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Abstract 

Background The problem of dealing with misreported data is very common in a wide range of contexts for differ‑
ent reasons. The current situation caused by the Covid‑19 worldwide pandemic is a clear example, where the data 
provided by official sources were not always reliable due to data collection issues and to the high proportion of 
asymptomatic cases. In this work, a flexible framework is proposed, with the objective of quantifying the severity of 
misreporting in a time series and reconstructing the most likely evolution of the process.

Methods The performance of Bayesian Synthetic Likelihood to estimate the parameters of a model based on 
AutoRegressive Conditional Heteroskedastic time series capable of dealing with misreported information and to 
reconstruct the most likely evolution of the phenomenon is assessed through a comprehensive simulation study and 
illustrated by reconstructing the weekly Covid‑19 incidence in each Spanish Autonomous Community.

Results Only around 51% of the Covid‑19 cases in the period 2020/02/23–2022/02/27 were reported in Spain, show‑
ing relevant differences in the severity of underreporting across the regions.

Conclusions The proposed methodology provides public health decision‑makers with a valuable tool in order to 
improve the assessment of a disease evolution under different scenarios.

Keywords Continuous time series, Mixture distributions, Under‑reported data, ARCH models, Infectious diseases, 
Covid‑19, Bayesian synthetic likelihood

Background
The Covid-19 pandemic that is hitting the world since late 
2019 has made evident that having quality data is essential 
in the decision-making chain, especially in epidemiology 
but also in many other fields. There is an enormous global 
concern around this disease, leading the World Health 
Organization (WHO) to declare public health emergency 

[1]. Many methodological efforts have been made to deal 
with misreported Covid-19 data, following ideas intro-
duced in the literature since the late nineties [2–7]. These 
proposals range from the usage of multiplication factors [8] 
to Markov-based models [9, 10] or spatio-temporal mod-
els [11]. Additionally, a new R [12] package able to fitting 
endemic-epidemic models based on approximative maxi-
mum likelihood to underreported count data has been 
recently published [13]. However, as a large proportion of 
the cases run asymptomatically [14] and mild symptoms 
could have been easily confused with those of similar dis-
eases at the beginning of the pandemic, it is reasonable to 
expect that Covid-19 incidence has been notably underre-
ported. Very recently several approaches based on discrete 
time series have been proposed [15–17] although there is 
a lack of continuous time series models capable of deal-
ing with misreporting, a characteristic of the Covid-19 
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data and typically present in infectious diseases modeling. 
In this sense, a new approach for longitudinal data not 
accounting for temporal correlations is introduced in [18] 
and a model capable of dealing with temporal structures 
using a different approach is presented in [19]. A typical 
limitation of these kinds of models is the computational 
effort needed in order to properly estimate the parameters.

Synthetic likelihood is a recent and very powerful alter-
native for parameter estimation in a simulation based 
schema when the likelihood is intractable and, conversely, 
the generation of new observations given the values of the 
parameters is feasible. The method was introduced in [20] 
and placed into a Bayesian framework in [21], showing 
that it could be scaled to high dimensional problems and 
can be adapted in an easier way than other alternatives like 
approximate Bayesian computation (ABC). The method 
takes a vector summary statistic informative about the 
parameters and assumes it is multivariate normal, estimat-
ing the unknown mean and covariance matrix by simula-
tion to obtain an approximate likelihood function of the 
multivariate normal.

Methods
Auto Regressive Conditional Heteroskedasticity (ARCH) 
models are a well-known approach to fitting time series 
data where the variance error is believed to be serially cor-
related. Consider an unobservable process Xt following an 
AutoRegressive ( AR(1) ) model with ARCH(1) errors struc-
ture, defined by

where Z2
t = α0 + α1 · Z

2
t−1 + ǫt , being ǫt ∼ N µǫ(t), σ

2
ǫ  . 

The process Xt represents the actual Covid-19 inci-
dence. In our setting, this process Xt cannot be directly 
observed, and all we can see is a part of it, expressed as

where q is the overall intensity of misreporting (if 
0 < q < 1 the observed process Yt would be underre-
ported while if q > 1 the observed process Yt would be 
overreported) and ω can be interpreted as the overall 
frequency of misreporting (proportion of misreported 
observations). To model consistently the spread of the 
disease, the expectation of the innovations ǫt is linked 
to a simplified version of the well-known compartimen-
tal Susceptible-Infected-Recovered (SIR) model. At any 
time t ∈ R there are three kinds of individuals: Healthy 
individuals susceptible to be infected ( S(t) ), infected 
individuals who are transmitting the disease at a certain 
speed ( I(t) ) and individuals who have suffered the dis-
ease, recovered and cannot be infected again ( R(t) ). As 

(1)Xt = φ0 + φ1 · Xt−1 + Zt ,

(2)Yt =

{
Xt with probability 1− ω

q · Xt with probability ω,

shown in [17], the number of affected individuals at time 
t , A(t) = I(t)+ R(t) can be approximated by

where M∗(β0,β1,β2, t) = β0 + β1 · C1(t)+ β2 · C2(t) , 
being C1(t) and C2(t) dummy variables indicating if time 
t corresponds to a period where a mandatory confinment 
was implemented by the government and if the number 
of people with at least one dose of a Covid-19 vaccine in 
Spain was over 50% respectively. At any time t the condi-
tion S(t)+ I(t)+ R(t) = N  is fulfilled. The expression (3) 
allow us to incorporate the behavior of the epidemics in a 
realistic way, defining µǫ(t) = A(t)− A(t − 1) , the new 
affected cases produced at time t.

The Bayesian Synthetic Likelihood (BSL) simulations 
are based on the described model and the chosen sum-
mary statistics are the mean, standard deviation and the 
three first coefficients of autocorrelation of the observed 
process. Parameter estimation was carried out by means 
of the BSL [22, 23] package for R [12]. Taking into account 
the posterior distribution of the estimated parameters, the 
most likely unobserved process is reconstructed, resulting 
in a probability distribution at each time point. The prior of 
each parameter is set to be uniform on the corresponding 
feasible region of the parameter space and zero elsewhere.

Results
This section presents the results of the analyses using the 
proposed methodology over a real data set and they are 
compared to the most common alternatives. The perfor-
mance of the method is also studied by means of a compre-
hensive simulation study, with and without covariates.

The performance and an application of the proposed 
methodology are studied through a comprehensive simu-
lation study and a real dataset on Covid-19 incidence in 
Spain on this Section.

Simulation study
Although the estimation method is already known and 
has been tested before, to the best of our knowledge it has 
never been used in the context of ARCH time series, and 
therefore a thorough simulation study has been conducted 
to ensure that the model behaves as expected, including 
ARCH(1) , AR(1) , MA(1) and ARMA(1, 1) structures for 
the hidden process Xt defined as

where ǫt ∼ N
(
µǫ(t), σ

2
ǫ

)
.

(3)A(t) =
M∗(β0,β1,β2, t)A0e

kt

M∗(β0,β1,β2, t)+ A0

(
ekt − 1

) ,

(4)

X
t
= �0 + �1 ⋅ Xt−1 + Z

t
,Z2

t
= �0 + �1 ⋅ Z

2
t−1

+ �
t
(ARCH(1))

Xt = �0 + � ⋅ Xt−1 + �t (AR(1))

X
t
= �0 + � ⋅ �

t−1 + �
t
(MA(1))

X
t
= �0 + � ⋅ X

t−1 + � ⋅ �
t−1 + �

t
(ARMA(1, 1))
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The values for the parameters φ1 , α0 , α1 , α , θ , q and ω 
ranged from 0.1 to 0.9 for each parameter. Average abso-
lute bias, average interval length (AIL) and average 95% 
credible interval coverage are shown in Table 1. To sum-
marize model robustness, these values are averaged over 
all combinations of parameters, considering their prior 
distribution is a Dirac’s delta with all probability concen-
trated in the corresponding parameter value.

For each autocorrelation structure and parameters 
combination, a random sample of size n = 1000 has 
been generated using the R function arima.sim, and the 
parameters m = log(M∗) and β have been fixed to 0.2 and 
0.4 respectively. Several values for these parameters were 
considered but no substantial differences in the model 

performance were observed related to the value of these 
parameters or sample size, besides a poorer coverage for 
lower sample sizes, as could be expected.

Real incidence of Covid‑19 in Spain
The betacoronavirus SARS-CoV-2 has been identified as 
the causative agent of an unprecedented world-wide out-
break of pneumonia starting in December 2019 in the city 
of Wuhan (China) [1], named as Covid-19. Considering 
that many cases run without developing symptoms or just 
with very mild symptoms, it is reasonable to assume that 
the incidence of this disease has been underregistered. 
This work focuses on the weekly Covid-19 incidence reg-
istered in Spain in the period (2020/02/23–2022/02/27). 

Table 1 Model performance measures (average absolute bias, average interval length and average coverage) summary based on a 
simulation study

Structure Parameter Bias AIL Coverage (%)

ARCH(1) φ̂0 ‑0.377 3.586 68.77%

φ̂1 0.122 0.525 66.08%

α̂0 ‑0.296 1.351 74.72%

α̂1 ‑0.085 0.920 77.34%

ω̂ ‑0.020 0.234 83.71%

q̂ ‑0.022 0.167 85.06%

m̂ ‑0.226 0.783 79.17%

β̂ ‑0.734 3.581 76.83%

σ̂ǫ ‑1.540 3.323 63.65%

AR(1) φ̂0 ‑0.983 5.189 70.10%

α̂ 0.043 0.814 92.46%

ω̂ ‑0.003 0.111 94.10%

q̂ ‑0.001 0.014 89.03%

m̂ 0.001 0.190 75.17%

β̂ 0.007 0.192 74.49%

σ̂ǫ ‑1.689 4.718 81.07%

MA(1) φ̂0 ‑1.241 5.171 68.31%

θ̂ 0.051 0.818 90.40%

ω̂ ‑0.005 0.108 95.06%

q̂ ‑0.001 0.014 87.24%

m̂ ‑0.002 0.187 76.95%

β̂ 0.004 0.190 80.38%

σ̂ǫ ‑1.619 4.679 83.95%

ARMA(1,1) φ̂0 ‑1.834 5.107 61.01%

α̂ 0.062 0.799 89.39%

θ̂ 0.011 0.873 96.86%

ω̂ ‑0.001 0.014 88.32%

q̂ ‑0.005 0.109 94.97%

m̂ 0.002 0.184 78.49%

β̂ 0.004 0.183 78.01%

σ̂ǫ ‑1.828 4.631 74.74%
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It can be seen in Fig. 1 that the registered data (turquoise) 
reflect only a fraction of the actual incidence (red). The 
grey area corresponds to 95% probability of the poste-
rior distribution of the weekly number of new cases (the 
lower and upper limits of this area represent the percen-
tile 2.5% and 97.5% respectively), and the dotted red line 
corresponds to its median.

In the considered period, the official sources reported 
11,056,797 Covid-19 cases in Spain, while the model predicts 
a total of 21,639,627 cases (only 51.10% of actual cases were 
reported). This work also revealed that while the frequency 
of underreporting is extremely high for all regions (values of 
ω̂ over 0.80 in all cases), the intensity of this underreporting 
is not uniform across the considered regions: Aragón and 
Ceuta are the CCAAs with highest underreporting inten-
sity ( ̂q = 0.28 ) while Región de Murcia and País Valencià 
are the regions where the predicted values are closest to 
the number of reported cases ( ̂q = 0.46 ). Detailed under-
reporting parameters estimates for each region can be found 
in Table 2. Although the main impact of the vaccination 
programmes can be seen in mortality data, the results of 
this work also showed a significant decrease in the weekly 
number of cases as well in all CCAA except Euskadi, as can 
also be seen in Table 2 through the estimates corresponding 
to parameter β2 . Figure  2 represents the predicted and 
registered Covid-19 weekly incidence globally for Spain.

Figure  2 shows the evolution of the registered (tur-
quoise) and predicted (red) weekly number of Covid-19 
cases in Spain in the period 2020/02/23–2022/02/27.

As can be seen in Figs.  1 and 2, there are 4  weeks 
(2021–12-26, 2022–01-02, 2022–01-09 and 2022–01-16)  
for which the predicted values coincide with those 
registered in all simulations, so no underreporting is 
detected these weeks. This behavior might be due to 
the breakout of a new variant with different character-
istics (for instance producing more symptomatic cases 
and therefore reducing the underreporting) around 
these dates.

The registered values predicted by the model can also 
be obtained as Ŷt =

(
1− ω̂ + ω̂ · q̂

)
· X̂t  , and compared 

to the actual registered values Yt . That allows comput-
ing standard forecasting error measures as Root Mean 
Squared Error (RMSE) or Mean Absolute Percent-
age Error (MAPE). Globally, the RMSE was 113,145.4 
and MAPE was around 8%, ranging between 4 to 13% 
across regions. The specific RMSE and MAPE for each 
region are described in Table S1 in the Supplementary 
Material.

The global differences in underreporting magnitudes 
across regions can be represented by the percentage of 
reported cases in each CCAA (compared to model esti-
mates), as shown in Fig. 3.

Fig. 1 Registered and predicted weekly new Covid‑19 cases in each Spanish region
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Discussion
Although it is very common in biomedical and epide-
miological research to get data from disease registries, 
there is a concern about their reliability, and there have 
been some recent efforts to standardize the protocols 
in order to improve the accuracy of health information 
registries (see for instance [24, 25]). However, as the 
Covid-19 pandemic situation has made evident, it is not 
always possible to implement these recommendations 
in a proper way.

Another work analyzing the cumulated burden of 
Covid-19 in Spain [26] estimated that only around 21% 
of the cases were reported in the period 2020/01/01–
2020/06/01, but it should be taken into account that it 

Table 2 Estimated underreporting parameters and impact 
of the considered covariates ( β1 and β2 are the coefficients 
for confinement and vaccination respectively) for each 
Spanish CCAA. Reported values correspond to the median 
and percentiles 25% and 75% of the corresponding posterior 
distribution

CCAA Parameter Estimate (P25‑P75)

Andalucía ω 0.97 (0.95—0.99)

q 0.44 (0.41—0.48)

β1 ‑1.67 (‑2.31, ‑0.39)

β2 ‑1.71 (‑2.66, ‑0.68)

Aragón ω 0.98 (0.97—0.99)

q 0.28 (0.27—0.32)

β1 0.76 (0.17, 1.43)

β2 ‑1.06 (‑1.36, ‑0.69)

Asturies ω 0.97 (0.90—0.99)

q 0.40 (0.37—0.53)

β1 0.44 (0.11, 0.69)

β2 ‑0.90 (‑1.77, ‑0.63)

Cantabria ω 0.97 (0.95—0.99)

q 0.30 (0.28—0.35)

β1 ‑0.44 (‑0.71, 0.002)

β2 ‑0.53 (‑1.29, ‑0.25)

Castilla y León ω 0.98 (0.95—0.99)

q 0.36 (0.32—0.41)

β1 ‑0.84 (‑1.33, ‑0.23)

β2 ‑1.22 (‑1.88, ‑0.60)

Castilla – La Mancha ω 0.98 (0.96—0.99)

q 0.33 (0.31—0.36)

β1 0.06 (‑0.18, 0.44)

β2 ‑0.80 (‑1.11, ‑0.40)

Canarias ω 0.98 (0.96—0.99)

q 0.35 (0.32—0.38)

β1 ‑0.92 (‑2.06, ‑0.29)

β2 ‑1.34 (‑1.78, ‑1.06)

Catalunya ω 0.98 (0.96—0.99)

q 0.30 (0.27—0.34)

β1 ‑0.25 (‑0.52, 0.21)

β2 ‑1.51 (‑1.97, ‑0.94)

Ceuta ω 0.98 (0.95—0.99)

q 0.28 (0.25—0.31)

β1 0.007 (‑0.52, 0.34)

β2 ‑1.38 (‑1.93, ‑0.84)

Extremadura ω 0.98 (0.95—1.00)

q 0.40 (0.36—0.44)

β1 1.45 (1.24, 1.83)

β2 ‑0.72 (‑1.30, ‑0.37)

Galiza ω 0.84 (0.33—0.98)

q 0.41 (0.35—0.56)

β1 ‑0.20 (‑0.53, 0.18)

β2 ‑2.03 (‑3.07, ‑1.34)

Table 2 (continued)

CCAA Parameter Estimate (P25‑P75)

Illes Balears ω 0.98 (0.96—0.99)

q 0.36 (0.33—0.39)

β1 0.74 (0.43, 1.01)

β2 ‑0.72 (‑1.16, ‑0.34)

Región de Murcia ω 0.93 (0.45—0.98)

q 0.46 (0.34—0.80)

β1 0.62 (‑0.02, 1.36)

β2 ‑1.97 (‑3.07, ‑0.59)

Madrid ω 0.98 (0.96—0.99)

q 0.37 (0.34—0.40)

β1 0.35 (‑0.39, 0.59)

β2 ‑0.35 (‑0.77, ‑0.07)

Nafarroa ω 0.99 (0.97—1.00)

q 0.30 (0.26—0.32)

β1 ‑1.71 (‑1.92, ‑0.53)

β2 ‑2.05 (‑3.20, ‑1.33)

Euskadi ω 0.99 (0.97—0.99)

q 0.27 (0.25—0.31)

β1 ‑0.42 (‑0.69, ‑0.21)

β2 ‑0.10 (‑0.24, 0.00)

La rioja ω 0.98 (0.96—0.99)

q 0.31 (0.28—0.35)

β1 ‑0.83 (‑1.08, ‑0.35)

β2 ‑0.43 (‑0.71, ‑0.22)

Melilla ω 0.97 (0.95—0.99)

q 0.34 (0.31—0.37)

β1 ‑0.48 (‑0.82, ‑0.11)

β2 ‑1.59 (‑2.05, ‑0.93)

País Valencià ω 0.95 (0.40—0.98)

q 0.46 (0.40—0.67)

β1 1.45 (1.24, 1.83)

β2 ‑1.70 (‑2.64, ‑0.52)
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seems reasonable to assume that the underreporting 
intensity was higher at the early stages of the pandemic, 
and therefore a lower overall underreporting is expected 

in the longer period considered in this work. Addition-
ally, the presented methodology allows for a real time 
monitoring and not only cumulated over a time period.

Fig. 2 Registered and predicted weekly new Covid‑19 cases globally in Spain

Fig. 3 Percentage of reported cases in each CCAA 
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Having accurate data is key in order to provide public 
health decision-makers with reliable information, which 
can also be used to improve the accuracy of dynamic 
models aimed to estimate the spread of the disease [27] 
and to predict its behavior.

Conclusions
The proposed methodology can deal with misreported 
(over- or under-reported) data in a very natural and 
straightforward way and is able to reconstruct the most 
likely hidden process, providing public health decision-
makers with a valuable tool in order to predict the evolu-
tion of the disease under different scenarios.

Using a flexible approach for the underlying hidden 
process, such as ARCH time series, are a natural exten-
sion to recent developments (see for instance [19]) pro-
posed for fitting underreported time series but restricted 
to the case when the underlying process has an ARMA 
structure and allow us to model phenomena presenting 
more complex behavior like Covid-19 in the long time 
period considered in the present work.

The analysis of the Spanish Covid-19 data shows that 
in average only around 51% of the cases in the period 
2020/02/23–2022/02/27 were reported, and that there 
are important differences in the severity of underre-
porting across the Spanish regions. The impact of the 
vaccination program can also be assessed, achieving a 
significant decrease in the Covid-19 incidence in almost 
all regions after 50% of the population had one dose at 
least (although these results would probably be notably 
different if including SARS-CoV-2 immunity-escape vari-
ants like BA.4 or BA.5, which are currently predominant 
in many countries), while the impact of the mandatory 
lockdown could only be detected by the model in 7 out 
of 19 regions.

The simulation study shows that the proposed methodol-
ogy behaves as expected and that the parameters used in 
the simulations, under different autocorrelation structures, 
can be recovered, even with severely underreported data.
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