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The KM3NeT neutrino telescope, currently under construction, consists of two detectors in
the Mediterranean Sea, ORCA and ARCA, both using arrays of optical modules to detect the
Cherenkov light produced by charged particles created in neutrino interactions. Although orig-
inally designed for neutrino oscillation and astrophysical research, this experiment also bears
unprecedented possibilities for other fields of physics. Here we present its performance for neu-
trino tomography, i.e. the study of the Earth’s internal structure and composition. Owing to the
different energy ranges covered by its two detectors ORCA and ARCA, KM3NeT will be the first
experiment to perform both oscillation and absorption neutrino tomography. Resonance effects in
the oscillations of GeV neutrinos traversing the Earth will allow KM3NeT/ORCA to measure the
electron density along their trajectory, leading to potential constraints of the proton-to-nucleon
(Z/A) ratio in the traversedmatter. Absorption tomography aims at the detection of neutrinos in the
TeV-PeV range with KM3NeT/ARCA. At PeV energies, the Earth is opaque for neutrinos which
leads to a reduction of the upgoing neutrino flux at the detector side from which conclusions can
be drawn about the density of the inner layers of the Earth. We show here first sensitivity studies
of the potential of KM3NeT to address open questions of geophysics concerning the chemical
composition and matter distribution in the Earth’s core and mantle through neutrino tomography.
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1. Introduction

The inner structure of the Earth can be simply described as a superposition of different shells
of uniform chemical compositions. The planets innermost region is subdivided into a solid core
formed of Fe-Ni, with an approximate radius of 1200 km, surrounded by a molten outer core with a
radius of 3480 km and slightly lower density. Hereafter comes the mantle, in first order uniformly
consisting of pyrolite. The outermost layer is a thin (<100 km) silicate crust. All this knowledge
comes from seismic data, geodetic measurements and experimental petrology and led in combi-
nation with constraints on radius, total mass and momentum of inertia to the Preliminary Earth
Model (PREM) [2]. It is widely used as reference density profile of the Earth and illustrated in Fig. 1.

The upcoming generation of large neutrino telescopes like KM3NeT [4] provide new ways
of studying the Earth’s interior, mostly independently of seismic measurements. One the one
hand, neutrinos with energy larger than few tens TeV start to get absorbed during their propagation
through the Earth. The absorption probability increases with the neutrino energy and the amount
of matter along the neutrino path. Energy- and zenith-dependent measurements of the neutrino
rates with KM3NeT/ARCA can therefore give insights about the density of the Earth and its layers.
This method has been used recently with a one-year sample of muon neutrinos collected with the
IceCube neutrino telescope, confirming the feasibility of absorption tomography of the Earth [1].
On the other hand, KM3NeT/ORCA will detect ∼GeV neutrinos whose mean free path is much
bigger than the Earth’s diameter. Instead of being absorbed, those lower energetic neutrinos "feel"
the presence of matter, i.e electrons, as an extra potential to their propagation Hamiltonian. This
leads to resonance effects in their oscillation probability, which depends on the electron density =4
within the traversed matter, where

=4 =
#�

<=
× /
�
× d<, (1)

with the Avogadro number #� and the nucleon mass <=. The effective proton-to-nucleon ratio
//� varies among chemical elements, e.g. it is 0.4655 for Fe and 1 for H. It can therefore be
used to constrain the nature and abundances of light elements in the outer core, which can not be
revealed by seismologic measurements only, but whose presence is required to explain the jump
in density between inner and outer core [3]. Constraining the inner Earth composition will also
improve our understanding of the dominant processes that led to the formation of our planet. Our
analysis combines models for the neutrino flux, and cross section, and for the inner structure of the
Earth to compute the number of events at the detector site. The neutrino oscillation or absorption
probabilities are affected by the Earth parameters, i.e. //� and d<. The detector response is
simulated using a response matrix calculated with MC simulations (discussed in Sec.2). We find
that after 10 years of data taking with two KM3NeT/ARCA building blocks, we will be able to
profile the Earth density with comparable sensitivity as a similar study by IceCube [1]. With 10
years of KM3NeT/ORCA data we can set limits on the outer cores //� and density (see Sec.3).
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Layer Shells ['−, '+] (km) Z/A
Inner core 7 0 - 1221.5 0.466
Outer core 12 1221.5 - 3480 0.466
Mantle + crust 23 3480 - 6368 0.496

Figure 1: Left: Terrestrial density profile according to the 42-shells model used in this contribution, also showing the
main inner compositional layers. Right: Compositional layers with the associated number of constant density shells,
the exact innermost and outermost radius, and the corresponding default Z/A value [5, 6] .

2. Methodology
2.1 Underlying signal

The input model of the atmospheric neutrino flux is taken from Honda(2015)1 [7] for energies
1-100 GeV. Between 100 GeV and 100 PeV we use a combination of the conventional flux taken
fromHonda(2007) [8] and a prompt neutrino flux from Enberg [9]. To simulate the effects of matter
on neutrinos traversing the Earth, for both oscillation and absorption, the OscProb software [10] is
used.

For a given incident angle \I , the trajectory of a neutrino through the Earth is modelled along
the corresponding baseline with a sequence of steps of constant matter and //� and thus the
electron density (according to Eq. 1). The latter induces an effective potential for charged-current
interactions +�� = ±

√
2�� #4 (G) (where ± applies respectively to a4 and ā4), which modifies the

neutrino oscillation probabilities. These are calculated from the quantum evolution equations for
the neutrino states for each shell along the neutrino path. The absorption probability within each
shell is calculated using the simple exponential function

%Abs(�,Θ) = Π8 4−;8 (\) ·
d8
D
·f (�) (2)

with ; the path length through the respective shell 8, d its density, D the atomic mass number and f
the neutrino-nucleon cross-section weighted for water molecules, obtained with the GENIE Monte
Carlo generator [11].

The latter is also used to compute the rate of events interacting in the detector. This differential
rate (corresponding to the number of neutrino interactions of given flavour, energy � and zenith \
occurring in the detector per unit exposure2) is computed for each (anti-)neutrino flavour V as:

d# int
V
(�, \)

d�d\
= faV (�) ·

∑
aU

%aU→aV (�, \) · (1 − %�1B,V (�, \)) ·
dΦaU
d�d\

(�, \) (3)

1We have used the tables for Gran Sasso site without mountain, azimuth-averaged, at solar minimum.
2The term exposure corresponds to the product of the detector lifetime and its effective mass [Mton years]

3



P
o
S
(
I
C
R
C
2
0
2
1
)
1
1
7
2

KM3NeT Earth tomography Lukas Maderer

Figure 2: Left: Transmission probability for a`.; Right: Oscillation probability for a4 → a` transition.
Both histograms are computed with OscProb [10]. The y-axis ranges from up-going to horizontal neutrino
events.

where faV is the total interaction cross-section for neutrino type aV , %U→V is the aU → aV

oscillation probability, and dΦaU/d�d\ is the unoscillated differential flux of atmospheric neutrinos
at the detector location. For studies with ARCA we neglect oscillation effects, i.e. %U→V = XUV ,
for studies with ORCA we neglect absorption effects, i.e. %Abs = 0.

2.2 Detector response modelling

The KM3NeT collaboration is currently building a network of water Cherenkov neutrino tele-
scopes in the Mediterranean sea. The two detectors ORCA and ARCA (Oscillation/Astrophysical
research of cosmics in the abyss[4]) are using the same technical components, 3D arrays of digital
optical modules (DOM) hosting 31 small photomultipliers each to detect Cherenkov light from
particle showers of neutrino-nuclei interactions, distributed along slender strings, anchored at the
sea bottom at a depth of about 2500 and 3500 m respectively. The KM3NeT DOMs detect the
Cherenkov light induced by charged particles that are generated in the interaction of a neutrino
with the matter surrounding the array. The detector layout, i.e. horizontal and vertical spacing
of the DOMs, determines the threshold energy that is needed to trigger an event in the detector.
KM3NeT/ORCA, with an instrumented volume equivalent to ∼ 7 Mtons, will cover the 1-100 GeV
energy range, while KM3NeT/ARCA, with ∼ 1 Gton fiducial mass, detects neutrinos at higher
energies. One distinguishes between two event topologies, track- and shower-like. A a` that inter-
act with a nucleus via a charged current (CC) create a ` that will propagate through the detector,
and inducing the emission of Cherenkov light along its trajectory.All a4 and neutral-current (NC)
interactions induce an approximately spherical light emission around the interaction point and are
thus referred to as shower-like events. A special case are ag-CC, where the produced g-lepton can
either decay into a 4 or a `. Note that we did not simulate ag-events for ARCA, because their total
contribution is negligible (only produced by charmed meson decays).

Different approaches to modelling the KM3NeT detector response have been used so far
in the literature. The analysis presented in Bourret (2019) [12] used parametrized response
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functions that allowed to perform sensitivity studies for different detector types. In the present
work, we use instead the same approach as in Bourret (2017), based on a full event-by-event Monte
Carlo simulation that repoduces more accurately the specific response of the KM3NeT detectors
[13]. Based on these simulations, we create a reponse matrix R with a binning in five dimensions
(�True, \True, �Reco, \Reco, 5 ) where 5 encrypts the interaction channel and reconstructed class (track-
or shower-like). For a given event with true characteristics �True, \True, the response function R
provides the probability for this event to be classified in a specific class and (�Reco, \Reco) bin.

2.3 Statistical methods

With the methods described above we can now simulate experiments based on given input
models, in our case changing density and //� values for different layers of the Earth. We compute
then the log-likelihood ratio for two Asimov datasets, i.e. pseudo-experiments where the data
corresponds to the mean of the expected results given a set of input parameters. Assuming that the
number of events per bin follows Poisson statistics, one can define

j2
hyp(data) =

Nbins∑
1=1

2[(`hyp)1 − =1 + =1;=(
=1

(`hyp)1
)] (4)

which corresponds to the likelihood tomeasure the simulated datawith an underlying true hypothesis
hyp. The resulting Asimov sensitivity (Asimov =

√
|Δj2 | is in good agreement with the sensitivity

obtained from the log likelihood ratio (with some caveats (see [13]), where

Δj2 = j2
prem(dataprem) − j2

hyp(dataprem) = −j2
hyp(dataprem) . (5)

In this case (Asimov corresponds to the confidence level to which the hypothetical Earth model can
be distinguished from PREM.

3. Results and discussion

3.1 Absorption tomography

Analogously to the analysis reported in [1], performed with 1-year data of IceCube, we use an
Earth model with 5 layers with radii of [1242, 2372, 3502, 4935, 6368](km), such that we have one
layer for the inner core and two layers for outer core and mantle, respectively.

We fit simultaneously the densities of the 5 layers to our simulated data and determine the 1f
uncertainties with ROOT::Minuit2 [14] without taking into account any systematic uncertainty.

The result shown in Fig. 3 is comparable with the prediction for 10 years of IceCube data
presented in [1] (note that our first bin [0-1242 km] appears to be larger due to the logarithmic
y-scale). The width of the error bands decreases with the total volume of the respective layer.
While only a fraction of the detected neutrinos traversed the inner core, all of them pass through
the mantle and thus the statistical uncertainty for the density fit of the mantle is reduced. Although
finer features of the Earth’s density profile like the density step between inner and outer core can
not be resolved, ARCA is able to distinguish the core from the mantle region.
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Figure 3: 5-layer fit of the Earth density and 68% uncertainties for a simulated lifetime 10 years for both
building blocks of KM3NeT/ARCA. No systematic effects are included. The red curve shows the underlying
42-layer PREM density profile used for the simulation of the experiment.

Figure 4: Left:Visualisation of d̄. We use it to scale the density of all 12 model layers of the outer core
simultaneously. Right: Sensitivity contours for //� and d̄. The error intervals are calculated for d̄ = 1, the
contour lines correspond to the combinations of //� and d that result in the same =4.

3.2 Oscillation tomography

Our goal for the oscillation tomography is to constrain the electron density =4 in the outer core
and find hints on its chemical composition. Because =4 is the direct product of the matter density
d< and the proton-to-nucleon ratio //� (see Eq. 1), a fit of =4 is analogous to either a fit of the
//� value or a fit of a normalisation factor d̄ for the density as illustrated in Fig. 4 (left), while
keeping the respective other parameter constant.We fit the //� value assuming the PREM density
(i.e. d̄ = 1) and determine its error intervals, from which we can draw the contour lines according
to equal values of =4 (Fig. 4 (right)).

We used no priors for the fit to remain completely independent of seismological measurements.
PREM uncertainties on the outer core density are smaller than a few percent and would therefore
heavily constrain the possible combinations of //� and d. In the future, the constraints from
absorption tomography on the outer core density could help to narrow down the contour bands.
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Realistic models of the chemical composition of the outer core provide values between 0.466 (iron
nickel alloy as in the inner core) and 0.4714 ("exotic" model containing 1wt%3 H [15]) and will not
be distinguishable with the current generation of neutrino detectors.
The result of oscillation studies presented in the analysis relies on the global best fit of oscillation
parameters assuming normal mass ordering [16] and does not include systematic uncertainties.
ORCA and other neutrino oscillation experiments will most likely determine the true mass ordering
in a shorter time scale than 10 years which is the time scale considered in this simulation and also
other oscillation parameters will be determined with a higher precision. An estimation of systematic
effects showed that events only traversing the mantle region of the Earth will limit these effects
while investigating only the outer core.

3.3 Summary

We showed here that KM3NeT, with its two detectors ARCA and ORCA, is an experiment
capable of performing both oscillation and absorption tomography of the Earth. Using a Monte
Carlo based model to simulate the detector response, we were able to calculate the sensitivities
for measurements of the //� value of the outer core, which cannot be measured with seismic
measurements, as well as of the Earth’s density profile. Despite the uncertainties related to neutrino
tomography are still much bigger than those provided by geoscience, this new approach to explore
the Earth interior can contribute to constrain future models of the planet.

3’Weight percent’ , meaning one percent of the total mass comes from hydrogen.
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