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Abstract: The Internet Engineering Task Force (IETF) has standardized a new framework, called Static
Context Header Compression and fragmentation (SCHC), which offers adaptation layer functionality
designed to support IPv6 over Low Power Wide Area Networks (LPWANs). The IETF is currently
profiling SCHC, and in particular its packet fragmentation and reassembly functionality, for its
optimal use over certain LPWAN technologies. Considering the energy constraints of LPWAN
devices, it is crucial to determine the energy performance of SCHC packet transfer. In this paper, we
present a current and energy consumption model of SCHC packet transfer over Sigfox, a flagship
LPWAN technology. The model, which is based on real hardware measurements, allows to determine
the impact of several parameters and fragment transmission strategies on the energy performance of
SCHC packet transfer over Sigfox. Among other results, we have found that the lifetime of a device
powered by a 2000 mAh battery, transmitting packets every 5 days, is 168 days for 2250-byte packets,
while it increases to 1464 days for 77-byte packets.

Keywords: IoT; LPWAN; SCHC; Sigfox; fragmentation; IETF; ACK-on-Error; energy model

1. Introduction

In the last years, Low Power Wide Area Network (LPWAN) technologies have gained
significant momentum as solutions for providing connectivity to Internet of Things (IoT)
devices. LPWANs typically offer unique characteristics, such as a simple star network
topology, a link range in the order of several kilometers, and low energy consumption,
which enables multiyear lifetimes for battery-operated IoT devices [1]. Relevant LPWAN
technologies include Sigfox, LoRaWAN, NB-IoT, and IEEE 802.15.4 w [2].

LPWAN technologies typically support low bit rates, which contribute to achieving
long link range. However, packet transmission at a low bit rate leads to high energy
consumption due to a high packet transmission time. In order to limit the impact of this
problem, many LPWAN technologies are characterized by a short Layer 2 (L2) frame size.
On the other hand, LPWAN devices can benefit from Internet connectivity by supporting
IPv6. However, IPv6 requires its underlying layer to support a Maximum Transmission
Unit (MTU) of at least 1280 bytes [3]. If an LPWAN technology does not offer packet
Fragmentation and Reassembly (F/R) functionality, such as Sigfox or LoRaWAN, an adap-
tation layer including F/R support is needed between IPv6 and the underlying LPWAN
technology. To this end, the IETF has recently developed a standard called Static Context
Header Compression and fragmentation (SCHC) [4].

SCHC provides adaptation layer functionality that includes F/R. SCHC F/R allows
to transmit packets even if they have a size greater than the supported L2 MTU. SCHC
has been purposefully specified following a generic approach, since it was envisioned
that SCHC would be used on top of several technologies. For each LPWAN technology, a
companion specification called a SCHC Profile determines which SCHC components need
to be supported and how they are configured [5–7].
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The SCHC F/R process is performed at the expense of contributing header and
message overhead to packet transmission. Considering the energy constraints of IoT
devices (many of which are not mains-powered), it is fundamental to evaluate the energy
performance of SCHC fragmented packet transmission. However, to the best of our
knowledge, there is no previous work in the literature on this topic [8–16].

In this paper, we model and evaluate the energy performance of SCHC packet frag-
mentation over Sigfox, a flagship LPWAN technology that supports a severely constrained
maximum payload size (i.e., 12 bytes) for IoT device packet transmission. Among others,
our results quantify how the lifetime of a battery-operated device performing periodic
packet transfers over Sigfox increases with the period between transfers and decreases
with packet size. For example, assuming a battery capacity of 2000 mAh, and a period of
5 days, the device lifetime increases from 168 days (for a 2250-byte packet) to 1464 days
(for a 77-byte packet). We also evaluate the impact on performance of different fragment
transmission strategies, as well as device hardware features.

The rest of the paper is organized as follows: Section 2 presents related work. Section 3
overviews the main features of Sigfox. Section 4 describes the main features of SCHC F/R
and how it is supported over Sigfox. Section 5 provides our current consumption model
of SCHC packet fragmentation over Sigfox. In Section 6, the model is used to evaluate
the energy performance of SCHC packet fragmentation over Sigfox. Section 7 concludes
the paper.

2. Related Work

This section reviews related work. First, we focus on literature regarding the energy
performance of Sigfox. Secondly, we overview evaluation studies on SCHC F/R.

2.1. Sigfox Energy Performance

The energy performance of the Sigfox technology has been a topic of interest for the
research community. Martinez et al. [17] provided a general energy consumption model
for IoT devices, including Sigfox devices, but did not provide information regarding the
considered Sigfox module, nor device lifetime. In [18], authors provided an analytical
model that characterizes Sigfox in terms of device current consumption, device lifetime, and
energy cost of data delivery. Their results show that, using a MKRFOX1200 development
kit with an ATA8520 Sigfox module, with a battery of 2400 mAh, a theoretical device
lifetime of 1.5 years is possible when sending one message every 10 min at 100 bit/s. In [19],
authors evaluated theoretically the energy consumption of different LPWANs for over-
the-air updates. Results show that full firmware updates consume a significant amount of
energy, especially for low bit rate technologies such as Sigfox. The datasheet values of an
Onsemi AXSF Sigfox module were considered in their evaluation.

Hernandez et. al. [20] performed extensive energy consumption measurements; their
results show that IoT sensors using Sigfox technology can be autonomous during remark-
ably long periods of time, with a lifetime of up to 4 years, when sending a message every
60 min at 100 bit/s and operating on a 1000 mAh battery. The evaluation was based
on a Telit LE51-868/DIP Sigfox module. Morin et. al. [21] compared different wireless
technologies, such as Sigfox, LoRaWAN, and Bluetooth Low Energy (BLE) in terms of
device lifetime. It was found that a Sigfox device, running on two AAA batteries (of 1250
mAh at 1.5 V each) can achieve a lifetime of 25 years when sending 10 bytes per day at
100 bit/s. Ogawa et al. [22] estimated the energy cost of Sigfox transmissions, using the
TD1207R/08R module.

An IoT solution for art conservation using Sigfox was presented in [23]. That work
shows that if a device with a 1700 mAh battery is sending one sample per hour, it is possible
to achieve a lifetime of 1.5 years, using the Telit LE51-868S Sigfox module. Moreover,
authors indicate that aggregation strategies (i.e., sending more than one sample per trans-
mission) can improve energy consumption and extend the node lifetime to 5 years. Authors
in [24] concluded that, in cases where extremely long range is required, Sigfox has better
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device battery lifetime for small daily throughputs than other LPWAN technologies. Their
theoretical evaluation was based on the AX-Sigfox module. Similar results are presented
in [25]. In [26], Lykov et al. studied Sigfox, using the AX-SIP-SFEU radio module. The
authors found that, for a battery capacity of 2000 mAh, a payload size increase will reduce
the device lifetime by up to 18 days, and that a daily message rate increase (up to 140
messages/day) can reduce the device lifetime down to 209 days.

Table 1 presents a summary of published works that evaluate Sigfox energy perfor-
mance. None of these studies modeled the energy consumption of packet fragmentation
over Sigfox.

Table 1. List of references that evaluate Sigfox energy performance.

Reference Sigfox Module Battery Capacity
(mAh) Sending Period Lifetime (Years) Packet

Fragmentation

[17] Not specified Not specified Not specified Not specified No

[18] ATA8520 Sigfox 2400 10 min 1.5 (at 600 bit/s)
2.5 (at 100 bit/s) No

[19] Onsemi AXSF 2400 Not specified Not specified No

[20] Telit LE51-868/DIP 1000 60 min 4 (at 600 bit/s) No

[21] TD1202 1500 × 2 24 h 25 (at 100 bit/s) No

[22] TD1207R/08R Not specified Not specified Not specified No

[23] Telit LE51-868S 1700 60 min 1.5 (at 100 bit/s) No

[24] AX-Sigfox 1500 10 min 1 (at 100 bit/s) No

[25] Not specified Not specified Not specified Not specified No

[26] AX-SIP-SFEU 2000 10 min 0.57 (at 100 bit/s) No

2.2. SCHC F/R

Authors in [8] showed that SCHC packet fragmentation can increase reliability, with
a trade-off in terms of energy consumption and goodput. The same authors analyzed
in [9] the use of SCHC packet fragmentation to reduce network congestion and increase
network capacity. An overview and a simple evaluation showing the header and message
overhead of SCHC F/R is presented in [2]. Other performance metrics, such as total channel
occupancy, goodput and total delay were studied in [10], over an ideal channel. Optimal
configuration values for SCHC F/R over LoRaWAN and Sigfox were provided in [11].
SCHC Receiver-Feedback Techniques (RFTs) and alternative RFTs were presented and
evaluated in [12] over LoRaWAN, as part of a reliable fragmentation method. Results show
that alternative RFTs may be optimal depending on the error rate and pattern, providing
greater efficiency.

Since the publication of the base SCHC specification [4], the IETF LPWAN WG has
been developing SCHC Profiles, which provide configurations of SCHC F/R functionality
tailored to specific LPWAN technologies, such as Sigfox [6], LoRaWAN [5], and NB-IoT [7].
Sanchez-Gomez et al. [13] presented an evaluation of the LoRaWAN SCHC Profile in a real
testbed. SCHC F/R provided benefits in terms packet delivery ratio, with a processing
time overhead below 8 ms and a memory usage of only 609 bytes. Santa et al. [14] used
SCHC to support IPv6 over LoRaWAN and NB-IoT for personal mobility vehicles. NB-IoT
showed lower latency and low fragment error rate; however, it consumed more power
than LoRaWAN. In [15], SCHC fragmentation over Sigfox was overviewed and evaluated
theoretically and empirically by using a LoPy4 module, in terms of transfer time and
number of Sigfox uplink and downlink messages. Muñoz et al. [16] evaluated SCHC over
LoRaWAN and obtained a model to determine channel occupancy efficiency based on
LoRaWAN and SCHC configuration parameters.
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Table 2 summarizes the works related to SCHC F/R performance evaluation, along
with the performance parameters and the method used. Together, these studies provide
important insights into SCHC F/R. However, they neither provide a detailed model of, nor
evaluate, the current consumption or the energy performance of SCHC Packet transfer.

Table 2. List of references related to SCHC F/R performance evaluation.

Reference Performance Parameters Method Energy Performance
Evaluation

[8] Overhead, throughput,
goodput, end to end delay Simulation No

[9]
Goodput, application

capacity, efficiency, header
overhead

Simulation No

[2]
Header compression,
number of fragments,

number of ACKs
Theoretical No

[10] Channel occupancy, goodput,
total delay Simulation No

[11]
ACK message overhead,

ACK bit overhead with and
without L2 headers

Theoretical No

[12] Error rates and patterns Simulation No

[13] Packet delivery ratio,
goodput per ToA Experimental No

[14] Network delay, SNR, power
consumption Experimental No

[15]
Transfer time, number of

uplink and downlink
messages

Theoretical,
Experimental No

[16] Channel occupancy
efficiency

Theoretical,
Experimental No

To the best of our knowledge, no previous work provides a current or energy con-
sumption model nor evaluates the energy performance of fragmented packet transfer
with SCHC.

3. Sigfox

This section overviews the Sigfox technology. The section is organized into four sub-
sections that focus on the following features of Sigfox, respectively: network architecture,
physical layer features, communication procedures, and frame formats.

3.1. Network Architecture

Figure 1 shows the main elements of the Sigfox network architecture. Sigfox is based
on a star of stars topology composed of three main parts: the device (i.e., the IoT device
such as a sensor or an actuator), the Sigfox Network (which comprises Base Stations and
the Sigfox cloud), and the application server (where the end-user application is hosted).
The device sends data that may be received by one or more Base Stations, which provides
spatial diversity. Base Stations send the messages received to the Sigfox cloud over IP. The
latter is in charge of message reconstruction and message duplication avoidance. Messages
are then forwarded from the Sigfox cloud to the application server by using HTTP (e.g., an
HTTP POST message with a JSON payload). The application server may respond after the
receipt of a message with data to be sent to the device.
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3.2. Physical Layer Features

Sigfox is a global network operator for IoT devices that uses unlicensed sub-GHz
frequency bands, ranging from 862 MHz to 928 MHz. Due to local spectrum access regu-
lations in different countries and world regions, Sigfox defines seven geographical zones,
each one with a specific Radio Configuration (RC), called RC1 to RC7, respectively. An
RC establishes a particular set of operation frequencies, output transmit power, spectrum
access mechanism and Uplink (UL) bitrate. The UL bitrate may either be 100 bit/s or
600 bit/s, while the Downlink (DL) bitrate is 600 bits/s in all RCs.

In RC1 (which is defined for Europe, Middle East, and Africa), the operational frequen-
cies are 868.130 MHz and 869.525 MHz for the UL and the DL, respectively. The system
supports using different frequency channels over one 192 kHz band for UL transmission
and over another 192 kHz band for DL transmission. Sigfox uses Ultra Narrow Band (UNB)
transmission, which is intended to overcome noise and interference issues. The channel
bandwidth is 100 Hz and 1.5 kHz for UL and DL channels, respectively. DBPSK and GPSK
modulations are used for UL and DL transmission, respectively, for the sake of spectrum
efficiency, base station sensitivity, and device cost.

In order to comply with spectrum access regulations, RC1 defines a duty cycle lim-
itation of 1% and 10% in the UL and in the DL, respectively, that must be enforced in a
per-hour basis. To this end, Sigfox allows a device in RC1 to send only up to 6 full-sized UL
messages per hour.

3.3. Communication Procedures

Sigfox defines two communication procedures: the Uplink Procedure (U-Proc), which
is used by the device to transmit data messages to the network, and the Bidirectional
Procedure (B-Proc), which allows the device to transmit an UL message and enable an op-
portunity for a subsequent DL message. We next describe both communication procedures.

3.3.1. U-Proc

A U-Proc is carried out by a device in order to send an UL frame. The device can start
a U-Proc at any moment, provided that spectrum access regulations of the corresponding
RC are followed.

Sigfox UL transmission supports time and frequency diversity. The UL frame is
transmitted three times, where each one of the three transmissions is performed over a
different frequency channel. Figure 2 shows an example of a U-Proc.

3.3.2. B-Proc

In Sigfox, DL transmission requires the device to perform a B-Proc, whereby the device
first transmits an UL frame. The UL frame header carries a field that indicates that the
device will allow a response from the network. The device opens a reception window, and
the network or the application server may choose to send data, if available, or wait for
another DL opportunity. If no message is received by the device, the reception window
will be closed after TRX MAX (i.e., 25 s in RC1) time has passed. If a DL frame is received by
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the device, the latter transmits an UL confirmation control frame. Figure 3a,b illustrates the
B-Proc when a DL frame is received and when it is not received, respectively.
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3.4. Frame Formats

This section briefly describes the data frame formats supported in Sigfox, for both the
UL and the DL.

The UL frame is composed of a UL frame payload, with a size that may vary from
0 to 96 bits. Additionally, the Sigfox protocol prepends an 81-bit header and appends
between 32-bit to 56-bit tail bits to the UL frame payload. The Sigfox protocol header fields
include a Preamble, a Frame Type, a Length Indicator, a Bidirectional Flag, a Repeated
Flag, a Message Counter, and a Device ID. The Bidirectional Flag indicates if the UL frame
corresponds to a U-Proc or a B-Proc. The tail includes Message Authentication and Cyclic
Redundancy Check (CRC) fields.

The confirmation control frame shares the same format as the UL frame and carries
information of the status of the MCU, such as the battery voltage value during and in the
absence of radio transmissions, the MCU temperature and the signal strength estimated
while receiving the DL frame.

The DL frame contains a fixed size 64-bit DL frame payload; therefore, padding bits
must be added if a shorter data payload size needs to be transferred. A Sigfox protocol
header of 136 bits is prepended to the DL frame payload, including a Preamble, a Field
type, and an Error Correction Code (ECC). In a similar way to the UL frame, the tail of the
DL frame includes Message Authentication and CRC fields. This tail has a size of 24 bits.

4. SCHC over Sigfox

In this section, we introduce the basic concepts of the SCHC over Sigfox Profile (in
short, SCHC over Sigfox), focusing on how SCHC F/R is used over Sigfox radio links to
enable reliable fragmented packet transfer.

The current version of SCHC over Sigfox [6] includes a reliable F/R mode called
ACK-on-Error. This mode supports selective fragment retransmission along with receiver
feedback given by messages called SCHC ACKs, which report whether SCHC Fragments
have been successfully received or not.

The next subsections describe the main tools used to support reliable packet fragmen-
tation by means of ACK-on-Error, the functionality provided by this mode, and how it is
configured when used over Sigfox.
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4.1. Tiles, Windows and Bitmaps

In SCHC, the data unit to be transferred is called a SCHC Packet. If the SCHC Packet
is larger than the L2 maximum payload size (e.g., 12 bytes), it is fragmented in smaller units
called tiles (see Figure 4). In ACK-on-Error, tiles have a fixed size, except for the last one,
which can be smaller (see Section 4.2 for further details). Tiles are carried as the payload of
data units called SCHC Fragments. Tiles are numbered using an identifier called Fragment
Compressed Number (FCN). A special FCN value with all bits set to 1 indicates the last tile
of the SCHC Packet.
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Figure 4. SCHC Fragmentation process. The SCHC Packet is fragmented into tiles, which are
numbered and grouped into windows. In this example, WINDOW_SIZE is equal to 7, and the FCN
field has a size of 3 bits. The last FCN value, which corresponds to the last tile, has all bits set to 1
(i.e., the FCN is 7).

A group of WINDOW_SIZE tiles is called a window (see Figure 4). Each window
required to transfer a SCHC Packet is sequentially numbered from 0 upwards. Tiles are
numbered per window, sequentially, from WINDOW_SIZE-1 downwards. A specific
combination of window number and FCN uniquely identifies each tile.

A SCHC ACK provides feedback to a fragment sender by means of an encapsu-
lated bitmap. A bitmap is a sequence of bits, where each bit indicates whether a specific
SCHC Fragment from a given window has been successfully received or not. The size of
a bitmap is equal to WINDOW_SIZE. Bitmap bits are ordered from the most significant bit,
corresponding to the tile with number WINDOW_SIZE-1, to the least significant bit,
corresponding to tile 0 (for all windows except the last one) or the last fragment of the
whole fragmented SCHC Packet (for the last window). If a bitmap bit is set to 1, it
indicates successful reception of the corresponding SCHC Fragment, whereas value 0
indicates otherwise.

4.2. SCHC Messages

The SCHC over Sigfox specification adapts the message formats presented in the
generic SCHC specification, which includes SCHC Fragments and SCHC ACK messages.
The formats of these SCHC messages are shown in Figure 5.

A SCHC Fragment is composed of a SCHC Fragment Header and a payload. In SCHC
over Sigfox, the payload carries exactly one tile, and the SCHC Fragment Header contains
the window number (W) and the FCN for the tile carried by the SCHC Fragment. These
fields are preceded by another field called the RuleID, which indicates the size of the
SCHC Fragment Header for a given SCHC Packet transfer. There are two kinds of SCHC
Fragments: (i) the Regular SCHC Fragments and (ii) the All-1 SCHC Fragments. Regular
SCHC Fragments are used to carry any tile of a window, except for the last tile of the last
window. The last tile of each window (except for the last window) is numbered with an
FCN of 0, and it is carried by a so-called All-0 SCHC Fragment. The All-1 SCHC Fragment
carries the last tile of the last window and signals the end of the SCHC Packet.
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message (C = 0) and SCHC ACK success message (C = 1).

The SCHC ACK message format has two parts: the SCHC ACK Header and the bitmap.
The SCHC ACK Header comprises three fields: the RuleID, the window number (W), and
an integrity check bit (C). The RuleID carries the same value as the SCHC Fragments for
which receiver feedback is provided. The W field indicates the window number the SCHC
ACK corresponds to. The C bit reports on the status of the received SCHC Packet. C = 1
indicates a successful SCHC Packet transfer, whereas C = 0 indicates otherwise. As an
optimization, when C = 1, a bitmap is not included. If needed, padding is added to the
SCHC ACK to align its size with the minimum data unit supported by the underlying L2.

Figure 6 shows two SCHC Packet transfer examples, with and without SCHC Fragment
losses. After receiving an All-0 SCHC Fragment, for the sake of efficiency, a SCHC ACK
is only sent by the receiver if any SCHC Fragment from the corresponding window has
been lost (see Figure 6b). A SCHC ACK is sent unconditionally at the end of the whole
fragmented SCHC Packet transfer (i.e., after the All-1 SCHC Fragment).

4.3. ACK-on-Error Configuration

To reliably transfer a SCHC Packet of a size up to 300 bytes, SCHC over Sigfox
recommends the use of a single-byte SCHC Header. In that case, the SCHC Fragment
header is composed of a 3-bit RuleID, a 2-bit W, a 3-bit FCN, and a fixed tile size (t) of
11 bytes. WINDOW_SIZE is 7.

For SCHC Packet sizes greater than 300 bytes, and up to 2250 bytes, SCHC over
Sigfox recommends using a two-byte SCHC Header. In this case, the 16 SCHC Fragment
header bits are distributed as follows: an 8-bit RuleID, a 3-bit W, a 5-bit FCN, and t equal to
10 bytes. In this case, WINDOW_SIZE is 31.
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5. Modeling SCHC F/R over Sigfox Current Consumption

In this section, we present models of crucial energy performance parameters of SCHC
F/R over Sigfox, such as device current consumption, device lifetime and energy cost. For
the models, we assume a Sigfox device that sends SCHC Packets to the Sigfox network.
Such behavior may correspond to an IoT device sending sensor readings.

We first introduce the experimental setup used to perform current consumption
measurements on a real device. Second, we identify the different states of a device that
performs reliable SCHC Packet transfer by using ACK-on-Error over Sigfox, and we obtain
their corresponding current and energy consumption profiles. Finally, we model the current
and energy consumption of fragmented SCHC Packet transfers, considering single and
periodic transfers. For the latter, we also model the lifetime of a battery-operated device.

5.1. Experimental Setup

Our models are derived from current consumption measurements on a real Sigfox
device: a Pycom LoPy4 development board [27]. Figure 7 shows the experimental setup,
which includes an Agilent N6750A power analyzer and the Sigfox device. The experiments
were carried out in an indoor environment in the city of Castelldefels, in Spain. The Sigfox
coverage in the scenario is near-ideal, with negligible frame loss rate.
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Figure 7. Experimental setup with the Sigfox device and the power analyzer used.

The LoPy4 module is based on the Espresiff ESP32 MCU. The latter includes a Wi-Fi
and a Bluetooth interface, along with a Sigfox Semtech SX1276 radio module. Note that the
LoPy4 module also has a built-in RGB LED. In our measurements, the LoPy4 board was
programmed to enable the Sigfox radio interface and shut down other radio modules and
peripherals (including the Wi-Fi and BLE interfaces and the RGB LED) on boot.

The LoPy4 has a voltage regulator, which supports input voltages between 3.5 V and
5.5 V. The output voltage of the regulator is 3.3 V. In all measurements performed, the
supplied voltage is 3.5 V.

The Sigfox radio of the LoPy4 board is configured for RC1. Accordingly, the UL data
rate is 100 bps, and the DL data rate is 600 bps. The transmit power is +14 dBm. The
receiver sensitivity is −126 dBm.

The SCHC over Sigfox implementation used in our evaluation is based on the one
presented in [15], which is publicly available.

5.2. SCHC Packet Transfer States

In order to comply with the duty cycle constraints in RC1, SCHC Fragments may be
sent by using different approaches. In our model, we consider two possible options: (i)
sending one SCHC Fragment per cycle of 10 min (and sleeping otherwise), and (ii) sending
up to 6 SCHC Fragments back to back per cycle of 60 min (and sleeping otherwise).

Let NpC denote the number of SCHC Fragments that are sent back-to-back per cycle,
where 1 ≤ NpC ≤ 6. Let NC denote the number of cycles required to complete a SCHC
Packet transfer.

Each cycle comprises several states (see Figure 8). Initially, the device is sleeping
(Sleep state), and then, the device wakes up (Wake-up state). If a new SCHC Packet needs
to be sent, the device enters the Fragmenter state, where SCHC Packet fragmentation is
performed. In this state, the device creates the SCHC Fragments from the SCHC Packet,
which includes selecting the appropriate RuleID (according to the SCHC Packet size) and
the corresponding FCN and W values for each SCHC Fragment.

After the Fragmenter state or after the Wake-up state if the device continues sending
an already fragmented SCHC Packet, the device reaches the Frag Prep state, where it
prepares the next SCHC Fragment to be sent and selects the Sigfox transmission procedure
to be used for this SCHC Fragment. The prepared SCHC Fragment is then sent accordingly
(the device is in the Sigfox transmission state). When more than one SCHC Fragment is
sent per cycle NpC ≥ 2), the device enters the Inter Frag state to prepare the next SCHC
Fragment to be transmitted or to process a SCHC ACK (when available).
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Finally, after sending all the SCHC Fragments of a cycle, or after sending the last
SCHC Fragment of a SCHC Packet, the device reaches the Post Frag state. In this state,
the device processes a SCHC ACK (when available) and returns to the Sleep State. Sleep
state time will depend on NpC. Next, we characterize the device current consumption in
the states involved in each cycle.

5.3. Current Consumption Profile

In this section, we present the current consumption profile of all the states involved
in a fragmented SCHC Packet transfer, which have been introduced in Section 5.2. These
current consumption profiles are obtained by using the experimental setup shown in
Section 5.1. All individual results provided correspond to the average of 10 individual
experiments. For a given scenario and set of configuration parameters, we found negligible
differences among the individual results obtained.

5.3.1. Sleep and Wake-Up States Current Consumption Profile

Most Sigfox devices are battery-powered. Therefore, to improve battery lifetime, they
must remain in Sleep state most of the time, and only wake up for communication. The
LoPy4 supports two sleep modes: the light sleep mode and the deep sleep mode. In the
light sleep mode, most peripherals and CPU are clock-gated, and voltage consumption is
reduced, which allows for a reduced wake-up time. In the deep sleep mode, the CPU and
all peripherals are stopped, which reduces the current consumption to the minimum but
increases wake-up time.

The Wake-up state current consumption and duration depends on the sleep mode used.
Tables 1 and 2 present the Wake-up state duration and current consumption, and the Sleep
state current consumption, for the light sleep mode and the deep sleep mode, respectively.

As shown in Tables 3 and 4, there is a large difference between Wake-up state and
Sleep state time and current consumption for light and deep sleep modes. The light sleep
mode has a shorter Wake-up state time but a greater sleep current. The corresponding
average energy consumption is illustrated in Figure 9. For short sleep periods, light sleep is
more efficient energywise, as the Wake-up state time is shorter. For long sleep intervals,
deep sleep becomes more efficient, since the longer Wake-up state duration is compensated
by the ultralow deep sleep current consumption in the Sleep state.
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Table 3. Wake-up and Sleep states characterization for the light sleep mode.

States Duration
Notation

Duration
(ms)

Average Current
Consumption Notation

Average Current
Consumption

(mA)

Average Energy
Consumption

(mJ)

Wake-up TWake-up 20 IWake-up 42 2.94

Sleep TSleep - ISleep 2.07 -

Table 4. Wake-up and Sleep states characterization for the deep sleep mode.

States Duration
Notation

Duration
(ms)

Average Current
Consumption Notation

Average Current
Consumption

(mA)

Average Energy
Consumption

(mJ)

Wake-up TWake-up 2770 IWake-up 52.4 508.02

Sleep TSleep - ISleep 0.02 -
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5.3.2. SCHC Fragmentation States Current Consumption Profile

Table 5 presents the SCHC fragmentation states duration and their corresponding
current consumption.

In contrast with the durations of the Frag Prep, Inter Frag, and Post Frag states,
which are constant, the Fragmenter state duration is proportional to the SCHC Packet size.
Figure 10 illustrates the Fragmenter state duration, as a function of the SCHC Packet size,
for SCHC Packet sizes between 1 and 2250 bytes. For small SCHC Packet sizes, the impact
of the fragmentation process on time is negligible. However, as SCHC Packet size increases,
the Fragmenter state duration becomes more significant (up to 3.54 s for a SCHC Packet
size of 2250 bytes). Note that the Fragmenter state is only present once in each SCHC
Packet transfer.

Table 5. SCHC Fragmentation states.

States Duration
Notation

Duration
(ms)

Average Current
Consumption Notation

Average Current Consumption
(mA)

Fragmenter TFrag see Figure 10 IFrag 55.3

Frag Prep TPrep 23.26 IPrep 55.3

Inter Frag TInter 19.07 IInter 55.3

Post Frag TPost 28.74 IPost 55.3
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5.3.3. U-Proc Current Consumption Profile

In the Frag Prep state or in the Inter Frag state, the following SCHC Fragment is
prepared to be transmitted by using one of the two Sigfox procedures (i.e., U-Proc or
B-Proc), depending on the SCHC Fragment type (i.e., Regular (not All-0), All-0 or All-1).
If the SCHC Fragment is a Regular (not All-0) SCHC Fragment, the U-Proc is selected.
Figure 11 shows the U-Proc current consumption profile, as measured on the LoPy4.
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Figure 11. Current consumption profile of a LoPy4 device performing a U-Proc. In this measurement,
the Sigfox UL frame payload size is 12 bytes, equivalent to a Regular (not All-0) SCHC Fragment
carrying one tile.

The U-Proc comprises three substates: Transmission (Substate 1), Wait next transmis-
sion (Substate 2), and Cooldown (Substate 3). Table 6 presents the duration and current
consumption of these substates along with their notations. Substate 1 is repeated three
times, as the UL frame is sent by using three different frequencies. Substate 2 is present
twice, between two consecutive transmissions. After sending the UL frame, the Sigfox
radio module enters Substate 3 before transiting to the Inter Frag or Post Frag states, or
before handling other processes.
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Table 6. U-proc substates and their corresponding duration and current consumption values.

Substates Duration
Notation

Duration
(ms)

Average Current
Consumption Notation

Average Current Consumption
(mA)

1. Transmission TTx [1120, 2080] ITx 112.9

2. Wait next transmission TWait_Tx 1000 IWait_Tx 34.02

3. Cooldown TCool 1000 ICool 33.98

The transmission current measured value, denoted ITx, is greater than the one pre-
sented in the LoPy4 datasheet [27], as it involves the MCU in addition to the Sigfox radio
module, and the input voltage is different (our experiments are performed using 3.5 V,
whereas datasheet values are provided for 5 V).

Let IU-Proc denote the average current consumption of a U-Proc. Using the notation of
Table 6, IU-Proc can be calculated as follows:

IU-Proc (mA) =
3 ∗ ITx ∗ TTx + 2 ∗ IWait_Tx ∗ TWait_Tx + ICool ∗ TCool

TU-Proc
, (1)

where TU-proc denotes the total U-Proc duration and can be calculated as follows:

TU-Proc (s) = 3 ∗ TTx + 2 ∗ TWaitTx + TCool (2)

5.3.4. B-Proc Current Consumption Profile

All-0 and All-1 SCHC Fragments need to open a DL reception window to offer the
SCHC receiver the opportunity to transmit a SCHC ACK. To this end, the transmission
of such fragments is performed by using a B-Proc. Figure 12 shows the B-Proc current
consumption profile, as measured on the LoPy4 module. The B-Proc comprises six substates:
Transmission (substate 1), Wait next transmission (substate 2), Wait for reception (substate 4),
Reception (substate 5), Confirmation (substate 6), and Cooldown (substate 3). Table 7
presents the measured duration and current consumption for each substate of the B-Proc.
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Table 7. B-Proc substates and their corresponding duration and current consumption values.

Substates Duration
Notation

Duration
(ms)

Average Current
Consumption Notation

Average Current Consumption
(mA)

1. Transmission TTx [1120, 2080] ITx 112.9

2. Wait next transmission TWait_Tx 500 IWait_Tx 34.02

4. Wait for reception TWaitRx 15,556 IWait_Rx 34.14

5. Reception TRx [387, 25,000] * IRx 45.94

6. Confirmation TConf 1799 IConf 114.95

3. Cooldown TCool 1000 ICool 33.98

* The value obtained in measurements and used in the evaluation is 15,550 ms.

In a similar way to a U-Proc, the UL frame in a B-Proc is transmitted by using 3
different frequency channels; therefore, substate 1 is present three times, and the substate
2 is present twice, between transmissions. After the third transmission for the UL frame,
the Sigfox module waits for a fixed duration time interval in substate 4 and opens the
reception window in substate 5. The duration of substate 5 depends on when the DL frame
is received. After receiving the DL frame, the confirmation control frame is sent in substate
6. In substate 3, the device radio cools down before allowing the MCU to perform other
operations. In case the Sigfox network and/or application does not send any DL frame
to the device, or the device does not receive it, substate 6 is not present, and substate 5
duration is the maximum one (i.e., TRX MAX, which is equal to 25 s in RC1).

The average current consumption of a B-Proc when a DL frame is received by the
device, denoted IB-Proc-DL, can be obtained as follows:

IB-Proc-DL (mA) =
3 ∗ ITx ∗ TTx + 2 ∗ IWait_Tx ∗ TWait_Tx + IWait_Rx ∗ TWait_Rx + ICon f ∗ TCon f + ICool ∗ TCool

TB-Proc-DL
, (3)

where TB-Proc-DL can be calculated as follows:

TB-Proc-DL (s) = 3 ∗ TTx + 2 ∗ TWaitTx + TWaitRx + TCon f + TCool . (4)

The average current consumption of a B-Proc when a DL frame is not received by the
device, denoted IB-Proc-NO-DL, can be obtained as follows:

IB-Proc-NO-DL (mA) =
3 ∗ ITx ∗ TTx + 2 ∗ IWait_Tx ∗ TWait_Tx + IWait_Rx ∗ TWait_Rx + ICool ∗ TCool

TB-Proc-NO-DL
, (5)

where TB-Proc-NO-DL can be obtained as follows:

TB-Proc-NO-DL (s) = 3 ∗ TTx + 2 ∗ TWait_Tx + TWait_Rx + TCool (6)

5.4. SCHC Packet Transfer Current and Energy Consumption Model

In this subsection, we model the SCHC Packet transfer current and energy consump-
tion over Sigfox. To this end, we first calculate the number of U-Proc and B-Proc required
to transfer a SCHC Packet. Then, we derive a current and energy consumption model of
SCHC Packet transfer in two cases: (i) single and (ii) periodic SCHC Packet transfers.

5.4.1. Number of U-Proc and B-Proc

The number of U-Proc (NU-Proc) required to transfer a SCHC Packet of size LSCHC can
be obtained as follows:

NU-Proc =

⌈
LSCHC

LUL − LHeader

⌉
−
⌈

LSCHC
WINDOW_SIZE ∗ t

⌉
, (7)
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where LUL is the maximum Sigfox UL frame payload size of 12 bytes, and LHeader is the size
of the SCHC Fragment header.

The number of B-Proc with a DL frame (NB-Proc-DL) required to transfer a SCHC Packet
without fragment losses is equal to 1. Under such conditions, the number of B-proc with
no DL (NB-Proc-NO-DL) can be obtained as follows:

NB-Proc-NO-DL =

⌈
LSCHC

WINDOW_SIZE ∗ t

⌉
− 1, (8)

5.4.2. Single SCHC Packet Transfer Model

The number of cycles required to transfer a single SCHC Packet (NC) will depend
on the fragment sending strategy, i.e., on the NpC value. Figure 13 illustrates the current
consumption of (a) a 22-byte SCHC Packet transfer for NC = 1 and NpC = 2 and (b) the first
transfer cycle of a 77-byte SCHC Packet for NC = 2 and NpC = 6. The figure shows that the
number of Inter Frag states increases with NpC.
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Figure 13. Current consumption of two SCHC Packet transfer examples: (a) a 22-byte SCHC Packet
is sent completely and a SCHC ACK is received; (b) six SCHC Fragments are sent back-to-back before
the device returns to the Sleep state in the first transfer cycle of a 77-byte SCHC Packet.

Note that NC is related to the number of Wake-up and Frag Prep and Post Frag states
required to complete the SCHC Packet transfer. By sending up to 6 SCHC Fragments
back-to-back (i.e., NpC ≤ 6), the number of Wake-up, Frag Prep, and Post Frag states is
minimized, when compared to NpC = 1.

Once the sending strategy is selected, i.e., the NpC value is chosen, NC can be calculated
as follows:

NC =

⌈
NU-Proc + NB-Proc-NO-DL + NB-Proc-DL

NpC

⌉
. (9)

The number of Wake-up, Frag Prep, and Post Frag states (denoted NWake-up, NPrep, and
NPost) is equal to NC, as each time the device transmits one or several back-to-back SCHC
Fragments, it must wake up, prepare the next SCHC Fragment, and then do the SCHC
Fragment post processing in the Post Frag state before returning to the Sleep state. We
define the SCHC Packet active time (Tact) as the time the device is not in the Sleep state.
Tact can be obtained as follows:

Tact (s) = TFrag + NC ∗
(

Twake-up + TPrep + TPost + TInter ∗
(

NpC − 1
))

+ NU-Proc ∗ TU-Proc + NB-Proc-NO-DL ∗ TB-Proc-NO-DL

+TB-Proc-DL.
(10)

The SCHC Packet active time current consumption (Iact) can be calculated as follows:
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Iact (mA) = 1
Tact

(IFrag ∗ TFrag + NC ∗
(

Iwake-up ∗ Twake-up + IPrep ∗ TPrep + IPost ∗ TPost + IInter ∗ TInter ∗
(

NpC − 1
))

+NU-Proc ∗ IU-Proc ∗ TU-Proc + NB-Proc-NO-DL ∗ IB-Proc-NO-DL ∗ TB-Proc-NO-DL + IB-Proc-DL ∗ TB-Proc-DL)
(11)

As explained in Section 3.2, in RC1, a transmission procedure can only be started, at
least, every 600 s, denoted Tper Proc. Therefore, Tact is only a small part of the total SCHC
Packet transfer time (TSCHC). The latter can be obtained as follows:

TSCHC = (NU-Proc + NB-Proc-DL + NB-Proc-NO-DL) ∗ Tper Proc, (12)

Note that TSCHC is independent of NC, as the same total wait time has to be enforced,
regardless of whether up to 6 messages are sent back-to-back per cycle (NpC ≤ 6) or one
message is sent per cycle (NpC = 1). The differences in NC are reflected in Tact. Therefore,
the amount of time that the device is required to be in the Sleep state to comply with
duty cycle restrictions for the transfer of a SCHC Packet, denoted TSleep, can be calculated
as follows:

TSleep = TSCHC − Tact. (13)

Finally, the average current consumption of a SCHC Packet transfer over Sigfox (ISCHC)
can be calculated as follows:

ISCHC =
Iact ∗ Tact + TSleep ∗ ISleep

TSCHC
. (14)

In addition, the average energy consumed in a SCHC Packet transfer can be determined
as follows:

ESCHC = ISCHC ∗ V ∗ TSCHC, (15)

where V denotes the voltage supplied to the Sigfox device.

5.5. Periodic SCHC Packet Transfer Energy Performance Metrics

This subsection presents the metrics used to evaluate the energy performance of SCHC
over Sigfox, for a device that transfers a SCHC Packet periodically. These metrics are
(i) the average current consumption, (ii) the SCHC Packet transfer energy cost, and (iii) the
device lifetime.

We assume that the device starts a SCHC Packet transfer (by sending the first fragment)
every time period Tp. Note that the minimum possible Tp value, denoted Tp_min, should
be equal to TSCHC. After a SCHC Packet transfer, the device will wait in the Sleep state for
TWait until Tp time has passed since the start of the previous SCHC Packet transfer. Tp can
be calculated as follows:

Tp = TSCHC + TWait. (16)

During the wait period between SCHC Packet transfers, the device is in the Sleep
state, consuming a current of ISleep. Otherwise, the device transfers a SCHC Packet, with an
average current consumption of ISCHC. In consequence, the average current consumption
of periodic SCHC Packet transfers (Ip) can be obtained as follows:

Ip =
ISCHC ∗ TSCHC + ISleep ∗ TWait

Tp
. (17)

The energy consumed by a device performing periodic SCHC Packet transfers over an
interval of duration Tp can be obtained as follows:

Ep = Ip ∗ Tp ∗ V. (18)

Sigfox devices are commonly battery-operated, and therefore, device lifetime calcula-
tion is crucial to the performance of SCHC Packet transfer over Sigfox. In order to calculate
the device lifetime, the battery capacity must also be taken into consideration. Let Cp
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denote the battery capacity (typically expressed in mAh). The device lifetime, LT, can be
calculated as follows:

LT =
Cp

Ip
. (19)

6. Evaluation

In this section, we evaluate energy-related performance parameters for single and
periodic SCHC Packet transfers over Sigfox. First, we present the SCHC Packet current
consumption and energy cost, for light and deep sleep modes, for different sending strate-
gies. Then, we evaluate periodic SCHC Packet transfers, in terms of current consumption,
energy cost and device lifetime.

6.1. SCHC Packet Current and Energy Consumption

Figure 14 depicts ISCHC for SCHC Packet sizes between 11 and 2250 bytes, for deep
sleep and light sleep, and for NpC values equal to 1 and 6. ISCHC values are obtained by
using Equation (14). As SCHC Packet size increases, TSleep increases as well due to duty
cycle restrictions. In consequence, ISCHC decreases, since the device remains in sleep mode
for a greater percentage of time (with a sleep current of 40 µA for deep sleep and 42 mA for
light sleep).
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Note that, for small SCHC Packet sizes, the sleep time versus active time ratio increases
rapidly with SCHC Packet size. Such ratio is only 14 for an 11-byte SCHC Packet, while
it increases to 52 for a 350-byte SCHC Packet. As the SCHC Packet size increases beyond
350 bytes, the same ratio tends asymptotically to a value of ~54. Therefore, ISCHC becomes
stable between 1.36 mA and 1.32 mA, for the deep sleep mode, and equal to 3.44 mA for
the light sleep mode. The ISCHC stepwise behavior that happens for small SCHC Packet
sizes is due to each additional window needed to perform the SCHC Packet transfer (which
increases current consumption due to the corresponding additional B-Proc). The larger
step at a SCHC Packet size of 300 bytes is due to the change from a 1-byte to a 2-byte SCHC
header at that value.

Figure 15 illustrates the energy consumed by a device to perform a SCHC Packet
transfer, for SCHC Packet sizes between 11 and 2250 bytes. The depicted values are
obtained by using Equation (15). The energy consumption increases linearly with SCHC
Packet size. Despite the fact that the average current consumption of a SCHC Packet
transfer is relatively constant for SCHC Packet sizes beyond 350 bytes, the increase of
SCHC Packet transfer duration with SCHC Packet size is reflected as a SCHC Packet
transfer energy consumption increase.
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6.2. Periodic SCHC Packet Transfer Energy Performance

Table 8 presents the SCHC Packet sizes used for the periodic SCHC Packet transfer en-
ergy performance evaluation, along with the corresponding values of NU-Proc, NB-Proc-NO-DL,
and the number of windows required for a single SCHC Packet transfer. The considered
SCHC Packet sizes allow to test different values for NU-Proc, NB-Proc-NO-DL, and number of
windows, for single-byte and two-byte SCHC header sizes. Moreover, Table 8 also provides
the Tp_min value for each SCHC Packet size, and the number of SCHC Packets per day that
can be transferred with a SCHC Packet sending period equal to Tp_min.

Table 8. SCHC Packet sizes used in the energy performance evaluation.

SCHC Packet Size
(Bytes) NU-Proc NB-Proc-NO-DL NB-Proc-DL

Number of
Windows

Tp_min
(Minutes)

SCHC Packets per
Day with Tp_min

77 6 0 1 1 70 20

154 12 1 1 2 140 10

275 21 3 1 4 250 5

510 49 1 1 2 510 2

2250 217 7 1 8 2250 0.64 *

* Requires more than one day for a packet transfer.

Figure 16 illustrates the average current consumption of a device that performs pe-
riodic SCHC Packet transfers, Ip, for different SCHC Packet sizes, NpC values of 1 and 6.
We only consider the deep sleep mode, since it is more energy-efficient than the light sleep
mode. The depicted values are obtained by using Equation (17). Note that all curves do
not start at the same Tp value, since the minimum Tp (Tp_min) value is equal to TSCHC and
depends on the SCHC Packet size (see Table 8). As Tp increases, Ip decreases for all SCHC
Packet sizes, since Tsleep increases, reducing the average current consumption. As shown
in Figure 16, for a given SCHC Packet size, NpC = 1 consumes a greater amount of current
than NpC = 6, since with the latter, the number of Wake-up, Frag Prep, and Post Frag states
(and thus, their contribution to current consumption) is minimized. As the SCHC Packet
size increases, the average current consumption differences between the considered NpC
values increase.
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Figure 17 illustrates the energy consumption of a SCHC Packet transfer over a period
Tp, for different SCHC Packet sizes, NpC values of 1 and 6, and for the deep sleep mode.
The depicted values are obtained by using Equation (18). This performance parameter
increases linearly with Tp. This increase is small, since as Tp increases, the device remains
in sleep mode for a greater amount of time, which increases energy consumption, albeit to
a small extent.
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Finally, Figure 18 shows the results obtained by using Equation (19) regarding the
lifetime of a device that performs periodic SCHC Packet transfers, for different SCHC
Packet sizes, for NpC values of 1 and 6, and for the deep sleep mode. The battery capacity
assumed in our calculation is of 2000 mAh. Recall that Tp min = TSCHC. Tp min ranges from
70 min for a 77-byte SCHC Packet to 2250 min for a 2250-byte SCHC Packet (see Table 8).

For the corresponding Tp_min and NpC = 1, the device lifetime yields the smallest values,
with a value of 42 days for a 77-byte SCHC Packet size, and 49 days for a 2250-byte SCHC
Packet size. Note that there are large differences between the Tp min value for specific SCHC
Packet sizes, which in turn increase device lifetime, as the device spends more time in
Sleep mode, and is involved in a lower number of Fragmenter states. Indeed, for a fixed
Tp value, as SCHC Packet size increases, more U-Proc and B-Proc are required, with the
corresponding energy consumption increase and device lifetime decrease.
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On the other hand, device lifetime increases asymptotically with Tp. For a Tp value of
5 days and for NpC = 6, and for a 77-byte SCHC Packet size, the device lifetime is 1464 days
(i.e., more than 4 years). For the same Tp and NpC values, and for a 2250-byte SCHC Packet
size, the device lifetime is 168 days.

The device lifetime differences for NpC = 1 and NpC = 6 decrease with SCHC Packet size,
due to the consequent increase of sleep time during the SCHC Packet transfer, reducing
the impact of the time spent in the Wake-up, Frag Prep, and Post Frag states. For the
77-byte SCHC Packet size, such difference ranges from 4 days (Tp_min = 70 min) to 42 days
(Tp = 5 days), whereas for the 2250-byte SCHC Packet size, the differences range from 6
days (Tp_min = 2250 min) to 19 days (Tp = 5 days).

7. Conclusions

In this paper, we have presented a model and an evaluation of the device current and
energy consumption of reliable packet fragmentation by using SCHC over Sigfox. We built
our model by measuring the current consumption and duration of the states involved in a
SCHC Packet transfer on a real Sigfox device.

The average current consumption of a single SCHC Packet transfer decreases as the
SCHC Packet size increases since the device spends more time in the Sleep state, due to the
need to conform to the RC1 duty cycle restrictions. For periodic SCHC Packet transfers,
the average current consumption decreases with the SCHC Packet size and with the time
between transfers. In contrast, the average energy consumption increases linearly with
SCHC Packet size, due to the energy consumed while the device is in the Sleep state.

We analyzed two fragment transmission strategies, which are compliant with RC1
duty cycle restrictions: sending one or up to six back-to-back SCHC Fragments per cycle,
respectively. The latter is more energy-efficient. In addition, we evaluated the light and
deep sleep modes provided by the Sigfox device used.

Considering a 2000 mAh battery, and with only one SCHC Fragment sent per cycle,
the minimum device lifetime (which corresponds to the smallest possible packet sending
period) is 49 or 42 days, for SCHC Packet sizes of 2250 bytes or 77 bytes, with a period of
2250 min or 70 min, respectively. On the other hand, if SCHC Packets are sent every 5 days,
and up to 6 SCHC Fragments are sent back-to-back per cycle, the device lifetime is 168 days
or 1464 days, for SCHC Packet sizes of 2250 bytes or 77 bytes, respectively. The obtained
results highlight that the SCHC Packet size, the packet sending period, and the number of
SCHC Fragments per cycle have a significant impact on the device lifetime.
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