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Abstract—The prevailing use of multicores in Embedded
Critical Systems (ECS) is multi-application workloads in which
independent applications run in different cores with data sharing
restricted to the communication between applications and the
real-time operating system. However, thread-level parallelism is
increasingly used, e.g., OpenMP, in ECS to improve individ-
ual applications’ performance. At the hardware level, we are
witnessing increased research efforts to master and improve
multicore cache coherence that plays a key role enabling efficient
data sharing among threads. Despite these efforts, the limited
information provided by performance monitoring counters on
cache coherence limits the understanding of coherence’s impact
on tasks execution time and hence, poses severe constraints
to estimate tight worst-case execution time bounds. In this
line, this work contributes with an analysis of the impact that
cache coherence can have on application timing behavior, and
a new set of low-overhead performance monitoring counters
that can be used to track the coherence-related contention that
different threads can cause on each other when sharing data. Our
results show that the proposed performance monitoring counters
effectively capture all coherence-related contention that tasks can
suffer and hence are key for parallel software timing validation
and verification in ECS. Furthermore, they help application
optimization by providing key information about data sharing
among the application threads.

Index Terms—Cache coherence, multicore real-time systems,
contention

I. INTRODUCTION

Multicores are acknowledged as the main hardware tech-
nology used to provide the required performance levels in
ECS. Multi-application workloads are the preferred approach
to exploit multicores so that independent applications can be
run simultaneously to increase hardware resource utilization.
Multi-application workloads exploit task-level parallelism: ap-
plications (tasks) are single-threaded and do not share data
with each other while they run simultaneously. Instead, data
sharing is restricted to communication between applications
through the real-time operating system at software partition
boundaries, i.e., the producer sends the data, finishes its
execution, and some time later, the consumer is executed
and reads the data [1]. However, the need to increase single-
application performance calls for exploiting thread-level par-
allelism (TLP): applications are parallelized into different
threads that run concurrently sharing data, which effectively
reduces the execution time of the application. As an illustrative
example, TLP has been exploited for 3D path planning and

stereo navigation across other safety-critical real-time func-
tionalities [31].

In this work, we focus on cache coherence hardware support
as the main building block to speed up data sharing. Several
works study the main challenges brought by data sharing in
ECS. While the original works advocate for limiting data shar-
ing [6], more recent works advocate for allowing data sharing
by modifying the cache coherence protocols [14] to ensure that
all accesses have predictable timing behavior. Unlike previous
proposals, we do not aim to change the coherence protocol
or limit data sharing to improve predictability. Designing and
validating efficient cache coherence protocol implementations
have overwhelming costs [21], and hence, changing those
protocols instead of keeping existing implementations can
introduce onerous costs. Instead, our work focuses on a cache
coherence monitoring counter infrastructure, called Remote
Protocol-Contention Tracking (RPCT), around those protocols.

We contend that the ability to understand the coherence-
related contention within the threads of an application and
across different applications provides a two-fold benefit. First,
it delivers key information about how coherence affects soft-
ware time predictability since tracking the end-to-end timing
of an application just reports whether a task violates its
assigned timing budget but does not allow to single out the
actual source (i.e., the particular other task(s)) behind the
software timing violation or whether it is related to coherence
contention at all. And second, the values reported by RPCT
provides insightful information about how threads of a given
application share data, which effectively can be leveraged by
the programmer to optimize parallel applications, through find-
ing (and reducing) coherence-related bottlenecks. In contrast
to RPCT, current event coherence-related monitors in cache
track at most coherence state transitions, which neither allows
diagnosing overrun causes, since they fail to track messages
with sufficient detail to estimate the actual contention caused
properly and its source [26], [22].

Our proposal, RPCT, tracks the contention experienced in
the buses for all coherence messages, as well as the contention
experienced by the coherence protocol itself, i.e., the responses
from remote cores (e.g., when a core requests data owned by
another core, the response is tracked as contention for the
originator).

The rest of this work is organized as follows: Section II
covers the main works on cache coherence in real-time sys-
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tems. Section III describes our system model and motivates
the need for tracking coherence-related cache contention.
Section IV describes our performance counter proposal to
track cache contention. Section V shows the results of our
proposal on various scenarios. Finally, Section VI presents the
main conclusions of this work.

II. BACKGROUND

While multicores can provide the required performance
of ECS, they bring several challenges for software timing
validation and verification including managing the access to
hardware shared resources among different cores ensuring
high performance and predictability. Cache memories are
acknowledged as one of the most complex resources to master,
with cache coherence being a major contributing factor to
cache’s complexity.

Multicores implement cache coherence protocols to preserve
data correctness. Most commercial-off-the-shelf (COTS) ar-
chitectures use cache coherence protocols based on the MSI
(Modified-Shared-Invalid) protocol [27]. Those protocols are
usually adaptations to optimize performance that inherit the
three fundamental states: Modified (M), Shared (S), and In-
valid (I); for instance, MOESI from AMD Opteron or MESIF
from Intel Xenon [15].

Several research works adopt an independent-task model in
which critical and non-critical tasks are not allowed to use
shared data by using strict cache partitioning [32] in shared
caches, or locking mechanisms [30]. These solutions come
with some limitations, being the most obvious one that they
disallow sharing data between threads, which consequently
disables all communications between threads of parallel tasks
running on different cores.

Recent works recognize these limitations and propose solu-
tions for data sharing. We categorize these solutions as follows:

Cache bypassing [6], [3] simplifies enormously the data-
sharing problem since it removes coherence issues. These
benefits come with the cost of a deteriorated performance in
the average case.

Data-aware scheduling [5], [11], [12], [25] adds data-
awareness to the task scheduler to avoid data interference. This
is done by either scheduling sharing-data tasks to the same
core, scheduling so sharing-data tasks do not run in parallel
(i.e., in line with ARINC 653 [1]), or using performance
monitoring counters to take data-wise scheduling decisions
that mitigate the data sharing effects.

Cache coherence [14], [28], [17], [29], [13], [19], [18],
[16] solutions advocate for using cache coherence protocols
that handle each data-sharing operation’s correctness, resulting
in better average performance than bypassing the cache. The
main issue with cache coherence is the notably high worst-case
memory latency and the unpredictability caused by coherence
interference. The works in this area propose protocols that
improve predictability (required for critical real-time systems).
The first of these works is [14], which takes MSI protocol
as a baseline, finds all possible unpredictable scenarios, and
proposes modifications to fix them, creating PMSI. The other

works are based on PMSI (or later versions), and extend it to
more complex protocols or propose significant improvements.
Still, coherence protocols are hard to validate and must un-
dergo expensive validation processes [21], and thus, are not
yet adopted by COTS processors. Another work, PISCOT [16],
has been proposed to use conventional coherence protocols;
however, it still requires modifications to the interconnect to
ensure predictability.

Real Boards. Recently works have studied the coherence
support in real boards undergoing avionics certification [23].
A first work [26] analyzes the coherence between the different
e6500 clusters of the NXP T4240 processor (each cluster
has the same architecture as that in the NXP T2080) and
concludes that it actually implements MESIF instead of MESI,
as specified in the e6500 technical reference manual [9]. A
second work [22] analyzes the accuracy of cache-coherence
related event monitors in the T2080.

In this work, we propose adding monitoring counters
to track coherence interference, improving the predictability
without needing a modification in the cache coherence proto-
col nor the scheduling.

In line with the previous state of the art for coherence
protocols in ECS, we focus on MSI, which includes the basics
of most coherence protocols. In MSI, each cache line of a local
cache can be in one of the three mentioned states. If a local
cache holds a cache line in M state, it means that the cache
owns the only valid copy of the cache line and, therefore, it
can be read and modified without restrictions. When the cache
line is in S state, it means that the local cache owns a valid
copy of the data, but it is also found on the next level of
cache and even might be in other same-level caches. While
in this state, the cache line can be read but not modified. The
last state is I, which means that the cache line is not valid,
and therefore it can neither be read nor modified. To modify
a cache line while in S or I state, the cache has first to send
a GetM coherence message to notify other elements having
that same cache line, so they invalidate their copy (potentially
copying it back if dirty). After that, the local cache receives
a confirmation (if coming from S) or the cache line itself (if
coming from I), and changes to M state where it can write
on the cache line. Similarly, to read while in I state, the core
has to send a GetS coherence message to request a copy of
the cache line; the current owner or next level cache will send
the valid data, and upon receiving it, the state changes to S.
While in M state, the cache line can be invalidated by either
an eviction from the local cache or by an external GetM .
In that case, the cache line is sent to the next level cache (if
caused by an evict) or to the requestor (if caused by an external
GetM ). After that, the cache line is invalidated. Likewise, if
the message received is an external GetS, the cache line is
sent to the requestor, but after that, the state changes to S.
Also, if a GetM is received while in S state, the cache line
is invalidated and changed to I state.



TABLE I: Coherence-related monitors in the T2080

Event Monitor Description
L2SH L2 snoop hits
L2SP L2 cache snoop pushes
L2EX L2 externally generated snoop requests
L2SM L2 snoops causing MINT (Modified INTervention)
L2SS L2 snoops causing SINT (Shared INTervention)
L2RE L2 reloads from CoreNet
L2CN L2 control requests to core (e.g., back invalidates)
L2DR L2 data requests from L2 to core (data forwarding)

III. MOTIVATION

A. Monitoring Counters in Real Processors

In this section, without loss of generality, we focus on the
T2080, given its traction in the avionics domain [23]. The
NXP T2080 [10] comprises four e6500 cores [9], each with
its private instruction and data cache, while the L2 – the main
coherent point – is shared by the cores (see Figure 1).

The T2080 provides the event monitors related to coherence
shown in Table I. All these monitors allow for deriving
the coherence state transitions. However, they are not only
aggregated monitors, rather than per-core, but also they fail
to capture the time an application/thread is delayed due to
coherence by other applications/threads. That is, after an
application’s execution, the user can only read the execution
time of the application and the value of the coherence counters
above – along with other 100+ counters. The value of the
coherence counters is the result of aggregating the coherence
activity by all cores. This information does not allow ascribing
the coherence contention suffered by an application (or thread)
to any of its co-runners.

B. Contention Prediction Models

Multicore-contention prediction models usually focus on
the direct activity that the different contending cores generate
each other [20], [7]. This includes the accesses generated by
loads and stores and also the write-back activity the cache can
generate. However, they do not take into account coherence-
related contention.

The coherence-related activity affects threads of an applica-
tion A1 that share data. However, an independent application
A2 running in different cores to those used by A1 and sharing
no data with A1 can also be affected by coherence among
threads of A1. We illustrate this with an example in which we
focus on a 4-core multicore in which first-level data (DL1) and
instruction (IL1) caches are private per core and the shared L2
cache from which each core receives a subset of the ways of
the L2, see Figure 1. Section V provides further details about
the evaluation framework.

We run a given single-thread task (application), referred to
as analysis task or AT, in a given core and a two-threaded
contender application (also referred to as contender task or
CT) in two other cores. The CT always takes longer to execute
than the AT, and the simulation ends when the AT finishes its
execution.

We run the AT in isolation and in two multicore setups. In
the first one, non-shared (NS), the threads of the CT do not

L2

Control Bus

Data Bus

IL1

C0

DL1 IL1

C1

DL1 IL1

C2

DL1 IL1

C3

DL1

Fig. 1: Architecture model

share data. In the second one, shared (SH), the threads of the
CT share data. In both cases, the CT threads execute exactly
the same code, and the only difference is whether they access
the same or different data.

We create three application scenarios (APS1, APS2, and
APS3) with different types of operations (loads and/or stores)
and data sharing among the threads of the CT. Figures 2(a)
and (b) respectively show the execution time of the AT and
the slowdown it suffers w.r.t. its execution in isolation.

In APS1, the AT performs writes to a range of addresses that
does not fit in its DL1, causing dirty evictions. Both threads
of the CT also perform store accesses to a range fitting in
their respective DL1 caches. For APS1, in Figure 2, we see a
high slowdown when in the SH case caused by the increase
in coherence messages that are exchanged between the two
CT threads. With the messages from the CT using the buses
constantly, the AT suffers contention when accessing the L2
because the interface (bus) connects all cores, and the L2 is
busy sending data across both CT cores.

In APS2, the AT performs pairs of read and write operations
to a range of addresses that does not fit in its DL1. In
particular, the AT generates a load access followed by a store
access to the same address, requesting the data to the L2. Also,
since data is constantly being evicted from DL1 while dirty,
each access has to write back the cache line evicted to the L2.
Regarding the CT, the first thread performs load accesses and
the second thread performs store operations. The data footprint
of the CT threads fit in their DL1 caches. In APS2, we see
a slowdown that is caused by reasons similars to those for
APS1under the the SH scenario. The effect is less prominent
than for APS1 because AT requests to the cores-to-L2 bus
occur at a lower frequency, hence reducing both the absolute
and relative impact of CT induced interference.

In APS3, the AT and the CTs behave as in APS2, with
the only difference being that CT’s footprint does not fit in
DL1. In APS3, we see a counter-intuitive result where the NS
version incurs a higher slowdown than the SH version. The
main reason behind this behavior is that all CT accesses in
APS3 result in a miss in the DL1, causing accesses to the L2,
and on the SH version, these misses take longer to complete
since the data might be on the other cores’ DL1. This leads to
CT accesses occurring at a lower frequency in the cores-to-L2
bus and hence, lower contention.

Overall, these simple examples show that the coherence-
related activity of a given application affects other independent
applications with which it shares no data. In all three APS



0 25 50 75 100

APS1

APS2

APS3

Execution Cycles (Millions)

(a) AT’s absolute execution time

0.00 0.25 0.50 0.75 1.00 1.25

APS1

APS2

APS3

Slowdown

SH
NS
ISOL

(b) AT’s performance slowdown

Fig. 2: Motivation Examples

under the SH and NS setups, the CT threads perform the
same number of accesses to DL1 and L2, so loads and
stores hits/misses to DL1/L2 do not help in singling out the
variability observed in Figure 2(a) and (b).

This calls for tracking coherence contention so that its
impact can be properly tracked and attributed to the threads
causing it.

IV. PROPOSAL

Cache coherence contention can be categorized into two
main components: bus-access contention and protocol con-
tention. The bus-access contention might arise in the access
to the control bus (cbus) and the data bus (dbus). The protocol
contention captures coherence-processing, that is the delay
suffered by a request to a cache line due to the fact that this
cache line is shared with another core.

A differentiating feature of protocol contention compared to
other contention sources is that protocol contention affecting a
given core happens on the cache coherence messages it sends
and the messages and data other cores send on its behalf.
That is, a remote cache controller CCNj can carry out some
coherence activities to process an original request generated
from a different CCNi. To that end, CCNj can generate
messages that can suffer contention, which is to be ascribed to
the original request generated by CCNi and not to CCNj . We
refer to this as indirect protocol contention. Another source
of indirect protocol contention arises when CCNj answers
to the CCNi request, the response can create contention to
other messages being sent from CCNj , since it takes a slot
that could be used by other messages. RPCT is designed to
capture indirect protocol contention as shown in the following
sections.

A. Tracking bus-access contention

Bus-access contention happens regardless of whether cores
in the system share data or not. It occurs because these
cores compete to access the shared DL1-L2 bus to issue
memory requests, including control messages (control bus) and
data (data bus). In order to prevent collisions and starvation,
accesses to the bus are orchestrated using an arbiter. For
example, under round-robin arbitration, each core is granted
access to the bus in a fair manner. With round-robin contention
delays, the worst-case bus access contention any core can
suffer is the total latency to transmit one request from every
other core in the system before it can issue its own request,

having those contender requests the maximum request duration
in the worst case. Hence, contention delay is bounded when
there is a maximum duration to transmit a request [8].

B. Tracking protocol contention (RPCT)

We introduce RPCT in this section, which is illustrated
via several examples in Section IV-C. A particular hardware
implementation is presented in Section IV-D. RPCT assumes
that dbus/cbus requests include the ID of the initiator core.
Interestingly, interconnect specifications like the AMBA CHI
used in the ARM CNM [2] capture that information in one of
the mandatory request fields.

Under RPCT, the contention is tracked from the cores
generating it instead of the cores suffering it. That is, the
cache controller of the core owning the data (CCNj) starts
counting contention cycles suffered by a given core CCNi

when it receives a request (GetM or GetS) from CCNi.
Cycles are counted until CCNj sends the data to the L2 CCN
(CCNL2). Once the L2 gets the data, it starts a counter that
tracks the contention between the contender (the core that sent
the data, CCNj) and the requestor (the core that sent the
original request, CCNi), and will finish counting when the
data is sent to CCNi. If there is more than one requestor, both
the core that owns the data (CCNj) and the L2 will keep track
of the protocol contention suffered by all the requestors at the
same time. In this way, the core and L2 count the protocol
contention cycles for all the cores that are being delayed (e.g.,
CCNi, CCNk, etc.).

There might be multiple messages pending to be sent in
a given core (CCNj) to other cores (CCNi, CCNk, etc.),
corresponding to different data. In that case, an additional
source of contention is tracked being the contender, the core
that created the request whose message is being served (e.g.,
CCNi), and being the victim the core(s) whose message(s) is
delayed (e.g., CCNk). For instance, if CCN0 owns two cache
lines, and one is requested by CCN1 and another by CCN2,
CCN2’s request will have to wait until CCN1’s request is
solved. In this case, CCN0 will count the indirect protocol
contention caused by CCN1 on CCN2.

With RPCT, a core tracks not only the contention its
requests suffer but also the coherence contention among any
other pair of cores. Hence, it needs N2 counters per core since
each core can be tracking contention caused by any core on
any other core. The total contention can be obtained simply
by reading the counters in each core and aggregating them.

C. Illustrative Examples

In the figures used in this section, we draw an arrow from
the core generating a request to the owner core of the requested
data (i.e., holding the most recent version of the data for that
request). This is just a representation to ease understanding
since, in reality, messages are broadcasted to all cores and
the L2 controller via the bus. In these examples, we assume
no contention in the access to the data bus or the control
bus for the sake of clarity. As discussed in Section IV-A, bus
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arbitration contention simply adds to the protocol contention
shown in this section.

1) Baseline case: Figure 3 shows a scenario in which
CCN2 requests some data owned by CCN1. In cycle 1 CCN2

sends GetM on address @A. CCN1 starts processing this
request in cycle 2, sending a PutM on @A to the L2 controller
at the end of cycle 3. We assume 2 cycles is the time it
takes CCN1 to process the request. CCN1 follows in cycle
5 sending the data to the CCNL2. The data arrives at the
CCNL2 in cycle 7, which sends it to the CCN1 in cycle 8
(we assume 2 cycles processing time in the CCNL2).

Under RPCT, CCN1 starts counting contention on CCN2

from the time it receives the request until it sends the data
to the CCNL2, from cycle 2 to cycle 6 (5). CCNL2 counts
contention on CCN2 from the time it receives the data until
it sends it from cycle 7 to 9 (3). Hence, RPCT ascribes
contention experienced by CCN2 to CCN1 (8 cycles), and
is capable of splitting request delay between core contention
and L2 protocol processing delay.

2) Two requests to the same address: Figure 4 shows a
scenario in which CCN2 requests a piece of data owned by
CCN1, and CCN3 sends another request to the same address
few cycles later. In cycle 1 CCN2 sends GetM on @A.
CCN1 starts processing this request in cycle 2, sending a
PutM on @A to the L2 controller at the end of cycle 3. We
assume 2 cycles is the time it takes CCN1 to process the
request, as before. CCN1 follows in cycle 5 sending the data
to the CCNL2. In the meantime, CCN3 sends a GetM on
the same address in cycle 3. The data arrives to the CCNL2

from CCN1 in cycle 7 who sends it to the CCN2 in cycle 9
(we assume 2 cycles processing time in the CCNL2). CCN2

continues sending the data to the CCNL2 with a PutM
message and the corresponding data in cycles 11 and 13,
respectively. CCNL2 finally sends the data to CCN3 in cycle
17.

Under RPCT, in cycle 2 CCN1 receives the GetM for @A
from CCN2 and starts counting contention until the data is
sent at the start of cycle 6. In cycle 5 CCN1 also receives
the GetM for @A from CCN3 so it also counts contention
for CCN3 until data is sent. CCN3’s GetM is also received
by CCN2, which marks that the cache line has to be sent
later to CCN3. The L2 receives @A data in cycle 6 and starts
counting the contention caused by CCN1 to both requestors
(CCN2 & CCN3) waiting for the data @A until it is sent
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Fig. 4: Two requests to the same address from two cores.
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Fig. 5: Two requests to the different addresses.

to CCN2. Upon CCN2 receiving data in cycle 10, it starts
counting contention to CCN3, who had previously requested
it, until CCN2 sends the data @A to the L2. Finally, L2 counts
the processing time since it receives the data until it is sent
to CCN3 as contention caused by CCN2. Overall, RPCT
ascribes 5+ 3 = 8 cycles (from cycle 2 to cycle 9) of CCN2

contention to CCN1 and 2 + 3 = 5 (from cycle 5 to cycle
9) to CCN3; and 5 + 3 = 8 cycles (from cycle 10 to 17) of
CCN3 contention to CCN2.

3) Two requests to different addresses: Figure 5 shows a
scenario in which in cycle 1 CCN2 sends a GetM on @A that
is received by CCN1 (who holds @A) and starts processing
the request. In cycle 2 CCN3 sends a GetS on @B that is
snooped by CCN1 who holds the address. In cycle 4, CCN1

sends a PutM for the write-back of @A, which happens on
cycle 7. Then, L2 receives the data in cycle 8 and sends it
to CCN2 in cycle 10. In cycle 11, CCN1 sends the PutM
to write-back @B, which occurs few cycles later in cycle 14.
Finally, L2 sends @B to CCN3.

Under RPCT, CCN1 starts counting delay to CCN2 when
it receives the GetM for @A in cycle 2. At the end of cycle
2, CCN1 receives the GetS from CCN3. Since it is currently
handling CCN2’s request, CCN1 starts counting delay to
CCN3 on behalf of CCN2. Once CCN1 sends the @A data
to the L2, it stops counting CCN2 contention on CCN3 and
starts counting CCN1 contention on CCN3. When the data
@A is written-back to L2, CCNL2 counts contention from
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CCN1 (who sent the data) on CCN2 (who requested the data)
until the data is sent to the requestor (in cycle 10). This process
happens again in cycle 14 when CCN1 sends the data @B to
L2 and CCNL2 counts contention from CCN1 to CCN3 until
the data is sent to CCN3. CCN1 stops counting contention
to CCN3 when the data is sent in cycle 14. Overall, with
RPCT, CCN1 is ascribed 6 + 3 = 9 (from cycle 2 to cycle
10) contention cycles of CCN2. CCN3 contention is ascribed
to CCN1 (7 + 3 = 10 cycles, from cycle 8 to cycle 17) and
CCN2 (5 cycles, from cycle 3 to 7). CCN3 contention caused
by CCN2 is indirect protocol contention.

D. Implementation

Figure 6a shows the main cache-coherent related elements
of a cache controller. It comprises ➀ a simple logic to track
arbitration contention; ➁ a coherent request FIFO buffer (CR-
Buffer) that is part of the cache coherence controller (CCN )
and that keeps the coherence requests to be processed by the
core; ➂ a CAM-RAM to store requests whose contention
is being tracked; ➃ the control logic that enables/disables
the update of ➄ a set of auto-increment event monitors to
track protocol contention among any pair of cores. Note that
the arbiters in the cbus/dbus and the CRBuffer are part of
the CCN , while RPCT adds the CAM-RAM, enable/disable
logic, and RPCT counters (highlighted with light blue back-
ground). As described later, the additions to our proposal in
terms of hardware cost are relatively minor. In particular, the
CAM-RAM size and complexity are comparable to that of a
Miss Status Holding Registers (MSHRs) in caches, but access
only upon coherence requests, which occur far less often than
cache misses and requires less than 100 bytes per core. The
enable/disable logic has very low complexity, as highlighted in
Figure 6b, and also switches occasionally. Finally, the RPCT
counters require 64 bytes per core (in our 4-core multicore
reference architecture) only and a small logic for the auto-
incrementers (they are carry propagators, so far less complex
than an adder). The counters are also active a small fraction
of the time (e.g., 1 auto-incrementer active across all RPCTs
of all cores every 5 cycles if coherence contention is 20%).

Therefore, RPCTs incur less activity than the cycle counter of
a core.

The arbiter contention logic ➀ tracks dbus/cbus contention.
Basically, when the CCN has a request/data ready to be issued,
all the cycles it is delayed because the bus grant is given to
another core are accounted as contention from that other core
to the local core.

RPCT builds on a CRBuffer ➁ in the cache controller that
stores all coherence requests that are pending to be processed
(answered) by the core. Each entry of the CRBuffer stores the
ID of the core requesting the data, that in fact is the target
core to which the response is going to be sent (tgt), and the
address that it is requested. The requests in the CRBuffer are
processed in order of arrival; hence the top entry is referred
to as the request being processed (RBP). The interface logic
snoops the cbus/dbus, and if an address hits an entry in M
state or in a transient state where it is transitioning to M (for
example, IMD), the request is inserted into the CRBuffer with
the address, and the target core. At the same time, this inserts
a new entry to the CAM. Whenever a request reaches the top
of the CRBuffer, it becomes the RBP. Once the data for the
RBP is sent to the L2, the entry is removed from the CRBuffer
(and the CAM-RAM).

The request CAM-RAM ➂ stores those requests for which
this core is in charge of tracking coherence contention. The
CAM-RAM contains the requests in the CRBuffer and other
requests since, with RPCT, a core needs to track not only the
requests having it as the target (i.e., it needs to track indirect
protocol contention). The fields of the CAM-RAM are address
(key), 1 bit to indicate whether it is RBP, 1 bit to indicate if
the data is valid, a requestor N-bit vector indicating the other
cores that have requested the data, and a log2(NumCores)
field indicating the target core of the address in that entry
of the CAM-RAM. In terms of operation, every time that a
cache line in M state or in a state that will eventually be in M
(IMD, . . . ) receives a request (GetM or GetS), which adds an
entry to the CRBuffer, the system adds it to the CAM-RAM,
puts the requestor as the Target and sets its requestor bit to
1. If another request is received for an address that is already
found on the CAM-RAM, the system sets the corresponding



requestor value to 1. When the cache line data is sent to the
L2, the corresponding line is deleted from the CAM-RAM.

The operation of the CAM-RAM in the L2 cache controller
varies a bit as it needs an additional field, called source,
indicating the ID of the core sending the cache line, which
will be used as the aggressor in the case where a core is
redirected as the local core ID.

Note that a small CAM-RAM (e.g., 8-16 entries) can satisfy
all the coherence requests generated by load/store requests in
general since, for instance, the Arm A53 core – commonly
used in processors in ECS that are undergoing a certification
process, like the Zynq UltraScale+ [34], [33] – allows a
maximum of 3 loads in flight (store-related information is not
revealed).

RPCT uses a set of event counters ➄ that can either be
incremented (by 1) or remain unaltered every cycle 1. Concep-
tually, they are incremented while some condition holds (i.e.,
a specific core causes coherence contention to another core).
Since such condition may hold for a number of consecutive
cycles, the event counters are implemented as auto-incrementer
counters where they are incremented by 1 every cycle as long
as a specific control signal is high and remain unaltered if
such signal is low. Hence, such control signal is an extra bit
stored along with each counter. Overall, there is an array of
16 (NumCores ×NumCores) 32-bit counters (64 bytes in
total for 4 cores), each one with its auto-increment control
bit. From these 16 counters, up to 6 can be turned on in the
same cycle for cores and up to 8 for the L2 cache due to the
different casuistic.

RPCT comprises a logic ➃ that, upon a change of the RBP
or the entries of the CAM-RAM, updates the NumCores ×
NumCores enable signal for the auto-incrementers. As
shown in Figure 6b, such logic ➃ is relatively simple and
mainly combines the new RBP and current requestors to
determine the auto-incrementers to be enabled. Gate-level
description of the logic is omitted due to space constraints.
The outputs of the logic follow that if one request is valid and
is the RBP, the local core (which in Figure 6b is represented
for C0 2) is delaying all the requestors; if the request is valid
but it is not RBP, the delay of all requestors is assigned to the
current RBP target (which in Figure 6b is the RBP target is
C2). Note that in the left part of the figure each dot represents
an one-bit OR operation. Also, as shown in the right side of
Figure 6b, this logic is replicated for each entry in the CAM-
RAM, and each of the 16 outputs from each logic is ORed
with their correspondents from the other entries to generate a
total of 16 outputs that go to each of the 16 auto-incrementers.

If a snoop of the bus (GetS/GetM) results in a hit to
the CAM-RAM, then a new requestor might be added, and
therefore, it can start a new auto-incrementer. This modifies

1RPCT event counters are simpler than that regular event counter as the
latter can be increment every cycle from 0 to N where N relates to the event
tracked like the number of instructions committed in a cycle, flushed on a
branch misprediction, ...

2From now on, we refer to cores (Cx) instead of cache controller in the
core (CCNx) for the sake of simplicity.

TABLE II: WWWW sharing data fitting in DL1 (106 cycles).

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 0.0011 43.20 41.39 24.00 0.9002 7.19 7.30 7.79
C1 24.00 0.0001 43.20 41.39 7.80 0.9000 7.20 7.30
C2 41.39 24.00 0.0001 43.20 7.29 7.80 0.8999 7.20
C3 43.19 41.39 24.00 0.0001 7.19 7.30 7.80 0.90

at most one entry of the CAM-RAM and, at most, one auto-
incrementer.

Whenever the RBP in the coherence logic is fully processed
and removed from the CRBuffer, the next entry becomes the
RBP. This causes that all auto-incrementers have to be reset
again since changing the RBP implies changing the victims
or aggressors in the cases described above. This modifies at
most two entries of the CAM-RAM (one entry is removed,
and another one is set as RBP), but has the potential to modify
several auto-incrementers (up to 12 on the corresponding core
and all 16 in the L2).

It is worth noting that the main building blocks of RPCT
are not impacted when other cache protocols are used. What
really changes is the control logic to determine which control
messages to allocate and when to allocate and deallocate
entries on the CAM-RAM. Hence, even when protocols are not
fully predictable [14], RPCT can still be used to help discern
how cores affect each other in terms of cache coherence.

V. RESULTS

We use the Gem5 [4] open-source modular platform widely
used for computer-system architecture research, encompass-
ing system-level architecture as well as processor micro-
architecture. We focus on Ruby, which implements a detailed
simulation model for the memory subsystem of Gem5. We
model a system with 4 cores with local instruction and data
caches. Both are connected to the shared L2 cache. The
interconnection is split into two buses, the control, and the
data bus, which buses use round-robin arbitration (see Figure
1). For the coherence, we implemented a cache coherence
snooping MSI protocol in Ruby with no core-to-core transfers.

We use benchmarks from Splash-3 [24], which is a suite
of parallel applications to facilitate the study of centralized
and distributed shared-address-space multiprocessors. In this
work, Section V-B analyzes RPCT counters on the Splash-
3 benchmarks first in isolation and later against synthetic
contenders.

We also use synthetic benchmarks, Section V-A, that have
a sustained behavior during their execution and for which
we have information about their usage of cache and data
sharing. This allows us to have an informed guess of how
cache coherence contention affects each other and hence, the
actual cache coherence contention breakdown. In particular
we use the Write (W) and the Read (R) benchmark generate
one million load and stores, respectively; and the Both (B)
benchmark that generates one million load-store pairs to the
same position. Each of these benchmarks can be set to share
data or use a disjoint set of data. The data size of the
benchmark can be varied to force it to fit or not fit in L1.



TABLE III: BB (C2&C3) sharing data and fitting in L1 (106

cycles).

(a) CT: WW (C0&C1) not sharing data fitting in DL1.

RPCT Arb. Cont
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 0 0 0 0 0 0 0 0
C1 0 0 0 0 0 0 0 0
C2 0 0 24.99 53.98 0 0 4.99 13.99
C3 0 0 53.99 25.00 0 0 17.99 8.99

(b) CT: WW (C0&C1) sharing data fitting in DL1.

RPCT Arb. Cont.
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 0 96.31 0 0 3.66 8.99 6.33 11.33
C1 93.31 0 0 0 11.99 0.33 7.66 15.99
C2 0 0 30.99 60.32 6.33 9.99 7.66 9.99
C3 0 0 63.64 24.99 3.99 4.00 7.99 8.99

In the result tables in this section, we report the cycles
of protocol contention each core in the column ascribes to
the core in the row as produced by RPCT. We also provide
the arbitration contention cycles. All values are reported in
millions of cycles.

A. Detailed Analysis of specific scenarios

1) WWWW: All tasks write to the same memory address,
which is shared among all cores. Since we model round-robin
arbitration and all cores are aggressively trying to access the
same cache line, the requests always get sent in the same order
(as if we had TDM arbitration) [8]. In this experiment, when
a core receives the data (e.g., C1), one or two other cores will
already be waiting to receive that same piece of data (e.g.,
C2 and C3), so the current core (C1) carries out the store
operation and sends the data to the L2 for the next requestor
to take it. During this process, the core might receive another
request from the core that owned the data previously (e.g.,
C0). Hence, in terms of coherence contention, each core will
be delaying mainly two cores (the ones that will always be
waiting for the data once the core receives it) (e.g., C2 and
C3), and then it will also delay the third core (e.g., C0), which
is the last one to get the data because it will send the request
during the store process.

With RPCT, protocol contention is distributed, matching the
real contention from these sequential accesses. For instance, in
Table II, we can see that C0 (column) is delayed by C3 (row),
but it assigns only around 40% of the contention (40% ≈
43.19/(43.19 + 41.39 + 24)). C2 also causes almost 40% of
the delay, and C1 causes the 20% remaining. Note that 40%
matches quite well what we expected since C0 will always
request the data while C1 is holding it and C2 and C3 are
already waiting for it, i.e., C0 will be delayed partially by the
access from C1 and completely by the accesses from C2 and
C3.

Arbitration Contention is shown in the right sub-table. We
see here that the requests from each core are mostly equally

suffering contention from all cores (except themselves), which
is expected in a homogeneous scenario like this one.

2) WWBB: In this case, the analyzed task (AT) is running
in two cores (C2 and C3) and sharing data, while the contender
task (CT) runs two threads in C0 and C1 respectively that share
data among them but not with the AT. This scenario, in line
with Section III, aims at illustrating the impact that coherence
can have on each other’s cache with different applications,
even if they share no data.

In this experiment, one CT thread reads data fitting its L1,
and the second thread writes data fitting its L1. If data is non-
shared, no coherence traffic is generated by the CT. If data is
shared, then coherence traffic is generated and is expected to
impact AT due to bus Arbitration Contention. Both cores from
the AT (C2 and C3) run a loop with read-write pairs sharing
data and have some contention between them, meaning that
they suffer contention from the other core when they send
the GetS request for the read. The other core is the current
owner of the data, which causes the cache line to move to S
state. Then the following write operation has to request the
ownership again to the L2 to switch to M state.

With RPCT, the delay to switch to M state is counted
as internal contention (since data is being accessed directly
from L2), which explains why in Table III we see C2 and
C3 suffering self contention. Table IIIb shows how, when the
contenders are sharing data, contention between C0 and C1

changes from 0 cycles in Table IIIa to more than 90M cycles
in both ways. This data sharing between CT makes AT delays
increase between 10% and 20%.

The arbitration contention is captured by the bus arbitra-
tion counters (rightmost sub-table), but the intrinsic message
transmission and data read activities are not included in RPCT
counters. With this, we observe two effects when moving from
non-shared to shared. First, the overall contention suffered
by cores C2 and C3 increases (e.g., from 13.99+8.99 to
11.33+15.99+9.99+8.99 for C3) due to the increased bus
activity due to CT coherence messages and data exchange.
Second, contention experienced by the AT is now caused by
all cores rather than by AT ones only (e.g., C3 is affected by
C2 and C3 only in the non-shared CT case, and by all cores
in the shared CT case).

B. Splash-3 Isolation Results

We start by analyzing the benefits of RPCT for performance
analysis and optimization. To that end, we run each Splash-3
benchmark as a multi-threaded application using the four cores
of our reference architecture (each core runs one thread). We
show the insights about the application behavior provided by
RPCT, which we correlate to the known behavior of Splash-
3 applications. We group benchmarks that have very similar
behavior and show results only for one representative of each
group.
Intra: In this group we identify BARNES (Table IVa), FMM,
and RADIX. RPCT shows that all 3 benchmarks suffer high
intra-core protocol contention (i.e., from core Ci to core Ci,
see the top-left bottom-right diagonal) while the inter-core



TABLE IV: Protocol and aribtration contention for Splash-3 Benchmarks (106 cycles).

(a) BARNES

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 241.13 4.93 4.84 6.57 20.59 15.72 15.19 14.54
C1 4.56 227.30 4.50 3.49 15.53 17.96 15.06 14.42
C2 5.42 5.38 226.19 4.16 15.10 15.08 18.43 14.59
C3 6.53 3.36 4.20 217.03 14.45 14.48 14.55 16.83

(b) OCEAN-NC (base)

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 510.32 4.55 4.84 2.77 19.30 50.91 45.42 53.32
C1 3.05 508.77 1.06 2.71 53.01 19.06 49.60 43.68
C2 0.9551 4.40 507.39 3.09 45.81 50.07 19.77 51.27
C3 4.87 3.22 3.75 508.70 48.54 46.19 52.45 17.97

(c) OCEAN-C (Optimized)

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 164.57 24.96 3.06 21.14 12.81 15.05 16.18 15.84
C1 9.68 166.45 1.98 4.95 15.30 12.93 16.28 16.06
C2 1.54 5.93 164.85 6.79 15.88 16.20 12.23 15.20
C3 4.67 2.16 9.52 164.64 15.98 16.04 14.97 12.65

(d) RAYTRACE

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 836.21 4.66 0.81 0.78 167.35 6.27 6.48 6.64
C1 0.89 97.49 0.95 0.78 6.21 6.82 6.28 6.35
C2 0.83 3.01 100.75 0.80 6.42 6.29 6.91 6.59
C3 0.84 0.82 0.77 103.42 6.57 6.35 6.60 7.28

(e) WATER-NSQUARED (base)

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 37.55 0.03 0.02 0.01 6.70 1.02 1.01 1.02
C1 0.03 25.93 0.05 0.05 0.98 3.45 1.07 1.17
C2 0.10 0.11 25.72 0.00 0.97 1.09 3.43 1.10
C3 0.01 0.23 0.05 26.05 0.98 1.19 1.09 3.49

(f) WATER-SPATIAL (optimized)

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 67.96 2.71 0.03 0.01 8.61 2.41 2.41 2.48
C1 0.03 59.06 0.01 0.01 2.38 6.57 2.73 2.35
C2 0.05 0.04 58.46 0.00 2.38 2.75 6.40 2.43
C3 0.03 0.05 0.02 59.54 2.43 2.32 2.40 6.97

protocol contention from Ci to Cj is limited and evenly
distributed. For BARNES, RPCT shows how only a 6%
((total− diagonal)/total = 57/968 ≈ 6%) of the coherence
contention to each core is coming from external cores, i.e.,
around that 6% of the accesses to memory are answered by
other cores instead of coming directly from the next level of
cache. This occurs because BARNES divides a volume into
volumetric cells via octree, being cells treated individually (in
isolation in one core), with only the uppermost cell levels
requiring sharing data across cores. On the arbitration side,
we see that mostly all cores delay equally to each other
(between 20.59 and 14.45) because memory accesses from
cores are highly homogeneous in number and distribution over
time across cores. Overall, RPCT provides key information to
conclude that protocol contention is low and homogeneous, so
there is little margin for improvement.
C0: This group covers RAYTRACE (Table IVd), CHOLESKY,
FFT, and VOLREND. For these benchmarks, RPCT shows C0

suffers high protocol contention (see C0-C0 cells) due to high
initialization costs and/or serialized parts where other cores
stall. C0-C0 protocol contention is 3x to 20x higher than for
any other core (e.g., 8x for RAYTRACE). Similar trends are
observed in arbitration contention. Hence, RPCT also allows
us to conclude that the other cores almost do not share data
or share only clean (read-only) data, meaning that most of
the contention is intra-core, and we see almost no inter-core
contention. Overall, RPCT provides valuable information that
indicates that C0 is the bottleneck, not because of coherence
but because of poor load balancing across cores. A careful
analysis of the application behavior confirms our findings.
RAYTRACE generates rays from the viewport that bounce

on the objects in the scene. Each pixel in the viewport can be
parallelized since the only shared data is the scene, which is
used as read-only. Hence, data is mostly shared in S (Shared)
state, and therefore not causing high delays. Also, C0 has a
way higher intra-core contention, but this is caused by the
initialization of the data, which does not fit in the cache.
Optimized and Non-optimized groups: We find two bench-
marks with optimized and non-optimized (base) versions
respectively: OCEAN-C (Table IVc) and OCEAN-NC (Ta-
ble IVb) on the one hand, and WATER-SPATIAL (Table IVf)
and WATER-NSQUARED (Table IVe) on the other. For
OCEAN-NC, RPCT shows that only intra-core protocol con-
tention is high, whereas inter-core one is very low and
highly homogeneous, as for the Intra category. However, upon
optimization (see OCEAN-C), RPCT shows that intra-core
protocol contention roughly drops to 1/3 of the original one,
but the inter-core one increases noticeably. For instance, C1

inter-core protocol contention grows by 3x in absolute terms
and moves from being 2% to becoming 16% of the protocol
contention. Moreover, such contention is highly heterogeneous
across cores (e.g., C0 contention on C1 and C3 is particularly
high). Overall, RPCT provides accurate diagnostics that relates
contention to how the OCEAN-C benchmark data grids are
split and shared across cores and enable further optimizations.

Regarding WATER-NSQUARED (Table IVe) and WATER-
SPATIAL (Table IVf), RPCT shows that there is almost no
shared data between cores in both cases, causing a very
low inter-core contention. In fact, the algorithm calculates
the interactions between water molecules; since there is no
communication between the intramolecular computations, ex-
cept in the small number of accumulations to a global sum



TABLE V: Splash-3 Benchmarks against contenders (106 cycles).

(a) CHOLESKY-ISOL2

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 308.56 0.03 0 0 79.62 20.83 0 0
C1 0.05 223.45 0 0 20.72 52.09 0 0
C2 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0

(b) CHOLESKY-CT

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 333.33 0.02 0.00 0.00 49.51 6.84 21.99 22.01
C1 0.06 225.73 0.00 0 6.86 13.20 21.07 21.06
C2 0 0 0.01 1449.81 34.17 31.87 25.81 216.19
C3 0 0 1449.85 0.00 34.47 32.05 216.18 25.64

(c) LU-NCB-ISOL2

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 555.24 0.01 0 0 94.98 82.91 0 0
C1 0.01 576.05 0 0 82.81 101.17 0 0
C2 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0

(d) LU-NCB-CT

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 636.97 0.007 0.00 0.00 31.92 47.89 57.66 58.23
C1 0.01 602.90 0.00 0 48.25 28.88 53.90 54.81
C2 0 0 0.007 1114.62 83.60 80.22 12.07 119.22
C3 0 0 1114.01 0.00 85.96 81.71 120.15 10.55

(e) LU-CB-ISOL2

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 76.03 0.0252 0 0 22.54 3.25 0 0
C1 0.0372 72.12 0 0 3.27 21.36 0 0
C2 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0

(f) LU-CB-CT

RPCT Arb. Contention
Delayed Core

C0 C1 C2 C3 C0 C1 C2 C3
C0 80.78 0.02 0.00 0.00 5.50 1.14 7.58 7.60
C1 0.04 78.82 0.00 0 1.15 4.75 7.71 7.71
C2 0 0 0.01 591.49 12.23 12.51 9.46 89.99
C3 0 0 591.47 0.00 12.42 12.49 90.00 9.41

every time step, the problem size reduces the communications.
Although the WATER-SPATIAL is the optimized version, it
suffers approximately 2x intra-core contention w.r.t. WATER-
NSQUARED. The cause is that in WATER-SPATIAL, the data
is stored in a different and more complex data structure, which
reduces the computations needed in large cases. Still, in small
cases (such as the one in this execution), the data structure
has an overhead resulting in approximately double the con-
tention (both in RPCT intra-core and arbitration) caused by
a poorer data locality. This effect, while not increasing the
data accesses, decreases the L1 hits, consequently increasing
the L2 accesses. It is worth noticing that RPCT allows us
to see that, in the WATER-SPATIAL, differently to WATER-
NSQUARED, C0 generates non-negligible contention on C1

(around 4.5% of its total contention suffered).

C. Splash-3 vs. Contenders Results

In this experiment, we run a 2-threaded Splash-3 benchmark
using two cores alongside a 2-threaded contender application
in the other two cores with heavy data sharing among its two
threads. We compare the Splash-3 benchmark execution in
isolation using two cores (ISOL2) and then with the contender
application running on the other two cores (CT). The purpose
of this experiment is to show how RPCT captures contention
even among co-running applications that do not share data
among each other.

For CHOLESKY (Tables Va and Vb), we see an intra-
core contention increase. For instance, in the case of C0 it
increases from 308.56 to 333.33 (8% increase). This reflects
the increased latency to process coherence requests in the
L2 cache since, despite different applications do not delay

each other’s requests explicitly, they do it implicitly due to
resource hazards other than bus arbitration contention. Arbi-
tration contention globally increases due to the large number
of coherence requests of the contenders (i.e., accumulated
contention grows from around 100 to 125). However, intra-
core arbitration contention across threads of the application
under analysis decreases. The cause is that the arbitration
assigns slots to all cores, and if a core is attempting to send a
message during a given slot, it will wait for the arbitration for
the next slot, and this delay will be attributed to the last core
that used the bus. Since now contenders are constantly using
the bus, it is more likely that the contenders will use the bus
between accesses from the benchmarks, and hence, they are
the ones delaying benchmarks’ messages. Apart from this, the
arbitration contention complements the data from the RPCT
results showing where the increase in time comes from. For
example, C0 experiences around 25M (333.39 - 308.61) extra
cycles of delay when run against contenders, and looking into
the arbitration contention, we see a similar increase on the
C0 column from 100 to 125. If we further analyze the overall
execution times of the benchmarks, we see that it increases by
almost 31M cycles, which means that RPCT allows explaining
where 80% of that contention comes from. Note that without
RPCT, end users would lack the means to determine whether
contention is dominated by coherence contention or any other
source.

Finally, for both LU versions (Tables Vc, Vd, Ve and Vf) we
see again that RPCT values increase when the contenders are
running. Similar to CHOLESKY, we see that the arbitration
contention gets distributed, but the summation of each column



increases with the contenders, and the difference between
these values is very similar to the difference we see in
the RPCT counters, meaning that the arbitration contention
justifies the cycles increase in RPCT. In this particular case,
it is interesting that the counters allow us to see that the non-
optimized version of LU (LU-NCB) is more prone to suffer
arbitration contention than the optimized version (LU-CB)
since the relative contention increase between isolation and
against contenders is higher for the non-optimized version.
This is so because, for the non-optimized version, data blocks
are accessed in a non-contiguous manner, hence with higher
miss rates and additional cache coherence requests.

D. Benefits on Testing and Validation

Several techniques have been proposed to estimate the
worst-conten-tion delays in the accesses to hardware shared
resources, which are used as building blocks for multicore
WCET estimation. Tests can be built to add high load on a re-
source (e.g. the bus), checking with the proposed performance
monitoring counters whether the contention delay observed for
any request goes beyond the estimate made. The absence of
this scenario, together with an explanation of the experiment
carried out to cause high load on the bus, serves as additional
evidence on the correctness of the estimation to the worst-
case contention delay. The proposed performance monitoring
counters can also track the longest contention delay a request
from a given core can cause on others, which is fundamental
for the validation of WCET estimates.

VI. CONCLUSIONS

Embracing parallel applications in embedded critical sys-
tems requires providing some light on how cache coherence
protocols affect co-running applications (co-runners). Building
on the end-to-end execution time of co-runners and the use
of event counters related to coherence activity, we can track
the source of coherence contention. In this line, and unlike
previous works that either advocate for parallelism-limiting
solutions or propose new coherence protocols, we have shown
that cache-coherence related contention spans beyond the
threads actually sharing data, and we have proposed a new
cache-coherence specific performance monitoring counter in-
frastructure. We have shown how with low overhead our
proposal can track cache coherence, ascribing how threads,
either from the same or different applications, affect each
other. This helps to optimize parallel applications and is
required for multithreaded application timing validation and
verification.
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aware multicore real-time scheduler. IET Comput. Digit. Tech.,
11(4):133–139, 2017.

[13] Mohamed Hassan. Discriminative coherence: Balancing performance
and latency bounds in data-sharing multi-core real-time systems. In
32nd Euromicro Conference on Real-Time Systems, ECRTS 2020, July 7-
10, 2020, Virtual Conference, volume 165 of LIPIcs, pages 16:1–16:24,
2020.

[14] Mohamed Hassan et al. Predictable cache coherence for multi-core
real-time systems. In Gabriel Parmer, editor, 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2017,
Pittsburg, PA, USA, April 18-21, 2017, pages 235–246. IEEE Computer
Society, 2017.

[15] John L. Hennessy and David A. Patterson. Computer Architecture - A
Quantitative Approach, 5th Edition. Morgan Kaufmann, 2012.

[16] Salah Hessien and Mohamed Hassan. The best of all worlds: Improving
predictability at the performance of conventional coherence with no
protocol modifications. In 2020 IEEE Real-Time Systems Symposium
(RTSS), pages 218–230. IEEE, 2020.

[17] Anirudh M. Kaushik et al. CARP: A data communication mechanism
for multi-core mixed-criticality systems. In IEEE Real-Time Systems
Symposium, RTSS 2019, Hong Kong, SAR, China, December 3-6, 2019,
pages 419–432. IEEE, 2019.

[18] Anirudh M. Kaushik et al. Designing predictable cache coherence
protocols for multi-core real-time systems. IEEE Transactions on
Computers, 2020.

[19] Anirudh M. Kaushik and Hiren D. Patel. A systematic approach to
achieving tight worst-case latency and high-performance under pre-
dictable cache coherence. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 105–117. IEEE,
2021.

[20] Hyoseung Kim et al. Bounding memory interference delay in cots-based
multi-core systems. In RTAS, 2014.

[21] Yangdi Lyu et al. Directed test generation for validation of cache
coherence protocols. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 38(1):163–176, 2019.

[22] Roger Pujol et al. Empirical evidence for mpsocs in critical systems:
The case of nxp’s T2080 cache coherence. In DATE, 2021.

[23] David Radack et al. Civil Certification of Multi-core Processing Systems
in Commercial Avionics, 2018.



[24] Christos Sakalis et al. Splash-3: A properly synchronized benchmark
suite for contemporary research. In 2016 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 101–
111. IEEE, 2016.
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