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Abstract. We study the one-dimensional problem for the linear strain gradient porous elasticity. Our aim is to analyze the
behavior of the solutions with respect to the time variable when a dissipative structural mechanism is introduced in the
system. We consider five different scenarios: hyperviscosity and viscosity for the displacement component and hypervis-
coporosity, viscoporosity and weak viscoporosity for the porous component. We only apply one of these mechanisms at a
time. We obtain the exponential decay of the solutions in the case of viscosity and a similar result for the viscoporosity.
Nevertheless, in the hyperviscosity case (respectively hyperviscoporosity) the decay is slow and it can be controlled at least

by t−1/2. Slow decay is also expected for the weak viscoporosity in the generic case, although a particular combination of the
constitutive parameters leads to the exponential decay. We want to emphasize the fact that the hyperviscosity (respectively
hyperviscoporosity) is a stronger dissipative mechanism than the viscosity (respectively viscoporosity); however, in this
situation, the second mechanism seems to be more “efficient” than the first one in order to pull along the solutions rapidly
to zero. This is a striking fact that we have not seen previously at any other linear coupling system. Finally, we also present
some numerical simulations by using the finite element method and the Newmark-β scheme to show the behavior of the
energy decay of the solutions to the above problems, including a comparison between the hyperviscosity and the viscosity
cases.
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1. Introduction

It is known that the porous structure of one material can have a significant influence in the behavior of
this material when it is exposed, for instance, to deformations. This is one of the reasons why porous
elastic solids have been extensively studied. Nunziato and Cowin [26] put forth a nonlinear theory in which
the skeletal or matrix material is elastic and the interstices are void of material. Later on, Cowin and
Nunziato [4] derived the linear theory and Cowin [5] analyzed its viscoelastic behavior. For a thorough
review of this theory, we refer the reader to the book of Ieşan [12].

On the other hand, some authors proposed the inclusion of higher-order gradients in the basic postu-
lates of elasticity in order to obtain more detailed models for the configuration of the materials and their
response to stimuli. As a matter or illustration, we cite the works of Green and Rivlin [14], Mindlin [22]
and Toupin [31]. The theories including the second gradient of the displacement or the second gradient
of the volume fraction field in the set of independent constitutive variables are now called strain gradient
theories.

In this work, we study the one-dimensional problem for the linear strain gradient porous elasticity,
theory that has been recently proposed by Ieşan [13]. Our main purpose is to analyze and to quantify the
damping speed of the waves when we attach different types of dissipation in the system. To simplify, we
distinguish only between exponential or slow decay of the solutions. The decay is said to be exponential
if the energy of the system can be controlled by means of a negative exponential on the time variable.
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Otherwise, the decay is said to be slow, including the case in which the energy can be controlled by the
inverse of a rational function. (This is usually called polynomial decay.)

A porous elastic structure is determined by a macroscopic component (the elastic deformation) and
a microscopic one (the porosity). Both components are coupled. It is interesting to know if the inclusion
of one dissipation mechanism in one of the components is able to carry the entire structure to a state
of quick decay or not. In fact, the time behavior of the solutions depends on three issues: the theory we
work with, the dissipation mechanism, and the coupling between the macroscopic and the microscopic
components. The first results in this line of research were obtained in 2003 by Quintanilla [30]. Since
then, a lot of contributions can be found in the literature (see [18–21,23,25,27,28] among others), but
without considering the new strain gradient assumption. In the generic case, the exponential decay can be
guaranteed by choosing two well-combined dissipation mechanisms. Nevertheless, there are some singular
cases in which a single mechanism is enough to get it, but it requires that the velocities of the elastic and
of the porous waves coincide [1]. It has been also proved that the introduction of a suitable conservative
heat conduction in the system leads to the exponential decay with a single dissipation mechanism [15,24].
Other results in the same direction have been shown depending on the kind of kernel considered when
the dissipation depends on the history [7–10].

We want to point out that in 2015 Liu, Magaña and Quintanilla made a first approach to the strain
gradient situation [17]. They considered second-order derivatives for the displacement in the constitutive
equation for the hyperstress but only first-order derivatives in the gradient of the volume fraction. Ap-
plying the basic properties of thermomechanics, the coupling between both components was determined.
They also showed the exponential decay with hyperviscosity, with viscosity and also with viscoporosity,
and the slow decay in the presence of weak viscoporosity (when the dissipation depends on the variation
of the volume fraction). These results were quite surprising in comparison with the known results for the
classical situation.

In this paper, we consider fourth-order derivatives with respect to the spatial variable in both compo-
nents of the system. The axioms of thermomechanics determine again the coupling, but, strikingly, the
behavior of the solutions changes. We obtain polynomial (slow) decay with hyperviscosity and exponen-
tial decay with viscosity (respectively, hyperviscoporosity and viscoporosity), and slow decay with weak
viscoporosity in the generic case, although there is a particular combination of the parameters of the sys-
tem that leads this situation also to the exponential decay. We believe that these results are noteworthy
because intuition says that the hyperviscosity is a stronger dissipation mechanism than the viscosity but,
nevertheless, it seems that what really matters is how these mechanisms are coupled.

The structure of the paper is as follows. In Sect. 2, we state the basic equations we are going to work
with. We only state the conservative structure, and we impose the boundary and initial conditions we use
in all the systems of equations that we study later on. In Sect. 3, we introduce what a priori seems to be
a very strong dissipation mechanism in the elasticity part. We call it hyperviscoelasticity and we prove
that the solutions decay in a slow way. (In fact, we show that the decay can be controlled by t−1/2.) In
Sect. 4, we change the damping mechanism: we take now the first derivative of the displacement velocity
with respect to the spatial variable. Surprisingly, we obtain now the exponential decay of the solutions.
Section 5 is devoted to obtain similar results but for the porosity component. Three different dissipation
mechanisms are analyzed there: hyperviscoporosity, viscoporosity and weak viscoporosity. We find slow
decay for the first case, exponential decay for the second and slow decay again for the third, although we
obtain a specific combination of the constitutive parameters that leads to the exponential decay. Finally,
in Sect. 6, we describe some numerical simulations of the problems involving hyperviscosity, viscosity
and weak viscoporosity. We show the evolution of the discrete energy in the three cases, including a
comparison between the mechanical dissipation mechanisms.
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2. Basic equations

First of all, we recall the evolution and constitutive equations which govern the theory we are going to
deal with. We follow the guidelines proposed by Ieşan [13]. As we consider several dissipation mechanisms,
in this section we only state the conservative structure. Later, in each section, we write the constitutive
equation (or equations) that we conveniently modify to introduce the dissipation.

Our analysis is focused on the one-dimensional problem, whose evolution equations are

ρü = τx − μxx,

Jϕ̈ = χx − σxx + g.

Here, u is the displacement, ϕ is the fraction of volume, τ is the stress, μ is the hyperstress, χ is the
equilibrated stress vector, σ is the equilibrated hyperstress tensor and g is the equilibrated body force.
As usual, ρ stands for the mass density and J for the product of the mass density by the equilibrated
inertia, and both are assumed to be positive.

The primary constitutive equations are given by

τ = aux + bϕ + βϕxx,

μ = k1uxx + γϕx,

χ = γuxx + αϕx,

σ = βux + dϕ + k2ϕxx,

g = −bux − ξϕ − dϕxx.

The conditions for the constitutive coefficients a, b, β, k1, γ, α, d, k2 and ξ will be stated in the
following section. In fact, in view of the field equations, we will introduce some other notation to simplify
the writing.

Without loss of generality, we suppose that the spatial variable x lies in the interval [0, π] and that
the time t goes from 0 to ∞.

The following set of boundary and initial conditions are imposed for all the different systems that we
analyze:

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = ϕx(0, t) = 0,
ϕx(π, t) = ϕxxx(0, t) = ϕxxx(π, t) = 0, (2.1)

and, for a.e. x ∈ (0, π),

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ϕ(x, 0) = ϕ0(x), ϕ̇(x, 0) = ψ0(x). (2.2)

We intend to introduce dissipative mechanisms in the system and determine how the solutions decay
with respect to the time variable.

3. Hyperviscoelasticity

We introduce a first dissipative mechanism in the elasticity. We call it hyperviscoelasticity because it is
the second derivative of the displacement velocity with respect to the spatial variable. To be precise, we
assume that

μ = k1uxx + γϕx + k∗
1 u̇xx,

with k∗
1 > 0, while the other constitutive equations remain unaltered.
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With the above assumption, if we substitute the constitutive equations into the evolution equations
we obtain the system of field equations:

ρü = auxx + bϕx − k1uxxxx − ηϕxxx − k∗
1 u̇xxxx,

Jϕ̈ = ηuxxx − bux + δϕxx − ξϕ − k2ϕxxxx,

}
(3.1)

where, to simplify the notation, we set η = γ − β and δ = α − 2d.
The constitutive coefficients satisfy the following conditions:

ρ > 0, J > 0, a > 0, k1 > 0, k2 > 0, aξ > b2, δk1 > η2 > 0. (3.2)

Basically, the above assumptions guarantee the elastic stability of the material. These conditions are
assumed for all the systems we are going to study in this paper.

The existence of solutions that do not decay is clear, but if the average of the initial condition for u0

and ϕ0 vanishes, then we avoid this possibility.

Remark 3.1. It is not difficult to see that this system has undamped solutions. Take, for example, u = 0
and ϕ = eωt cos(nx). Substituting it into (3.1), we obtain from the first equation

b + n2η = 0,

and, from the second one,

Jω2 = −δn2 − k2n
4 − ξ.

Therefore, taking appropriate values of ω and a specific combination of b and η, the above expressions
can be a solution to system (3.1).

Hence, throughout this section and in the rest of the paper, we will assume that b + n2η �= 0 for all
n ∈ N. In fact, we need to impose η �= 0 (as we set in conditions (3.2)).

We transform our initial-boundary problem (3.1) into a more abstract problem in an appropriate
Hilbert space with an adequate inner product.

Let us denote v = u̇ and ψ = ϕ̇. We consider the Hilbert space

H =
{
(u, v, ϕ, ψ) ∈ (

H2 ∩ H1
0

) × L2 × H2
∗ × L2

∗
}

where

L2
∗ =

⎧⎨
⎩f ∈ L2 :

π∫
0

f(x)dx = 0

⎫⎬
⎭

and H2
∗ = H2 ∩ L2

∗.
If U = (u, v, ϕ, ψ) and U∗ = (u∗, v∗, ϕ∗, ψ∗) are two elements of H, we define its inner product as

〈U,U∗〉 =
1
2

π∫
0

(
ρvv∗ + Jψψ∗ + W

)
dx,

where

W = auxu∗
x + b(uxϕ∗ + u∗

xϕ) + ξϕϕ∗ + δϕxϕ∗
x + η(uxxϕ∗

x + u∗
xxϕx) + k1uxxu∗

xx + k2ϕxxϕ∗
xx.

As usual, a superposed bar is used to denote the conjugate of a complex number. It is worth recalling
that this product is equivalent to the usual product in the Hilbert space H.

Using Di to notate the i-derivative with respect to the spatial variable x, we can rewrite system (3.1)
as follows:

u̇ = v,

v̇ =
1
ρ
[aD2u − k1D

4u + bDϕ − ηD3ϕ − k∗
1D

4v],
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ϕ̇ = ψ,

ψ̇ =
1
J

[ηD3u − bDu + δD2ϕ − k2D
4ϕ − ξϕ].

With the above notation, our initial-boundary value problem can be written as
dU

dt
= AU, U0 = (u0, v0, ϕ0, ψ0), (3.3)

where (u0, v0, ϕ0, ψ0) are the initial conditions (2.2) and A is the following 4 × 4 matrix:

A =

⎛
⎜⎜⎜⎝

0 I 0 0
aD2−k1D4

ρ −k∗
1D4

ρ
bD−ηD3

ρ 0
0 0 0 I

ηD3−bD
J 0 δD2−k2D4−ξI

J 0

⎞
⎟⎟⎟⎠ .

In this matrix, I denotes the identity operator.
The domain of the operator A, which will be denoted by D(A), is given by the elements U ∈ H such

that

v ∈ H2 ∩ H1
0 , k1D

4u + k∗
1D

4v + ηD3ϕ ∈ L2, ψ ∈ H2
∗ , ηD3u − k2D

4ϕ ∈ L2
∗

and

D2u(0, t) = D2u(π, t) = D3ϕ(0, t) = D3ϕ(π, t) = 0.

We prove first the existence and uniqueness of solutions. To do so, we have to show that the operator
is dissipative and that 0 belongs to the resolvent of A.

Using the inner product defined above and taking into account the assumed boundary conditions, we
obtain

�〈AU,U〉 = −k∗
1

2

π∫
0

|vxx|2dx ≤ 0, (3.4)

which proves that operator A is dissipative. Let us remark that the boundary conditions play an important
role to obtain this result (and similar results for other matrix operators that we use later).

It can be proved that the general solutions to system (3.3) are given by the semigroup of contractions
generated by the operator A.

Lemma 3.2. Let A be the above-defined matrix. Then, 0 is in the resolvent of A. (Usually, this is written
as 0 ∈ �(A) to shorten.)

Proof. For any F = (f1, f2, f3, f4) ∈ H we will find U ∈ H such that AU = F . Writing this condition
term by term, we get:

v = f1,

aD2u + bDϕ − k1D
4u − ηD3ϕ − k∗

1D
4v = ρf2,

ψ = f3,

ηD3u − bDu + δD2ϕ − k2D
4ϕ − ξϕ = Jf4.

We will solve the above system using the expressions of fi as Fourier series. That means that we write
fi =

∑
f i

n sin nx for i = 1, 2 and fj =
∑

f j
n cos nx for j = 3, 4, with∑

n4(f i
n)2 < ∞ for i = 1, 3,

and ∑
(f i

n)2 < ∞ for i = 2, 4.
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On the other hand, the solutions we are looking for can be written also as Fourier series with unknown
coefficients:

u =
∑

un sin nx, v =
∑

vn sin nx,

ϕ =
∑

ϕn cos nx, ψ =
∑

ψn cos nx.

If we substitute these expressions into the system, we get straightforwardly that vn = f1
n and ψn = f3

n.
Moreover, for each n a new system of equations is obtained:

−an2un − bnϕn − k1n
4un − ηn3ϕn = ρf2

n + k∗
1f

1
nn4,

−ηn3un − bnun − δn2ϕn − k2n
4ϕn − ξϕn = Jf4

n.

The solution of this system is given by

un =
f4

nJn
(
b + ηn2

) − (f2
nρ + f1

nk∗
1n

4)
(
n2δ + k2n

4 + ξ
)

a4

and

ϕn =
(f2

nρ + f1
nk∗

1n
4)(b + ηn2)n − f4

nJn2(a + k1n
2)

a4
,

where

a4 = k1k2n
8 + n6

(
ak2 + k1δ − η2

)
+ n4 (aδ − 2bη + k1ξ) + n2

(
aξ − b2

)
,

which is strictly positive for all n due to the hypotheses over the constitutive coefficients. The only doubt
can be found in the term that goes with n4. However, we notice that

(
√

aδ −
√

k1ξ)2 = aδ + k1ξ − 2
√

aδk1ξ < aδ + k1ξ − 2|bη|.
Hence, it is not difficult to see that

∑
n4u2

n < ∞ and
∑

n4ϕ2
n < ∞.

It remains to show that

k1D
4u + ηD3ϕ + k∗

1D
4v ∈ L2

and

ηD3u − k2D
4ϕ ∈ L2,

but easy calculations give that, for each n,

k1n
4un + ηn3ϕn + k∗

1n
4vn =

af1
nk∗

1k2n
8 + p6(n)

a′
4

and

−ηn3un − k2n
4ϕn =

f1
nk∗

1

(
ηδ − bk2

)
n7 + p′

6(n)
a′
4

,

where p6(n) and p′
6(n) are polynomials of degree six on n and a′

4 is a4/n2. Therefore, it can be seen that
both linear combinations belong to L2.

Finally, taking into account the solutions obtained for un, vn, ϕn and ψn, it can be shown that

‖U‖H ≤ K‖F‖H,

where K is a constant independent of U . �

The fact that the operator A is dissipative, jointly with the above lemma and the Lumer–Phillips
theorem, proves the existence and uniqueness of solutions. We write this result in the following theorem.
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Theorem 3.3. The operator A generates a C0-semigroup of contractions S(t) = {eAt}t≥0 in H. Therefore,
for each U0 ∈ D(A), there exists a unique solution U(t) ∈ C1([0,∞);H) ∩ C0([0,∞);D(A)) to problem
(3.3).

We prove now that the solutions to system (3.1) do not decay exponentially. To do so, we prove that
there exists a solution of the form

u = A1e
ωt sin(nx), ϕ = A2e

ωt cos(nx)

such that �(ω) > −ε for all positive ε small enough. This fact implies that we can find a solution ω as
near to the imaginary axis as we desire and, hence, it is impossible to have uniform exponential decay on
the solutions to the problem determined by (3.1), with conditions (2.1) and (2.2).

Imposing that u and ϕ are of the form u = A1e
ωt sin(nx) and ϕ = A2e

ωt cos(nx), the following
homogeneous system on the unknowns A1 and A2 is obtained:

(
(k1 + ωk∗

1)n
4 + an2 + ρω2 ηn3 + bn

ηn3 + bn k2n
4 + δn2 + Jω2 + ξ

)(
A1

A2

)
=

(
0
0

)
.

This linear system will have nontrivial solutions if, and only if, the determinant of the coefficients
matrix is null. We denote by p(x) the fourth-degree polynomial obtained from the determinant of the
coefficients matrix once ω is replaced by x, and by ai its coefficients for i = 0, 1, 2, 3, 4. These coefficients
depend on the parameters of system (3.1) and on n. To be precise:

a0 = ρJ,

a1 = Jk∗
1n

4,

a2 = (Jk1 + k2ρ) n4 + (aJ + ρδ)n2 + ξρ,

a3 = k∗
1k2n

8 + k∗
1δn

6 + k∗
1ξn

4,

a4 = k1k2n
8 + n6

(
ak2 + k1δ − η2

)
+ n4 (aδ − 2bη + k1ξ) + n2

(
aξ − b2

)
.

To prove that there are roots of p(x) as near to the complex axis as desired is equivalent to show that,
for any ε > 0, there are roots of p(x) located on the right-hand side of the vertical line �(X) = −ε. If we
make a translation, this fact is equivalent to show that polynomial p(x − ε) has a root with positive real
part.

We use the Routh–Hurwitz theorem (see Dieudonné [6]), which states that, if a0 > 0, then all the
roots of polynomial

a0x
4 + a1x

3 + a2x
2 + a3x + a4

have negative real part if, and only if, a4 and all the leading diagonal minors of matrix

⎛
⎜⎜⎝

a1 a0 0 0
a3 a2 a1 a0

0 a4 a3 a2

0 0 0 a4

⎞
⎟⎟⎠

are positive.
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The coefficients of p(x − ε) are given by

b0 = ρJ,

b1 = Jk∗
1n

4 − 4Jρε,

b2 = n4 (Jk1 + k2ρ − 3Jk∗
1ε) + n2(aJ + δρ) + 6Jρε2 + ξρ,

b3 = k∗
1k2n

8 + δk∗
1n

6 + n4
(
k∗
1ξ + 3Jk∗

1ε
2 − 2Jk1ε − 2k2ρε

) − 2n2(aJ + δρ)ε

− 4Jρε3 − 2ξρε,

b4 = n8k2 (k1 − k∗
1ε) + n6

(
ak2 + δk1 − η2 − δk∗

1ε
)

+ n4
(
aδ − 2bη − Jk∗

1ε
3 + Jk1ε

2 + k1ξ + k2ρε2 − k∗
1ξε

)
+ n2

(
aJε2 + aξ − b2 + δρε2

)
+ Jρε4 + ξρε2.

The third leading minor of the Routh–Hurwitz matrix is a sixteenth-degree polynomial on n whose main
coefficient is negative for n large enough. To be precise, if we denote by Li the leading minors of this
matrix,

L3 = −2J2(k∗
1)

3k2εn
16 + p14(n),

where p14(n) is a fourteenth-degree polynomial on n. Therefore, it is clear that, for n large enough, L3

will be negative provided that ε is sufficiently small.
The above argument proves the slow decay of the solutions to system (3.1). We can be more specific

and prove that, in fact, the solutions decay polynomially. We use the characterization given by Borichev
and Tomilov [2], which we recall in the following theorem.

Theorem 3.4. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert space such that iR ⊂
�(A). Then, given α > 0, the following conditions are equivalent:

• lim
|λ|→∞

λ−α‖(iλI − A)−1‖L(H) < ∞.

• There exists a positive constant C such that ‖S(t)U0‖H ≤ Ct−1/α‖U0‖D(A).

Unfortunately, we cannot prove these conditions in a straightforward way. We have to decompose the
Hilbert space H as the direct sum of two subspaces: H = KN

⊕K, where KN is the finite-dimensional
subspace generated by the vectors

Ω(h, i, j, k) = (sin hx, sin ix, cos jx, cos kx) 1 ≤ h, i, j, k ≤ N.

Notice that KN is invariant under the semigroup. That means that the solutions starting at KN always
belong to KN .

A solution to system (3.1), U(t), can also be decomposed as the sum of two elements: U(t) = U1(t) +
U2(t), where U1(t) ∈ KN and U2(t) ∈ K.

As U1(t) belongs to a finite-dimensional subspace, if all the eigenvalues have negative real part, the
exponential decay of U1(t) is guaranteed and, therefore, the polynomial decay is also satisfied.

Proposition 3.5. All the eigenvalues of A restricted to Ω(h, i, j, k) have negative real part.

Proof. Imposing as above that u and ϕ are of the form u = A1e
ωt sin(nx) and ϕ = A2e

ωt cos(nx), we
obtain the same linear homogeneous system of equations and the same polynomial p(x) with coefficients
ai for i = 0, 1, 2, 3, 4.
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Straightforward computations show that the leading minors (denoted by Mi below) corresponding to
polynomial p(x) are all positive:

M1 = Jk∗
1n

4,

M2 = J2k∗
1n

6
(
a + k1n

2
)
,

M3 = J2(k∗
1)

2n10
(
b + ηn2

)2
,

M4 = a4M3.

By hypothesis, b + ηn2 �= 0 for all n ∈ N, and a and k1 are positive. �
We can show the two conditions of the Borichev and Tomilov characterization for the part of the

solutions in K, the non-finite-dimensional subspace. We prove first that the imaginary axis is contained
in the resolvent of A.

Lemma 3.6. Let A be the matrix operator defined before. Therefore, iR ⊂ �(A).

Proof. The proof has three steps. The first two ones refer to the operator A and are quite standard (for
details see, for instance, [16], page 25). We concentrate in the third one, which is specific for each case.
Here, it reads as follows: suppose that the statement of this lemma is not true. Therefore, there exist a
sequence of real numbers λn with λn → � ∈ R, |λn| < |�| and a sequence of vectors Un = (un, vn, ϕn, ψn)
in D(A) and with unit norm such that ‖(iλnI − A)Un‖ → 0.

Writing the above expression in components, we obtain the following conditions:

iλnun − vn → 0, in H2, (3.5)
iρλnvn − (

aD2un − k1D
4un + bDϕn − ηD3ϕn − k∗

1D
4vn

) → 0, in L2, (3.6)

iλnϕn − ψn → 0, in H2, (3.7)
iJλnψn − (

ηD3un − bDun + δD2ϕn − k2D
4ϕn − ξϕn

) → 0, in L2. (3.8)

From (3.4), we know that D2vn → 0 and, hence, D2un → 0.
Let us multiply (3.6) by Dϕn, which is bounded. We obtain

k1〈Dun,D4ϕn〉 + b|Dϕn|2 + η|D2ϕn|2 + k∗
1〈Dvn,D4ϕn〉 → 0. (3.9)

Looking at (3.8), we have

D4ϕn ≈ 1
k2

(
iJλnψn − ηD3un + bDun − δD2ϕn + ξϕn

)
.

Therefore,

〈Dun,D4ϕn〉 ≈ 1
k2

(
iJλn〈Dun, ψn〉 + η〈D2un,D2un〉 + b〈Dun,Dun〉

+δ〈D2un,Dϕn〉 + ξ〈Dun, ϕn〉) ,

and all these terms tend to zero.
An analogous argument shows that 〈Dvn,D4ϕn〉 → 0,1 and, in consequence, expression (3.9) becomes

b|Dϕn|2 + η|D2ϕn|2 → 0.

If bη > 0, it is clear that D2ϕn → 0. If bη < 0, we can apply Poincaré’s inequality for n large enough. To
be precise: as ϕn ∈ L2, we can write

ϕn =
∞∑

n=n0+1

an(t) cos nx,

1Let us highlight that this is the key point of this proof and that convergence cannot be obtained when λ becomes
unbounded and, therefore, the exponential decay is not satisfied.
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for a certain n0. Poincaré’s inequality assures that

|D2ϕn|2 ≥ n2
0|Dϕn|2,

and, hence, taking n0 large enough (n0 >
√−b/η), we have (b + ηn2

0)|Dϕn|2 → 0. This implies Dϕn → 0
and D2ϕn → 0, which means Dψn → 0 also. �

We prove now the second condition of Borichev and Tomilov’s characterization taking α = 2.

Lemma 3.7. Let A be the above matrix operator. Then, lim|λ|→∞λ−2‖(iλI − A)−1‖L(H) < ∞.

Proof. Suppose that the statement of the lemma is not true. Then, there exist a sequence of real numbers,
λn, with |λn| → ∞ and a sequence of unit norm vectors in the domain of A, Un = (un, vn, ϕn, ψn), such
that

λ2
n‖(iλnI − A)Un‖ → 0.

Writing this condition term by term, we get

λ2
n(iλnun − vn) → 0 in H2, (3.10)

λ2
n(iρλnvn − aD2un + k1D

4un − bDϕn + ηD3ϕn

+k∗
1D

4vn) → 0 in L2, (3.11)
λ2

n (iλnϕn − ψn) → 0 in H2, (3.12)
λ2

n

(
iJλnψn − ηD3un + bDun − δD2ϕn + k2D

4ϕn + ξϕn

) → 0 in L2. (3.13)

Selecting the real part of the product λ2
n〈(iλnI − A)Un, Un〉 and taking into account (3.4), we get

λnD2vn → 0. Hence, it will also be λnD2un → 0.
We repeat the argument we did in the Proof of Lemma 4.5. First, we multiply convergence (3.11) by

Dϕn and notice that we can remove the λ2
n because the expression inside the parentheses clearly tends

to zero. We obtain again (3.9). In this case, it follows that

〈Dun,D4ϕn〉 ≈ iJλn

k2
〈Dun, ψn〉 =

iJ

k2
〈λnDun, ψn〉 → 0,

and so, we find that 〈Dvn,D4ϕn〉 → 0.
This argument shows that Un cannot be of unit norm, which finishes the proof of this lemma. �
From the above results, we can state the following theorem.

Theorem 3.8. Let (u, ϕ) be the solution to the problem determined by system (3.1) with boundary condi-
tions (2.1) and initial conditions (2.2). Then, (u, ϕ) decays in a slow way. More precisely, (u, ϕ) decays
at least as t−1/2.

4. Viscoelasticity

We introduce now a dissipative mechanism in the elasticity that, intuitively, is weaker than the previous
one because we take only the first derivative of the displacement velocity with respect to x. Let us assume
that

τ = aux + bϕ + βϕxx + a∗u̇x,

with a∗ > 0, while the other constitutive equations remain unaltered.
Substituting the constitutive equations into the evolution equations, we obtain a new system of field

equations:

ρü = auxx + bϕx − k1uxxxx − ηϕxxx + a∗u̇xx,

Jϕ̈ = ηuxxx − bux + δϕxx − ξϕ − k2ϕxxxx. (4.1)
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Conditions (3.2) are assumed for the system coefficients. The boundary and initial conditions (2.1)
and (2.2) are also assumed for the above system.

We want to highlight the fact that, in this system, the dissipation term is given by a second-order
derivative with respect to x, while, in the previous section, it was given by a fourth-order derivative.
Nevertheless, we will prove that the solutions to this system decay exponentially.

We still assume that b + n2η �= 0 for all n ∈ N. The same Hilbert space is considered, with the same
inner product.

We can rewrite system (4.1) as follows:⎧⎪⎪⎨
⎪⎪⎩

u̇ = v,
v̇ = 1

ρ [aD2u − k1D
4u + bDϕ − ηD3ϕ + a∗D2v],

ϕ̇ = ψ,

ψ̇ = 1
J [ηD3u − bDu + δD2ϕ − k2D

4ϕ − ξϕ].

We denote by B the matrix operator corresponding to this system:

B =

⎛
⎜⎜⎜⎝

0 I 0 0
aD2−k1D4

ρ
a∗D2

ρ
bD−ηD3

ρ 0
0 0 0 I

ηD3−bD
J 0 δD2−k2D4−ξI

J 0

⎞
⎟⎟⎟⎠ .

Therefore, system (4.1) can be written as
dU

dt
= BU, U0 = (u0, v0, ϕ0, ψ0), (4.2)

where (u0, v0, ϕ0, ψ0) are the initial conditions (2.2).
The domain of B is given by the elements U ∈ H such that

v ∈ H2 ∩ H1
0 , k1D

4u + ηD3ϕ ∈ L2, ψ ∈ H2
∗ , ηD3u − k2D

4ϕ ∈ L2

and

D2u(0, t) = D2u(π, t) = D3ϕ(0, t) = D3ϕ(π, t) = 0.

We prove first the existence and uniqueness of solutions.
The operator B is dissipative and a direct calculation gives

�〈BU,U〉 = −a∗

2

π∫
0

|vx|2dx ≤ 0. (4.3)

Lemma 4.1. Let B be the above-defined matrix. Then, 0 ∈ �(B).

Proof. We proceed as in the proof of Lemma 3.2. For any F = (f1, f2, f3, f4) ∈ H, we will find U ∈ H
such that BU = F , or equivalently, we will find a solution to the system:

v = f1,

aD2u + bDϕ − k1D
4u − ηD3ϕ + a∗D2v = ρf2,

ψ = f3,

ηD3u − bDu + δD2ϕ − k2D
4ϕ − ξϕ = Jf4.

We write fi =
∑

f i
n sinnx for i = 1, 2 and fj =

∑
f j

n cos nx for j = 3, 4, with∑
n4(f i

n)2 < ∞ for i = 1, 3

and ∑
(f i

n)2 < ∞ for i = 2, 4.
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We make an abuse of the notation, and we write again

u =
∑

un sin nx, v =
∑

vn sinnx,

ϕ =
∑

ϕn cos nx, ψ =
∑

ψn cos nx

for the solutions.
It is clear that vn = f1

n and ψn = f3
n. Simplifying, the following system of equations is obtained for

each n:

−an2un − bnϕn − k1n
4un − ηn3ϕn = ρf2

n + a∗f1
nn2,

−ηn3un − bnun − δn2ϕn − k2n
4ϕn − ξϕn = Jf4

n.

The solution of this system is given by

un =
f4

nJn
(
b + ηn2

) − (f2
nρ + f1

na∗n2)
(
k2n

4 + δn2 + ξ
)

a4

and

ϕn =
(f2

nρ + f1
na∗n2)(b + ηn2) − f4

nJn(a + k1n
2)

a4
,

where a4 is the independent term of the polynomial we have seen in the proof of Lemma 3.2.
Hence, it is not difficult to see that

∑
n4u2

n < ∞ and
∑

n4ϕ2
n < ∞.

It remains to show that k1D
4u + ηD3ϕ ∈ L2 and ηD3u − k2D

4ϕ ∈ L2. Easy calculations give that,
for each n,

k1n
4un + ηn3ϕn =

−a∗k1k2f1
nn8 + p6(n)
a′
4

and

−ηn3un − k2n
4ϕn =

Jk1k2f
4
nn6 + p5(n)
a′
4

,

where p6(n) and p5(n) are polynomials of degree six and five on n, respectively, and a′
4 is a4/n2. Therefore,

it can be seen that both linear combinations belong to L2.
Finally, taking into account the solutions obtained for un, vn, ϕn and ψn, it can be shown that

‖U‖H ≤ K‖F‖H,

where K is a constant independent of U . �

Therefore, the existence and uniqueness of solutions is clear. We write this result in the following
theorem.

Theorem 4.2. The operator B generates a C0-semigroup of contractions S(t) = {eBt}t≥0 in H. Therefore,
for each U0 ∈ D(B), there exists a unique solution U(t) ∈ C1([0,∞);H) ∩ C0([0,∞);D(B)) to problem
(4.2).

To prove the exponential decay of the solutions we need to split again H in two subspaces and to
decompose a solution to system (4.1) as the sum of two elements, U(t) = U1(t) + U2(t), as we did in
Sect. 3.

Again, if U1(t) belongs to a finite-dimensional subspace and all the eigenvalues have negative real part,
the exponential decay of U1(t) is guaranteed.

Proposition 4.3. All the eigenvalues of B restricted to Ω(h, i, j, k) have negative real part.



ZAMP Decay for strain gradient porous elastic waves Page 13 of 25 35

Proof. Imposing u = A1e
ωt sin(nx) and ϕ = A2e

ωt cos(nx), the following homogeneous system on the
unknowns A1 and A2 is obtained:(

k1n
4 + (a + ωa∗)n2 + ρω2 ηn3 + bn

ηn3 + bn k2n
4 + δn2 + Jω2 + ξ

)(
A1

A2

)
=

(
0
0

)
.

We make again an abuse of the notation and we denote by ai, for i = 0, 1, 2, 3, 4, the coefficients of the
fourth-degree polynomial obtained from the determinant of the coefficients matrix once ω is replaced by
x:

a0 = ρJ,

a1 = Ja∗n2,

a2 = (Jk1 + k2ρ) n4 + (aJ + δρ)n2 + ξρ,

a3 = a∗k2n6 + a∗δn4 + a∗ξn2,

a4 = k1k2n
8 + n6

(
ak2 + δk1 − η2

)
+ n4 (aδ − 2bη + k1ξ) + n2

(
aξ − b2

)
.

As we obtained before, it is clear that ai > 0 for i = 0, 1, 2, 3, 4.
A direct calculation shows that all the leading minors of the Routh–Hurwitz matrix are positive. To

be precise:

M1 = Ja∗n2,

M2 = J2a∗n4(k1n2 + a),

M3 = J2(a∗)2n6
(
b + ηn2

)2
,

M4 = a4 · M3.

�

Proposition 4.3 shows the exponential decay of U1(t). We study now U2(t).
To prove the exponential decay, we use the characterization given by Huang [11] or Prüss [29]. We

recall it below.

Theorem 4.4. Let S(t) = {eBt}t≥0 be a C0-semigroup of contractions on a Hilbert space. Then, S(t) is
exponentially stable if and only if iR ⊂ �(B) and lim

|λ|→∞
‖(iλI − B)−1‖L(H) < ∞.

We split these conditions in two separate lemmata.

Lemma 4.5. Let B be the matrix operator defined above. Therefore, iR ⊂ �(B).

Proof. We suppose then that there exist a sequence of real numbers λn with λn → �, |λn| < |�| and a
sequence of vectors Un = (un, vn, ϕn, ψn) in D(B) and, with unit norm, such that ‖(iλnI − B)Un‖ → 0.

If we write the above expression term by term, we obtain the following conditions:

iλnun − vn → 0, in H2,

iλnρvn − aD2un − bDϕn + ηD3ϕn + k1D
4un − a∗D2vn → 0, in L2,

iλnϕn − ψn → 0, in H2,

iλnJψn − ηD3un + bDun − δD2ϕn + k2D
4ϕn + ξϕn → 0, in L2.

Selecting the real part of the product 〈(iλnI − B)Un, Un〉 and taking into account (4.3), it is clear that
Dvn → 0 and, hence, it follows that λnDun → 0.

Let us multiply expression (4.4) by un:

iλnρ〈vn, un〉 − a〈D2un, un〉 − b〈Dϕn, un〉 + η〈D3ϕn, un〉 + k1〈D4un, un〉 − a∗〈D2vn, un〉 → 0.
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Now, we remove the first term (that tends to zero), integrate by parts on the other terms and it follows
that

a〈Dun,Dun〉 + b〈ϕn,Dun〉 − η〈D2ϕn,Dun〉 + k1〈D2un,D2un〉 + a∗〈Dvn,Dun〉 → 0,

which yields D2un → 0. Notice that D2ϕn is bounded because ϕ ∈ H2. Notice also that D2vn → 0.
We multiply again expression (4.4) but now by Dϕn. We remove the terms with D2un and D2vn, and

we obtain:

iλnρ〈vn,Dϕn〉 − b〈Dϕn,Dϕn〉 + η〈D3ϕn,Dϕn〉 + k1〈D4un,Dϕn〉 → 0. (4.4)

From (4.4), iλnϕn ≈ ψn. Hence, integrating by parts, we get

iλnρ〈vn,Dϕn〉 = −ρ〈vn, iλnDϕn〉 ≈ ρ〈Dvn, ψn〉 → 0.

On the other hand, we find that

k1〈D4un,Dϕn〉 = −k1〈Dun,D4ϕn〉,
and, from (4.4), we have

−k1〈Dun,D4ϕn〉 ≈ k1
k2

〈Dun, iλnJψn − ηD3un + bDun − δD2ϕn + ξϕn〉,

which tends to 0.
Therefore, expression (4.4) reduces to

−b〈Dϕn,Dϕn〉 − η〈D2ϕn,D2ϕn〉 → 0.

This implies that D2ϕn → 0.
Finally, multiplying (4.4) by ϕn (and removing the terms that we already know that tend to 0, that

is bDun, δD2ϕn and ξϕn) we obtain

〈iλnJψn, ϕn〉 − η〈D3un, φn〉 + k2〈D4ϕn, φn〉 → 0,

or, equivalently,

−〈Jψn, iλnϕn〉 + η〈D2un,Dϕn〉 + k2〈D2ϕn,D2ϕn〉 → 0.

Since the second and third terms tend to zero, we now see that

−〈Jψn, iλnϕn〉 ≈ −J〈ψn, ψn〉 → 0,

which finishes the proof because this shows that vector Un cannot be of unit norm. �

Lemma 4.6. Let B be the matrix operator defined above. Then, lim
|λ|→∞

‖(iλI − B)−1‖L(H) < ∞.

Proof. Notice that throughout the proof of the previous lemma we only make use of the fact that λn does
not tend to zero, but it does not depend on λn tending to a finite number or to infinity. �

As a consequence of the above lemmata, we have the following result.

Theorem 4.7. Let (u, ϕ) be the solution to the problem determined by system (4.1) with boundary condi-
tions (2.1) and initial conditions (2.2). Then, (u, ϕ) decays exponentially.
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5. Dissipation in the porosity

In this section, we want to introduce different dissipation mechanisms in the porosity component. In fact,
we will study three of them. We will develop an analysis quite similar to the ones used in Sects. 3 and 4.
Some parts of the analysis are, mutatis mutandis, equal to the previous ones, and, for this reason, we only
write the main results. In the following subsections, we denote by A the matrix operator corresponding
to each system. We think that it will not cause any misunderstanding. Moreover, in each subsection, to
obtain the system of field equations, we write only the changes we need to impose in one (or more) of the
constitutive equations to introduce the dissipation. The other constitutive equations remain unaltered.

5.1. Hyperviscoporosity

We assume that

σ = βux + dϕ + k2ϕxx + k∗
2ϕ̇xx

with k∗
2 > 0.

The system of field equations is given by

ρü = auxx + bϕx − k1uxxxx − ηϕxxx,
Jϕ̈ = ηuxxx − bux + δϕxx − ξϕ − k2ϕxxxx − k∗

2ϕ̇xxxx.

}
(5.1)

Theorem 5.1. There exists a unique solution to system (5.1) with boundary conditions (2.1) and initial
conditions (2.2). Moreover, let (u, ϕ) be the solution, therefore:

1. (u, ϕ) decays in a slow way, and
2. (u, ϕ) decays as least as t−1/2.

Proof. The proof follows the same scheme as we did in Sect. 3.
It is worth noting that, if A denotes the matrix operator corresponding to system (5.1), therefore

�〈AU,U〉 = −k∗
2

2

π∫
0

|ψxx|2dx ≤ 0.

Using the Routh–Hurwitz theorem for the polynomial p(x − ε) corresponding to system (5.1), we
obtain that the third leading minor is

L′
3 = −2ρ2k1 (k∗

2)
3
εn16 + p′

14(n),

which gives the slow energy decay.
Using the Borichev and Tomilov characterization, we obtain the polynomial rate of decay. �

5.2. Viscoporosity

We change now the dissipation mechanism. In the constitutive equations, we consider

χ = γuxx + αϕx + α∗ϕ̇x,

σ = βux + dϕ + k2ϕxx + d∗ϕ̇,

g = −bux − ξϕ − dϕxx − d∗ϕ̇xx,

which give rise to the following system of field equations:

ρü = auxx + bϕx − k1uxxxx − ηϕxxx,
Jϕ̈ = ηuxxx − bux + δϕxx − ξϕ − k2ϕxxxx + δ∗ϕ̇xx,

}
(5.2)

where δ∗ = α∗ − 2d∗ > 0.
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Theorem 5.2. There exists a unique solution to system (5.2) with boundary conditions (2.1) and initial
conditions (2.2). Moreover, the solution decays exponentially.

Proof. The proof follows the same scheme used in Section 4. In this case, we apply Huang’s characteri-
zation. If A is the matrix operator obtained from system (5.2), then

�〈AU,U〉 = −δ∗

2

π∫
0

|ψx|2dx ≤ 0,

which is used in the proof of the equivalent here to Lemmata 4.5 and 4.6. �

It is worth noting that systems (5.1) and (5.2) are quite “symmetric” to systems (3.1) and (4.1),
respectively, and hence it is not surprising at all that the solutions behave analogously.

5.3. Weak viscoporosity

Finally, we consider an even weaker dissipation mechanism. We take

g = −bux − ξϕ − dϕxx − ξ∗ϕ̇

in the constitutive equations.
Therefore, the following system of field equations is obtained:

ρü = auxx + bϕx − k1uxxxx − ηϕxxx,
Jϕ̈ = ηuxxx − bux + δϕxx − ξϕ − k2ϕxxxx − ξ∗ϕ̇,

}
(5.3)

where ξ∗ > 0.

Theorem 5.3. There exists a unique solution to system (5.3) with boundary conditions (2.1) and initial
conditions (2.2). Moreover, let (u, ϕ) be the solution, therefore:

1. if Jk1 �= ρk2, (u, ϕ) decays in a slow way, and
2. if Jk1 = ρk2, (u, ϕ) decays exponentially.

Proof. The existence and uniqueness part can be proved as in the previous sections. The slow decay can
also be showed following the same methods: The third leading minor of the Routh–Hurwitz technique is

L′′
3 = 2ρε (Jk1 − ρk2) 2 (2Jε − ξ∗)n8 + p6(n),

which is negative for n large enough when Jk1 �= ρk2 provided that ε is sufficiently small.
We concentrate now in the exponential decay, which is the difficult part because it is quite different

from the ones we have done previously. We suppose that Jk1 = ρk2.
If A denotes the matrix operator obtained from system (5.3), a direct calculation gives

�〈AU,U〉 = −ξ∗

2

π∫
0

|ψ|2dx ≤ 0.

We prove both conditions of Huang’s characterization. First of all, as in Lemma 3.6, we consider a
sequence of unit norm vectors in the domain of the operator and we write term by term the convergences:

iλnun − vn → 0, in H2, (5.4)
iλnρvn − aD2un − bDϕn + ηD3ϕn + k1D

4un → 0, in L2, (5.5)
iλnϕn − ψn → 0, in H2, (5.6)
iλnJψn − ηD3un + bDun − δD2ϕn + k2D

4ϕn + ξϕn + ξ∗ψn → 0, in L2. (5.7)

From (5), we get ψn → 0 and, hence, λnϕn → 0 in L2.
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We denote by mn the function such that D2mn = ϕn and Dmn is zero at the boundary. Notice that,
in particular, there exists a real number C such that ‖mn‖ ≤ C‖ϕn‖ and λnϕn → 0 implies λnmn → 0
and, moreover, λnDmn → 0.

We remove from (5.7) the terms that tend to zero, and we multiply the remaining part by mn:

〈iJλnψn,mn〉 − η〈D3un,mn〉 + b〈Dun,mn〉 − δ〈D2ϕn,mn〉 + k2〈D4ϕn,mn〉 → 0.

Integrating by parts and taking into account that Dun is bounded, the above expression becomes

〈iJψn, λnmn〉 + η〈D2un,Dmn〉 − δ〈ϕn, ϕn〉 − k2〈Dϕn,Dϕn〉 → 0.

The three first terms tend to zero and, therefore, it is clear that Dϕn → 0.
We multiply (5.7) by ϕn, and we obtain:

〈iJψn, λnϕn〉 − η〈D3un, ϕn〉 + b〈Dun, ϕn〉 − δ〈D2ϕn, ϕn〉 + k2〈D4ϕn, ϕn〉 → 0.

Integrating again by parts, using that Dϕn → 0 and that D2un is bounded we get D2ϕn → 0.
We remove from (5.5) and (5.7) the terms which tend to zero, and we multiply the remaining parts

by Dϕn and by Dun, respectively. We get:

〈iλnρvn,Dϕn〉 − a〈D2un,Dϕn〉 + η〈D3ϕn,Dϕn〉 + k1〈D4un,Dϕn〉 → 0

and

〈iλnJψn,Dun〉 − η〈D3un,Dun〉 + b〈Dun,Dun〉 − δ〈D2ϕn,Dun〉 + k2〈D4ϕn,Dun〉 → 0.

Using the previous results, the first expression reduces to

〈iλnρvn,Dϕn〉 + k1〈D4un,Dϕn〉 → 0 (5.8)

and the second one to

〈iλnJψn,Dun〉 − η〈D3un,Dun〉 + b〈Dun,Dun〉 + k2〈D4ϕn,Dun〉 → 0. (5.9)

Now, from (5.4) we know that vn ∼ iλnun and therefore, expression (5.8) can be rewritten as

−λ2
nρ〈un,Dϕn〉 − k1〈Dun,D4ϕn〉 → 0

or, equivalently,

〈Dun,D4ϕn〉 ∼ −λ2
nρ

k1
〈un,Dϕn〉.

On the other hand, from convergence (5.6) we find that ψn ∼ iλnϕn, and convergence (5.9) becomes

λ2
nJ〈Dϕn, un〉 + η〈D2un,D2un〉 + b〈Dun,Dun〉 − k2

λ2
nρ

k1
〈un,Dϕn〉 → 0.

Finally, applying the hypothesis Jk1 = ρk2, we obtain

η〈D2un,D2un〉 + b〈Dun,Dun〉 → 0,

which implies that Dun → 0 and D2un → 0 for n large enough.
Notice that we do not distinguish between λn being bounded or not because this does not matter in

the proof. The only relevant point is that λn does not tend to zero. �
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6. Numerical behavior

In this section, we study a fully discrete approximation of a variational version of the above mechanical
problems. So, we introduce its variational formulation. Let Y = L2(0, π), and denote by (·, ·) the scalar
product in this space, with corresponding norm ‖ · ‖.

We replace boundary conditions (2.1) by the following ones:

u(0, t) = u(π, t) = ux(0, t) = ux(π, t) = 0,
ϕ(0, t) = ϕ(π, t) = ϕx(0, t) = ϕx(π, t) = 0.

}
(6.1)

Therefore, integrating by parts we derive the following variational formulation for the problems studied
in the previous sections.

Find the displacement field u : [0, T ] → H2
0 (0, π) and the porosity field ϕ : [0, T ] → H2

0 (0, π) such that
u(0) = u0, u̇(0) = v0, ϕ(0) = ϕ0, ϕ̇(0) = ψ0, and, for a.e. t ∈ (0, T ) and w, r ∈ H2

0 (0, π),

ρ(ü(t), w) + a(ux(t), wx) + k1(uxx(t), wxx) + a∗(u̇x(t), wx) + k∗
1(u̇xx(t), wxx)

= b(ϕx(t), w) + η(ϕxx(t), wx),
J(ϕ̈(t), r) + δ(ϕx(t), rx) + k2(ϕxx(t), rxx) + ξ∗(ϕ̇(t), r) + ξ(ϕ(t), r)

= −η(uxx(t), rx) − b(ux(t), r),

where T denotes the final time and, depending on the value of parameters k∗
1 , a∗ or ξ∗, we obtain the

variational formulation of problems (3.1), (6.1) and (2.2), (4.1), (6.1) and (2.2), and (5.1), (6.1) and (2.2).
We note that we omit the analysis of the problems involving hyperviscoporosity and viscoporosity

cases because they are similar to the hyperviscosity and viscosity ones, respectively.
Now, we provide the fully discrete approximation of the previous weak problem. This is done in two

steps. First, we assume that the interval [0, π] is divided into M subintervals a0 = 0 < a1 < . . . < aM = π
of length h = ai+1 − ai = π/M , and so, to approximate the variational space H2

0 (0, π), we define the
finite-dimensional space V h ⊂ H2

0 (0, π) given by

V h = {wh ∈ C1([0, π]) ; wh
|[ai,ai+1]

∈ P3([ai, ai+1]) i = 0, . . . ,M − 1,

wh(0) = wh(π) = wh
x(0) = wh

x(π) = 0},

where P3([ai, ai+1]) represents the space of polynomials of degree less or equal to three in the subinterval
[ai, ai+1]; i.e., the finite element space V h is made of C1 and piecewise cubic functions. Here, h > 0
denotes the spatial discretization parameter. Furthermore, let the discrete initial conditions uh

0 , vh
0 , φh

0

and ψh
0 be defined as

uh
0 = Phu0, vh

0 = Phv0, φh
0 = Phφ0, ψh

0 = Phψ0,

where Ph is the classical finite element interpolation operator over V h (see [3]).
Secondly, we consider a uniform partition of the time interval [0, T ], denoted by 0 = t0 < t1 < · · · <

tN = T , with step size k = T/N and nodes tn = nk for n = 0, 1, . . . , N .
Therefore, using the well-known Newmark-β scheme, the fully discrete approximations of the above

variational problem are the following.
Find the discrete displacement uhk = {uhk

n }N
n=0 ⊂ V h and the discrete porosity function ϕhk =

{ϕhk
n }N

n=0 ⊂ V h such that uhk
0 = uh

0 , vhk
0 = vh

0 , ϕhk
0 = ϕh

0 , ψhk
0 = ψh

0 and, for all wh, rh ∈ V h and
n = 2, . . . , N ,

ρ

k2α
(uhk

n , wh) +
(
a + a∗ β

kα

)
((uhk

n )x, wh
x) +

(
k1 + k∗

1

β

kα

)
((uhk

n )xx, wh
xx)

−b((ϕhk
n )x, wh) − η((ϕhk

n )xx, wh
x)

= ρ
( 1

k2α
uhk

n−1 +
1

kα
u̇hk

n−1 −
(

1 − 1
2α

)
ühk

n−1, w
h
)
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+k∗
1

( β

kα
(uhk

n−1)xx +
(

1 − β

α

)
(u̇hk

n−1)xx − k

(
1 − β

2α

)
(ühk

n−1)xx, wh
xx

)

+a∗
( β

kα
(uhk

n−1)x +
(

1 − β

α

)
(u̇hk

n−1)x − k

(
1 − β

2α

)
(ühk

n−1)x, wh
x

)
,

( J

k2α
+ Jξ + ξ∗ β

kα

)
(ϕhk

n , rh) + δ((ϕhk
n )x, rh

x) + k2((ϕhk
n )xx, rh

xx)

+b((uhk
n )x, rh) + η((uhk

n )xx, rh
x)

= J
( 1

k2α
ϕhk

n−1 +
1

kα
ϕ̇hk

n−1 −
(

1 − 1
2α

)
ϕ̈hk

n−1, r
h
)

+ξ∗
( β

kα
ϕhk

n−1 +
(

1 − β

α

)
ϕ̇hk

n−1 − k

(
1 − β

2α

)
ϕ̈hk

n−1, r
h
)
,

where the discrete velocity, the discrete porosity speed, the discrete acceleration and the discrete porosity
acceleration u̇hk

n , ϕ̇hk
n , ühk

n and ϕ̈hk
n are now recovered from the relations:

u̇hk
n =

β

kα
uhk

n +
−β

kα
uhk

n−1 + (1 − βα)u̇hk
n−1 + k

(
1 − β

2α

)
ühk

n−1,

ϕ̇hk
n =

β

kα
ϕhk

n +
−β

kα
ϕhk

n−1 + (1 − βα)ϕ̇hk
n−1 + k

(
1 − β

2α

)
ϕ̈hk

n−1,

ühk
n =

1
k2α

uhk
n − 1

k2α
uhk

n−1 − 1
kα

u̇hk
n−1 +

(
1 − 1

2α

)
ühk

n−1,

ϕ̈hk
n =

1
k2α

ϕhk
n − 1

k2α
ϕhk

n−1 − 1
kα

ϕ̇hk
n−1 +

(
1 − 1

2α

)
ϕ̈hk

n−1.

We note that the first time iteration is done using the implicit Euler scheme, and so, the accelerations
at time t1 are obtained as ühk

1 = (u̇hk
1 − vh

0 )/k and ϕ̈hk
1 = (ϕ̇hk

1 − ψh
0 )/k, where the discrete velocities are

u̇hk
1 = (uhk

1 − uh
0 )/k and ϕ̇hk

1 = (ϕhk
1 − ϕh

0 )/k .
It is straightforward to obtain that this fully discrete problem has a unique solution applying the

well-known Lax–Milgram lemma and the required assumptions on the constitutive parameters.
In all the numerical simulations described below, we have used the following data:

T = 7000, ρ = 1, k1 = 1, a = 1, b = 1, η = 1, J = 1,

k2 = 1, δ = 2, ξ = 2,

and the initial conditions, for all x ∈ (0, 1):

u0(x) = φ0(x) = x3(x − 1)3, v0(x) = ψ0(x) = 0.

We note that, for the sake of simplicity in the numerical implementation, we have assumed that the
length of the beam is 1 (instead of π). Moreover, we have chosen the discretization parameters h = 0.025
and k = 10−3 and the Newmark−β coefficients α = 0.25 and β = 0.5.

In the first example, we solve the discrete problem assuming that k∗
1 = ξ∗ = 0 and varying parameter

a∗ between 0.01 and 100 (which corresponds to the numerical resolution of system (4.1) with boundary
conditions (6.1)). In Fig. 1, we plot the evolution in time of the discrete energy given by

Ehk
n =

1
2

1∫
0

[
ρ(u̇hk

n )2 + J(ϕ̇hk
n )2 + a(uhk

n )2x + 2b(uhk
n )xϕhk

n + ξ(ϕhk
n )2 + δ(ϕhk

n )2x

+2η(uhk
n )xx(ϕhk

n )x + k1(uhk
n )2xx + k2(ϕhk

n )2xx

]
dx

in both normal and semi-log scales.
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Fig. 1. Example 1: Dependence of the solution with respect to parameter a∗

Fig. 2. Example 2: Dependence of the solution with respect to parameter a∗

As can be seen, the theoretical asymptotic exponential behavior of the energy can be clearly seen
for all the coefficients, although we can also appreciate that, when parameter a∗ increases (higher than
50), the energy decay seems to reduce. A possible explanation for this finding could be the fact that the
dissipation mechanism of the beam becomes too rigid, and so, the dissipation is strongly affected (see
also the zoom part shown on the left-hand side).

Secondly, we consider the dependence of the solution with respect to parameter k∗
1 assuming now that

ξ∗ = a∗ = 0 (i.e., it corresponds to the numerical resolution of system (3.1) with boundary conditions
(6.1)). Therefore, the evolution in time of the discrete energy given above is shown in Fig. 2 for some
values of parameter k∗

1 (k∗
1 = 0.1, 1, 10).

As can be clearly seen, an asymptotic exponential behavior is again observed for the discrete energy.
Although we have proved theoretically that it should decay as t−1/2, we note that it cannot be found
in the numerical simulations because, in this case, the variational space has a finite dimension and so,
all the eigenvalues of the corresponding operator (the eigenvalues of the matrix system) have real part.
Therefore, the energy decay is always exponential.
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Fig. 3. Example 2: Energy evolution for different small values of a∗

Fig. 4. Example 3: Comparison between the solution obtained with the dissipation mechanism a∗ = 1 and ξ∗ = k∗
1 = 0

(second order) and the dissipation mechanism k∗
1 = 1 and ξ∗ = a∗ = 0 (fourth order)

One interesting issue in this experiment is the dependence on parameter k∗
1 because, when it increases,

the dissipation mechanism becomes rigid (as in the previous example) and the energy decay is slower;
however, it remains to be understood what happens when this parameter becomes smaller. In Fig. 3, we
plot the energy decay for a large number of solutions with parameter k∗

1 varying between 0.01 and 0.3.
As can be seen on the left-hand side, the energy curve decreases when the parameter k∗

1 increases
until value k∗

1 = 0.04, and then, it starts to increase again. In order to analyze easily this behavior, on
the right-hand side we plot the values of the energy at time t = 50, and we can clearly appreciate how
this minimum is achieved.

Now, the aim is to compare both dissipation mechanisms with the same values for the equivalent
constitutive parameters (so, we have used values a∗ = 1 and k∗

1 = 1 for each case). The comparison of the
energy decay is shown in Fig. 4. As can be seen, the energy decay is clearly faster when the second-order
dissipation mechanism is considered (case a∗ = 1 and ξ∗ = k∗

1 = 0). However, the asymptotic energy
decay for the fourth-order case (k∗

1 = 1 and ξ∗ = a∗ = 0) is also exponential.
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Fig. 5. Example 4: Dependence of the solution with respect to parameter ξ∗

Fig. 6. Example 4: Dependence of the solution for high values of parameter ξ∗

Finally, we analyze the dependence of the solution with respect to parameter ξ∗ assuming now that
k∗
1 = a∗ = 0 (i.e., it corresponds to the numerical resolution of system (5.3) with boundary conditions

(6.1)). Thus, the evolution in time of the discrete energy given above is shown in Fig. 5 for some values
of parameter ξ∗ (ξ∗ = 0.01, 0.1, 1, 10, 100).

As can be seen, an asymptotic exponential behavior is again found for the discrete energy. Although
in Theorem 5.3 it is shown that this behavior depends on the condition Jk1 = ρk2, as in the previous
example, we can conclude that this is not required for a finite-dimensional setting. Therefore, the energy
decay is always exponential as in the previous cases involving the mechanical dissipation.

Now, we focus on the dependence on parameter ξ∗. As in the case of a fourth-order dissipation
mechanism, when it increases the mechanism becomes rigid and the energy decay is slower; however, it
remains to be explained what happens when this parameter becomes high. In Fig. 6, we plot the energy
decay for a large number of solutions with parameter ξ∗ varying between 10 and 6000. On the left-hand
side, we can appreciate that the smaller curve is found for the value ξ∗ = 100. Moreover, on the right-hand
side this discrete energy is shown at time t = 10 for these values where the minimum is clearly seen.
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7. Conclusions

We have analyzed the time decay for the solutions to the system of partial differential equations that
models the behavior of porous elastic materials when fourth-order derivatives with respect to the spatial
variable are considered in both components, the displacement and the porosity, and one dissipation
mechanism is present in the system. Let us briefly summarize what we have found for each case:
(1) Hyperviscoelasticity: polynomial (slow) decay, controlled by t−1/2.
(2) Viscoelasticity: exponential decay.
(3) Hyperviscoporosity: polynomial (slow) decay, controlled by t−1/2.
(4) Viscoporosity: exponential decay.
(5) Weak viscoporosity: slow decay in the generic case and exponential decay in a specific situation.

These behaviors differ from the ones known for the classical theory, where, generically, two dissipation
mechanisms are needed (one at the macrostructure level and another one at the microstructure) to
guarantee the exponential decay. They differ also from the ones obtained for the strain gradient situation
with only high-order derivatives in the elastic component of the structure.

Finally, we have performed some numerical simulations to analyze this theoretical behavior. Therefore,
using the finite element method and the Newmark-β scheme we have implemented a numerical algorithm
in MATLAB for the solution of the hyperviscoelastic, the viscoelastic and the weak viscoporosity cases
(the remaining two cases are similar to the previous ones). We have found that, for every problem, the
discrete energy decay is always exponential, but it is significantly faster for the viscoelastic case (second
order). We have also seen that the energy decay has a minimum value depending on the constitutive
parameter which is different for each case.
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[25] Muñoz Rivera, J.E., Quintanilla, R.: On the time polynomial decay in elastic solids with voids. J. Math. Anal. Appl.

338, 1296–1309 (2008)
[26] Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Rational Mech. Anal. 72, 175–201

(1979)
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