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Robust Hamiltonian passive control for

higher relative degree outputs∗

Carles Batlle†, Arnau Dòria-Cerezo‡and Enric Fossas§

Abstract

We present an improvement of the well-know Interconnection and Damping
Assignment–Passivity-based Control (IDA-PBC) technique. The IDA-PBC method
is based on the Port-controlled Hamiltonian System description and requires the
knowledge of the full energy (or Hamiltonian) function. This is a problem because,
in general, the equilibrium point which is to be regulated depends on uncertain pa-
rameters. In this paper, we show how select the target port-Hamiltonian structure
so that this dependence is reduced. This new approach allows to improve the ro-
bustness for higher relative degree outputs, and, for illustration purposes, is applied
to a simple academic nonlinear system.
Keywords: port Hamiltonian systems, passivity-based control, robust control.

1 Introduction

Interconnection and Damping Assignment–Passivity-based Control (IDA-PBC) [9] is a
technique which applies passivity based control to dissipative port-Hamiltonian systems
(PHDS) [2].

As discussed in [2][5][6] (and references therein) a large class of physical systems of
interest in control applications can be modeled in PHDS framework. A general PHDS in
explicit form is described by

ẋ = [J(x) − R(x)]∂xH + g(x)u (1)

where x is the state in Hamiltonian variables, H(x) is the total energy of the system1,
J(x) = −JT (x) is the interconnection matrix and R(x) = RT (x) ≥ 0 the dissipation
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matrix. It is easy to see that PHDS are passive with port variables (u, gT (x)∂xH), and
storage function the total energy H .

The central idea of the IDA-PBC technique [9] is to, still preserving the PHDS struc-
ture, assign to the closed loop a desired energy function via the modification of the
interconnection and dissipation matrices. That is, the desired target dynamics is a PHDS
of the form

ẋ = [Jd(x) − Rd(x)]∂xHd (2)

where Hd(x) is the closed-loop total energy and Jd(x) = −JT
d (x), Rd(x) = RT

d (x) ≥
0, are the closed-loop interconnection and damping matrices, respectively. To achieve
stabilization of the desired equilibrium point we impose

x∗ = arg min Hd(x).

Equaling the open-loop and target closed-loop systems one gets

[Jd(x) − Rd(x)]∂xHd = [J(x) − R(x)]∂xH + gu. (3)

IDA-PBC techniques have been applied to a large class of physical systems, including elec-
tromechanical [1][10], mechanical underactuated [8], power electronics [4][11] and power
system [7] models. The standard way to solve (3) is to fix the matrices Jd(x) and Rd(x)—
hence the name IDA—and then solve the PDE for Hd(x). In general, solving the PDE is
a very complicated task, which can be somehow eased by a judicious chose of Jd and Rd.
Alternatively, one may try to fix Hd and solve the resulting algebraic equation for Jd and
Hd. In any case, once the target system is obtained, asymptotic stability of x∗ follows
from Rd ≥ 0 and the application of LaSalle’s theorem to Hd, since the interconnection
matrix does not contribute to the total energy variation and thus

Ḣd = −(∂xHd)
T Rd∂xHd ≤ 0,

and x∗ is an invariant set of the closed loop dynamics.
Robustness of passive controllers for a relative degree one output is easily solved using

an integral term by means a dynamical extension, see Section 2. But the problem remains
open for higher relative degree outputs, because the dynamical extension breaks the skew-
symmetry property of the Jd matrix. In [3] a generalized canonical transformation of port
Hamiltonian systems is used to obtain an integral control system.

In this paper we present a new strategy for the design of robust controllers using the
IDA-PBC approach. Robustness is achieved removing the unknown parameter depen-
dence from the control law. A nice feature is that the desired dynamics is obtained fixing
a part of the Hamiltonian function and then solving a simpler PDE equation. This trick
was also applied for a complex system solving the IDA-PBC matching equation in [7]. We
illustrate the main idea for a class of simple systems, although generalizations to a wider
class of systems will be presented elsewhere.

The paper is organized as follows. Section 2 discusses the main limitation of integral
action for higher relative degree outputs. Section 3 presents the main contribution of this
work, a general result for designing robust controllers based on the IDA-PBC technique.
In Section 4 the method is applied to a nonlinear example. Section 5 shows some numerical
simulations of the obtained controller. Further dynamical studies of the closed-loop system
are presented in Section 6, and finally Section 7 states our conclusions.



2 Discussion of the integral extension

In this section we explain why the integral term can be used in a PHDS framework for
relative degree one outputs. To expose the basic idea, consider a fully actuated control
system of the form

{

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) + g(x1, x2)u

(4)

where x1 ∈ R
n, x2 ∈ R

m and u ∈ R
m, and g is full rank. Assume the IDA-PBC technique

can be applied to (4) so that in closed-loop the system becomes2

(

ẋ1

ẋ2

)

=
(

Jd − Rd

)

(

∂1Hd

∂2Hd

)

with control law
u = g−1 ((Om×n Im×m)(Jd − Rd)∂Hd − f2) .

Under the stated assumptions, the x2 are relative degree one outputs. We can easily add
a dynamical extension to them by means of

ż = −a∂2Hd, (5)

where a ∈ R
m×m, see [3][12]. The whole closed loop system can be rewritten in Hamilto-

nian form as




ẋ1

ẋ2

ż



 =





Jd − Rd

0
aT

0 −a 0









∂1Hdz

∂2Hdz

∂zHdz





with a new Hamiltonian function

Hdz = Hd +
k

2
zT z.

The new controller is

v = u + g−1kaT z = u − g−1kaT a

∫

∂2Hdz.

Notice that (5) forces x2 = x∗

2
to remain a fixed point of the extended system.

The same procedure, when applied to the higher relative degree output x1, requires a
closed loop system of the form





ẋ1

ẋ2

ż



 =





Jd − Rd

0
b

−a 0 0









∂1Hdz

∂2Hdz

∂zHdz





where now a ∈ R
n×n and b ∈ R

m×n. The a term is used to force the equilibrium point x∗

1

of the output, while b is necessary to put the integral action into the control law. In this

2To simplify the notation ∂xs
is written as ∂s, where s is the subindex of x.



case stability cannot be proved using the PHDS properties, since the a, b terms break the
semi-definite positiveness of the dissipation matrix:

Rdz =





Rd

aT /2
−b/2

a/2 −bT /2 0



 .

Indeed, consider a matrix of the form

M =

(

A BT

B D

)

.

A simple application of Schur’s complement shows that if D = 0, then B 6= 0 implies
M < 0. In our case, this would mean a = 0 and b = 0, which makes no sense.

3 Robustness discussion

As discussed in the previous Section, it is not clear how to generalize the integral extension
for higher relative degree outputs in the PHDS framework. We present here a different
approach, which can be applied to a larger class of systems. Examples include the DC
motor, the electrical part of a doubly-fed induction machine or the buck power converter.

Consider a dynamical system of the form
{

ẋo = fo(xo, xu, ξ)
ẋu = fu(xo, xu) + g(xo, xu)u

(6)

where xo ∈ R
o are higher order relative degree outputs, xu ∈ R

u, u ∈ R
p are the controls

and ξ is an uncertain parameter. To simplify the presentation we consider p = u = o and
that g is full rank.

As a control target we fix a desired xd
o, which implies that the fixed point value of xu

is given by the following equation

fo(x
d
o, x

∗

u, ξ) = 0, (7)

and depends thus on the uncertain parameter ξ.
Applying the IDA-PBC technique, we match the system to the desired port Hamilto-

nian structure, where (Jd − Rd) is partitioned as

(

ẋo

ẋu

)

=

(

Jdoo − Rdoo −JT
duo − RT

duo

Jduo − Rduo Jduu − Rduu

) (

∂oHd

∂uHd

)

.

Each Jd·· and Rd·· represents the interconnection and dissipative terms of the Jd and
Rd matrices, respectively. This implies that Jdoo and Jduu must be skew-symmetric and
similarly Rdoo = RT

doo ≥ 0 and Rduu = RT
duu ≥ 0. Hence, the desired interconnection and

damping matrices are

Jd =

(

Jdoo −JT
duo

Jduo Jduu

)

, Rd =

(

Rdoo RT
duo

Rduo Rduu

)

.



Notice that we need a Hd such that ∂Hd|x=x∗ = 0 to obtain an equilibrium point in
x∗ = (xd

o, x
∗

u). Equaling the u rows of the IDA-PBC matching equation (3) the control
law yields

u = g−1 [(Jduo − Rduo)∂oHd + (Jduu − Rduu)∂uHd − fu] .

Since Hd is a free function, it is chosen so that ∂oHd does not depend on ξ (Notice
that x∗

u depends on it, equation (7)). In the same way, ξ can appear in ∂uHd through x∗

u,
which can be removed from the control law setting

Jduu − Rduu = 0,

and the robustified IDA-PBC control law is

u = g−1 [(Jduo − Rduo)∂oHd − fu] .

As we set Rduu = 0, again Schur’s complement shows that in order to keep the semi-
positiveness of Rd, we are forced to Rduo = 0, and consequently

u = g−1 [Jduo∂oHd − fu] . (8)

From the o rows of the IDA-PBC matching equation (3) the following equation must be
satisfied, were we fixed Rduo = 0,

fo = (Jdoo − Rdoo)∂oHd − JT
duo∂uHd

Selecting Jduo full rank,

∂uHd = −(JT
duo)

−1 [fo − (Jdoo − Rdoo)∂oHd] . (9)

Rewriting fo as
fo = A(x)∂oHd + B(xu),

and choosing (Jdoo − Rdoo) so that

A(x) = Jdoo − Rdoo,

the PDE (9) simplifies to
∂uHd = −(JT

duo)
−1B(xu). (10)

Notice that Jduo must be a function of xu only, Jduo = Jduo(xu). Fixing a part of the
Hamiltonian and then finding the rest of Hd solving the PDE was also proposed in [7].
Stability can be discussed, using LaSalle’s theorem. Dissipativity is assured if

Rdoo = RT
doo > 0.

This is equivalent to
A(x) + A(x)T < 0.

Notice that this condition depends only on fo, irrespectively of u. Convergence to the
equilibrium point, defined by ∂uHd|x=x∗ = 0, follows from the condition

∂2Hd

∣

∣

x=x∗
> 0,

or, in other words,
∂u

(

−(JT
duo)

−1B(xu)
)∣

∣

x=x∗
> 0.

We can summarize this Section in the following Proposition.



Proposition 1 Consider a dynamical system given by (6), so that fo can be expressed
as,

fo = A(x)∂oHd + B(xu) (11)

where ∂oHd is a design function of xo such that

∂oHd(xo)|xo=xd
o

= 0

and
∂2

oHd(xo)
∣

∣

xo=xd
o

> 0. (12)

Then the control law
u = g−1 [Jduo(xu)∂oHd − fu] (13)

where Jduo(xu) is another design function of xu, is robustly stable in front of variations of
ξ as long as

A(x) + AT (x) < 0, (14)
(

−(JT
duo)

−1B(xu)
)∣

∣

x=x∗
= 0, (15)

and
∂u

(

−(JT
duo)

−1B(xu)
)∣

∣

x=x∗
> 0. (16)

Notice that condition (14) implies that the dynamics of the output variables xo is
dissipative, and this is the only dissipation of the closed-loop system (due to Rduu =
Rduo = 0).

4 Toy model example

Consider the toy model
{

ẋ1 = −x1 + ξx2

2

ẋ2 = −x1x2 + u
(17)

where ξ > 0 is an uncertain parameter and the desired output is fixed by xd
1
. Notice that

x1 is a relative degree two output.
The system (17) can be cast into PHDS form (1) with

J(x) =

(

0 x2

−x2 0

)

, R =

(

1 0
0 0

)

, g =

(

0
1

)

H(x) =
1

2
x2

1
+

1

2
ξx2

2
.

The control objective is to regulate, x1 to a desired value xd
1
. The equilibrium of (17)

corresponding to this is given by

x∗

2
=

√

1

ξ
xd

1
, u∗ =

√

1

ξ
(xd

1
)3. (18)



Using the IDA-PBC technique, also with the algebraic approach, we solve (3) with

Jd(x) =

(

0 α(x)
−α(x) 0

)

, Rd =

(

1 0
0 r

)

,

and

Hd(x) =
1

2
(x1 − x∗

1
)2 +

1

2γ
(x2 − xd

2
)2,

where α(x1, x2) is a function to be determined by the matching procedure and γ > 0,
r > 0 are adjustable parameters.

From the first row of the matching equation (3) one gets

−x1 + ξx2

2
= −(x1 − xd

1
) +

α

γ
(x2 − x∗

2
),

from which
α(x1, x2) =

γ

x2 − x∗

2

(ξx2

2
− xd

1
) = γξ(x2 + x∗

2
).

Substituting this into the second row of the matching equation

−x1x2 + u = −α(x1 − xd
1
) −

r

γ
(x2 − x∗

2
),

yields the feedback control law

u = x1x2 − γξ(x1 − xd
1
)(x2 + x∗

2
) −

r

γ
(x2 − x∗

2
). (19)

This control law yields a closed-loop system with (Jd, Rd, Hd), and which has (xd
1
, x∗

2
) as

a globally asymptotically stable equilibrium point.
Notice that the control law u (19) depends on xd

1
and x∗

2
, where x∗

2
is a function of ξ

(18) and hence the control law is not robust with respect to an uncertain ξ̂.
Let us apply the discussion of Section 3 to this example. In this case the xo output

variable is x1 and the xu variable is x2. First we fix ∂oHd as

∂oHd = x1 − xd
1

(20)

which ensures conditions (12) and (13). Then from (11), A(x) and B(xu) must be

A(x) = −1 B(xu) = ξ(x2

2
− x∗2

2
).

Notice that condition (14) is achieved.
The easiest choice for Jduo is a free constant, for instance k > 0, but for this nonlinear

example it is necessary to add a more complicated a(x2) function3. Then the final choice
is

Jduo = JT
duo = −a(x2)k

3The a(x2) function is included to avoid stability restrictions on the space-state. The same procedure
with a = 1 implies

∂
2
Hd|x=x∗ =

(

1 0

0 2 ξ

k
x∗

2

)

which is negative for x∗
2

< 0 and thus globally asymptotically stability is not achieved.



with k > 0 and

a(x2) =







1, x2 > 0
b, x2 = 0
−1, x2 < 0

(21)

where b ∈ [−1, 1] is a parameter that should be used to choose the equilibrium point of
x2, see Section 6. This selection ensures conditions (15)

1

a(x2)k
ξ(x2

2
− x∗2

2
)

∣

∣

∣

∣

x2=x∗

2

= 0

and (16),
(

1

a(x2)k
ξ(x2

2
− x∗2

2
)

)∣

∣

∣

∣

x2=x∗

2

> 0

Finally the controller obtained from (8) yields

u = x1x2 − ak(x1 − xd
1
). (22)

We can find the Hamiltonian function integrating ∂xHd (equations (10) and (20)) to
obtain

Hd = a(x2)
ξ

k
x2

(

1

3
x2

2
− x∗2

2

)

+
1

2
(x1 − xd

1
)2

which has two local minimum both in xd
1
. Hd is depicted in Figure 1, using the parameter

values of Section 5. Notice that two equilibrium points appear, namely

x∗

2
= ±

√

1

ξ
xd

1
,

and these points yield the same value for xd
1
. In the classical controller (19) this ambi-

guity did not appear, because we were fixing the desired value of x∗

2
, while in the robust

controller both fixed points of x2 are possible.

5 Simulations

Figures 2 and 3 show simulation results testing both controllers, the robust method pre-
sented above and the classic IDA-PBC. The parameters were ξ = 2 (actual), ξ̂ = 1
(estimated), with initial conditions x(0) = (0,−1.5) and the desired output is xd

1
= 2.

The control parameter for the robust control law was k = 10 and for the classical IDA-
PBC r = 1 and γ = 1 were selected. The robust controller achieves the desired value
of x1 even with a wrong parameter estimation, while the classical IDA-PBC controller
is sensible to the ξ variations. Notice that the variations of ξ̂ change the x∗

2
equilibrium

point.



Hd

Figure 1: Desired Hamiltonian function, Hd.
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Figure 2: Comparison between the robust method and the classic IDA-PBC, behaviour
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Figure 3: Comparison between the robust method and the classic IDA-PBC, behaviour
of x2.



Figure 4: State space; trajectory and vector field.

6 Study of the closed-loop dynamics

This subsection is focussed on the study of the dynamical behaviour of the controller
designed above. Fig. 4 shows the phase portrait of the closed–loop system (parameters
are taken from the simulations, Section 5). Two stable fixed points, x∗ = (2,±1), are
present. To select x∗

2
let us to write the system (17) with the feedback control law (22),

{

ẋ1 = −x1 + ξx2

2

ẋ2 = −ak(x1 − xd
1
)

The dynamics after reaching x2 = 0 there is described by

ẋ1 = −x1,

so x1 tends to x1 = 0, and simultaneously the x2 dynamics is

ẋ2 = −ak(x1 − xd
1
)

where k > 0 and a(x2) = b with b ∈ [−1, 1]. Notice that for x1 > x∗

1
, x2 = 0 is an attractor

set. For x1 < xd
1

and x2 = 0 the dynamics of x2 or b = 1 is increasing, while if b = −1 the
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Figure 5: Phase portrait of x for two different b values. b = 1 with a continuous line and
b = −1 with a dotted line.

dynamics of x2 decreases. In other words, for b = 1

lim
t→∞

x2 = +

√

1

ξ
xd

1

and for b = −1

lim
t→∞

x2 = −

√

1

ξ
xd

1
.

Fig. 5 shows a phase portrait of two different simulations, for b = 1 with a continuous
line and b = −1 with a dotted line. The behaviour is as expected in the discussion above:

for b = 1, x2 tends to +
√

1

ξ
xd

1
while for b = −1 x2 tends to −

√

1

ξ
xd

1
. In Fig. 6 the same

simulations are depicted in function of time. For numerical simulations, we modify a(x)
(21) as

a(x) =







1, x2 > ǫ
b, −ǫ < x2 < ǫ,
−1, x2 < ǫ

where ǫ > 0 is a constant, so that numerical errors do not bring the trajectory to the
wrong fixed point.
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Figure 6: Simulations for two different b values.

7 Conclusions

A modification of the IDA-PBC method which makes the controller robust with respect
to uncertain parameters appearing in the components of the vector field corresponding
to higher order relative degree outputs has been proposed. Carefully selection of the
interconnection and damping matrices allows the dependence of the controller in uncertain
parameters to be removed. This new approach has been applied to a simple toy model,
for which a robust controller has been designed and simulated.

Extending this idea, namely to improve robustness of IDA-PBC controllers via struc-
ture modification, to underactuated systems and to relax the conditions under which this
technique can be applied will be the object of future research.

The use of integral controllers in the IDA-PBC framework for higher order relative
degree outputs as a means of improving robustness is also under study.
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