance and is justified by the fact that most ac apparatus
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operate at a given voltage, with the actual drained current being
specified by the load.

The presence of distorted signals, in this case the current is(t),
has the deleterious effect of reducing the power transmission
efficiency. Let us discuss how this happens. The rated power of
the source is the product of its maximum deliverable rms voltage
and current. On the other hand, the average (or active) power
delivered by the source is defined as

P :=< vs, is >, (1)

where < vs, is >:= 1

T

∫ T
0

v>s (t) is(t) dt denotes the
inner product in L2[0, T ). From (1) and the Cauchy–Schwarz
inequality [1] we have

P ≤ ‖vs‖‖is‖ =: S,
where we have defined the apparent power S. From the inequal-
ity above we conclude that, under Assumption A.2, S is the
highest average power delivered to the load among all loads that
have the same rms current ‖is‖. The identity holds if and only
if vs(t) = Ris(t) for some unitary matrix R ∈ R

q×q , that is
R
>
R = Iq . If this is not the case P < S and compensation

schemes are introduced to reduce this mismatch. That is, to
maximize the ratio P

S
—that is called the power factor (PF) [2].

A typical compensation configuration is shown in Fig. 2
where, to preserve the rated voltage at the load terminals the
compensator Σc is placed in shunt. Also, to avoid power
dissipation,Σc is restricted to be lossless, that is,

< v, ic >= 0, (2)

where ic(t) is the compensator current and we notice that
vs(t) = v(t). Given these restrictions, and under the standing
Assumption A.2, the problem of maximizing P

S
admits an equiv-

alent reformulation, which has a simple geometric interpretation
and an explicit solution. First, referring to Fig. 2 we notice that
the compensator losslessness condition (2) translates into

< v, is >=< v, i > . (3)

Second, if Σ and v(t) are fixed then i(t), and consequently P ,
are fixed. Hence:

maximizing P
S

with lossless compensators is equivalent to
minimizing ‖is‖ subject to the constraint (3).
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Fig. 1. Circuit schematic of a polyphase ac system.
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Fig. 2. Typical compensation configuration.

The optimization problems above are rather unprecise and
considerations on the actuator are required for their clean for-
mulation. Two types of compensator devices are available in
practice, circuits with energy–storing components or regulated
current sources—also called “with or without energy storage” in
the circuits literature.

II. Lossless Shunt Compensation: A Cyclo–Dissipativity
Condition

In this section we consider the use of lossless shunt elements
for PF compensation and assume that Σc can be represented
with its admittance operator Yc : v → ic. From the Projection
Theorem [1] we have

Fact 1 Fix v(t), i(t). Among all currents is(t) that satisfy the
constraint (3), the one with minimal rms value ‖is‖ is given by

i?s(t) =
< i,v >

‖v‖2 v(t), (4)

which is known in the literature as Fryze’s current [3].

Hence, from Fact 1 and ic(t) = is(t) − i(t) it is clear that any
lossless operatorYc that solves

< i,v >

‖v‖2 v(t)− i(t) = (Ycv)(t),

for the given i(t),v(t), is optimal. In spite of its apparent
simplicity, it is not clear to these authors how to use this “data–
interpolation” relationship in a practically meaningful way.

From the previous Section we have that the PF compensation
problem is mathematically equivalent to the problem of mini-
mization of ‖is‖ subject to the constraint (3). From

‖is‖2 = ‖i‖2 + ‖ic‖2 + 2 < ic, i >,

it is clear that a necessary condition to reduce the rms value of
is(t) is

< ic, i >< 0. (5)

It turns our that the latter condition and the restriction
of compensator losslessness can be nicely captured using the
concept of cyclo–dissipativity and its associated abstract energy1.
In our previous work [9]–[12] we used the more restrictive notion
of passivity and the actual electric and magnetic energies that,
unfortunately, impose extremely conservative conditions.
Roughly speaking, the key advantages of cyclo–dissipativity are
that it restricts the set of inputs of interest to those that generate

1Dissipativity theory has been extensively investigated by the control
community in the last few years, see the books [4]–[6] or the recent survey
papers [7], [8] for an extensive list of references.

periodic solutions—a feature that is intrinsic in PF compensation
problems—it furthermore deals with “abstract” energies.

Definition 1 [13] Assume a dynamical system, with input
u ∈ L2[0, T ) and output y ∈ L2[0, T ), admits a state–
space representation with state vector x ∈ X . The system is
cyclo–dissipative with respect to the supply rate w(u,y), where
w : L2[0, T )× L2[0, T )→ R, if and only if∫ T

0

w(u(t),y(t))dt ≥ 0

for all u : [0, T ) → L2[0, T ) such that x(T ) = x0 where
x(0) = x0. It is said to be cyclo–lossless if the inequality holds
with identity.

In words, a system is cyclo–dissipative when it cannot create
(abstract) energy over closed paths in the state–space. It might,
however, produce energy along some initial portion of such a
trajectory; if so, it would not be dissipative. On the other hand,
every dissipative system is cyclo–dissipative. As an example,
(possibly nonlinear) RLC circuits with input and output their
port currents and voltages, respectively, are cyclo–dissipative
with supply rate w(u,y) = u>y provided that all resistances
are passive2. Notice that we do not assume the inductors and
capacitors are passive—that is, that their stored energy is non–
negative—if so, the circuit is in addition passive.

It has been shown in [13] that, similarly to dissipative systems,
one can use storage functions and dissipation inequalities to char-
acterize cyclo–dissipativity provided we eliminate the restriction
that the functions—called virtual storage functions—be non–
negative and they are only required to be bounded (from above
and below).

Theorem 1 [13] A system with state representation is cyclo–
dissipative iff, for all x ∈ X which are both controllable and
reachable, there exists a virtual storage function φ : X → R.
That is, a function that satisfies

φ(x0) +

∫ T

0

w(u(t),y(t))dt ≥ φ(x1)

for all u ∈ L2[0, T ) such that x(0) = x0 and x(T ) = x1.

We are in position to formulate the PF compensation problem
in terms of cyclo–dissipativity—a paradigm that we propose for
future study.

Definition 2 (Cyclo–dissipasivation) Consider the system of
Fig. 2. Assume the loadΣ is described by its admittance operator
Y : v → i and it admits a state–space representation. Find a
compensator with admittance Yc : v → ic and a state–space
representation, such that

(i) Yc is cyclo–lossless with supply rate v>ic,
(ii) The overall system with input v and output col(i, ic) is

cyclo–dissipative with supply rate −i>ic.

A first step toward the solution of this general synthesis
problem is to consider that the (lossless) compensator is given

2This fact that can be easily proven using Tellegen’s Theorem [17].



and we investigate under which conditions on the load the cyclo–
dissipativity property is satisfied, that is, we want to characterize
classes of loads for which it is possible to improve the PF with a
given compensator.

III. Compensation with LTI Capacitors and Inductors
and Load Cyclo–Dissipativity

Let us consider first capacitive compensation, for which we
have, Yc = Ccp, where Cc = {Cij} ∈ R

q×q, Cij ≥ 0 is the
capacitance matrix and p = d

dt
, then the necessary condition for

PF compensation (5) becomes

< i,Ccv̇ >≤ 0 ⇔ <
˙̂
i,Ccv >≥ 0, (6)

where we have used the property < ẋ,y >= − < x, ẏ >,
which holds for all periodic signals x,y. Let us assume that the
load admits a state representation. If the voltage sources are in
series with inductors the elements of i qualify as state variables,
that is, x = col(i, χ), with χ ∈ R

n−q denoting the remaining
state variables. The dynamics of the load is then described by

ẋ = f(x,v) =

[
fi(x,v)
fχ(x,v)

]
, (7)

where fi(x,v) ∈ R
q . We can state the following:

Fact 2 Consider the nonlinear polyphase loadΣ, with port vari-
ables (v, i), and dynamics (7). If the PF can be improved (for all
periodic, possibly non–sinusoidal, vs) with shunt LTI capacitors
then there exists a matrix Cc = {Cij} ∈ R

q×q, Cij ≥ 0
such that the system with output y = C

>
c fi(x,v), is cyclo–

dissipative with supply rate y>v. That is, the system is cyclo–
passive.

The fact above indicates that cyclo–dissipative loads (in the sense
defined above) constitute an extension, to the nonlinear non–
sinusoidal polyphase case, of the so–called inductive loads. This
characterization takes a particularly simple form for single–phase
loads, i.e., (6) is equivalent to

<
˙̂
i, v >≥ 0, (8)

establishing that:

If the PF can be improved (for all, possibly non–sinusoidal, vs)
with a shunt LTI capacitor then the single–phase load (possibly

nonlinear) is cyclo–dissipative (with supply rate v ˙̂i).

For inductor compensators Yc=L
−1
c

1

p
, with Lc = {Lij} ∈

R
q×q, Lij ≥ 0 the inductance matrix, and the inequality of

interest is < i,L−1
c

∫
v >≤ 0 ⇔ <

∫
i,L−1

c v >≥ 0,,
that admits also a cyclo–dissipativity interpretation—provided
the current sources have capacitors in parallel. As before, for
q = 1 the condition becomes <

∫
i, v >≥ 0.

For brevity, we restrict in the sequel to capacitor
compensation—a scenario which is very common since loads are
typically assumed to be dominantly inductive—for single–phase
loads, that is q = 1. Two questions arise immediately:

Q1 How can we characterize cyclo–dissipative loads? (that
is, loads for which (8) holds)

Q2 If PF improvement is possible, what is the optimal
value of the capacitance?

A solution to the second question is straightforward and well
known in the circuits community. Indeed, ‖is‖2 in this case
takes the form

‖is‖2 = ‖i‖2 − 2Cc < ˙̂
i, v > +C2

c ‖v̇‖2,
which is a quadratic equation in the unknown Cc and achieves
its minimum at

C?
c =

<
˙̂
i, v >

‖v̇‖2 . (9)

See also [3] for the polyphase case and some illustrative ex-
amples. Similar optimization problems for other reactive circuit
topologies have been studied in the circuits literature. See [14]
for an extensive treatment of the topic. However, there seems to
be many open problems, for instance in [15], [16], it is shown
that for parallelRL circuits the optimal solution corresponds to a
negative inductance and a switched series LC circuit is proposed
as an alternative option. To the best of our knowledge, no sys-
tematic study of this kind of optimization problem—that would
lead, among other things, to a better understanding of admissible
topologies and suboptimal solutions—has been carried out.

To explore question Q1, consider the following lemma

Lemma 1 Assume a (possibly nonlinear) RLC circuit, then the
cyclo–dissipativity of the circuit is independent of the average
steady–state behavior of the resistors. Moreover, inner products
for the resistive elements, either voltage or current–controlled,
are zero. Henceforth,

<
˙̂
i, v >=< vL,

˙̂
iL > − < v̇C , iC > . (10)

where the sub–indices L and C stand from the voltages and
currents at inductive and capacitive elements, respectively.

Even though resistors voltages and currents do not explicitly
appear in the average supply rate (10) it is clear that they play a
role in the overall voltage and current distributions. To unveil the
role of the resistors on the cyclo–dissipativity property we define
the function

q(t) := v>L (t)
˙̂
iL(t)− v̇>C(t)iC(t),

in view of (10), we have 1

T

∫ T
0
q(t)dt =<

˙̂
i, v >. With a slight

modification to the construction proposed in [18] we can prove
the following interesting result.

Fact 3 Assume the inductors and capacitors are linear and pas-
sive and the circuit is topologically complete3. Then

q̇(t) = −2
[
˙̂
i
>

L v̇>C

] [
∇2G(iL) Γ

Γ
> −∇2F (vC)

] [ ˙̂
iL
v̇C

]
,

where Γ ∈ R
nL×nC is a constant matrix (with elements

(1, 0,−1)) determined by the interconnection between the in-
ductors and capacitors. G(iL) and F (vC) are the content and

3basically, this means that all current–controlled and voltage–controlled
resistors are in series with inductors and in parallel with capacitors,
respectively.



the co–content of the current–controlled resistors and voltage–
controlled resistors defined in [17].

Even though we have shown above that the resistors do
not intervene in the inner product < ˙̂

i, v > we see that
they contribute with sign–definite quadratic terms in the time
evolution of q(t)4. As pointed out in [18] the content and
co–content functions can be modified adding current and
voltage sources, which suggests a procedure to regulate q(t)
and henceforth modify the circuit cyclo–dissipativity. Current
investigation is under way to further analyze the properties
of this differential equation in some circuit configurations of
interest for PF compensation.
Fact 4 The cyclo–dissipativity condition <

˙̂
i,v >≥ 0 has

a clear energy interpretation for the case of linear L,C, but
possibly nonlinear resistors elements. We do not pursue any
further this topic here and only mention that for general nonlinear
RLC circuits [18]:

magnetic energy “much larger” than electrical energy⇒
cyclo–dissipativity with supply rate ˙̂i

>

v,

electrical energy “much larger” than magnetic energy⇒
cyclo–dissipativity with supply rate i>v̇

. IV. EXAMPLES

In this section we present a series of examples that illustrate
some of the points discussed in the paper. Example 1, taken
from [19], contains a nonlinear RLC circuit which—under some
conditions on the parameters—satisfies the cyclo–dissipativity
property (8) needed for capacitor PF improvement. The circuit of
Example 2 satisfies both cyclo–dissipativity properties, (8) and
(III), hence the PF can be improved with either a shunt inductor
or a shunt capacitor. At the other extreme, the circuit of Example
3 does not satisfy either one of the cyclo–dissipativity properties.
Finally, Example 4 (taken from [20]) presents a circuit, without
energy–storing elements, whose PF can be improved with a
capacitor. Hence establishing that cyclo–dissipativity does not
imply an order relation between the stored energies. In the
last three examples we compare the result of PF compensation
based on cyclo–dissipativity, with the well–known technique
of Budeanu, that we can summarize as follows. The following
definition of reactive power was introduced by Budeanu [21]

QB :=

N∑

n=1

V̂ (n)Î(n) sinφ(n), (11)

where V̂ (n) and Î(n) are the rms values of the n–harmonic of
the voltage and current respectively, withN ∈ Z+ the number of
harmonics of interest, and φ(n) is the phase angle difference of
the n–th harmonic. This definition is an attempt to generalize, to
the case of multi–frequencies, the classical definition of reactive
power for a single harmonic [22] given by

Q := V I sinφ,

with V, I the rms values of the voltage and current signal respec-
tively, and φ the phase angle difference.

4A similar quadratic form, but with a more complicated “matrix”, is
obtained for the case of nonlinear inductors and capacitors [18].

+ -
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Fig. 3. Nonlinear RLC circuit.

Since the Fourier transform is a linear operator, it follows
from Generalized Tellegen’s Theorem [17] thatQB in (11) obeys
power conservation, henceforth, the QB’s of different branch
elements of a circuit add up. This suggests a compensation
procedure based on the addition of an inductor or a capacitor
depending on whether QB > 0 or QB < 0, respectively.

Even though the deficiency of this approach has been widely
documented in the circuits literature, see for instance, [20], [23],
Budeanu’s technique enjoys a widespread popularity. (The prob-
lem with Budeanu’s reactive power definition essentially boils
down to the fact that negative and positive QB’s add up only if
they correspond to the same frequency.)

A. Nonlinear RLC circuit
Consider the nonlinear RLC circuit depicted in Fig. 3 with

linear elementsL,C andR2 and a nonlinear (current–controlled)
resistor R1 with characteristic function v̂R1

(iL). A state–space
representation of the circuit is given by

−L ˙̂iL = v̂R1
(iL) + vC − vS ,

Cv̇C = iL −
vC
R2

.

Take the virtual storage function candidate

φ(iL, vC) =
∫ iL
0
v̂R1

(i′L)di
′

L +
R2

2

[(
iL − 1

R2

vC

)2

+ i2L

]
,

which is obtained following the constructive procedure proposed
in [24]. It can be shown that the time derivative of φ is obtained
as

φ̇(iL, vC) =

[
˙̂
iL
v̇C

]>
A

[
˙̂
iL
v̇C

]
+
˙̂
iLvS , (12)

with

A =

[
−L 2R2C
0 −C

]
.

Notice that the symmetric part of the matrixA is negative semi–
definite under the condition

R2 ≤
√
L

C
. (13)

Thus, from (12) and Theorem 1, we can conclude that the
circuit is cyclo–dissipative with respect to the supply rate ˙̂iLvS
if L,C,R2 satisfy (13). Moreover, if R1 is passive, that is, if
v̂R1

(iL) is a first–third quadrant function, then φ ≥ 0 and
qualifies as a storage function, proving that the circuit is, in
addition, dissipative with supply rate ˙̂iLvS .

B. LTI series RLC with two cyclo–dissipativity properties
Consider the LTI series RLC circuit of Fig. 4, supplied with a

periodic voltage source

vs(t) = 360
√
2 sin(ω0t)+144

√
2 sin(3ω0t)+42

√
2 sin(5ω0t),
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TABLE I

VALUES OF THE LOAD VARIABLES FOR THE LTI SERIES RLC CIRCUIT.

Var. Uncomp. Shunt cap. Shunt ind. Comp. Budeanu
(Shunt ind.)

‖v‖ 390 V 390 V 390 V 390 V
‖i‖ 5.72 A 5.52 A 5.28 A 5.4 A
P 491.76 W 491.76 W 491.76 W 491.76 W
S 2233.04 VA 2155.09 VA 2059.51 VA 2107.44 VA
PF 0.2202 0.2281 0.2393 0.2333

where ω0 = 100π rad/s and R = 15 Ω, L = 0.0796 H and
C = 0.0212 mF.

For this circuit we have < v,
˙̂
i >= 282804.23, hence

the PF can be compensated using a shunt capacitor. The
optimal capacitor, given by (9), is C?

c = 7.952 µF, yielding
an improved power factor PF = 0.2281. Interestingly, the
cyclo–dissipativity condition < v,

∫
i >≥ 0 is also satisfied, in

fact, < v,
∫
i >= 2.59. Hence, the compensator system could

be a shunt inductor with optimal value

L?c =
−‖

∫
v‖2

<
∫
v, i >

= 0.5161 H,

yielding an improved power factor PF = 0.2393.
Budeanu’s reactive power (11) yields QB = −392.66 VAr, a

negative value that suggests that the load is capacitive. However,
as shown above the power factor can be improved either using
a shunt capacitor or a shunt inductor, so the load has no special
character: it is not inductive nor capacitive. Table I summarizes
the different values of the load variables, for the three compensa-
tion schemes illustrated in this example.

C. LTI series-parallel RLC load
The circuit depicted in Fig. 5 with

vs(t) = 220
√
2 sin(ω0t) + 70

√
2 sin(3ω0t),

ω0 = 100π rad/s, and R = 10 Ω, L = 0.2 H and C = 0.04 mF
does not satisfy either one of the cyclo–dissipativity conditions,
hence cannot be compensated with a capacitor or an inductor.

The cyclo–dissipativity conditions take the values < v,
˙̂
i >=

−84524.79 and <
∫
v, i >= 0.3629, therefore the power

factor cannot be increased using a capacitor or an inductor. On
the other hand, Budeanu’s reactive power is QB = 18.26 VAr
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Fig. 6. Circuit with a TRIAC controlled resistive load.

suggesting that the PF can be compensated with an capacitor
CB = 0.9211 µF. However, we can see in Table II that the
PF is degraded with the shunt capacitor, as it was predicted by
the cyclo–dissipativity analysis.

D. Circuit with a TRIAC controlled resistive load

This example shows that the implication that cyclo–
dissipativity implies some kind of order relation between the
stored energies is not true. Take the nonlinear circuit of Fig.
6 with a TRIAC controlled purely resistive load (R = 10 Ω)
operating in two different regimes: a purely sinusoidal and a
periodic source with fundamental frequency and third harmonic.
In both cases ω0 = 100π rad/s and the TRIAC firing angle
is α = π/2. The corresponding voltage vS and currents iS
for the sinusoidal and periodic cases, without compensation, are
depicted in Fig. 7.

Sinusoidal source: For vs(t) = 220
√
2 sin(ω0t) the cyclo–

dissipativity condition is < v,
˙̂
i >= 484000, which means that

a shunt capacitor can be used to improve the PF. The optimal
capacitor is obtained as C? = 0.101 mF, yielding an improved
PF of PF = 0.7919.

In this single–frequency example Budeanu’s analysis is con-
sistent with the (necessary) cyclo–dissipativity condition (<
v,
˙̂
i >= 484000) for capacitive compensation, and both yield

the same optimal capacitor compensatorCB = C? = 0.101mF.
Table III shows the variables values at the load terminals.

Periodic source: For vs(t) = 220
√
2 sin(ω0t) +

50
√
2 sin(3ω0t) we obtain < v,

˙̂
i >= 289000, hence the load

can be compensated with a capacitor whose optimal value is
C? = 0.0413 mF, yielding PF = 0.7258. It is important to
remark that if Budeanu’s reactive power (QB = 1567.14 VAr)
is used to design the capacitor the results would be: CB =
0.08923 mF and PF = 0.7014. So, the capacitor doubles the
previous value and the power factor is worse than in the no-
compensated case. Table IV summarizes the results obtained for
this example.

TABLE II
LOAD VARIABLES FOR THE LTI SERIES-PARALLEL RLC CIRCUIT.

Variables Without comp. Comp. Budeanu
‖v‖ 230.86 V 230.86 V
‖i‖ 2.28 A 2.31 A
P 52.0 W 52.0 W
S 526.3 VA 534.46 VA

PF 0.0987 0.0972
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Fig. 7. Voltage and current waveforms in the (uncompensated) circuit with
the TRIAC controlled resistive load.

TABLE III
LOAD VARIABLES FOR THE SINUSOIDAL CASE IN THE TRIAC EXAMPLE.

Variables Without comp. Comp. Cyclo–diss. Comp. Budeanu
‖v‖ 220 V 220 V 220 V
‖i‖ 15.55 A 13.89 A 13.89 A
P 2420.0 W 2420.0 W 2420.0 W
S 3422.39 VA 3056.02 VA 3056.02 VA

PF 0.7071 0.7919 0.7919

V. CONCLUDING REMARKS

The main contribution of the paper is the proof that a certain
cyclo–dissipativity property of the compensated load, namely (5),
is necessary for PF improvement. This important observation
suggests an analysis and compensator design framework based
on cyclo–dissipativity, which is a natural alternative candidate
to replace (standard) dissipativity for applications where we
are interested in inducing periodic orbits, instead of stabilizing
equilibria.

Although the framework applies for general polyphase—
possibly unbalanced—circuits, for the sake of clarity, we have
presented in some detail the problem of PF compensation with
LTI capacitors or inductors of single phase loads only. It is our
belief that the full power of the proposed approach will become
evident for polyphase unbalanced loads with (possibly nonlinear)
general lossless compensators, where the existing solutions are
far from satisfactory [3]. It is not clear at this point whether
this, unquestionably elegant, setting will yield practical solutions.
The main obstacle been that in this application very little is
known about the nature of the load—a piece of information that
is essential for a successful design. Also, it would be highly
desirable to formulate a clear parameter minimization problem,
in particular, for other circuit topologies and poly–phase loads,
where questions like compensator circuit complexity, existence
of the optimal solution and sub–optimality could be addressed.
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