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a b s t r a c t

Volunteer Computing is a type of large-scale distributed system formed aggregating computers
voluntarily donated by volunteers. These computers are usually off-the-self heterogeneous resources
belonging to different administrative authorities (users) that have an uncertain behavior regarding
connectivity and failure. Thus, the resource allocation methods in such systems are highly dependent
on the availability of resources. On one hand, resources tend to be scarce, but on the other hand,
computers exhibiting low availability patterns – which are the most frequent type – are discarded
or used at a high cost only when high available nodes are crowded. This paper presents the
Complementary Low-Availability Resource-Allocation (CLARA) mechanism, a novel clustering-based
resource allocation mechanism that takes advantage of complementarities between nodes with low
availability patterns. The combination of them into complementary nodes offers an availability level
equivalent to the level offered by a single high-available node. These groups of complementary nodes
are maintained using a lazy reassignment algorithm. Consequently, a significant number of nodes with
low-availability patterns are considered by the resource allocation mechanism for service placement.
Our method has been validated over a simulation environment of a real volunteer network. The
analysis of the results shows how our mechanism maximizes the use of poor quality computational
resources to satisfy the user quality requirements while minimizes the number of USs replicas
reassignments between nodes. As well, the capacity of the system for providing user services is highly
increased while the load of the high-available nodes is remarkably reduced.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

A volunteer network is a type of large-scale distributed net-
work where the computational resources are voluntarily con-
tributed by the participants in the network. These resources
are normally based on spare computing resources which are
often inexpensive off-the-shelf equipment with a high degree of
heterogeneity. In consequence, these resources have an uncer-
tain behavior regarding connectivity and failure. The inherent
challenges of these types of systems (data loss, data integrity,
resources unavailability, and replication costs) traditionally lead
to prioritize the usage of the most available nodes. In this context,
the Resource Allocation (RA) mechanisms are highly dependent
on the availability of the underlying resources. The scarcity of
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reliable resources jointly with the high number of nodes exhibit-
ing low availability patterns (which is the most frequent type)
force to choose between discarding the low-available ones (lead-
ing to a crowding of the most available nodes) or alternatively,
using them at a high cost (replication to guarantee reasonable
availability levels is costly).

In this context, our motivation is to address the problem of
developing a RA mechanism that allows considering most of
these low-available nodes (traditionally discarded or used at high
cost) as part of the pool of resources for service deployment,
increasing the overall capacity of the network. The main goal is
to ensure the Quality of Service (QoS) required by a user service
(US) deployed on low-available nodes. The complementarities be-
tween the availabilities of the nodes with low availability patterns
allow offering additional QoS levels for USs deployed on low-
available nodes. The secondary goal is to minimize the number of
USs replicas reassignments (replications) on low-available nodes.
Notice that the incorporation of low-available nodes into the RA
 31
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pool will increase the number of unavailabilities of these nodes,
and therefore, the unavailability of the USs deployed on them.
Finally, the third goal is to maximize the usage of the volunteer
resources, increasing the overall capacity of the network for USs
placement.

In this paper, by combining availability prediction and cluster-
ing techniques, we propose a RA methodology approach, and then
consequently, develop a new RA mechanism over low-available
voluntarily contributed resources. The main contributions of this
paper can be summarized as follows:

• A novel clustering-based RA mechanism that leverages com-
plementarities between low-available nodes for US place-
ment. These complementarities satisfy the same US require-
ments applied to high-available nodes.
• An algorithm for the creation of complementary sets of

nodes. The algorithm makes use of clustering techniques
for grouping low-available nodes into disjoint sets with
similar availability patterns. Next, it creates combinations of
nodes with complementary availability from these sets. The
resulting combined node, named complementary node (CN),
provides an availability level similar to the level offered by
a high available node.
• A lazy reassignment algorithm that limits the reassignments

to the minimum necessary to restore the missing US QoS,
reducing the replication needs remarkably.
• An evaluation and comparison with a method based on

the usage of the most available nodes only. This evalua-
tion has been done using a simulation environment of a
real-microblogging application named Garlanet.1

The remainder of this paper is structured as follows. Sec-
ion 2 presents a literature review about RA methods used in
istributed networks based on volunteer networks. The formal
roblem description is detailed in Section 3. The CLARA mech-
nism description and the methodology steps are described in
ection 4. Section 5 describes the main algorithms developed as
art of the CLARA mechanism. The simulation environment and
he complete set of experiments and analysis are described in
ections 6 and 7, respectively. Finally, Section 8 draws the most
elevant conclusions and identifies future research lines.

. Related work

Volunteer Computing (VC) is a type of distributed comput-
ng in which non-dedicated computing resources are donated,
roviding an unrivaled computing capacity. However, this non-
edicated nature of the resources makes them extremely stochas-
ic and unpredictable, and complex mechanisms based on costly
edundancies must be deployed in order to guarantee reasonable
vailability levels [1,2]. The feasibility of running applications
n contributory networks is studied by [3] which presents the
nalysis of several open-source applications deployed on two VC
ommunity networks. A micro-blogging application is one of this
uitable applications, where users make use of shared resources
o store and interchange data (usually in the form of snippets of a
mall number of characters) establishing virtual communication
hannels among them [4,5].

.1. Resource allocation and service placement

The volatility of the nodes in a VC network leads to design
mart RA strategies for Service Placement (SP) under strict restric-
ions of network efficiency, resources availability and cost, and

1 https://dpcs.uoc.edu/projects/garlanet/.
3

service reliability and performance. Thus, it is necessary to de-
ploy redundancy mechanisms and efficient policies according to
specific criteria based mainly on node and application parameters
as well as on the network status.

One RA research area is focused on metaheuristics for opti-
mizing the usage of the contributed resources. Metaheuristics
and simulation techniques have been widely used to address the
stochastic nature of the RA problem of contributory resources in
VC networks. [6] presents a methodology for extending meta-
heuristics through simulation to solve stochastic combinatorial
optimization problems while facilitates the introduction of risk
and reliability criteria during the assessment of alternative high-
quality solutions. [7] proposes a heuristic method based on a
weight system to determine resources qualities. Afterward, a
biased random procedure allows selecting them accordingly in
an extremely fast way. [8] presents a metaheuristic approach
designed to deal with applications where data availability must
be always guaranteed, including a simheuristic to handle the
stochasticity of the resources. [9] studies the RA problem on
Fog/Edge computing, proposing a heuristic-based RA algorithm
inspired by an economic model. This model aims to maximize
the number of applications served by the network while ensuring
a target operational cost. Finally, other authors like [10] studies
the problem from its analogy with other well-known heuristic
problems, modeling the allocation problem as a bounded 0–1
multidimensional knapsack problem.

Other RA research area is focused on the usage of reputation
and trust models since the performance of tasks over VC resources
may be affected on their completion time due to the unreliability
of the VC resources. [11] proposes a reputation and resource-
based reliability model which uses a machine learning model to
extract resource usage patterns from historical data to predict the
reliability of the hosts. Similarly, in [12] the authors address the
challenge to guarantee a minimum QoS based on the tracking and
monitoring of the reliability and trust of the donated resources.
The proposed model extends classical reputation models incorpo-
rating a probabilistic model which considers several fine-grained
parameters for the reliability estimation of the untrusted re-
sources. Finally, [13] proposes a trust-based scheduling approach
where the trust level of each node is derived from its under-
lying performance while tasks are prioritized according to their
resource requirements and cost. The tasks are smartly mapped to
the correspondent node, minimizing the costs of processing the
task.

Finally, other RA research areas are based on the impact on
the performance, integrity, and serviceability. [14] presents a model
to evaluate the system performance as a function of the nodes
resources, the stochastic demand, and the servers vulnerabili-
ties. [15] presents a method to address the underused resources
and the additional costs on fixed RA methods. [16] defines a
workflow for enhancing the usage of hybrid VC and cloud re-
sources. [17] proposes a blockchain-based architecture to ensure
the integrity of the resource transaction data. [18] introduces a
blockchain-enabled resource sharing and service composition so-
lution through volunteer computing. Device capabilities are made
available for sharing using blockchain while miners are used
for searching non-advertised service capabilities to ensure a fast
and reliable service provisioning framework. [19] presents a RA
system that considers the minimum availability level required by
the user and the minimum cost to allocate resource. [20] proposes
a self-adaptive RA method based on an iterative QoS prediction
model and a runtime decision algorithm which improves the
QoS value on each iteration. [21] combines the Fog Computing
(FC) and VC paradigms, leveraging underutilized resources of
end devices to address the high latency, energy consumption,
and network usage for delay-sensitive applications. [22,23] de-
velops replica decision policies for a VC micro-blogging service
 125
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with a focus on maximizing the content availability and the
number of replicas generated. Finally, emerging researches are
related to vehicular VC. The recent advancements in vehicular
communication technologies and the embedment of computing
resources in vehicles lead to dispose a large number of powerful
computing resources that can be employed for services deploy-
ment. [24] leverages the surplus of vehicles resources for propos-
ing a hybrid VC-based model that allows to minimize the latency,
maximize the system utility, and reduce the monetary costs for
task offloading. [25] examines the characteristics presented by
vehicular VC and the research challenges to be overcome for
intensive computing projects. [26] presents a vehicles computing
framework for offloading computing tasks for a better compu-
tation services. The authors analyze the interactions between
vehicles and nodes designing a genetic algorithm to find the
optimal node strategy. [27] presents a workload clustering-based
resource provisioning mechanism for executing cloud-based ap-
plications with heterogeneous workloads. This mechanism com-
bines biogeography-based optimization techniques with K-means
clustering to classify the cloud workloads according to their QoS
requirements. Finally, [28] presents a hybrid solution to handle
resource provisioning using workload analysis in a cloud envi-
ronment. The solution uses the imperialist competition algorithm
and K-means for clustering the workload submitted by end-users
and a decision tree algorithm for determining scaling decisions.

RA in VC networks is closely related to the services place-
ent objective. Thus, [29] proposes a multicriteria optimization
trategy for sorting and selecting the most suitable nodes. [30]
resents a low-complexity bandwidth-aware SP heuristic, which
everages network state information to maximize the bandwidth
llocation on micro-cloud deployments. [31] proposes a network-
ware model based on a low-complexity SP heuristic that consid-
rs the limited capacity of the nodes, and the unpredictable net-
ork performance, for maximizing the bandwidth allocation. [32]
roposes an availability and reliability prediction model based
n a multi-state semi-Markov process for determining the most
uitable VC nodes for SP. [33] presents a machine learning model
o reduce the complexity of the SP. The model is complemented
ith and a set of readjustment processes, and an optimized
-medoids clustering approach.
As a summary, Table 1 presents the classification and charac-

eristics of the related work.
Our research aims to provide a different RA approach through

clustering-based mechanism for the definition of complemen-
ary relationships of low-available nodes. Thus, our approach
llows leveraging low-available nodes that individually would
e discarded. As result, the whole list of eligible nodes for US
lacement is remarkably increased while the overload of the most
vailable and demanding nodes is reduced.

. Problem description

By community-owned VC systems, we refer to systems that
ost their data and services in computers voluntarily contributed
y participants in the system. They are large-scale networks
here computational resources spread across the Internet. Thus,
o central authority is responsible for providing the resources
hich are often inexpensive off-the-shelf equipment with a high
egree of heterogeneity. In this context, one suitable US is a
ecentralized micro-blogging application where the user data is
ept in microservices. These microservices are distributed and
eplicated among VC nodes (see Fig. 1).

However, resource sharing is voluntary which entails a lack
f reliability in nature. Thus, the most available nodes are pri-
ritized, discarding a non-negligible number of nodes exhibiting
ow availability patterns. Besides, each US must be replicated
4

Fig. 1. General US deployment scenario over volunteer resources.

in several nodes to provide ways to access the US information
in case of the unavailability of one node. This creates a cost in
storage, time, bandwidth, and latency which must be minimized.
In summary, the balance between cost and availability will be one
of the most important objectives of the problem.

To orchestrate all the deployment and replication processes,
this type of applications incorporates a Centralized Control Sys-
tem (CCS) component that decides which US should be managed
by each node and also informs which nodes manage each US
when it is asked about. In addition, the CCS knows which nodes
are available and decides which US must be replicated on which
nodes so that all US information is always available.

The challenge is to design a RA mechanism that maximizes
the usage of the donated resources. Concretely, the mechanism
should leverage donated resources that exhibit a low-availability
profile for increasing the eligible set of resources for US deploy-
ment, according to the following premises:

• Maximize the US quality: We consider that the US QoS is
proportional to its availability. Thus, node availability is the
most important QoS parameter, so nodes that are most of
the time available should be prioritized.
• Minimize the number of US replicas: When a new US is

created (at US deployment time), US data is replicated over
several nodes in the network. The number of US replicas will
depend on the availability of the underlying nodes. As nodes
are more available, a fewer number of replicas are needed.
Thus, the goal is to allocate reliable resources for minimizing
the number of replicas to use.
• Minimize the number of US replicas reassignments: If

one of the US replicas gets unavailable, a new replica must
be enabled in a new available node. This new replica is
built from one of the surviving replicas, copying the US
data to the new node. However, this operation is costly
in terms of (1) US data size (which depends on the US
characteristics), (2) bandwidth and latency between origin
and destination nodes, (3) node storage (same storage is
consuming on several nodes, enough storage is needed on
destination node), and (4) timing (US may be running in
a degraded mode because not all the required replicas are
available until the copy is finished). Therefore, the goal is
to minimize the number of reassignments for restoring the
missing US QoS in case of nodes unavailability.
• Maximize the use of low-available resources: The mecha-

nism must avoid overloading the most available nodes while
maximizes the use of low-available nodes.
• Maximize the distribution of resources among all users:

Computational resources must be smartly distributed among
users to maximize its usage.
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Table 1
Related work review summary.
Techniques Evaluation tools Workload type Performance metrics Advantages/Disadvantages

- Metaheuristics
- Heuristics
- Simheuristics

- Owned simulators
- Sim-Opt integration
- Monte Carlo simulation
- Discrete event simulation

- Analytical expressions
- Problem-specific data

- Risk and reliability metrics
- Alternative solutions of
similar HQ
- Weights quality tuning
- System stochasticity
quantification

Advantages:
- Short computing time for HQ
solutions
Disadvantages:
- Deterministic assumptions
- Performance depends on
adequate parameter tuning

- Reputation and trust
models

- Machine learning-based
simulators
- Bayesian
method-based reputation
- Probabilistic models for
reliable estimations
- Owned simulators

- Host and tasks
historical data
- Resources usage trace
data
- Training data

- Usage patterns
- Task failure rates
- Reliability predictions

Advantages:
- Modeling of resources
behavior
- Resources prioritization by
quality-sorting
Disadvantages:
- Need of track resources
reliability
- Trust monitoring of
distributed resources
- Coarse-grained reliability
models

- Performance,
integrity, and
serviceability
models

- Facility location theory
- Fuzzy models-based
reliability prediction
- Redundancy models
- Queueing theory-based
arrival models

- Hosts and tasks
historical data
- Task types
distributions

- Completion time
- Rework rates
- Cost metrics
- Expected reliable resources
- Variability and resources
correlation

Advantages:
- Service-oriented tasks
maximization
- Data-driven scheduling
Disadvantages:
- Non-convex stochastic
problems requires both lower
and upper bounds for reducing
state-space
28
29
30
31
32
33
34
35
36

37
38
Each of the US to place on the allocated resources is defined
by a required US QoS (QUS) which is distributed among the
high-available and the low-available sets of nodes according to
a distribution parameter (α) such as:

• α% of the required QUS is provided by high-available nodes
(QUSHQ ).
• (1-α)% of the required QUS is provided by combined groups

of low-available nodes (QUSCN ).

Thus, the required QUS is the sum of the qualities provided by
high-available nodes and low-available combined nodes.

QUS = QUSHQ + QUSCN

Accordingly, the value of the α parameter is one of the optimiza-
ion parameters to be included in the model.

.1. Problem definition

Under these premises, the objective is to find a near-optimal
ay to group low-available nodes into complementary relation-
hips to provide a combined availability equivalent to the one
xhibited by a high-available node. These new relationships will
nable these resources for SP, minimizing the replicas reassign-
ents, reducing the occupancy of the high available nodes, and
aximizing the usage of all the nodes in the network. Thus, we
an formulate the problem as follows:
Find out the minor set of nodes, CN ⊆ C , that:

CN = argmin
CN ′⊆C

| CN ′ | (1)

subject to:

QCN =

∑
h∈H

∑
c∈CN (min(|W | · 60, Kc,h))
|W | · |H| · 60

≥ T (2)∑
(min(|W | · 60, Kc,h)) ≥ S · |W | · 60,∀h ∈ H (3)
c∈CN

5

Table 2
Notations used in problem description.
Symbol Significance

Indices

H List of timeframes (hours) in a week: H = {1, . . . , 168}.
|H| Number of timeframes (hours) in a week.

Parameters

C Set of candidate nodes.
T Quality threshold for a high-available node (T ∈ {0, 1}).
S Timeframe minimum availability threshold (S ∈ {0, 1}).
L Minimum quality threshold required for a node (L ∈ {0, 1}).
W Historical nodes availability information grouped by week.
|W | Number of weeks used for the availability prediction.
QUS Required quality for a user service (US).
QUSHQ Chunk of QUS on high-available nodes.
QUSCN Chunk of QUS on combined low-available nodes (CN).
Qc Quality of a single node.
QCN Quality of a complementary node.
α Percentage of distribution of the QUS into QUSHQ and QUSCN .
Kc,h,w Available minutes exhibited by node c in the timeframe h of

the week w (c ∈ C, h ∈ H, w ∈ W ).
Kc,h Available minutes exhibited by node c in the timeframe h

during the AP interval.
∑

w∈W Kc,h,w(c ∈ C, h ∈ H, w ∈ W ).

Variables

CN Complementary nodes relationships

Formula (2) enforces the CN to exhibit a quality equivalent to
the quality of a single high-available node, i.e., its combined qual-
ity QCN must be equal to or greater than the threshold T . Formula
(3) enforces the CN to exhibit a minimum availability prediction
on at least one timeframe of the week, i.e., the combined AP
built from all the nodes participating in the complementary node
must be equal to or greater than the threshold S for at least one
timeframe (see Table 2).
4. Low-available nodes clustering-based RA mechanism

The CLARA mechanism presented in this paper aims to lever-
age VC nodes exhibiting a low-availability profile for increasing
the eligible set of resources for SP. The mechanism relies on
 39



FUTURE: 6280

S. Gonzalo, J.M. Marquès, A. García-Villoria et al. Future Generation Computer Systems xxx (xxxx) xxx

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Fig. 2. Representation of the CLARA mechanism methodology phases.
42
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clustering techniques for creating disjoint sets of low-available
nodes with complementary availability. As result, the capacity
of the network for SP is increased while the overloading of the
high-available nodes is highly decreased.

Fig. 2 presents the CLARA methodology phases. The method-
ology is composed of 6 phases which can be gathered into two
different groups. On one hand, phases I to IV are executed pe-
riodically for updating the clusters and sorting the list of nodes
by their quality. This group aims to keep clusters up-to-date
based on nodes behavior over time in order to be later efficient
for finding complementary relationships between nodes. On the
other hand, phases V and VI work with results from the previ-
ous phases to allocate resources for new US placements when
required. Fig. 3 shows the phase sequence of the mechanism and
the interactions between the CLARA components.

4.1. Phase I: Definition of the nodes availability predictor

Following the study performed in [34] where the problem of
predicting if a group of resources may be continuously avail-
able for a relatively long time period, our mechanism defines
an Availability Predictor (AP) to characterize the availability of
the nodes in the VC network. [34] showed how their prediction
methods can reliably guarantee the availability of collections of
VC resources, and how this prediction is particularly useful for SP
on VC networks. Thus, the node availability can be summarized
as a vector of 168 positions (24 h per day, 7 days in a week)
where each position represents the probability that the node is
connected at that specific hour in the following weeks.

According to the results also exhibited on [34], the prediction
interval is based on the availability exhibited by the nodes during
the last 4 weeks i.e. the number of previous weeks to be used for
predicting the node availability in the following weeks. Therefore,
each node will be identified by an availability vector of 168
positions on which each position will range from 0 to 240 min
(60 min/h x 4 weeks).

Thus, for each node, the CCS records the total number of
minutes that the node has been available at each week timeframe
(hour) on each of the previous weeks used for prediction (AP
interval). As result, each node will be characterized by an AP
vector of 168 positions where each position stores the total num-
ber of minutes that the node has been available at that specific
timeframe during the prediction interval.
6

Fig. 3. CLARA mechanism phase sequence and components interaction.

4.2. Phase II: Transformation of nodes availability prediction to qual-
ity

The node AP is converted into a single numerical value which
represents the quality of the node. This transformation aims to
simplify the nodes sorting process, speeding up the processing
on the subsequent phases.

The translation from the node AP to a quality value aims
to obtain a normalized value, in the range [0,1], based on the
exhibited availability of the node during the prediction interval.
The quality is calculated as the average of the percentages of time
that the node has been available on each week timeframe during
 52
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the AP interval, according to the following expression:

Qc =

∑
h∈H Kc,h

| W | · | H | ·60
(4)

4.3. Phase III: Filtering and separation of nodes into high-quality and
low-quality nodes

The filtering process aims to remove nodes with a random or
unpredictable behavior exhibited during the AP interval. As well,
nodes exhibiting a very low connection profile are also removed
with the aim to simplify the identification of availability patterns
on the whole set of filtered nodes.

The filtering process considers three types of sub-filters:

• Filter A: Discard nodes with a quality below a minimum
required threshold (L). This aims to discard nodes exhibiting
a very low connection profile during the week.
• Filter B: Discard nodes with quality over the high-available

threshold (T). This filter separates nodes exhibiting a very
good connection profile (high-quality nodes) from the rest
of the nodes (low-quality nodes).
• Filter C: Discard nodes that do not exhibit a connectivity

pattern along all the weeks in the AP interval. This filter dis-
cards nodes with a very changing availability pattern during
the evaluation period and, therefore, with an ‘‘unpredictable
availability pattern’’ (threshold S).

As result, the filtered nodes are separated into two sets:

• High Quality (HQ) nodes, which are characterized to have a
quality equal or greater to a specific threshold (T).
• Low Quality (LQ) nodes, which are characterized to have

a quality between the minimum quality threshold (L), and
the high-available threshold (T). As well, they exhibit a
connectivity pattern during their AP interval, i.e. a quality
greater than threshold S on at least one timeframe of the
AP. These nodes are the ones considered for clustering, and
later, finding complementary availabilities.

4.4. Phase IV: Clustering of low-quality nodes according to their
availability prediction

The objective of this phase is to group LQ nodes into disjoint
sets of nodes for later simplifying the process of combining them
complementarily (see Figs. 2 and 3). Our mechanism considers
the LQ nodes APs as the set of observations to cluster. The AP is a
two-dimensional vector of 168 positions that stores the number
of minutes that the node has been available at each timeframe
during the AP interval.

The output of the clustering process will be sets of LQ nodes
grouped into clusters. The APs of the nodes in the same cluster
will be very similar between them, but quite different from the
rest of APs on other clusters. In consequence, the processing time
of the algorithm for finding complementary availabilities in the
subsequent phases is considerably reduced.

The K -means clustering algorithm has been used, evaluating a
wide-enough range of K values to select the most appropriated
one. The selection of the best K value, among all the evaluated
ones, is validated by the usage of different clustering indices and
metrics such as the Dunn, Calinski–Harabasz, and Davies–Bouldin

indices.

7

4.5. Phase V: Identification and creation of set of nodes with com-
plementary availability (complementary nodes)

A Complementary Node (CN) will be formed by LQ nodes
which, combined between them, may act as good candidates for
SP. At this regard, the clustering of nodes is fundamental. The
clustering process allows to group LQ nodes according to their AP,
laying the foundations for building CNs based on the selection of
LQ nodes from the resulting clusters. The combination of several
LQ nodes for building a CN firstly requires declaring a combined
quality (CN quality) based on the following steps:

a. Each LQ node added to the CN contributes with its AP into
a combined AP.

b. The CN quality is obtained from the ‘‘availability-to-quality"
transformation performed on the combined AP.

c. If the resulting CN quality is lower than the minimum re-
quired quality for a HQ node (threshold T), then continue
adding nodes to the set. Otherwise, the set is closed. The CN
is built with the list of LQ nodes of the set and the resulting
CN quality.

The CN quality evolves over time depending on the current
state of the underlying LQ nodes in the CN:

• If all the LQ nodes in the CN are disconnected, independently
of whether they should be connected or not at the current
timeframe, the CN quality is computed as 0.
• If there is at least one LQ node connected in the CN at the

current timeframe, the CN quality will depend on the status
of the LQ nodes:

– Connected LQ nodes and disconnected LQ nodes (nodes
that should be disconnected at the current timeframe
according to their AP) are considered for the CN quality
calculation.

– Failed LQ nodes (disconnected nodes that should be
connected at the current timeframe according to its
AP) are skipped for the CN quality calculation.

Finally, the selection of nodes from each cluster is performed
using a descending sorted list by the node quality. The CN selec-
tion algorithm will select LQ nodes from the sorted list of each
cluster using biased randomization techniques.

4.6. Phase VI: Selection of nodes for SP on high-quality and comple-
mentary nodes

Once the CNs have been created, the selection algorithm will
proceed to select HQ and CN nodes for SP. Each of the USs is
characterized by a required QoS (QUS) which is a combination of
the individual qualities offered by each type of node:

QUS = QUSHQ + QUSCN

To later study the sensitivity in the distribution of user quality
among HQ and CN nodes, the mechanism considers a distribution
parameter α % such that:

QUS = α% ∗ QUSHQ + (1− α%) ∗ QUSCN

The selection algorithm will start selecting HQ nodes until
reaching the minimum HQ required quality QUSHQ . Then, the
selection algorithm will continue selecting CNs until reaching the
minimum CN required quality QUSCN (see Fig. 4).

5. Algorithms

This section describes the main algorithms developed as part

of the CLARA mechanism. 109
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Fig. 5. Complementary nodes creation algorithm flowchart.

5.1. Complementary nodes creation algorithm

The CN creation algorithm (see algorithm 1) is responsible for
building up a CN node from LQ nodes selected from the different
clusters. This CN node will be characterized by the list of LQ nodes
and a combined quality (CN quality).

The algorithm (see Fig. 5) starts selecting one active LQ node
from the sorted list of LQ nodes of a randomly selected initial
cluster. The LQ nodes sorted list for each cluster is a descending
list based on the node quality. This list is updated periodically
depending on the connection status of the nodes. The selection
of nodes from the sorted list is performed using a geometric dis-
tribution that will prioritize nodes with better quality, avoiding
the overloading of LQ nodes with the highest quality. Once the
LQ node from the first cluster has been selected, the algorithm se-
lects the cluster with the highest Euclidean distance between the
combined AP (sum of the APs from all the nodes participating in
the CN) and the rest of cluster centroids. The selection of LQ nodes
in the selected cluster is again based on the highest Euclidean
distance between the combined AP and the APs of the cluster
LQ nodes to locate the LQ node with the best complementarity.
On each iteration, the combined AP and quality are updated. The
process is repeated until reaching a combined quality equal to or
greater than the quality required for a single HQ node (threshold

T).

8

5.2. User service replicas reassignment algorithm

Volunteer nodes are connected and disconnected over time
according to a pattern characterized by their correspondent AP. In
case a node gets disconnected, the hosted USs cannot be served
and the US replicas must be reassigned to another connected
node to ensure that the required USs QoS is satisfied.

However, the US replicas reassignment process depends on
several factors such as the type of failed node (HQ or CN), the
unavailability cause, and the status of the remaining LQ nodes (in
the case of a CN node). At this regard, we distinguish between the
concept of ‘‘failed" and ‘‘not connected" nodes. A ‘‘not connected‘‘
node represents a node that is disconnected at the current time-
frame, but this is its expected status in that timeframe according
to its AP. In this case, the node QoS is considered for computing
the CN quality. On the other hand, a ‘‘failed’’ node is a node
that is disconnected at the current timeframe, but this is not
its expected status according to its AP. In this case, the node
QoS is not considered for computing the CN quality. Additionally,
the concept of ‘‘expectation to be connected’’ is implemented as
the total number of minutes exhibited by a node in the spe-
cific timeframe during the AP interval. If this total number of
minutes is equal to or higher than the threshold S, the node is
‘‘expected to be connected’’. Otherwise, the node is ‘‘expected to
be disconnected’’.

Fig. 6 provides a high-level specification of the US replicas
reassignment algorithm. While the required US QoS is not met,
the algorithm starts checking the HQ nodes assigned to the US.
If any of the HQ nodes is disconnected, it is replaced, and a
US replica is assigned to the new HQ node. Next, the algorithm
checks the CNs assigned to the US. For each CN, it firstly computes
the current CN quality. If this CN quality is not equal to or greater
than the threshold T, the CN restoring process is started. If all
the LQ nodes in the CN node are disconnected, the quality is
computed to 0, and a complete CN reassignment is performed
(a US replica is assigned to all the LQ nodes of the new CN). On
the other hand, if there is, at least, one connected node in the
CN, failed nodes are replaced one by one. Then, US replicas are
assigned to the new LQ nodes until the QoS of the CN reaches
the threshold T. Thus, the US replicas reassignment algorithm
implements a lazy replacement method to ensure that only the
minimum number of LQ nodes are replaced for restoring the
missing US QoS.

Algorithm 2 contains a detailed description of the algorithm.
To simplify the algorithm specification, the error and validation
tasks have been excluded from the specification.
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Algorithm 1: Complementary Nodes Creation Algorithm
Input: The minimum required quality for considering a single CN node as a HQ equivalent node: ThresholdHQ ; The minimum total quality

required to be covered by CN nodes: CNsRequiredQuality
utput: The list of CN nodes: CNsList; The total CN quality for the corresponding list of CN nodes: CNsQuality
rocedure ComplementaryNodesCreation:

CNQuality← 0
while CNsQuality < CNsRequiredQuality do

Quality← 0
NodesList, AggregatedWeekPredictor, CNList ← empty list
clIndex← get random cluster number
FirstNode← selectCNnode(clIndex)
FirstNodeWeekPredictor ← get AP from FirstNode
NodesList ← add FirstNode
AggregatedWeekPredictor ← add FirstNodeWeekPredictor
Quality← calculate Quality for AggregatedWeekPredictor
while (Quality < ThresholdHQ ) do

SelectedNode, SelectedNodeWeekPredictor ← empty
clIndex← select cluster with highest Euclidean distance (clCentroids, AggregatedWeekPredictor)
ListActiveNodes← get the active nodes sorted list from cluster clIndex
SelectedNode← select node with highest Euclidean distance (ListActiveNodes, AggregatedWeekPredictor)
SelectedNodeWeekPredictor ← get AP from SelectedNode
NodesList ← add SelectedNode
AggregatedWeekPredictor ← add SelectedNodeWeekPredictor
Quality← update Quality for AggregatedWeekPredictor

end
CN ← create CN from NodeList and Quality
CNsList ← add CN
CNsQuality← increment by Quality

end
return CNsList, CNsQuality
Fig. 6. User service replicas reassignment algorithm flowchart.
6
7
8
9

Fig. 7 provides a brief sequence of the actions that occur after
a node is disconnected. Starting from a scenario where HQ and
CN nodes are both connected, and several USs replicas are hosted
on them, two different types of events may occur; (1) a HQ node
failure, or (2) a CN node failure.
9

In Fig. 7(a1), HQ node 3 disconnects and the US replicas kept in
this node are no longer available. Since all nodes send heartbeat
signals to the CCS, after some time without receiving them, the
CCS will consider that node 3 is disconnected. The CCS will select
new nodes to replicate the USs kept in node 3 (from users 2 and
 10
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Algorithm 2: User Service Replicas Reassignment Algorithm
Input: The minimum required HQ quality for a US: minUSHQRequiredQuality; The minimum required CN quality for a US: minUSCNRequiredQuality;

The list of USs deployed in the network: UServices
utput: List of HQ nodes reassigned per US: USHQreassignedList; List of CN nodes reassigned per US: USCNreassignedList;
rocedure UserServiceReplicasReassignment:

MinUSrequiredQuality← MinUSHQrequiredQuality+MinUSCNrequiredQuality
for each (UService in UServices) do

USHQreassignedList,USCNreassignedList ← empty list
(USHQnodesList,USHQquality)← Get List of HQ Nodes and current US HQ quality from UService
(USCNodesList,USCNquality)← Get List of Complementary Nodes (CNs) and current US CN quality from UService
if USHQquality < minUSHQrequiredQuality then

missingUSHQquality← minUSHQrequiredQuality− USHQquality
USHQnewNodesList ← selectHQNodes(missingUSHQquality)
Assign nodes to UService(USHQnewNodesList)
USHQreassignedNodesList ← getDisconnectedNodes(USHQnodesList)
Unassign nodes from UService(USHQreassignedNodesList)
USHQquality← Update US HQ Quality
USHQreassignedList ← add (UService, USHQreassignedNodesList)

end
USquality← USHQquality+ USCNquality
if USquality < MinUSrequiredQuality) then

missingQuality← minUSrequiredQuality− USquality
(updatedCNquality,USCNreassignedNodesList)← restoreCNquality(USCNodesList,missingQuality,UService)
USquality← USHQquality+ updatedCNquality
USCNreassignedList ← add (UService, USCNreassignedNodesList)

end
end

return USHQreassignedList,USCNreassignedList

Input: The list of CN nodes assigned to the user service: CNodesList; Missing quality of service required on CN nodes for the user service:
missingCNQuality; User service: UService

Output: Updated quality on CN nodes after the replacement of nodes: updatedCNquality; List of CN nodes reassigned for restoring the missing
quality: USCNreassignedNodesList

Procedure restoreCNQuality:
USCNreassignedNodesList ← empty list
while missingCNQuality > 0 do

for each (CNode in CNodesList) do
if CNode has all nodes disconnected then

(newCN, newCNquality)← Create new CN
Unassign CNode from UService
Assign CN to UService
USCNreassignedNodesList ← getDisconnectedNodes(CNode)

else
CNFailedNodesList ← Get list of failed nodes of CNode
for each (failedNode in CNFailedNodesList) do

failedNodeCluster ← Get cluster id of failedNode
(newNode, newNodeQuality)← selectCNode(failedNodeCluster)
Unassign failedNode from CNode and UService
Assign newNode to CNode and UService
USCNreassignedNodesList ← failedNode

end
newCNquality← Get quality from CNode

end
missingQuality← missingQuality - newCNquality

end
end
updatedCNQuality← Get CN quality from CN nodes of UService

eturn updatedCNquality,USCNreassignedNodesList
9
10
11
12
13
14
15
16
3). The CCS decides that US from users 2 and 3 will go to nodes
4 and 2 respectively. Once nodes 4 and 2 are aware that they
should host the USs from users 2 and 3, they ask for the node
list currently hosting these USs (1) to the CCS (2). Then, nodes 2
and 4 select randomly a candidate node from the list and start
a replication session with the selected nodes (3) and (4). Finally,
Fig. 7(b1) shows the USs of users 2 and 3 replicated into nodes 4
and 2 respectively.
10
On the other hand, in Fig. 7(a2), one of the underlying LQ
nodes in the CN node 1 is failed. The CCS evaluates the current
CN node QoS, and in case it does not reach the minimum required
CN QoS (threshold T), the CCS proceeds to replace the failed LQ
nodes for restoring the missing CN QoS. The CCS unassigns the
failed node and selects a new node to be added to the CN. Once
the new node is aware that it has been added to a new CN, it asks
for the list of LQ nodes in the CN (1) to the CCS (2). Then, the new
node selects randomly a node from the LQ nodes list, and start a
 17



FUTURE: 6280

S. Gonzalo, J.M. Marquès, A. García-Villoria et al. Future Generation Computer Systems xxx (xxxx) xxx

r1
h2
O3
t4
f5

56

7
n8
a9
T10
c11
O12
s13
C14
a15
h16
d17
t18
t19
i20
t21
n22
A23
n24
w25
O26

27
a28
H29
i30
i31
t32
t33
m34
Q35
r36
Fig. 7. User service replicas reassignment processes.
i 37
u 38
l 39
n 40
( 41
n 42
w 43
O 44

6 45

46
t 47
C 48
o 49

6 50

51
h 52
( 53
w 54
m 55
a 56
A 57
V 58
s 59
e 60
o 61
e 62

6 63

64
u 65
i 66
eplication session with the selected node (3) and (4). All the USs
osted by the CN (user 3 and 4) are replicated in the new node.
nce the replication is finished, the CCS updates the CN QoS with
he new node. Finally, Fig. 7(b2) shows the new node hosting USs
or users 3 and 4 and added to the CN.

.3. Algorithms time complexity analysis

The algorithm 1 starts positioning on a cluster where a LQ
ode is selected from the sorted list of the cluster LQ nodes. Next,
n iterative process is performed until complete the CN building.
his process starts selecting the next cluster based on the Eu-
lidean distance between the CN AP and each cluster centroid.
nce the destination cluster has been selected, the algorithm
elects the node with the highest Euclidean distance with the
N AP, and adds it to the CN, updating the correspondent CN AP
nd quality. This process is repeated until reaching a CN quality
igher than the threshold T. Thus, the complexity of the algorithm
epends on the number of clusters, the size of each cluster, and
he length of the AP. The worst case would require iterating all
he clusters and checking the Euclidean distance for all the nodes
n the set of nodes C, with an AP length equal to |H|. Therefore,
he algorithm 1 has a linear time complexity depending on the
umber of nodes (|C |) and the number of timeframes used in the
P (|H|). Concretely, O(|C | · |H|). However, considering that the
umber of timeframes of the AP is constant (|H|=168 positions),
e may conclude that the time complexity of algorithm 1 is
(|C |).
Regarding algorithm 2, the US replicas reassignment process

ims to restore the missing US QoS. The USs are deployed in
Q and CN nodes which may get disconnected over time, and
n consequence, the required US QoS may not be met. Then, it
s needed to select new nodes for replicating the US data on
hem. The algorithm implements a lazy reassignment method
hat minimizes the number of nodes to be replaced, i.e. the
inimum number of nodes required for restoring the missing US
oS. The asymptotic analysis exhibits that the worst case would

equire performing a reassignment of all the US replicas stored

11
n the HQ and CN nodes assigned to the US, including on their
nderlying LQ nodes for each CN. Thus, the algorithm 2 has a
inear time complexity depending on the number of USs, the
umber of nodes (|C |), and the number of timeframes of the AP
|H|). Concretely, O(|services| · |C | · |H|). However, given than the
umber of timeframes of the AP is constant (|H| = 168 positions),
e may conclude that the time complexity of algorithm 2 is
(|services| · |C |).

. Computational experiments

This section aims to describe the simulation environment and
he experiments carried out to evaluate the goodness of the
LARA mechanism. As well, the clustering analysis and results
btained from the K -means clustering are detailed.

.1. Failure Trace Archive

The nodes AP characterization is based on the analysis of
istorical availability node traces from the Failure Trace Archive
FTA)2 [35,36], a public repository of traces of distributed systems
ith the purpose of facilitating the validation of fault-tolerant
odels and algorithms. This historical information represents the
vailability shown by about 230,000 nodes over the Internet from
pril 1, 2007, to January 1, 2009, on the usage of the SETI@Home
C application. The election of this historical information allows
imulating nodes based on users’ real behavior in a VC network,
nabling the validation and verification process of the goodness
f our mechanism, and the evaluation of the results that could be
xpected in a similar real network.

.2. Simulation environment

Our mechanism has been validated in a real case scenario,
sing a real microblogging application named Garlanet. Garlanet
s a Twitter-like decentralized implementation of a microblogging

2 https://fta.scem.westernsydney.edu.au/.

https://fta.scem.westernsydney.edu.au/
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Fig. 8. Node qualities histogram before filtering (4-weeks sample interval).

ocial network, which stores and replicates the user data across
ifferent nodes to guarantee their availability. Garlanet has a CCS
hat oversees the status of the nodes, detecting which nodes are
vailable at each moment, and assigning the most suitable nodes
o clients. Moreover, the CCS guarantees that all the USs meet the
onstraints of a minimum number of replicas and required QoS.
he simulator has been developed using Java 8 Standard Edition
nd aims to reproduce the behavior of this environment in the
ost realistic way. All the computational experiments have been
arried out on a workstation with an Intel quad-core processor of
.7 GHz with 8 GB of RAM memory. As an operating system, we
ave used Ubuntu 18.04.

.3. Clustering results

The FTA trace allows us to build up the nodes AP for a period
f 4 consecutive weeks randomly selected, according to the study
erformed by [34]. These nodes APs are later converted into
ode qualities following the process indicated in phase II. Table 3
hows the number of nodes loaded from the trace for a selected
-weeks period, as well as the effectiveness of the filters. The his-
ogram of node qualities before filtering for a prediction interval
f 4 weeks (Fig. 8) exhibits a predominance of two main sets
f nodes: very high-quality nodes and very low-quality nodes.
o discard all the nodes exhibiting this very low-quality profile
uring the AP interval, a minimum required quality of 10% has
een set for filter A.
Regarding the threshold T to split nodes into HQ and LQ nodes

(filter B), an analysis of different values has been carried out.
Table 3 summarizes the filtering results for T values equal to 90%,
85%, 80% and 75%. For selecting the T value, a clustering process
has been performed using the K -means algorithm, observing that
as the T value decreases, the clusters are splitted into smaller sub-
clusters. Although these new sub-clusters allow building better
CNs, the decrease of the T value leads to select less reliable HQ
nodes, and therefore, the number of US replicas reassignments
is increased, derived from the more frequent unavailability of
these nodes initially categorized as HQ nodes. For this reason, our
decision about the election of the threshold T has been guided
by the minimization of the number of US replicas reassignments
and the quality commitment with the users. To achieve both
objectives, we have decided to use 90% as threshold T. This value
will ensure to have nodes available practically most of the time
while having very well-defined availability patterns (clusters) for
building CNs.
 c

12
Fig. 9. Node qualities histogram after filtering (4-weeks sample interval).

Fig. 10. Elbow plot for K -means clustering for K values between 2 and 20.

The filtering process results for a threshold of 90% shows a
high predominance of nodes with a very-high and a very-low
connection profile (around 42% of nodes), and four-fifths parts of
nodes with a stable connection profile (21.67% of nodes do not
exhibit an availability pattern on the AP interval). The filtering
process has splitted the set of nodes into a 26.41% of HQ nodes
and a 36.74% of LQ nodes, discarding the rest of the nodes. The
histogram of node qualities, once the filters have been applied
(Fig. 9), shows how all these sets of very-high and very-low
quality nodes have been removed, and similar distributions of
nodes along the remaining qualities are exhibited.

Next, we have grouped the LQ nodes set using the K -means
clustering algorithm. Our mechanism considers the nodes APs as
the set of observations to cluster. The AP is a two-dimensional
vector of 168 positions (7 days x 24 h) for storing the number of
minutes that nodes have been available at each timeframe during
the AP interval. As a result, the nodes APs in the same cluster will
be very similar between them, but quite different from the nodes
APs on other clusters. To determine the most suitable K value, we
ave evaluated a wide enough range of K values. The total within-
luster distances have been represented in an elbow plot (Fig. 10)
hich exhibits how the overall cost decreases significantly as the
umber of K increases because large clusters are splitted into
maller clusters. The descent slope decreases more significantly
or K values between 2 and 10, while greater values do not reduce
onsiderably the overall cost.
Additionally, we have contrasted these results using the Dunn

ndex for each cluster in order to determine the ratio between
he maximum intra-cluster and the minimum inter-cluster dis-
ances. According to these results, we have concluded that K
qual to 9 is the most appropriated value. Furthermore, we have
onsidered other metrics to confirm this K value among all the
 75
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Table 3
Filtered nodes summary for different filter B thresholds.
Nodes in 4
weeks
interval

Filter A Quality <10%) Filter B (Quality >T%) Filter C
(Quality on S timeframes >T%)

Nodes
respect
initial num.

Nodes after Reduction T % Nodes after Reduction Nodes after Reduction

74,597 63,279 15.17%

90% 43,577 26.41% 27,411

21.67%

36.74% (27,411)
85% 40,725 30.23% 24,559 32.91% (24,559)
80% 38,217 33.59% 22,051 29.56% (22,051)
75% 35,823 36.80% 19,663 26.35% (19,663)
Fig. 11. K -Means - Bar Chart Plot for K = 9 and Threshold T=90%.
13
14
15
16
17
18
19
20
21
evaluated ones. On one hand, the Davies–Bouldin index measures
the ratio between the within-cluster and the between-cluster
distances, computing the average over all the clusters. On the
other hand, the Calinski–Harabasz index compares the variance
between clusters to the variance within each cluster. For both
indices, K values between 6 and 11 are the best values, presenting
slight differences in the indices’ results.

Additionally, we have analyzed the bar chart diagrams for the
promising K values for checking the fitting of the clusters in
the AP patterns defined by its centroids (e.g., Fig. 11). These bar
charts represent the sum of the cluster nodes APs, which will
summarize the AP pattern defined by each cluster. The usage
13
of several indices to determine the best K value has not been
conclusive, possibly derived from the own nature of the clustered
APs. However, the existence of slight differences over the indices
has guided us to use a value of K = 9 instead of higher values. Ad-
ditionally, the K -Means clustering has shown the existence of one
cluster more populated than the others (cluster 3), which is not
splitted into smaller and better-defined clusters as we increase
the K value. The rest of the clusters exhibit a well-defined shape
in terms of the AP pattern.
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Table 4
Description of simulation scenarios.

#USs #nodes HQ nodes LQ nodes

Scenario 1 1,500 500 209 291
Scenario 2 3,000 1,000 411 589
Scenario 3 4,500 1,500 641 859
Scenario 4 6,000 2,000 840 1,160
Scenario 5 7,500 2,500 1,056 1,444
Scenario 6 9,000 3,000 1,263 1,737
Scenario 7 10,500 3,500 1,411 2,089
Scenario 8 12,000 4,000 1,709 2,291

6.4. Simulation scenarios

The purpose of the simulation phase is to validate the good-
ness of the CLARA mechanism as a RA method for USs placement.
The simulation scenarios aim to establish a comparison frame-
work between our mechanism and a RA method only based on
the usage of the most available nodes, or alternatively, a RA
method that gives more preference to them.

In this sense, we have defined a comparison analysis with
the method proposed by [29]. This method prioritizes the most
available nodes for SP through the definition of a Multi-Criteria
Biased Randomized (MCBR) mechanism. The MCBR method is a
hierarchical method based on a Lexicographic Ordering (LO) mul-
ticriteria optimization strategy in which the intrinsic properties
of the nodes are categorized into different priority levels. Then,
a sequence of sub-optimization problems is solved following the
previously established order of priority. Finally, a reduced list of
suitable nodes for deploying the USs is obtained, which repre-
sents the sorted list of nodes with the highest quality. To select
the final node to use, biased randomization techniques are used
to distribute the load among the HQ selected nodes.

The impossibility of simulating all the nodes in the 4-weeks AP
interval (see Table 3), because of the required computing capacity,
has enforced us to select lower workflows based on a random
selection of nodes from the 4-weeks set of nodes. This selection
process validates that the distribution of nodes in the new subset
follows the same distribution as the original set (see Table 4). The
simulator executes several runs using these workflows on both
methods for comparing the results.

Finally, the distribution percentage of qualities (α parameter)
between the HQ and CN nodes is also analyzed in order to study
the USs sensitivity on the resulting metrics.

7. Analysis of results

The simulation results aim to provide information about the
goodness of the CLARA mechanism under different areas of study.
These analyses include the behavior of the mechanism under
different qualities distributions (α parameter) in comparison with
the MCBR-based RA method described in [29].

Relative to the US replication metrics (Table 5), the average
number of available replicas of a US remains stable on practically
all the evaluated α values, achieving for α = 50% similar values to
the ones obtained for the MCBR-based RA method (9.59 vs 9.65
replicas per timeframe). The CLARA mechanism spreads USs on
more nodes in the network, reducing the overhead on the HQ
nodes, and increasing the capacity of the network without im-
pacting the US replicas available. Moreover, all the USs practically
exhibit available replicas all the time which leads to a continuous
service availability. Only in a very few cases, the US is provided
in a degraded mode due to the unavailability of replicas on HQ
and CN nodes.

Regarding the US replicas reassignment metrics (Table 6),

our mechanism exhibits a significant drop on the number of

14
Fig. 12. Total US replicas reassignments comparison.

Fig. 13. USs impacted on required QoS before US replicas reassignment
comparison.

Fig. 14. Average on node occupation comparison.

US replicas reassignments, in comparison to the MCBR-based RA
method, for α values greater than 50% (see Fig. 12), achieving the
lowest figures for α = 50% where the total decrease is around the
64%. As the required US QoS depends more on CNs than HQ nodes
(α values less than 50%), the number of US replicas reassignments
is remarkably increased which also leads, in consequence, to
 57
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Table 5
US replication results comparison (scenario 6).

MCBR-based CLARA

α = 90% α = 70% α = 50% α = 30% α = 10%

US without replicas available at a timeframe 0 0 0 0 0 0
US without HQ replicas available at a timeframe 0 0 0 5.29E−7 1.231E−4 0.0382
US without CN replicas available at a timeframe 0 0.013 4.61E−4 3.96E−7 1.32E−7 0
Avg. US replicas per timeframe 9.65 8.85 8.80 9.59 8.78 8.69
Avg. US replicas per timeframe on HQs 9.65 7.86 5.85 4.89 2.94 0.96
Avg. US replicas per timeframe on CNs 0 0.99 2.95 4.70 5.84 7.73
Table 6
US replicas reassignments results comparison (scenario 6).

MCBR-based CLARA

α = 90% α = 70% α = 50% α = 30% α = 10%

US replicas reassignments on HQs 2,817,853 1,080,801 1,096,644 823,355 749,344 288,853
US replicas reassignments on CNs 0 180,007 757,063 212,439 2,318,177 3,876,985
HQs not available at US replicas reassignments 10 12 22 6 6 10
CNs not available at US replicas reassignments 0 15 340 136 4,187 15,813
Unserved USs by absence of HQs (QUSHQ =0) 0 0 0 4 931 288,863
Unserved USs by absence of CNs (QUSCN=0) 0 103,992 348 3 1 0
US replicas reassignments over complete CNs 0 67,383 294,202 84,708 913,356 1,540,150
USs impacted on QUS before US replicas reassignments 1,386,087 934,333 1,211,020 356,642 1,605,864 1,864,507
USs impacted on QUS after US replicas reassignments 10 22 254 72 2,536 8,594
USs impacted on QUSHQ before US replicas reassignments 1,386,087 871,966 938,721 726,711 704,263 288,863
USs impacted on QUSHQ after US replicas reassignments 10 10 20 6 6 10
USs impacted on QUSCN before US replicas reassignments 0 193,061 438,379 2,153,214 1,357,271 1,730,236
USs impacted on QUSCN after US replicas reassignments 0 89,131 39,773 2,146,594 292,597 70,706
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increase the number of USs affected on the required QoS (see
Fig. 13). However, a significant reduction is exhibited for α =

50% respecting the MCBR-based RA method, which represents a
reduction of 75% over the affected USs. In this case, the number of
unrestored USs QoS is practically identical for both α = 50% and
MCBR-based RA method, being slightly higher for α = 50% (10 vs
72). For α = 50%, almost all the US replicas reassignments have
been performed on HQ nodes, being only necessary to restore the
0.003% of USs (6,620 of a total of 2,153,214 USs affected by the
CN quality) to restore the required US QoS.

Finally, the number of US replicas reassignments that could
not be completed by the absence of available nodes is higher on
all scenarios respecting the MCBR-based RA method. For α =

50%, a total of 142 (6 HQ + 136 CN) US replicas reassignments
were unperformed while only 9 for the MCBR-based RA method.
Comparing all the evaluated α values, the number of total un-
performed US replicas reassignments remains stable for α values
between 90% and 50%, increasing dramatically for α = 30%
and α = 10% as a consequence of difficulties for finding free
nodes in the clusters for the USs reallocation. Thereby, as the
US quality depends more on CNs (low values of α% parameter),
the cluster’s nodes become scarcer, making it more difficult to
create effective CNs. However, for α values equal to or greater
than 50%, the number of unperformed US replicas reassignments
may be considered negligible compared with the total number of
US replicas reassignments performed.

Regarding the capacity metrics (Table 7), there is an increase
in the resources consumption for all the evaluated α values
compared with the MCBR-based RA method as a consequence of
a higher replication on more nodes (CNs). As well, the number of
nodes that are full of capacity increases as the required US QoS
depends more on CNs than on HQ nodes (see Fig. 14). The average
occupation increases with respect to MCBR-based RA method is
around 20%.

However, this capacity increment exhibited in the node’s stor-
age was expected because the number of nodes involved in the
SP is higher on our mechanism. However, the spreading of USs on
more nodes has two main advantages that are confirmed with the

simulation results. On one hand, the HQ nodes are less overloaded
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with our mechanism. For α = 50%, only the 0.20% of the HQ nodes
are full of capacity while the 6.70% of nodes are full of capacity
for the MCBR-based RA method. On the other hand, there is a
wider usage of the network resources while the required US QoS
requirements are satisfied.

Finally, Table 8 shows a execution times comparison on the
allocation of resources for a single US. The CLARA mechanism is
not designed to deploy a set of USs ‘‘all at once’’. Instead, CLARA
allows taking a decision about the resources to be allocated when
a new US is required for placement. Thus, this comparison aims
to evaluate the execution times required for deciding the list of
nodes for a new US placement.

The results shows that the mean value for allocating resources
for a single US, using the MCBR-based RA method, is 1 ms versus
15 ms for the worst CLARA scenario (highest US dependency
on CNs). However, in return, CLARA leverages resources that
otherwise would have been discarded. The CN creation process
has an impact on the RA time because of the clusters iteration
for finding suitable nodes while building up new CNs. Thus, as
the required US quality depends more on CNs (α lower than 50%),
the impact on the execution time will be higher given than more
CNs will be needed for meeting the required US QoS. Thus, the CN
creation process introduces an additional cost in time, respecting
the MCBR-based RA method, that depends on the distribution of
US qualities (α value), the number of clusters, and the size of the
clusters.

Additionally, Fig. 15 shows the execution and CPU consump-
tion times spent on US reassignments throughout a simulated
week, showing how these times are distributed over time. The
US reassignment process is performed five times per timeframe,
which is equivalent to a US reassignment slot every 12 min on the
simulated time. Green data represents the time spent on each US
reassigned. The orange data represents the sum of times of all the
reassigned USs on each slot i.e. the total reassignment time spent
in the slot. Finally, the blue line represents the mean value of the
sum of all these total reassignment times.

The execution and CPU times for US reassignments on CNs
are slightly greater than on HQs because of clusters iteration for

finding suitable replacement nodes. The comparison of execution 78
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Table 7
Capacity results comparison (scenario 6).

MCBR-based CLARA

α = 90% α = 70% α = 50% α = 30% α = 10%

HQs full of capacity (#) 200 64 5 2 0 0
HQs full of capacity (%) 6.70% 5.10% 0.40% 0.20% 0% 0%
CNs full of capacity (#) 0 16 77 113 203 279
CNs full of capacity (%) 0% 0.90% 4.40% 6.80% 11.70% 16.10%
Avg. usage respect USs deployed on HQs 10.90% 20.80% 15.40% 13% 7.20% 2.50%
Avg. usage respect USs deployed on CNs 0% 4% 12.10% 19.20% 24% 32%
Fig. 15. Comparison of CPU and execution times of US reassignments (scenario 3).
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Table 8
Comparison of the execution time when allocating a US (scenario 6).

mean (msecs) std dev (msecs)

MCBR-based 1.02 0.61
CLARA (alpha=90%) 3.19 2.31
CLARA (alpha=70%) 7.11 3.83
CLARA (alpha=50%) 10.71 5.05
CLARA (alpha=30%) 12.28 5.75
CLARA (alpha=10%) 15.49 6.29

times for HQs mostly exhibits values in the range of 50 to 300 ms
versus values in the range of 150 to 400 ms for CNs. Respecting
the CPU time, HQs exhibits values in the range of 20 to 140 ms
versus values in the range of 30 to 250 ms for CNs. In summary,
the CLARA mechanism exhibits an increase on the execution time
of 87 ms on average and an increase on the CPU time of 48 ms on
average over the scenario with 4,500 US deployed (scenario 3).

7.1. Statistical hypothesis testing

The tests are based on the Wilcoxon signed-rank test. This test
is a non-parametric statistical hypothesis test commonly used
to compare two related samples, solutions of two algorithms in
our case. In particular, this test aims to assess whether their
16
population mean ranks differ. A confidence level of 95% is set.
The programming language R (version 4.1.0) (R Core Team, 2017)
has been used to carry out the hypothesis testing. The tests
performed cover the main metrics used to validate the goodness
of the mechanism, which are related to the number of replicas
used by the USs, the usage of the nodes respecting the number
of US deployed in the network, and the number of US replicas
reassignments.

The Wilcoxon signed-rank test results and their respective
conclusions are the following:

• Average US replicas per timeframe: Test statistic W=32.5; p-
value=1; Conclusion: we do not reject H0. We do not have
statistically significant evidence to show that the difference
between mean ranks in the metric is not zero.
• US replicas reassignments:Test statistic W=53; p-value =

0.0281; Conclusion: we do reject H0. We do have statistically
significant evidence to show that the difference between
mean ranks in the metric is not zero.
• Average usage respect USs deployed: Test statistic W=32.5;

p-value=0.0009; Conclusion: we do reject H0. We do have
statistically significant evidence to show that the difference
between mean ranks in the metric is not zero.
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8. Conclusions and future research

In this paper, we present the CLARA mechanism, a novel
clustering-based RA method that leverages donated resources
exhibiting a low-availability profile, maximizing the eligible set
of resources for USs deployment. As result, both nodes exhibit-
ing high and low availability profiles are considered by the RA
mechanism for SP. Unlike most of the existing RA methods in
VC networks where the low-available nodes are often discarded,
CLARA considers nodes exhibiting low availability patterns for
smartly combining them into groups based on their complemen-
tary availability relationship. To speed up the process for building
up effective CNs, the CLARA mechanism relies on clustering tech-
niques to group nodes into disjoint sets based on their AP profile.
As result, the capacity of the network for providing USs is highly
increased while the overloading of the HQ nodes is remarkably
reduced.

The analysis of the results exhibits how our mechanism max-
imizes the use of the poor quality computational resources to
satisfy the required US QoS while minimizes the costly number
of US replicas reassignments between nodes. The creation of CNs
jointly with the lazy reassignment algorithm show how LQ nodes
may work over time in a combined way to exhibit an availability
level equivalent to a HQ node. Furthermore, our mechanism
increases the set of eligible resources for SP while avoids the
overloading of the most available nodes.

Future research lines are focused on the clustering process.
The K -means algorithm requires selecting the K value which
may evolve over time as nodes availability patterns change, so
it requires a periodic verification process inside the CCS to re-
evaluate the most suitable K value. Moreover, additional smarter
aspects may be incorporated into the CNs creation algorithm for
increasing the reliability of the set and be able to define different
QoS for the USs. Thus, node parameters such as connection speed,
geographical location, or level of occupancy among others could
be incorporated into the algorithm. As well, extensions on the
US replicas reassignment algorithm must be analyzed in order
to perform a selection of nodes based on replication cost, band-
width, processing time, and node location to minimize costs and
recovery times for USs temporarily running in a degraded mode
(required US QoS not achieved).
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