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This paper presents a strategy to accelerate virtually any Poisson solver by taking advantage 
of s spatial reflection symmetries. More precisely, we have proved the existence of an 
inexpensive block diagonalisation that transforms the original Poisson equation into a 
set of 2s fully decoupled subsystems then solved concurrently. This block diagonalisation 
is identical regardless of the mesh connectivity (structured or unstructured) and the 
geometric complexity of the problem, therefore applying to a wide range of academic 
and industrial configurations. In fact, it simplifies the task of discretising complex 
geometries since it only requires meshing a portion of the domain that is then mirrored 
implicitly by the symmetries’ hyperplanes. Thus, the resulting meshes naturally inherit the 
exploited symmetries, and their memory footprint becomes 2s times smaller. Thanks to 
the subsystems’ better spectral properties, iterative solvers converge significantly faster. 
Additionally, imposing an adequate grid points’ ordering allows reducing the operators’ 
footprint and replacing the standard sparse matrix-vector products with the sparse matrix-
matrix product, a higher arithmetic intensity kernel. As a result, matrix multiplications 
are accelerated, and massive simulations become more affordable. Finally, we include 
numerical experiments based on a turbulent flow simulation and making state-of-the-
art solvers exploit a varying number of symmetries. On the one hand, algebraic multigrid 
and preconditioned Krylov subspace methods require up to 23% and 72% fewer iterations, 
resulting in up to 1.7x and 5.6x overall speedups, respectively. On the other, sparse direct 
solvers’ memory footprint, setup and solution costs are reduced by up to 48%, 58% and 
46%, respectively.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Poisson equation is present in many physical problems, usually arising from basic conservation principles. Hence, it is not 
surprising that Poisson solvers play a fundamental role in numerous areas of science and engineering, such as computational 
fluid dynamics (CFD), linear elasticity and magnetohydrodynamics. It is usually one of the most time-consuming and difficult 
to parallelise parts of scientific simulation codes. Consequently, the development of efficient and scalable Poisson solvers is 
of great interest. The reader is referred to [25,48,9] for a comprehensive review of most standard algorithms.
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Basic theoretical properties such as the operation count or the convergence rate are not enough to evaluate the adequacy 
of a Poisson solver for a particular application and computing system. Indeed, computational aspects such as the memory 
footprint, the arithmetic intensity or the required communications can critically affect its feasibility and overall performance. 
For instance, despite their robustness, direct solvers have limited applicability due to their excessive memory requirements 
and are usually relegated to relatively small ill-conditioned subsystems [12,49,24].

In the last decades, the advent of highly scalable iterative solvers and preconditioners was motivated by the sustained 
growth of massively parallel high-performance computing (HPC) systems. This trend in HPC has also motivated com-
munication avoiding and overlapping strategies for both iterative solvers [16] and preconditioners [26] to minimise the 
parallelisation overheads. Likewise, their sequential nature made traditional incomplete factorisation preconditioners [43,31]
lose ground against other more recent alternatives, such as those based on sparse approximate inverses [33,10,22]. One of 
the major challenges the scientific computing community faces is that most of the algorithms have a rather low arithmetic 
intensity, i.e., the ratio of flop to memory traffic in bytes. This, combined with the fact that the memory bandwidth tends 
to grow much slower than the peak performance, leads to strongly memory-bound codes. Approaches trying to remedy this 
are generally based on reducing memory traffic [1], solving multiple right-hand sides (RHSs) [35], using mixed-precision 
algorithms [8] or adapting more compute-intensive methods [7,30,17].

Regarding the applications and without loss of generality, our research work is targeted at transient CFD simulations of 
incompressible flows. In particular, direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent flows. 
The following aspects, which are relevant for this paper, are usually present in many other applications:

• The Poisson equation has to be solved repeatedly. Indeed, in DNS or LES the number of time-steps can easily reach 
O(106). While the RHSs vary, the coefficient matrix remains constant and a preprocessing stage with great computing 
demands may be acceptable.

• The solution obtained in the previous time-step(s) can be used as an initial guess to accelerate the iterative solvers’ 
convergence.

• Wall-bounded flows and flows around internal obstacles are common in most applications. Therefore, arbitrary unstruc-
tured meshes may be required to solve all relevant turbulent scales near the walls. Hence, no a priori assumptions on 
the meshes connectivity are made.

• The boundary conditions for the Poisson equation are homogeneous Neumann regardless of the boundary conditions 
for the velocity and temperature fields [32].

• Spatial reflection symmetries are present in many industrial and scientific applications in at least one direction.

Regarding the last property, reflection symmetries are indeed present in many configurations ranging from simplified 
academic cases to more complex industrial devices, such as the car and fin-and-tube heat exchanger of Fig. 1. For instance, 
most vehicles generally present one symmetry [2,13]. Cases with two symmetries are also quite common, including jets [19], 
building [45] and urban simulations [27]. Finally, three symmetries can still be found on many industrial devices such as 
heat exchangers [42,46] and nuclear reactors [21,44].

Fig. 1. Configurations presenting one (left) and three (right) reflection symmetries.

A few works taking advantage of a single reflection symmetry already exist [50,24]. They focus on canonical academic 
cases of high interest in which memory requirements often are the limiting factor. The present work generalises them, 
providing a strategy to accelerate virtually any Poisson solver by exploiting an arbitrary number of reflection symmetries. 
Such a strategy is identically applicable regardless of the mesh connectivity (structured or unstructured) and the geomet-
ric complexity of the problem. In fact, it simplifies the task of discretising complex geometries since it only requires to 
mesh a portion of the domain that is then mirrored implicitly by the symmetries’ hyperplanes. Thus, the resulting meshes 
naturally inherit the exploited symmetries, and their footprint is reduced considerably. Finally, we present new theoreti-
cal results that allow mitigating several of the aforementioned computing challenges. In particular, we prove the existence 
and several relevant properties of an inexpensive change of basis that block diagonalises the discrete Laplace operator. By 
doing so, the original Poisson equation is decomposed into a set of fully decoupled subsystems then solved concurrently. 
On the one hand, their smaller size makes methods with excessive memory or computational requirements applicable 
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to larger cases. On the other, their better spectral properties make iterative solvers like Algebraic Multigrid (AMG) and 
Krylov subspace methods converge significantly faster. Proving that the block diagonalisation preserves matrix symmetry 
and negative-semidefiniteness allows employing specific solvers and preconditioners like Preconditioned Conjugate Gradient 
(PCG) and incomplete Cholesky factorisations. Additionally, proving that all the subsystems exhibit a regular structure, we 
can split them into a common part plus another subsystem-dependent whose size is, in practice, negligible. Such a splitting 
allows replacing the standard sparse matrix-vector product (SpMV) with the sparse matrix-matrix product (SpMM) [6,34,40], 
a kernel with significantly higher arithmetic intensity and, therefore, performance. We also show how to extend its use 
beyond the Laplace operator by imposing an adequate grid points’ ordering. In this manner, the substantial accelerations 
and memory footprint reductions granted by SpMM can be exploited throughout the solver and simulation. Recalling that
SpMV is the most computationally expensive operation on which iterative solvers generally rely, SpMM’s use accelerates their 
(fewer) iterations substantially, particularly benefiting those methods involving many matrix multiplications, such as AMG. 
Finally, imposing an adequate domain partitioning we avoid additional communications within the changes of basis, which 
become a negligible overhead. Regarding platform portability, it is naturally guaranteed since the whole algorithm relies on 
a small set of basic linear algebra operations included in standard math libraries.

The remainder of the paper is organised as follows. Section 2 proves the existence and several properties of the block 
diagonalisation, and gives the resulting algorithm. Section 3 presents the main computational improvements allowed by 
exploiting reflection symmetries. Finally, section 4 presents the results obtained in the numerical experiments, and section 5
gives the concluding remarks.

2. Mathematical framework

For the sake of clarity, section 2.1 presents Laplace operator’s block diagonalisation in its simplest form, namely, applied 
to a single-symmetry 1D case, and section 2.2 extends it to its general form. Finally, section 2.3 presents the resulting 
algorithm.

2.1. Starting point: the single-symmetry 1D case

2.1.1. Spatial discretisation
Given a 1D domain with a single reflection symmetry, let us consider a spatial discretisation preserving it. Moreover, we 

will define its grid points ordering by first indexing the unknowns of one half and then those of the other. Finally, let us 
impose the same local ordering to both halves, i.e., let us set any order to one of them and mirror it to the other by the 
symmetry’s hyperplane (adding the corresponding offset).

Fig. 2. Single-symmetry 1D mesh whose (random) local ordering is mirrored by the symmetry’s hyperplane.

Such a discretisation leads to a mesh analogous to Fig. 2, and makes scalar fields and discrete operators exhibit a very 
favourable block structure. Namely, given a scalar field b, we have that:

b =
(

b1
b2

)
∈Rn, (1)

being n = 16 the number of grid points and corresponding b1, b2 ∈ R
n/2 to the scalar field at each of the two subdomains. 

Moreover, the discrete Laplace operator reads:

L =
(

Linn Lout
Lout Linn

)
∈ Rn×n, (2)

where L is generally symmetric negative-semidefinite, and Linn, Lout ∈ R
n/2×n/2 account for the inner- and outer-subdomain 

couplings, respectively. This is true for virtually any existing discretisation method, such as finite volume (FVM), element and 
difference methods. For instance, a standard second-order FVM discretisation on the mesh of Fig. 2 leads to the following 
discrete Laplace operator in the form of eq. (2):
3
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Linn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−H−1
1 0 0 0 h−1

1,5 h−1
1,6 0 0

0 −H−1
2 0 h−1

2,4 0 0 h−1
2,7 0

0 0 −H−1
3 0 0 h−1

3,6 0 0
0 h−1

2,4 0 −H−1
4 0 0 0 h−1

4,8
h−1

1,5 0 0 0 −H−1
5 0 h−1

5,7 0
h−1

1,6 0 h−1
3,6 0 0 −H−1

6 0 0
0 h−1

2,7 0 0 h−1
5,7 0 −H−1

7 0
0 0 0 h−1

4,8 0 0 0 −H−1
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

and

(Lout)i, j =
{

h−1
3,11, if i = j = 3

0, elsewhere
, (4)

where hi, j stands for the distance between the ith and jth grid points, and H−1
i for L’s ith row off-diagonal sum, e.g., H−1

3 =
h−1

3,6 + h−1
3,11.

2.1.2. Block diagonalisation
Let us define the following matrix:

P := 1√
2

(
In/2 In/2

In/2 −In/2

)
∈Rn×n. (5)

Then, according to eq. (2), changing the basis of L by means of P results into:

PLP−1 =
(

Linn + Lout 0
0 Linn − Lout

)
, (6)

decomposing the original discrete Laplace operator into two decoupled and half-sized subsystems.

2.2. Extension to the general case

2.2.1. Spatial discretisation
Given an N-dimensional domain with s reflection symmetries, let us consider a spatial discretisation analogous to Fig. 2. 

That is, a discretisation preserving all s symmetries and with a grid points’ ordering that subsequently indexes each of the 
2s subdomains, imposing to each of them the same local ordering mirrored by the s symmetries’ hyperplanes. Hereafter, we 
will name such discretisations symmetry-aware.

Regardless of being structured or unstructured, a symmetry-aware discretisation leads to a mesh consisting of 2s subdo-
mains. Analogously to eq. (2), the resulting discrete Laplace operator has the following form:

L =

⎛⎜⎜⎜⎝
L1,1 L1,2 . . . L1,2s

L2,1 L2,2 . . . L2,2s

...
...

. . .
...

L2s,1 L2s,2 . . . L2s,2s

⎞⎟⎟⎟⎠ ∈Rn×n, (7)

where the diagonal blocks account for the inner-subdomain, and the off-diagonal blocks for the outer-subdomain couplings, 
belonging all to Rn/2s×n/2s . Clearly, every row consists of the same 2s sub-blocks differently ordered according to the position 
of its corresponding subdomain within the full mesh. Such sub-blocks should be regarded as the base mesh’s couplings with 
itself and its 2s − 1 mirrored counterparts.

We aim to give an accurate description of L’s structure to later propose a change of basis that vanishes all its outer 
couplings, making it block diagonal. To do so, given k ∈ {1, . . . , s}, let us define the auxiliary k-dimensional vector:

�πk = (π1, . . . ,πk) ∈ {0,1}k ,

which will be used to identify the disjoint union of 2s−k subdomains, i.e., of 2s−k different mirrorings of the base mesh. Each 
of its coordinates, πi , equals either 0 or 1 depending on whether �πk lies on one half (tagged with 0) or the other (tagged 
with 1) of the full mesh with respect to the ith symmetry. Fig. 3 illustrates all the possible �π1 and �π2 when exploiting 
s = 2 symmetries on a 2D unstructured grid. Each of the mesh halves is identified either with the one-dimensional vector 
(0) or (1) and consists of two base meshes (i.e., of two mesh quarters). Then, an extra component is added to identify the 
mesh quarters arising from (0): (0, 0), (0, 1), and (1): (1, 0), (1, 1).

For clarity, let us also consider a 3D mesh with s = 3 symmetries. Then, while �π1 ∈ {(0), (1)} corresponds to 
each mesh half arising from the first symmetry and consisting of four base meshes (i.e., of four mesh eighths), �π2 ∈
4
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Fig. 3. Application of �πk , lidk ( �πk), gids ( �πk) and g̃ids ( �πk) to a 2D mesh with s = 2 symmetries.

{(0, 0), (0, 1), (1, 0), (1, 1)} and �π3 ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} correspond to 
each of the mesh quarters and eighths arising from the first two and three symmetries and consisting of two and one base 
meshes, respectively.

Besides that, given k ∈ {1, . . . , s} and a subdomain �πk , let us define the following row-major indexing functions:

lidk ( �πk) := 1 +
k∑

i=1

πi2
k−i ∈

{
1, . . . ,2k

}
, (8)

gids ( �πk) := 1 +
k∑

i=1

πi2
s−i ∈ {1, . . . ,2s} , (9)

g̃ids ( �πk) := gids ( �πk) + 2s−k − 1 ∈ {1, . . . ,2s} . (10)

While the first two correspond to a local and a global indexing of the different (in position and size) subdomains identified 
by �πk , the third one satisfies that, given a larger �πk1 , and a smaller �πk2 (thus k1 < k2), then �πk2 is contained within �πk1 if, 
and only if:

gids ( �πk1) ≤ gids ( �πk2) ≤ g̃ids ( �πk1).

Fig. 3 illustrates the above definitions and properties by applying them to the 2D mesh with s = 2 symmetries.
Finally, given k ≤ s and the subdomains �πk and �π ′

k , let us define the following submatrix of L:

L �πk, �π ′
k
:=

⎛⎜⎜⎝
Lgids ( �πk),gids ( �π ′

k)
. . . Lgids ( �πk),g̃ids ( �π ′

k)

...
. . .

...

Lg̃ids ( �πk),gids ( �π ′
k)

. . . Lg̃ids ( �πk),g̃ids ( �π ′
k)

⎞⎟⎟⎠ ∈R
n/2k×n/2k

, (11)

which accounts for the couplings between the mesh’s 2kth fractions �πk and �π ′
k . Despite being its general form somewhat 

cryptic, the definition of L �πk, �π ′
k

is very convenient. For instance, it allows us to denote the coupling between the two mesh 
halves, L(0),(1) , identically regardless of the number of symmetries. Indeed, for s = 1 we have that L(0),(1) = L1,2 ∈ R

n/2×n/2, 
whereas for s = 2:

L(0),(1) =
(

L1,3 L1,4
L2,3 L2,4

)
∈R

n/2×n/2,

and for s = 3:

L(0),(1) =

⎛⎜⎜⎝
L1,5 L1,6 L1,7 L1,8
L2,5 L2,6 L2,7 L2,8
L3,5 L3,6 L3,7 L3,8
L4,5 L4,6 L4,7 L4,8

⎞⎟⎟⎠ ∈R
n/2×n/2.

Hence, combining eqs. (7) and (11), we can express L as:

L =
(

L(0),(0) L(0),(1)

L(1),(0) L(1),(1)

)
. (12)

At this point, we are ready to describe L’s structure accurately and generalise the strategy of section 2.1. Certainly, the 
use of a symmetry-aware discretisation ensures the following recursive block structure of L. For all k ∈ {1, . . . , s − 1} and 
subdomains �πk and �π ′ :
k

5
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L �πk, �π ′
k
=
(

L( �πk,0),( �π ′
k,0) L( �πk,0),( �π ′

k,1)

L( �πk,1),( �π ′
k,0) L( �πk,1),( �π ′

k,1)

)
, (13)

L( �πk,0),( �π ′
k,0) = L( �πk,1),( �π ′

k,1) and L( �πk,0),( �π ′
k,1) = L( �πk,1),( �π ′

k,0). (14)

As hinted earlier, if we let the base mesh be �πs = �0, it follows that L is only based on its 2s couplings, L1,1, . . . , L1,2s , and 
the remaining L2,1, . . . , L2,2s , . . . , L2s,2s equal them according to eqs. (12) to (14). Hence, from now on and for the sake of 
simplicity, given k ∈ {1, . . . , s} and �0, �πk ∈ {0,1}k , we will denote:

Lk := L1,k and L �πk
:= L�0, �πk

.

2.2.2. Block diagonalisation
For all k ∈ {1, . . . , s}, let us define the following collection of change of basis matrices:

Pk :=
k∏

i=1

P(i) ∈ Rn×n, (15)

where:

P(i) := I2i−1 ⊗ 1√
2

(
1 1
1 −1

)
⊗ In/2i ∈ Rn×n. (16)

Several immediate properties follow:

Proposition 1. For all k ≥ 1:

Pk = 1√
2k

[
k⊗

i=1

(
1 1
1 −1

)]
⊗ In/2k .

Proof. Given the definition of P(1) , it holds for P1. By induction on k, assuming it is satisfied by Pk and using the mixed-
product property leads to:

Pk+1 = P(k+1)Pk = 1√
2k

[
k⊗

i=1

(
1 1
1 −1

)]
⊗ 1√

2

(
1 1
1 −1

)
⊗ In/2k+1 =

= 1√
2k+1

[
k+1⊗
i=1

(
1 1
1 −1

)]
⊗ In/2k+1 . �

Proposition 2. For all k ≥ 1, Pk is symmetric orthogonal.

Proof. Given k ≥ 1, Pk is symmetric by construction. Additionally:

P−1
k =

[
k⊗

i=1

(
1√
2

(
1 1
1 −1

))−1
]

⊗ In/2k =
[

k⊗
i=1

1√
2

(
1 1
1 −1

)]
⊗ In/2k = Pk. �

Proposition 3. For all k ≥ 1, the 2-norm is invariant under Pk (and P−1
k ) transformations, i.e.,

‖Pkx‖2 = ‖x‖2 ∀x ∈ Rn.

Proof. As an immediate consequence of Proposition 2, given k ≥ 1 and x ∈Rn:

‖Pkx‖2
2 = (Pkx)t Pkx = xtx = ‖x‖2

2. �
When it comes to the effect of changing the basis of L by Pk , the following theorem can be established:

Theorem 1. Let L be a Laplace operator with s symmetries and discretised in a symmetry-aware manner, i.e., satisfying eqs. (12)
to (14). Then, given k ∈ {1, . . . , s}:
6
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PkLP−1
k =

∑
�πk∈{0,1}k

D �πk
⊗ L �πk

, (17)

with D �πk
= diag

(
dlidk ( �πk)

)
and dlidk ( �πk)

∈ {−1, 1}2k
equal to the lidk ( �πk)-th row of 

⊗k
i=1

( 1 1
1 −1

)
.

Proof. Let us prove it by induction on k. For k = 1, it follows from eq. (12):

P1LP−1
1 = I2 ⊗ L(0) +

(
1 0
0 −1

)
⊗ L(1).

Then, assuming:

PkLP−1
k =

∑
�πk∈{0,1}k

D �πk
⊗ L �πk

,

and recalling Proposition 2 and eqs. (13) and (14) leads to:

Pk+1LP−1
k+1 = P(k+1)

⎛⎝ ∑
�πk∈{0,1}k

D �πk
⊗
(
I2 ⊗ L( �πk,0) +

(
0 1
1 0

)
⊗ L( �πk,1)

)⎞⎠P(k+1) =

=
∑

�πk∈{0,1}k

(
D �πk

⊗ I2 ⊗ L( �πk,0) + D �πk
⊗
(

1 0
0 −1

)
⊗ L( �πk,1)

)
.

By the induction hypothesis, D �πk
is a diagonal matrix whose diagonal equals the lidk ( �πk)-th row of 

⊗k
i=1

( 1 1
1 −1

)
. Given 

that the diagonals of I2 and 
( 1 0

0 −1

)
equal the first and second rows of 

( 1 1
1 −1

)
, respectively, it follows that D �πk

⊗ I2 and 

D �πk
⊗( 1 0

0 −1

)
correspond to the rows 2 lidk ( �πk) − 1 and 2 lidk ( �πk) of 

⊗k+1
i=1

( 1 1
1 −1

)
. Additionally:

lidk+1 ( �πk,0) = 2 lidk ( �πk) − 1 and lidk+1 ( �πk,1) = 2 lidk ( �πk)

and, therefore:

Pk+1LP−1
k+1 =

∑
�πk+1∈{0,1}k+1

D �πk+1
⊗ L �πk+1

. �

By virtue of Theorem 1, Pk removes 
∑k

i=1 2s−i (out of 2s − 1) outer-subdomain couplings. Hence, the effect of Ps on L is 
to vanish all its off-diagonal blocks L2, . . . , L2s , making PsLP−1

s block diagonal and transforming the original system of size 
n into 2s decoupled subsystems of size n/2s . Fig. 4 illustrates this on a 3D discrete Laplace operator with three reflection 
symmetries. As predicted by Theorem 1, P1, P2 and P3 transform L into 2, 4 and 8 subsystems of size n/2, n/4 and n/8, 
respectively.

Fig. 4. Sparsity patterns of L, P1LP−1
1 , P2LP−1

2 and P3LP−1
3 based on a 3D structured mesh of size 2 × 2 × 4 with s = 3 symmetries.

Finally, several properties of the resulting subsystems can be established:

Corollary 1. Let L be a Laplace operator with s symmetries, discretised in a symmetry-aware manner, i.e., satisfying eqs. (12) to (14), 
and such that ker(L) = 〈1〉 ⊂ Rn. Then, for all k ∈ {1, . . . , s}, the singularity of L is only inherited by the first (out of 2k) decoupled 
subsystem of PkLP−1

k :

L̂1 =
∑

k

L �πk
∈R

n/2k×n/2k

,

�πk∈{0,1}

7
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whose kernel is also 〈1〉 ⊂R
n/2k .

Proof. By Theorem 1, L̂ = PkLP−1
k is block diagonal and L̂1 =∑ �πk∈{0,1}k L �πk

. Moreover, recalling that ker(L) = 〈1〉 ⊂ Rn , 
it follows that 1 ∈ ker(L̂1) ⊂ R

n/2k and dim(ker(L̂1)) ≥ 1. Finally, as L and L̂ are similar, then rank(L) = rank(L̂) and L̂’s 
subsystems, L̂1, . . . , ̂L2k , satisfy:

dim
(

ker
(

L̂i

))
=
{

1, if i = 1

0, elsewhere. �
Proposition 4. For all k ≥ 1, if L is symmetric negative-(semi)definite, then so is PkLP−1

k .

Proof. Given k ≥ 1, recalling P2
k = In , we have that det

(
P2

k

)= 1. Thus, det(Pk) �= 0 and ker(Pk) = 〈0〉. Consequently, for all 
x ∈Rn \ {0}, ∃y = P−1

k x = Pkx ∈Rn \ {0} and, if L is negative-(semi)definite, then so is L̂, as xt L̂x = ytLy. �
Proposition 5. For all k ≥ 1, let the eigenvectors and eigenvalues of L and PkLP−1

k be {wi}1≤i≤n, {ŵi}1≤i≤n ⊂ Rn and {λi}1≤i≤n,

{λ̂i}1≤i≤n ⊂R, respectively. Then, λ̂i = λi and ŵi = Pkwi for all i ∈ {1, . . . ,n}.

Proof. It follows from the fact that 
(

PkLP−1
k

)
Pkwi = PkLwi = λiPkwi . �

2.3. Resulting algorithm

The results derived so far lead to a very effective strategy to accelerate virtually any Poisson solver by exploiting spatial 
reflection symmetries. Roughly, given a discrete Poisson equation:

Lx = b, (18)

it consists of changing the basis of L and solving the equivalent system:

L̂x̂ = b̂, (19)

where L̂ = PsLP−1
s , x̂ = Psx and b̂ = Psb. By Theorem 1, eq. (19) is block diagonal and can be written as:⎛⎜⎝ L̂1 0

. . .

0 L̂2s

⎞⎟⎠
⎛⎜⎝ x̂1

...

x̂2s

⎞⎟⎠=
⎛⎜⎝ b̂1

...

b̂2s

⎞⎟⎠ , (20)

allowing to solve concurrently the 2s subsystems instead of the entire L.
Such an approach has multiple benefits, both from theoretical and computational points of view. In the first place, their 

smaller size translates into reducing the solvers’ time complexity. While this is clear for direct methods, whose operation 
count is proportional to the size of the matrices inverted, iterative solvers’ convergence rates highly depend on their spectral 
properties [48]. Remarkably enough, Proposition 5 ensures that the spectrums of L and L̂ are identical and, therefore, both 
lead to very similar convergence rates. Regarding L̂’s subsystems, let the eigenvectors and eigenvalues of L̂ and L̂1, . . . , ̂L2s

be {ŵi}1≤i≤n ⊂ Rn , {ŵ1
i }1≤i≤n/2s , . . . , {ŵ2s

i }1≤i≤n/2s ⊂ R
n/2s and {λ̂i}1≤i≤n, {λ̂1

i }1≤i≤n/2s , . . . , {λ̂2s

i }1≤i≤n/2s ⊂ R, respectively. Then, 
letting e j ∈R2s

denote the jth canonical basis vector, the following holds for all i ∈ {1, . . . , n/2s} and j ∈ {1, . . . ,2s
}

:

L̂ jŵ
j
i = λ̂

j
i ŵ j

i =⇒ L̂
(

e j ⊗ ŵ j
i

)
= λ̂

j
i

(
e j ⊗ ŵ j

i

)
and, therefore:

{ŵi}1≤i≤n =
{

e1 ⊗ ŵ1
1, . . . ,e1 ⊗ ŵ1

n/2s , . . . ,e2s ⊗ ŵ2s
n/2s ,
}

, (21)

{λ̂i}1≤i≤n = {λ̂1
i }1≤i≤n/2s ∪ · · · ∪ {λ̂2s

i }1≤i≤n/2s . (22)

Equations (21) and (22) generally apply to block diagonal matrices and raise the question of how are L’s eigenvalues 
distributed among L̂1, . . . , ̂L2s . A direct application of Gershgorin’s circle theorem leads to poor bounds on their better-
conditioning. Alternatively, by Theorem 1, L̂1 =∑ �πk∈{0,1}k L �πk

corresponds to a Laplace operator built upon the base mesh
identically to L. We could expect it to be significantly better-conditioned, as it results from shortening the largest length 
scale (the domain’s size) while keeping constant the smallest one (the grid’s size) [47]. However, numerical experiments 
8
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Fig. 5. Spectrums of L and L̂1, . . . , ̂L2s on a 32 × 32 × 32 structured mesh with s = 3 symmetries. κ and κ̃ denote the condition number and the ratio 
between the largest and the smallest (in magnitude) non-zero eigenvalues, respectively.

have showed that the spectrums of L̂ and L̂1, . . . , ̂L2s are actually quite similar. Fig. 5 illustrates this on a 3D discrete 
Laplace operator exploiting three symmetries.

Despite not really improving the condition number, exploiting symmetries accelerates iterative solvers’ convergence con-
siderably. Namely, most iterative methods can be regarded as projection techniques that rely on selecting an approximate 
solution from a certain search space (e.g., a Krylov subspace [54]) by making its related residual orthogonal to some other 
vector subspace [48]. Therefore, the higher their dimension is, the more accurate the approximate solution becomes. In 
this sense, given that a local iteration on L̂1, . . . , ̂L2s produces a global search space of dimension 2s times higher than 
that of a global iteration on L, solving the 2s subsystems separately results into considerably better approximations. For 
instance, each PCG iteration minimises the A-norm of the error over a certain Krylov subspace [48]. Then, replacing a single 
global iteration with 2s local iterations improves considerably such a minimisation. Similarly, applying a single deflation or 
augmentation [41,38] vector locally, i.e., onto L̂1, . . . , ̂L2s , corresponds to applying 2s vectors globally, i.e., onto L.

On top of that, the superlinear convergence of certain well-known iterative methods agrees with a modest convergence 
of Ritz values towards the extreme eigenvalues of the coefficient matrix [52,55]. In addition, the more isolated these eigen-
values are, the faster the Ritz values converge [54,51]. Thence, solving L̂1, . . . , ̂L2s separately ensures a two-fold improvement 
of the superlinear convergence. On the one hand, the rather homogeneous distribution of L̂’s eigenvalues among its sub-
systems makes the extreme ones more isolated, therefore accelerating Ritz values convergence. On the other, the fact that 
each subsystem presents fewer extreme eigenvalues makes superlinear convergence occur earlier and more intensely. The 
qualitative nature of the above arguments is due to the high dependence of the convergence rates on the iterative method 
employed. Additionally, the actual reductions in the iterations’ count are determined by unrelated factors like the discretisa-
tion itself or the initial residual considered, which may be orthogonal to the eigenvectors associated with the most harmful 
eigenvalues.

Apart from accelerating convergence, exploiting symmetries allows for substantial computational improvements. On the 
one hand, section 3.1 will show how to accelerate the matrix multiplications by replacing the standard SpMV with the more 
compute-intensive SpMM. On the other, apart from the immediate reductions in the memory footprint derived from L̂’s block 
diagonal structure, section 3.2 will present a strategy to further lighten the solvers’ memory requirements. Besides, the fact 
that L̂1, . . . , ̂L2s are fully decoupled leaves a place for higher parallelism, for instance, in the construction and application of 
complex preconditioners. Indeed, L̂’s regular block structure may be used to apply low-rank approximations as in [36].

Algorithm 1 summarises the resulting strategy for making solvers exploit reflection symmetries. Regarding the procedure 
setup in line 1, the construction of Ps represents a relatively simple task through Proposition 1. On the other hand, to 
build L̂, we no longer need to discretise the entire domain but a 2s times smaller fraction, the base mesh, that each of the 
symmetries’ hyperplanes will implicitly mirror by applying Theorem 1 and eqs. (12) to (14) to its couplings, L1, . . . , L2s .

Algorithm 1 Poisson solver exploiting s reflection symmetries.

Require: s ≥ 1, L1,1, . . . , L1,2s ∈R
n/2s×n/2s and b ∈ im(L) ⊆Rn

1: procedure Setup(s, L1, . . . , L2s )

2: Ps = (1/
√

2s) 
[⊗s

i=1

( 1 1

1 −1

)]⊗ In/2s and L̂ = PsLPs

3: end procedure
4: procedure Solve(b, ̂L, Ps)
5: Transform b̂ = Psb
6: Decoupled solution of L̂i x̂i = b̂i for all i ∈ {1, . . . , 2s}
7: Inverse transform x = Ps x̂
8: end procedure

When it comes to the procedure solve in line 4, it requires a forward and an inverse transforms of the RHS and solution 
vectors, respectively. Recalling that Proposition 2 allows computing them as a matrix multiplication by Ps , section 3.3 will 
present a domain partitioning making such products communication-free.
9
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Finally, two practical observations about the concurrent solution of L̂1, . . . , ̂L2s in line 6 can be made. Firstly, if an iterative 
method is employed, Proposition 3 provides a natural way to keep track of the original system’s convergence in terms of 
the 2s subsystems’ local convergences. Indeed, letting r = b − Lx and r̂ = b̂ − L̂x̂, r̂ = Psr holds, and by Proposition 3:

‖r‖2 = ‖r̂‖2 =
√√√√ 2s∑

i=1

‖r̂i‖2
2, (23)

corresponding r̂i = b̂i − L̂i x̂i to the ith subsystem’s local residual. On the other hand, it is worth recalling that the Laplace 
operator’s properties are usually preserved at discrete level, i.e., L is symmetric negative-semidefinite and ker(L) = 〈1〉
(see, for instance, eqs. (3) and (4)). Then, a common approach for specific solvers and preconditioners only applicable to 
symmetric positive-definite (SPD) matrices is to remove L’s singularity and change the sign of the resulting system of 
equations. In this regard, Proposition 4 ensures that the block diagonalisation preserves matrix symmetry and definiteness, 
and Corollary 1 clarifies how to tackle L̂’s singularity.

3. Computational framework

3.1. Increasing the arithmetic intensity

Iterative methods generally rely on linear algebra operations, being (sparse) matrix-vector products the most computa-
tionally expensive. Algorithm 2 presents a pseudocode summarising the implementation of SpMV, the kernel typically used 
to compute them. Despite existing many works on developing architecture-specific sparse matrix storage formats and im-
plementations [56,23], it is a memory-bound kernel with irregular memory accesses and unavoidable cache misses. As a 
result, its theoretically achievable performance falls to a small fraction of the computing systems’ peak performances.

When exploiting symmetries, it is possible to replace SpMV with SpMM, a higher performance kernel also known as 
sparse matrix-dense matrix product or sparse matrix-multivector product [6]. It is summarised in Algorithm 3 and rep-
resents the multiplication of a sparse matrix by a set of dense vectors, which results in significantly greater data reuse. 
Indeed, in line 5 every vector reuses the coefficients of the sparse matrix.

SpMM naturally applies to matrices satisfying the following block structure:

Â = I2s ⊗ A, (24)

where Â ∈ Rn×n and A ∈ R
n/2s×n/2s . Then, thanks to the symmetry-aware discretisation, SpMM can be used on the products 

by virtually all the simulations’ matrices with 2s (sub)vectors, one per subdomain. In this sense, while operators like the 
discrete divergence satisfy eq. (24) exactly, others like the transformed Laplacian require a specialised implementation.

Algorithm 2 SpMV implementation using the standard CSR matrix format. Algebraically, given Â ∈ Rn×m , y ∈ Rn , x ∈ Rm

and c ∈R, it corresponds to y = cÂx.

Require: Â, x, c
Ensure: y
1: for i ← 1 to n do
2: sum← 0.0
3: for j ← Â.rptr[i] to Â.rptr[i + 1] do
4: sum← sum+ Â.coef[ j] · x[Â.cidx[ j]]
5: end for
6: y[i] ← c · sum
7: end for

Algorithm 3 SpMM implementation using the standard CSR matrix format. Algebraically, given A ∈ R
n/d×m/d , y ∈ Rn , x ∈ Rm

and c ∈Rd , it corresponds to y = (diag(c) ⊗ A)x.

Require: A, x, c
Ensure: y

1: for i ← 1 to n/d do
2: sum← zeros(d)

3: for j ← A.rptr[i] to A.rptr[i + 1] do
4: for k ← 1 to d do
5: sum[k] ← sum[k] + A.coef[ j] · x[A.cidx[ j]][k]
6: end for
7: end for
8: for k ← 1 to d do
9: y[i][k] ← c[k] · sum[k]

10: end for
11: end for
10
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Indeed, when it comes to L̂’s multiplications, a direct application of Theorem 1 allows using SpMM on each of the 2s

summands of eq. (17). Nevertheless, while the inner-subdomain couplings, L1, resemble an (n/2s)-sized Laplace operator, 
the outer ones, L2, . . . , L2s , have very few non-zero entries, if any. Then, it makes sense to define the following splitting of 
L̂:

L̂ = I2s ⊗ L̂inn + L̂out, (25)

where, according to Theorem 1:

L̂inn := L�0 ∈R
n/2s×n/2s

and L̂out :=
∑
�πs �=�0

D �πs ⊗ L �πs ∈Rn×n. (26)

Hence, by accumulating L̂’s outer-subdomain couplings into L̂out, we can compute L̂’s multiplications as a combination of 
a single SpMM, SpMV and linear combination of vectors (axpy), reducing considerably the number of SpMM calls at a very 
low cost given the high sparsity of L̂out. For instance, when dealing with compact stencils only coupling adjacent nodes, 
then at most s out of 2s − 1 outer-subdomain couplings are not null. In such cases, L̂out is diagonal (as in Fig. 4) and can be 
treated as a (sparse) vector, allowing to further accelerate L̂’s multiplications by replacing L̂out’s SpMV with an element-wise 
product of vectors (axty).

Recalling that SpMV and SpMM are both memory-bound, the maximum speedup achievable by replacing an SpMV with 
an SpMM on matrices satisfying eq. (24) equals their arithmetic intensity ratio, ISpMM/ISpMV . According to Algorithm 2, 
considering double-precision flop and the standard CSR matrix format, the arithmetic intensity of SpMV reads:

ISpMV = 2nnz(Â) + 1

8nnz(Â) + 4nnz(Â) + 4(n + 1) + 8n + 8m + 8
, (27)

where nnz(Â), n and m are the number of non-zeros, rows and columns in the matrix, respectively. Similarly, the arithmetic 
intensity of SpMM reads:

ISpMM = (2nnz(A) + 1) · d

8nnz(A) + 4nnz(A) + 4(n/d + 1) + (8n/d + 8m/d + 8) · d
, (28)

where d = 2s stands for the number of subvectors. It is clear, then, that the larger d is, the higher the speedup becomes 
and, on its limit for square matrices (n = m):

lim
d→∞

ISpMM
ISpMV

�
n�1

12nnz(Â)/n + 20

16
.

Remarkably enough, being the speedup proportional to the average number of non-zeros per row, nnz(Â)/n, high-order 
schemes strengthen the benefits of SpMM. Additionally, the more matrix multiplications the solvers involve, the greater the 
accelerations provided by SpMM will be, particularly benefiting methods like AMG.

It should be noted that our approach to exploiting symmetries for accelerating matrix multiplications increases the 
communication to computation ratio. Indeed, while the computational work, in flops, and the memory traffic, in bytes, are 
typically functions of the mesh size, the communication traffic depends on the mesh boundaries resulting from the workload 
distribution. Because of this, the communication to computation ratio highly depends on the mesh size per process, and 
distributing a smaller base mesh increases the communication overheads, reducing the room for communication-hiding 
strategies. Although this had no impact on the studies conducted for this work, there is a limit where parallel scalability is 
no longer possible. However, exploring this limit is out of the scope of this paper.

3.2. Reducing the memory footprint

In certain cases, especially when using GPUs, the memory requirements become the limiting factor in the problems’ size. 
In this regard, using a symmetry-aware discretisation effectively reduces the footprint of virtually all the matrices required 
by the simulations.

Regarding those operators satisfying eq. (24), SpMM no longer requires their entire matrices but their restriction to the 
base mesh, whose size is 2s times smaller. When it comes to L̂, if we recall eq. (25) to replace SpMV with a combination 
of SpMM, SpMV and axpy, L̂’s memory footprint reduces to that of L̂inn and L̂out. Considering L̂out negligible and since L̂inn
resembles an (n/2s)-sized Laplace operator, we can expect reductions by a factor of around 2s in L̂’s footprint. For instance, 
a standard 7-point stencil produces a diagonal L̂out and L̂’s resulting size is O(n + 7n/2s).

Table 1 summarises the reductions in the memory requirements of several standard solvers after exploiting a varying 
number of symmetries. The block diagonal structure of L̂ makes dense direct solvers 2s times lighter, and reduces the 
footprint of sparse solvers and preconditioners, such as approximate inverses or incomplete factorisations, up to the same 
factor (in accordance with their sparsity patterns).
11
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Table 1
Relative memory requirements of several standard solvers after exploiting s reflection symmetries. Results obtained considering that, apart from the coeffi-
cient matrix, CG and GMRES(4) require 3 and 10 vectors, respectively. L̂ is assumed to arise from a 7-point stencil, O(n +7n/2s), AMG’s memory footprint is 
simplified to that of its matrices, O(n/2s), and direct solvers are assumed dense, O(2s(n/2s)

2
).

s CG GMRES(4) AMG Dense direct solvers

0 1.00 1.00 1.00 1.00
1 0.68 0.85 0.50 0.50
2 0.52 0.75 0.25 0.25
3 0.44 0.70 0.13 0.13

As a result, exploiting symmetries reduces the simulation’s setup costs and memory requirements along with the sizes 
of their matrices, making massive simulations considerably more affordable, and methods with excessive memory or com-
putational requirements applicable to larger cases.

3.3. Communication-free transforms

In distributed parallel processing, kernels involving matrix multiplications usually require communications. Roughly, a 
non-zero aij represents a coupling between the ith and jth elements of the output and input vectors, and requires a data 
exchange whenever they are located in different memory spaces.

By the definition of Pk given in eqs. (15) and (16), its ith row’s off-diagonal non-zeros are located at the columns 
corresponding to ith grid point’s mirrored counterparts (by each of the first k symmetries). For instance, recalling the 
single-symmetry 1D mesh of section 2.1 and according to Fig. 6, the 2nd row of P1 is coupled with its 10th column, whose 
local index is also 2.

Fig. 6. Symmetry-aware domain partitioning for communication-free transforms.

Then, since both transforms in lines 5 and 7 of Algorithm 1 are computed through SpMV calls by Ps , their data ex-
changes can be entirely avoided using a symmetry-aware domain partitioning. That is, a domain partitioning in which all 
elements with the same local index belong to the same partition. Fig. 6 illustrates this by defining a random symmetry-aware
partitioning and giving the resulting rows distribution of P1.

4. Numerical experiments

This section evaluates the benefits of exploiting spatial reflection symmetries in a realistic application. To do so, we 
have extracted a discrete Laplace operator, RHS and initial guess from a DNS of a fully-developed turbulent flow. Then, we 
have solved the resulting Poisson equation making several state-of-the-art solvers exploit a varying number of symmetries. 
All the numerical experiments rely on combined MPI and multithreaded parallelism, and have been conducted on the JFF 
cluster at the Heat and Mass Transfer Technological Center. Its non-uniform memory access (NUMA) nodes are equipped 
with two Intel Xeon 6230 CPUs (20 cores, 2.1 GHz, 27.5 MB L3 cache and 140 GB/s memory bandwidth) linked to 288 GB
of RAM and interconnected through 7 GB/s FDR Infiniband.

The case considered corresponds to a buoyancy-driven flow within a cubic cavity heated from below. Fig. 7 illus-
trates the case and details its boundary conditions. The governing equations of such a configuration, generally known as 
Rayleigh-Bénard convection, are the Navier-Stokes and the temperature transport equations. Considering an incompressible 
Newtonian fluid and using the Boussinesq approximation to model the buoyancy effects, they read:
12
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∂tv + (v · ∇) v =
√

Pr

Ra
�v − ∇p − θz and ∇ · v = 0, (29)

∂tθ + (v · ∇) θ = 1√
RaPr

�θ; (30)

being v, θ and p the non-dimensional velocity, temperature and pressure fields, and corresponding Ra and Pr to the Rayleigh 
and Prandtl numbers, respectively.

The pressure-velocity coupling of eqs. (29) and (30) has been solved using a classical fractional step projection 
method [14]. Roughly, at each time iteration a predictor velocity is computed to, later, project it onto a divergence-free 
space by means of the pressure gradient, which is obtained by solving the following discrete Poisson equation:

Lp̃i+1 = Mv∗, (31)

being p̃i+1 = pi+1�t the discrete pseudo-pressure, and M and v∗ the discrete divergence and predictor velocity, respectively 
(see [53] for further details about their discretisation). The time integration scheme is a second-order Adams-Bashforth and, 
to ensure its stability, a classical CFL condition has been imposed to the time-step, �t . Further details about the algorithm 
and its implementation can be found in [3]. Henceforth, the initial guess and RHS vectors used in the numerical experiments 
are extracted once the flow is fully-developed, and equal to:

x0 = p̃i and b = Mv∗,

being p̃i previous time iteration’s pseudo-pressure. The dimensionless parameters used are Ra = 109 and Pr = 0.71, which 
correspond to a turbulent flow within an air-filled cavity. Fig. 7 displays the temperature field of such a fully-developed 
flow.

Fig. 7. Rayleigh-Bénard configuration displayed together with a fully-developed temperature field obtained on a 5123 mesh (Ra = 109, Pr = 0.71).

Without loss of generality, the three test meshes considered in our experiments are structured and refined at the walls 
according to the following hyperbolic tangent function (analogously applied in the y- and z-directions):

xi = 1

2

⎛⎝1 +
tanh

(
γx

(
2 (i−1)

nx
− 1
))

tanh (γx)

⎞⎠ ∀i ∈ {1, . . . ,nx + 1}, (32)

which ensures having three symmetries. For the sake of simplicity, they are equally defined along each direction and cor-
respond to γx = γy = γz = 1.35 and nx = ny = nz ∈ {128, 256, 512}, thus being their sizes n ∈ {1283, 2563, 5123}. This grid 
point’s distribution follows the recommendation criteria proposed in [18] for DNS of Rayleigh-Bénard convection. In this 
regard, the estimated number of grid points to fully resolve all the flow scales at Ra = 109 falls between our two finest 
meshes. Therefore, our experiments range from a relatively coarse-mesh simulation (n = 1283) to a well-resolved DNS 
(n = 5123).

As mentioned earlier, when exploiting s symmetries, we only need to discretise a 1/2s fraction of the domain regardless 
of its geometric complexity and without having to worry about symmetrically dividing it. Fig. 8 summarises the domain 
portions meshed for s ∈ {0, 1, 2, 3}. Then, we can assemble virtually all the simulations’ matrices from the base mesh’s 
couplings with itself and with its 2s − 1 mirrored counterparts, whose geometric information is inferred from the base mesh. 
For instance, we have used Theorem 1 and the classical second-order 7-point stencil to build L̂ from L1, . . . , L2s . Additionally, 
we have made L̂ SPD by recalling Proposition 4 and Corollary 1, making eq. (31) compatible with PCG and more robust since 
it is full-rank.
13



A. Alsalti-Baldellou, X. Álvarez-Farré, F.X. Trias et al. Journal of Computational Physics 486 (2023) 112133
Fig. 8. Schema of the domain’s portions meshed when exploiting s symmetries.

4.1. Naïve implementation

In order to evaluate the benefits of exploiting symmetries on state-of-the-art solvers, we have firstly tested a naïve im-
plementation of Algorithm 1. More concretely, we have built L̂’s subsystems explicitly, and inverted them through sequential 
calls to external libraries. Despite not taking advantage of SpMM and coming with the overhead of requiring extra function 
calls, this approach has allowed testing our strategy on a wide variety of methods. Additionally, it has confirmed that even 
such a naïve implementation results into substantial gains.

As it is well known, the excessive memory requirements and setup costs of sparse direct solvers like those included in 
MUMPS [4,5], PARDISO [11] and SuperLU [37] make them impractical for large 3D cases. In this context, we have tested the 
impact of exploiting symmetries on solving L̂’s subsystems, L̂1, . . . , ̂L2s , through MUMPS’ sparse direct solver, which relies 
on a block low-rank multifrontal factorisation.

Before analysing the results obtained, let us consider a general symmetry-aware (structured or unstructured) mesh with 
n grid points. Then, assuming a compact-stencil only coupling adjacent nodes, s symmetries would give rise to O(2sn2/3)

outer-subdomain couplings later vanished by L’s block diagonalisation and, consequently, nnz(L̂) � nnz(L) − 2sn2/3.
Hence, the advantages of making sparse direct solvers exploit symmetries are two-fold. On the one hand, passing the 

decoupled subsystems instead of the entire L to MUMPS simplifies its reorderings and prevents it from adding extra fill-in 
outside L̂1, . . . , ̂L2s . On the other hand, L̂’s fewer non-zeros further alleviate the factorisation phase and, thanks to both 
combined factors, MUMPS’ memory footprint, setup and solution costs are reduced by up to 48%, 58% and 46%, respectively. 
Figs. 9 and 10 present such reductions and illustrate how, thanks to exploiting symmetries, MUMPS became applicable 
to the 2563 case. Remarkably enough, the lower performance obtained combining MPI and OpenMP parallelism made us 
switch to MPI-only executions. As a result, we faced substantial memory overheads that, despite being negligible for the 
two finer meshes, made MUMPS’ memory footprint rather constant for the 1283 test mesh.

Fig. 9. MUMPS’ factorisation time and memory footprint normalised by mesh size. Results obtained on the three test meshes. Circled values were predicted 
by MUMPS and not computed due to their excessive memory requirements.

Regarding the iterative solution of L̂1, . . . , ̂L2s , our goal now is to illustrate the faster convergences in which their better 
spectral properties result. To do so, we have solved L̂1, . . . , ̂L2s through many of the iterative solvers and preconditioners 
included in hypre [20]. They have been selected with the aim of providing a good overview of the impact of exploiting 
symmetries on a wide variety of methods, somehow compensating the lack of a general result proving their much faster 
convergences despite their slightly better conditioning. Therefore, our experiments include an algebraic multigrid (Boomer-
AMG [28]) used both as a solver and as a preconditioner for PCG and BICGSTAB, which have also been preconditioned with 
a sparse approximate inverse (ParaSails [15]) and a Parallel ILU (Euclid [29]).

Fig. 10 presents the resulting times and iterations’ count required to solve eq. (31). Again, the overall accelerations are 
the result of multiple factors. Firstly, the subsystems’ better spectral properties reduced substantially the iterations’ count of 
all the methods. Regarding SAI- and ILU-preconditioned PCG and BICGSTAB, exploiting one, two and three symmetries lead 
to around 30%, 50% and 70% fewer iterations, respectively. Conversely, the very few V-cycles required by AMG to converge 
14
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Fig. 10. Solution time normalised by mesh size (top) and L’s solution time (middle). Bottom: iterations’ relative reduction. First, second and third columns 
correspond to the 1283, 2563 and 5123 test meshes, respectively. Convergence criterion: 

√
2s‖ri‖2/‖b‖2 ≤ 10−9 for all i ∈ {1, . . . , 2s}.

made it reach, at most, around 23% iterations’ reductions. Besides that, the higher sparsity of L̂ and the greater cache reuse 
derived from the subsystems’ smaller size made BoomerAMG and AMG-preconditioned PCG and BICGSTAB up to 1.3x faster. 
For their part, SAI- and ILU-preconditioned PCG and BICGSTAB were up to 4.3x faster. Finally, it is worth remarking that, 
thanks to the symmetry-aware domain partitioning, the forward and inverse transforms’ overhead was indeed negligible and 
represented at most 0.2% of the overall solution time.

4.2. SpMM-based implementation

The naïve implementation of virtually all iterative methods can be improved by replacing standard SpMV calls with the
SpMM, which has a higher arithmetic intensity (AI). As was already discussed, thanks to the symmetry-aware discretisa-
tion, operators applying identically on the different subdomains satisfy eq. (24) and allow a direct application of SpMM. 
Additionally, Theorem 1 allows computing L̂’s multiplications as a combination of SpMM, axty and axpy. Fig. 11 presents 
the speedups resulting from replacing SpMV with our implementation of the SpMM on both kinds of products. Apart from 
reaching up to 2.5× speedups, SpMM also reduces the memory footprint of the matrices (and their setup costs) by a factor 
of 2s .
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Fig. 11. Left: speedups in matrix products by L̂ = I2s ⊗ L̂inn + L̂out and Â = I2s ⊗ A topped by SpMM’s maximum speedup, ISpMM/ISpMV . Right: Comparison 
of time per hypre versus SpMM-based Jacobi-PCG iteration. Results normalised by the mesh sizes.

In order to illustrate the benefits of an eventual SpMM-based implementation, we have studied the relative weight within 
hypre’s solvers of those matrix multiplications compatible with SpMM. Then, by extrapolating the results of Fig. 11, we 
have calculated the overall speedups expected from their SpMM-based implementations. Fig. 12 summarises such speedups 
and confirms the potential of making methods relying on matrix multiplications exploit SpMM. For instance, AMG and 
Krylov subspace methods would reach up to 1.7x and 5.6x overall speedups, respectively. Remarkably enough, Fig. 11 shows 
how exploiting symmetries have also accelerated hypre’s Jacobi-PCG iterations (on the 1283 and 2563 meshes) despite 
not utilising SpMM. This is due to the much greater cache reuse derived from solving the smaller subsystems separately. 
However, given the current HPC trend of relying on massively parallel devices not counting with cache memory, we do not 
consider such accelerations an actual benefit of exploiting symmetries and take the 5123 results as the standard.

Fig. 12. Top: relative SpMV’s weight per iteration. Bottom: Projected overall speedups resulting from the actual solution time (Fig. 10), SpMM’s speedup 
(Fig. 11) and SpMV’s relative weight (Top).
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5. Conclusions

We have presented a strategy to accelerate virtually any Poisson solver by taking advantage of spatial reflection symme-
tries. More precisely, we have proved the existence and several relevant properties of an inexpensive change of basis used 
to block diagonalise the discrete Laplace operator. In this manner, we can replace the original Poisson equation with a set of 
fully decoupled subsystems then solved concurrently. This change of basis is identical regardless of the mesh connectivity 
(structured or unstructured) and the geometric complexity of the problem, therefore applying to a wide range of academic 
and industrial configurations.

This strategy has several advantages. Namely, the subsystems’ better spectral properties make iterative solvers, such 
as Krylov subspace methods and AMG, converge significantly faster. For instance, numerical experiments based on a real 
turbulence flow simulation showed up to 3.6x faster convergences with ILU- and SAI-preconditioned PCG and BICGSTAB. 
Conversely, exploiting symmetries with hypre’s BoomerAMG and AMG-preconditioned PCG and BICGSTAB lead to 1.3x faster 
convergences. Furthermore, imposing an adequate ordering of the unknowns allowed replacing SpMV with SpMM, a more 
compute-intensive kernel whose performance is up to 2.5x faster. Since iterative solvers generally rely on basic linear algebra 
operations, among which matrix multiplications are the most computationally expensive, the use of SpMM would accelerate 
their (fewer) iterations considerably, making AMG and Krylov subspace methods attain up to 1.7x and 5.6x overall speedups, 
respectively.

The use of SpMM and the smaller subsystems’ size allowed for considerable reductions in the solvers’ footprint and setup 
costs, making methods with excessive memory or computational requirements applicable to larger cases. For instance, ex-
ploiting symmetries made MUMPS’ sparse direct solver applicable to a 16.8M grid points mesh, being its memory footprint, 
setup and solution costs reduced by up to 55%, 85% and 60%, respectively.

Remarkably enough, exploiting symmetries has also simplified the discretisation of complex geometries, as it only re-
quires meshing a portion of the physical domain. Although it was out of the scope of this work, we plan to exploit more 
than 3 symmetries on domains like extruded regular polygons [44,39] or arrays of repeated geometries [27]. The symmetry-
aware discretisation allows extending SpMM’s use beyond the solvers, and we also want to exploit its higher performance 
and reduced memory footprint on most of the simulations’ matrices, making massive problems considerably more afford-
able.

Finally, we would like to enhance our current implementation of the SpMM to approach its maximum achievable per-
formance (see Fig. 11). Other future lines of work include seeking strategies to build complex preconditioners for a single 
subsystem (for instance, the worst-conditioned) and later extend it to the others through cheaper matrix manipulations. In 
this line, we are already working on an SpMM-based AMG.
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