
ASCOM: Affordable Sequence-aware COntention
Modeling in Crossbar-based MPSoCs

Jeremy Giesen∗†, Enrico Mezzetti†, Jaume Abella†, Francisco J. Cazorla†
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Abstract—Multicore interference that arises when several ac-
cesses contend for the same shared hardware resources poses
a challenge to the already demanding consolidated verification
and validation practice. The Sequence-Aware Pairing (SeAP)
model approach exploits the parallelism granted by crossbars
to derive tighter contention bounds. We show that SeAP suffers
from scalability issues that hinders its applicability to more
complex contention scenarios. We address SeAP limitations in
terms of scalability by identifying two complementary techniques
to reduce SeAP execution time requirements. We assess the
proposed approaches to show how they effectively enable the
application of SeAP to large sequences of accesses to the crossbar
with limited impact on tightness, and scaling gracefully with the
number of co-running cores.

Index Terms—Crossbar, multicore, contention, software timing
analysis

I. INTRODUCTION AND MOTIVATION

Deriving high-quality WCET [10] estimates is a challenging
task especially when facing the complexity of Multicore Pro-
cessor Systems on Chip (MPSoC). Massive hardware resource
sharing in MPSoCs is one of the main challenges to be
tackled before MPSoCs are fully embraced in high-integrity
systems [1], [2], [8], [9].

When analyzing the impact of contention, sequences of
requests from each core to the target Hardware Shared Re-
sources (HSRs) have been considered to model the parallelism
enabled by the crossbar when requests are sent to different
devices. The specific order in which requests are sent to the
devices allows to rule out infeasible contention scenarios.
The Sequence-Aware Pairing (SeAP) [3] approach builds on
precedence relation between accesses, which is a weaker
concept than timestamps, to rule out from contention modeling
those scenarios where requests from multiple cores to the same
HSR cannot happen in parallel, despite happening in the same
time window.

However, SeAP inherits the computational complexity of
the pattern-matching approaches it builds on, which is in the
worst-case exponential on the number and size of the consid-
ered sequences of requests [3], [4], [6]. Owing to the inherent
complexity, the use of SeAP on realistic multicore scenarios
(i.e., with more than 2 cores) can be challenging already with
sequences above 10.000 elements, while sequences from real
applications are expected to be in the order of 50.000 to
100.000 thousands elements for 10ms applications.

Contribution. We present Affordable Sequence-aware
COntention Modeling (ASCOM) to overcome SeAP inherent

complexity limitations so that it can be applied to sufficiently
large sequences. ASCOM enforces linearity on the contention
latencies as a way to enable a conservative pair-wise, com-
positional application of SeAP (COMP) and further reduces
computational complexity by segmenting the input sequences
in fixed size chunks (SEGM). We show how ASCOM bounds
the computational complexity to be quadratic on the input size
(instead of exponential) and delivers accurate results, incurring
only 9.68% average overestimation compared to SeAP. Hence,
ASCOM enables sequence-aware contention modeling even
with large core counts and HSR access sequences with more
than 100.000 elements.

II. INTRODUCTION TO SEAP

We consider SeAP as the reference solution for contention
modeling in crossbar-based systems since, interestingly, mod-
els based on request access counts only are outperformed by
those building on request ordering. As illustrative example let’s
assume a dual-core processor where cores (c0 and c1) are con-
nected to three HSR (HSR A, HSR B, and HSR C) through
a crossbar. For the sake of clarity, we assume each HSR only
accepts one type of request, respectively referred to as A, B, and
C. Requests targeting the same HSR can suffer a contention
delay of 2, 5, and 7 cycles respectively. We further assume
the two cores are executing two applications simultaneously
in the same time window, triggering two distinct sequences
of requests through the crossbar: q0 = {BBBCCBAACA} and
q1 = {AACCBBCBBC}. The sequences sum up to {3·A, 4·B, 3·C}
for q0 in c0 and {2 · A, 4 · B, 4 · C} for q1 in c1. Approaches
building on access counts only derive contention bounds
by cumulatively considering the maximum contention each
request can suffer as:

∆=
∑

h∈HSR

min(nh
c0, n

h
c1)× lh = 2× 2︸ ︷︷ ︸

A

+4× 5︸ ︷︷ ︸
B

+3× 7︸ ︷︷ ︸
C

= 45

where HSR is the set of all resources, nh
ci is the number of

requests core ci performs to HSR h, and lh is the maximum
contention delay incurred by any request to that resource. In
this case, we pair 2 requests to HSR A, 4 requests to HSR B,
and 3 requests to HSR C, resulting in 45 cycles of contention.

However, by looking at the sequence of requests generated
independently by each core, we can conclude the assumed
contention scenario is actually unfeasible. For instance, if 4
requests to HSR B from both cores are conflicting in the
crossbar, no request to HSR A and at most 2 requests to
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HSR C can ever collide. In fact, when a request from a
sequence is assumed to collide with a request in the other
core, that request acts as an ‘anchor’ and affects how the
remaining requests in the sequence can collide. The sequence-
aware cumulative contention (∆SeAP ) is representing the
actual worst-case scenario if we consider precedence relations
among accesses within each core. In this case, the worst-case
contention scenario, happens when 3 requests to HSR C and 1
request to HSR B are assumed to be colliding. The contention
impact then sums up to ∆SeAP = 1×5+3×7 = 26, which is
42% tighter than the solution obtained by considering access
counts only.

III. ASCOM
SeAP builds on dynamic programming to perform an ex-

haustive search over all possible overlapping among sequences
of requests. The baseline implementation is inspired by state-
of-the-art solutions for the Heaviest Common Subsequence
(HCS) problem [7] that exploit a k-dimensional matrix, with
k being the number of sequences considered, to guide and op-
timize the search. For illustrative purposes, we consider SeAP
in its simplest instantiation and focus on a two-dimensional
scenario, considering only two sequences of requests from the
task under analysis and one contender task. In this scenario,
the SeAP algorithm closely resembles the HCS solution as any
pairing of requests is a full pairing (involving all contenders)
which is not a necessary condition in SeAP. Also, with two
sequences only, both SeAP and HCS are symmetric in the
sense that the computed worst-case interference is the same
for both tasks. The solution, adapted from [7], is shown in
Algorithm 1.

Algorithm 1: SEAP with 2 sequences
Input: Two sequences of requests over the crossbar
Output: The worst-case contention delay caused by any feasible

pairing.
1 for i← 1 to LEN(x) + 1 do
2 for j ← 1 to LEN(y) + 1 do
3 M [i][j] = max

(
M [i-1][j],M [i][j-1],M [i-1][j-

1] + W (x[i], y[j])
)

4 return M

SeAP receives as input two sequences of symbols x, y
representing the ordered sequence of requests to shared re-
sources through the crossbar performed by two tasks executing
in parallel. A weight function W is also defined that returns
the worst-case contention delay incurred by a given request to
a target in the crossbar when colliding with another request
(possibly of different type) to the same target. As anticipated,
in this case, SeAP exploits a bi-dimensional data structure M
which is used to hold temporary cumulative information on
request pairing and on which the subsequence leading to the
worst-case contention delay can be derived. The size of M ,
whose entries are initialized to 0, is determined by the length
of x and y incremented by 1, as one additional row and column
are used to represent the initial null position when parsing
the sequences. Algorithm 1 iterates over the elements of the
input sequences following a nested-loop. For each pair of

elements from x and y, the cumulative worst-case contention
delay is updated using the information from previous steps
in the dynamic programming schema which can be retrieved
from specific relative positions in M [7]. As a result of
the algorithm, M holds both the worst-case contention delay
(M [LEN(x)+1, LEN(y)+1]) and the necessary information
to reconstruct an example (witness) of the subsequence of
requests (pairing) that determined such maximum delay. SeAP
can be generalized to an arbitrary number of sequences and
lengths [3]. However, such generalization cannot escape SeAP
scalability concerns, inherited from the HCS problem [4], [7]:
its complexity remains in the worst-case exponential on the
number and size of the considered sequences of requests [3],
[4]. ASCOM enables a scalable, sequence-aware contention
modeling in crossbar-based systems by leveraging two main
practical approaches that build on SeAP peculiarities to work
around its computational complexity limits.

A. Leveraging compositionality (COMP)

In a compositional platform with blocking requests, the
maximum delay suffered by a request is linearly determined by
the number of contending requests. In our reference crossbar
scenario with k co-runners, the contention incurred by a
request A from the task under analysis to HSR A is the value
of the weight function W on a pairing tuple of at most k
requests of the same type. Assuming A is contending with r
requests, then the delay incurred by A can be linearly computed
as a function of the delay incurred upon a single contending
requests, that is:

∆A = W
( r︷ ︸︸ ︷
A · · · A

)
=

r−1∑
i=1

W (AA) (1)

Compositionality of timing interference is a platform re-
quirement that manifests itself as an additive weight function
W , supporting linear composition over the input size. Under
compositionality, timing interference can be independently
computed among k contending input sequences by a pairwise
application of SeAP to the sequence of the task under analysis
and one of the remaining sequences at a time. The obtained
contention figures are eventually merged to provide the cumu-
lative contention bounds.

An additive weight function, in fact, allows to drastically
reduce the complexity of applying SeAP by a divide and con-
quer approach that simplifies the scenario to k−1 invocations
of SeAP over 2 sequences. The compositional application of
SeAP is illustrated in Algorithm 2. Given Q as the set of
sequences that need to be considered for contention analysis,
with q1 being the sequence from the core under analysis,
the algorithm simply accumulates in ∆COMP the sum of
the worst-case pairing independently computed between the
target sequence and each of the other sequences indepen-
dently. The computational complexity of the overall process
drops from exponential, O(nk), to quadratic O(kn2). While
interference at platform level is seldom compositional, we can
still conservatively adjust the weight function W to model
contention impact additively, without incurring excessive over-
approximation. A sub-additive variant of W can be defined as:



W+
( p︷ ︸︸ ︷
A · · · A

)
= (p− 1)× max

p≤r≤k

(⌈
W
( r︷ ︸︸ ︷
A · · · A

)
r − 1

⌉)
(2)

Algorithm 2: COMP
Input: Q as a set of k sequences of requests

q1∈Q as the sequence of task under analysis
Output: The worst-case contention delay caused by any feasible

pairing.
1 for qi ∈ Q \ {q1} do
2 ∆COMP += SeAP (q1, qi)

3 return ∆COMP

with k representing the maximum input size for the original
weight (i.e., requests in parallel) and 2 ≤ p ≤ r ≤ k
representing the input size of the weight functions. On real
scenario, it is often the case that W+ = W for pairing
involving a non-negligible amount of conflicting requests. For
COMP we are mainly interested to W+ for 2 sequences, where
most conservative fixes to W occur.

B. Segmenting sequences (SEGM)

With SEGM, we divide SeAP input sequences into fixed
size segments. In order to apply SeAP at the granularity of
segments, all sequences from the core under analysis and
from the contenders, are split into an ordered list of fixed
size segments (lines 1-2), with minor differences determined
by different size among sequences. Then segments are fed in
input to SeAP following the original order (lines 3-4). The
sum of the bounds computed for each segment set is returned
as a cumulative contention bound.

Algorithm 3: SEGM
Input: Q as a set of k sequences of requests

q1∈Q as the sequence of task under analysis
c as the size of sequence segments

Output: The cumulative worst-case contention delay for all sets of
segments.

1 for qi ∈ Q do
2 Si ← ordered list of c-sized segments of qi
3 for i ∈ LEN(S1) do
4 ∆SEGM += SeAP (S1[i], S2[i], . . . , Sk[i])

5 return ∆SEGM

Splitting the sequences affects the contention results as we
are possibly excluding some elements from the set of feasi-
ble pairings. However, while the impact of dropped pairing
scenarios happens to be potentially huge for extreme cases, it
is expected to be considerably small in practice. In fact, with
realistically long sequences of access (e.g., with more than
5K elements) and with a non negligible number of HSRs that
are uniformly accessed, the worst-case pairing of requests is
involving the larger number of requests both from the task
under analysis and its contenders.

IV. EXPERIMENTAL EVALUATION

We explore different parameters and values. First, we focus
on the sequence size focusing on sequences of 10K and 100K

elements, and their sub-multiples (in case of SEGM). 10K
already hits the complexity wall for SeAP over three se-
quences. In terms of number of sequences, we focus on 2 and 3
sequences scenarios as they allow to gather baseline reference
values with SeAP. We cover different sequence dictionaries
with a varying number of symbols (i.e. types of memory
operations to devices accessed through the crossbar). We report
on scenarios for 5 and 7 symbols, with the latter corresponding
to read or write requests sent through the crossbar in the
AURIX TC297 setup. We also considered different sequence
shapes and distributions with different patterns of request to
each device (i.e., grouping a stream of requests to the same
device). We explored scenarios where requests are triggered in
a variable size cluster (uniformly) in the ranges: [2-2] (fixed
range), [2-4], [2-6] and [2-12]. Additionally, in consideration
of the fact that smaller clusters are more frequent, we also
explored sequences in the cluster ranges 2-6 and 2-12 but
with a non-uniform distribution, biased towards smaller clus-
ters ([2-6B] and [2-12B]). Sequences have been synthetically
generated using a bespoke random sequence generator.

We model SeAP weight function based on access laten-
cies observed in the Infineon AURIX TriCore TC297 [5], a
crossbar-based multicore platform widely used in the auto-
motive domain. The TC297 memory subsystem includes both
core-local and shared memories. At core level, the TC297
features separated scratchpads and caches for instructions and
data, whereas at platform level it equips a 32KiB shared
SRAM, called Local Memory Unit (LMU), and multiple
FLASH devices, 4 independent 2MB program flashes (PFlash)
and 1 data flash (DFlash). Shared memory devices are ac-
cessed by cores (and other external devices) via dedicated
slave interfaces through the Shared Resources Interconnnect
(SRI) crossbar. The maximum observed contention slowdown
incurred by memory requests over the SRI are reported in
Table I (W values) where latencies are reported per device
and operation type. Essentially, the table provides a simple
representation of the SeAP weight function. In particular,
latencies are relative to contention scenarios where a request
is conflicting with one or two other requests from other cores,
hence matching the 3 cores available in the TC297. Each
sequence in the considered target has been generated from
a dictionary with at most 7 distinct symbols: 2 symbols (read
and write operations) for the LMU and 1 symbol each for
the 4 PFlashes and the DFlash devices (only supporting read
requests).

We run our experiments on a homogeneous computing
cluster equipped with 40x nodes each with 2x Intel Xeon
E5-2630L v2 @2.40GHz, each one equipped with 128GB
of private memory. Experiment batches were automatically
executed and the obtained results were automatically collected
and processed off-line.
A. COMP

Execution time: Figure 4b compares the time required by
SeAP on 3 sequences altogether or by leveraging compo-
sitionality with COMP, for a fixed sequence dictionary and
shape, by only varying the sequence sizes from 1K to 100K
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Fig. 2: SEGM relative accuracy for three sequences
of 10k elements.
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Fig. 3: ASCOM relative accuracy for three
sequences of 10k elements.
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TABLE I: Real (W ) and forced (W+) linearity weight func-
tion.

Slowdown
1 Request 2 Requests

R W R+R R+W W+W
W W+ W W+ W W+ W W+ W W+

LMU Read 1 3 3 4 4 4 6 6 8 8
LMU Write 1 4 3 5 5 5 7 7 9 9
PFlash Read 4 6 n/a n/a 11 11 n/a n/a n/a n/a
DFlash Read 34 35 n/a n/a 69 69 n/a n/a n/a n/a

elements. COMP timing requirements stays affordable (<10
minutes) even for larger sequences, where SeAP shows off its
limitations already with average-size sequences (∼1 day for
10K elements).

Accuracy: Figure 1 shows the relative increase (overesti-
mation) incurred by COMP with respect to SeAP. Each plot
also reports the Maximum Theoretical Overestimation (MTO),
representing an upper bound to the overestimation incurred
by enforcing linearity in the specific weight function W in
Table I. The observed overestimation ranges in between 4%
and 17% in the worst case, with an average overestimation of
9.5%.

B. SEGM

Execution time: Figure 4a shows, in logarithmic scale,
SeAP timing requirements for a 3-sequences scenario and vari-
able sequence size and compares them against the application
of SEGM with segment size from 1K up to 50K elements.
The performance improvement is directly proportional to the
segment ratio, so that splitting a sequence in half lead to halved
execution time. What is an acceptable segment size depends
on the impact on accuracy.

Accuracy: Given that we cannot resort to extrapolation, in
order to have a reference SeAP result (over the full sequences),
we are forced to focus on sequences with 10K elements.
Surface plots in Figure 2 are relative to distinct dictionaries

of symbols/devices, and report the relative underestimation
incurred when splitting the original sequences in 1 (full
sequence), 2, 5 and 10 segments, and for different sequence
shapes/distributions. In general terms, results confirms that
SEGM can deliver accurate results. We observed a 0.67%
average under-approximations, with a peak of 4.42% in the
7 symbol (2-12, 1/10 segments) setup.

C. ASCOM

Execution time: Figure 4b shows for a 3-sequences sce-
nario and variable sequence size the execution time incurred
by ASCOM compared to SeAP. Combining SEGM+COMP
provides further benefits over SEGM and COMP alone. This is
confirmed also by SEGM results (Figure 4a). The performance
improvement is significant over SeAP and it is proportional to
the segment ratio.

Accuracy: For 3 sequences with 10K elements results are
reported in Figure 3. The assessment is dominated by COMP:
the values in the left wall of each plot correspond to the results
observed for COMP alone, reported in Figure 1. The observed
impact of segmenting on accuracy is pretty small and less de-
pendent on the particular shape/distribution of the sequences.
Moreover, the (optimistic) accuracy loss contributed by SEGM
becomes less evident (∼1% less impact) when combined with
COMP. In fact, by applying COMP we are reducing to a 2
sequence problem, where the effect of SEGM in removing
feasible pairing scenarios becomes marginal.

V. CONCLUSIONS

We presented ASCOM as the combination of two com-
plementary techniques to reduce SeAP time complexity by
enabling the application of the technique either composition-
ally on a smaller number of sequences (COMP) or on smaller
portions of sequences (SEGM). We assess the proposed ap-
proaches both individually and in conjunction, to show how
they can effectively enable a notable reduction in complexity
with a moderate increase in pessimism compared to SeAP.
ASCOM allows to deal with large sequences comprising more
than 100K requests in less than 10 minutes and just 9.68% of
average overestimation and 16.85% of peak overestimation,
and scaling gracefully with number of co-running cores.
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