
1

Graph Neural Networks for Communication
Networks: Context, Use Cases and Opportunities
José Suárez-Varela, Paul Almasan, Miquel Ferriol-Galmés, Krzysztof Rusek, Fabien Geyer, Xiangle Cheng,

Xiang Shi, Shihan Xiao, Franco Scarselli, Albert Cabellos-Aparicio, and Pere Barlet-Ros

Abstract—Graph neural networks (GNN) have shown out-
standing applications in fields where data is essentially rep-
resented as graphs (e.g., chemistry, biology, recommendation
systems). In this vein, communication networks comprise many
fundamental components that are naturally represented in a
graph-structured manner (e.g., topology, routing, signal inter-
ference). This position article presents GNNs as a fundamental
tool for modeling, control and management of communication
networks. GNNs represent a new generation of data-driven
models that can accurately learn and reproduce the complex
behaviors behind real-world networks. As a result, these models
can be applied to a wide variety of networking use cases, such
as planning, online optimization, or troubleshooting. The main
advantage of GNNs over traditional neural networks lies in their
unprecedented generalization capabilities when applied to other
networks and configurations unseen during training. This is a
critical feature for achieving practical data-driven solutions for
networking. This article starts with a brief tutorial on GNNs and
some potential applications to communication networks. Then, it
presents two state-of-the-art GNN models respectively applied to
wired and wireless networks. Lastly, it delves into the key open
challenges and opportunities yet to be explored in this novel
research area.

INTRODUCTION

Network modeling is a fundamental component for efficient
control and management of communication networks. For
example, a network model enables to predict key performance
indicators, such as latency, jitter, or loss, for particular network
scenarios (e.g., new configuration, traffic change, network
upgrade). Likewise, it can be used for autonomous network
control, by pairing the model with an automatic optimization
algorithm (e.g., local search, reinforcement learning) [1], [2].

Traditionally, network models have been implemented with
analytical approaches, mainly based on fluid models or queue-
ing theory. However, these models offer limited capabilities
to reproduce the behavior of real-world networks (e.g., real
traffic, multi-hop routing) [3]. At the same time, accurate
alternatives based on discrete-event simulation (e.g., ns-3,
OMNeT++) do not scale well to large network environments.
Their high computational cost limits the possibility to simulate
real-world networks at scale, as well as to operate at relatively
short timescales (e.g., for online optimization).

J. Suárez-Varela, P. Almasan, M. Ferriol-Galmés, A. Cabellos-Aparicio,
and P. Barlet-Ros are with Barcelona Neural Networking Center, Universitat
Politècnica de Catalunya, Spain.

K. Rusek is with AGH University of Science and Technology, Poland.
F. Geyer is with Technical University of Munich, Germany.
X. Cheng, X. Shi and S. Xiao are with Huawei Technologies Co., Ltd.,

China.
F. Scarselli is with University of Siena, Italy.
Manuscript received MM DD, YYYY; revised MM DD, YYYY.

In this context, machine learning (ML) is a promising
technique for achieving accurate network models with limited
execution times. In particular, deep learning models have
recently gained much attention, motivated by the outstanding
applications they have shown in other domains (e.g., computer
vision, natural language processing).

Neural networks (NN) are data-driven. This means they can
directly learn from real data, without the need for introducing
theoretical assumptions as those of analytical network models
(e.g., fluid models, queuing theory). As a result, they expand
the possibilities to accurately model networks at a high level of
detail (e.g., protocols, physical effects, hardware-level impact).
In addition, these models are highly parallelizable (e.g., on
GPUs, TPUs), which permits to efficiently scale to large real-
world networks and big data environments.

A main aspect to produce practical data-driven solutions is
generalization over networks. This refers to the capability of
network models to make good predictions in different samples
from those seen during training (e.g., new configurations,
topology changes). In this vein, popular NN models are not
suited to generalize over network-related data (e.g., fully-
connected NNs, convolutional NNs, autoencoders). Communi-
cation networks comprise relational information at many dif-
ferent levels (e.g., topology, routing, user connections, signal
interference) and these NNs are not designed to capture such
type of information. The natural way to represent relational
information is in the form of graphs (i.e., as sets of elements
that are connected according to their relationships). Indeed,
the networking community has traditionally relied on graphs
as a fundamental element to represent networks and solve
a plethora of control and optimization problems [2]. This
eventually calls for using deep learning methods that are more
suitable for graph-structured relational data.

This article posits graph neural networks (GNN) [4] as a
key enabler for producing accurate data-driven network models
with strong generalization capabilities. GNNs are a NN family
tailored to operate directly on graph-structured data. Unlike
more traditional NN models, GNNs exhibit unique properties
to learn and exploit relational patterns between the different
elements within graphs. This property is also referred to as
strong relational inductive bias [5]. Eventually, it extends
the possibility to accurately generalize to other networks
with configurations unseen during training. As such, this new
breed of deep learning models has already produced some
successful applications with an unprecedented level of gener-
alization over different types of communication networks (e.g.,
wired/wireless networks, data centers, IoT, SDN/NFV) [6].

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. http://dx.doi.org/10.1109/MNET.123.2100773

2

TABLE I
COMPARISON OF SOME WELL-KNOWN NN MODELS AND THEIR MAIN APPLICATIONS.

Type Description Applications

Fully-connected NN These models are agnostic to the data type. In fully-connected NNs,
all neurons in one layer are connected to all neurons in the next
layer (all-to-all connections). They are suitable for problems where
no assumptions can be made about the input data structure.

Generic feature-based classifiers (e.g., user profile modeling, medical
diagnosis, signature-based malware detection).

Convolutional NN These models assume that the input data is spatially arranged
(typically, images). This type of NNs use convolutional kernels that
exploit the spatial dimension of the data (e.g., they are invariant to
spatial translations).

Computer vision (e.g., face recognition, object identification, self-
driving cars), AR/VR (e.g., video games, telepresence services).

Recurrent NN These models assume that the input data has a sequential structure
(e.g., text, voice, time-series). Recurrent NNs are designed to selectively
keep memory of previous inputs, so that they can better capture
sequential relationships behind the data.

Text and voice processing (e.g., natural language processing, language
translation, voice generation), time-series analysis (e.g., stock price
prediction).

Graph NN These models assume that the input data is structured as graphs
(i.e., nodes and edges). Graph NNs thus implement specific mechanisms
to exploit the relational information behind the data (e.g., they are
equivariant to node and edge permutation).

Chemistry (e.g., compound generation, drug discovery), biology
(protein folding, protein-protein interactions), physics (e.g., trajec-
tory prediction, gravitational systems), computer Science (e.g.,
communication networks, social networks, recommendation systems).

GRAPH NEURAL NETWORKS

Graphs are an essential data type to generate structured
representations of many real-life elements, such as molecules
in chemistry, gravitational systems in physics, proteins in
biology, or user relations in social networks. In the field
of communication networks, graphs are pervasively used to
represent many fundamental network components, such as the
topology, routing, dependencies between flows, user connec-
tions, interference, and many others. In general, graphs enable
to represent the elements that compose a network scenario
(e.g., devices, users, applications) and their underlying rela-
tionships in a structured manner. This is crucial for solving
many networking problems [2].

Table I shows a comparison of some popular NN models
available at the time of this writing. The most classical and
generic ones are fully-connected NNs. These models are
considered universal approximators that can be applied to
virtually any problem and data type. Then, convolutional NNs
and recurrent NNs emerged as new architectural variants to
target specific data types. The main essence behind these
two NN types is that they are designed to exploit relevant
information from the structure of their input data. Convolu-
tional and recurrent NNs are respectively invariant to spatial
and temporal translations. These are opportunistic biases to
model their target data types more accurately (i.e., images
and sequences) [7]. A lesson learned from the recent history of
deep learning is that generic fully-connected NNs show weaker
performance when applied to problems where special-purpose
NNs can be used to exploit the underlying data structure (e.g.,
convolutional, recurrent NNs) [7].

GNNs [4] are thus a more recent family of NN models
specifically designed to process graph-structured data. These
models implement a modular NN architecture that explicitly
represents the elements (nodes) and connections (edges) of
input graphs. Also, they introduce some inductive biases that
capture meaningful patterns from the graphs seen during
training (e.g., equivariance to node and edge permutation) [5].
As a result, these models have already demonstrated ground-
breaking applications in fields where graphs are ubiquitous
(see applications in Table I).

The GNN Architecture

GNN is commonly referred to as an umbrella term for NN
models that operate directly on graph-structured data. Behind
the GNN concept, nowadays we can find a wide variety of NN
architectural variants, which are often classified into spectral
and spatial approaches [8]. In communication networks, the
most popular GNN models are based on graph convolutional
networks (GCN), graph attention networks (GAT), or message
passing neural networks (MPNN) [6]. In this section, we aim
to describe the architecture of a basic GNN model. To keep
generality, we follow the MPNN nomenclature [9], which
is considered one of the most general and expressive GNN
definitions to date [8]. Indeed, widely used GNN models
— including GCN, GAT, GGNN, GraphSAGE, and many
others — can be defined as a special case of the MPNN
framework.

As shown in Figure 1, the execution of a MPNN can be
divided into three main phases: 1) Initialization, 2) Message
passing, and 3) Readout. We describe these phases below.

1) Initialization (Fig. 1, Phase 1):
Given an input graph, the GNN generates an associated state
vector for each node, known as the node’s hidden state (ℎ𝑖).
It then initializes these states with a set of features (𝑋𝑖)
included in the input graph. To describe this process, we refer
to an illustrative example where the input graph of the GNN
is a direct representation of a wired network topology (see
Fig. 1, left). In this example, each router represents a node
in the input graph; hence the initial state features 𝑋𝑖 could
be some router-level characteristics (e.g., switching capacity,
buffer size). Hidden states ℎ𝑖 are represented by n-element
vectors, where the vector size is a configurable parameter of
the model. Typically, these states (ℎ𝑖) are larger than the initial
feature vectors (𝑋𝑖), so they can be simply zero-padded to
fill the vector size. Likewise, in this example graph edges
represent the physical links of the network, and can also be
initialized with some features 𝑒𝑖 𝑗 (e.g., link capacity).

2) Message passing phase (Fig. 1, Phase 2):
Once the routers’ hidden states are initialized, an iterative
process (message-aggregation-update) is executed over the

3

𝑖

3

4

5

ℎ2
𝑡

ℎ3
𝑡

ℎ4
𝑡

ℎ𝑖

ℎ5
𝑡

A𝑔𝑔𝑟.

+

𝑚𝑖2
𝑡

𝑚𝑖3
𝑡

𝑚𝑖4
𝑡

𝑚𝑖5
𝑡

𝑚𝑖
∗𝑡

ℎ𝑖
𝑡

ℎ𝑖
𝑡+1

𝑀(·)

𝑀(·)

3

2
ℎ2
𝑡

ℎ3
𝑡

4
ℎ4
𝑡

5

ℎ5
𝑡

ℎ𝑖
𝑡

𝑀(·)

𝑀(·)

a) Message b) Aggregation

ቐ

Phase 2: Message Passing phase (example on node 𝒊)

c) Update

ℎ1
𝑇

𝑌1

A𝑔𝑔𝑟.

+

𝑅𝑛(·)

𝑌𝐺𝑅𝐺(·)

ℎ1
𝑇

ℎ𝑁−1
𝑇

ℎ2
𝑇

ℎ𝑁
𝑇

Phase 3: Readout

Global output

Node-level output

···

𝑥1 𝑥2 ···𝑥𝐾 0 ··· 0

After ′𝑇’

iterations

𝑖

Hidden state (𝒉𝒊)

Padding

ቐ

Initial

features

ℎ𝑁
𝑇

𝑌𝑁𝑅𝑛(·)

···

2

1

ℎ1
𝑡

𝒊

𝒊

𝟑

𝟏

𝟐

𝟒

𝟓

𝟐

𝟑

𝟒

𝟓

𝒊
···

𝒊

Phase 1: Initialization

𝑈(·)

Fig. 1. Schematic representation of a basic GNN model applied to a communication network.

input graph. Figure 1, Phase 2 illustrates a message passing
(MP) iteration on a router (node 𝑖). Note that this process
would run in parallel for each router. In each MP iteration, the
router combines the hidden state with its neighbors and applies
three main functions along this process: message, aggregation,
and update. Some of these functions are implemented by NN
modules, as described later in this section.

a) Message function (𝑀): It encodes information about
two connected nodes in the graph (i.e., adjacent routers in
the example of Fig. 1). The 𝑀 function has the states of
two connected routers as input (e.g., ℎ𝑖 and ℎ 𝑗). Also, it may
include some features of the link connecting them (𝑒𝑖 𝑗). As a
result, it produces a message (𝑚𝑖 𝑗). Messages are new vectors
that should encode relevant information about two connected
routers and the relationship between them. For example, some
properties of the traffic sent between the two routers.

b) Aggregation function (𝐴𝑔𝑔𝑟): After messages (𝑚𝑖 𝑗) are
generated for all connected routers, each router combines
the messages computed with its neighbors using an aggre-
gation function (𝐴𝑔𝑔𝑟). This function produces an aggregated
message (𝑚∗

𝑖
), which is a new vector that encodes relevant

information from the messages received in that node (i.e., it
summarizes information from the local neighborhood). This
𝐴𝑔𝑔𝑟 function is often implemented with an element-wise
summation.

c) Update function (𝑈): This function updates the node
states at the end of each MP iteration (Fig. 1, Phase 2).
To do this, it combines the current state of the router (ℎ𝑡

𝑖
)

with the newly aggregated message (𝑚∗𝑡
𝑖

) — which encodes
information from the neighborhood. As a result, it produces
an updated state vector for the router (ℎ𝑡+1

𝑖
).

Note that in each MP iteration routers only receive data from
their direct neighbors. To allow routers receive information
from more distant nodes in the graph, the GNN executes a
number of MP iterations 𝑇 , which is a configurable parameter
of the model. For instance, in the graph of Fig. 1, the GNN
would need at least two MP iterations to propagate information
from node 1 to node 𝑖.

3) Readout phase (Fig. 1, Phase 3):
This last phase translates the information encoded in node

hidden states into the final output values of the model. GNNs
may typically produce two output types: (𝑖) node-level, or
(𝑖𝑖) global graph-level features. Following the example of
Fig. 1, the GNN might predict features at the router level
(e.g., buffer occupancy), or infer global network-level prop-
erties (e.g., congestion level). In the first case, a readout
function (𝑅𝑛) would be individually applied to each router
state to produce the final outputs. In the second case, a global
output could be obtained by first aggregating all router states
(e.g., element-wise sum) and then applying a global readout
function (𝑅𝐺).

In general, a MPNN comprises four main building blocks,
which are the four functions described earlier: message (𝑀),
aggregation (𝐴𝑔𝑔𝑟), update (𝑈), and readout (𝑅). Typically,
the 𝑀 , 𝑈, and 𝑅 functions are respectively approximated by
three NNs (e.g., fully-connected NNs). The 𝐴𝑔𝑔𝑟 function is
often implemented with an element-wise summation. Then,
GNNs are dynamically built based on the input graph. Each
time the GNN receives a new graph, it combines multiple
copies of the previous four functions according to the nodes
and connections of the input graph. Note that, once the GNN
model is assembled, it forms a recurrent network. This means
it is possible to train the whole GNN model end-to-end. Hence,
functions approximated by NNs (𝑀 , 𝑈, and 𝑅) are jointly
learned across all their copies in the GNN, by applying a
common backpropagation method as in any other NN model.
After training, these NNs learn generic functions according
to the purpose the GNN was trained for. For example, the
NN that approximates the 𝑀 function is expected to encode
relevant information in messages according to the purpose of
the GNN (e.g., network anomaly detection). As a result, these
generic functions can be applied to other graphs with different
structures (i.e., nodes and connections) unseen during training.

GNN-BASED NETWORK MODELING

This section motivates the benefits of GNNs for building
practical data-driven solutions for network modeling.

Figure 2 shows a black-box representation of a generic
network model. This model is given an input network scenario
(e.g., topology, traffic, configuration), and it is tasked with

4

The network model predicts the

behavior of physical network infrastructures

Wired networks Wireless networks Data centers

· · ·

Fine-grained performance metrics:
•Flow-level stats (delay, Jitter, loss)
•Link-level stats (e.g., utilization,
channel conditions)
•Port stats (e.g., packet loss, queue
occupancy)
•…

Network state definition:
(e.g., what-if network scenario)
•Topology
•Traffic demands
•Configuration (e.g., routing, scheduling)
•Applications
•User associations (cellular networks)
•…

Network Model

Fig. 2. Schematic representation of a network model.

predicting relevant performance metrics at different levels
of granularity (e.g., flow, link, port statistics). In general,
network models enable to predict what would be the resulting
network performance under possible topology changes (e.g.,
upgrades, failures), or with new configurations (e.g., routing,
VNF placement). These models enable a plethora of network
control and management tasks, such as what-if analysis or
automatic network optimization.

Generalization properties of GNNs over networks

Networks comprise graph-structured information at many
different levels [2]. In this vein, more traditional NN models,
such as fully-connected NNs, are not designed to directly
process and capture meaningful patterns from graphs. GNN
thus represents the most suitable ML technique nowadays for
processing such graph-structured data.

GNN models have unique properties to accurately gener-
alize over graphs. For example, unlike other ML models,
GNNs are focused on relational reasoning and combinatorial
generalization over graphs [5]. These models leverage the
distributed message passing architecture described earlier to
get local context on graph nodes. For example, in the scenario
of Figure 1 the internal NN functions of the MP phase (e.g.,
message, update) learn from the individual perspective of each
router in the network. This feature eventually endows the
model with strong generalization capabilities, as it learns from
the experiences locally seen by all routers during training. As a
result, it can then apply this learned knowledge to other routers
in different networks with variable sizes and structures.

Moreover, GNNs are equivariant to node and edge permu-
tations [7]. This means that, if we represent network scenarios
as graphs, GNN models can find symmetries or equivalent pat-
terns between the network scenarios seen during training and
the new scenarios where the model is applied after training.
Following with the example of Figure 1, the GNN would be
able to identify clusters within the network topology that are
equivalent or similar to others seen during training. In practice,
different types of networks (e.g., wireless, data centers, IoT)
have their own particularities and may comprise different types
of elements and relationships. However, these generalization
properties are extensible to any network scenario as long as it
is represented as a graph.

Practical advantages of GNNs

As a result of the aforementioned generalization properties,
GNN unlocks fundamental practical limitations of previous

ML-based solutions for network modeling:
Offline training: Training a deep learning model often

requires big amounts of data with enough diversity to abstract
deep insights during the training phase (e.g., test different
configurations, inject various traffic loads). Indeed, models
typically need to observe extreme cases that may break the
normal operation of the network (e.g., link failures). This is
because they should be able to make good estimates in case
these rare events occur once deployed. For obvious reasons,
it is not feasible to reproduce these extreme cases in real
production networks. Hence, a more realistic approach is to
train ML models offline (e.g., in a controlled testbed), and
make products that are readily available for deployment in
customer networks, without the need for re-training on the
target network. However, this requires relying on ML models
that can generalize to new networks unseen during training
(e.g., new topologies, configurations, traffic patterns). This
makes GNN a key enabler for achieving practical data-driven
network models that can be fully trained offline.

Testing and deployability: Nowadays networking products
are extensively tested before being deployed, as real-world
networks are considered critical infrastructures. This makes it
unrealistic to rely on ML-based solutions that can be trained
online, as we would need strong supervision mechanisms
to check the evolution of the model. From a deployability
standpoint, GNNs enable to train network models offline, test
their behavior under a wide range of operational network
scenarios, and finally generate certifications that can determine
the operational ranges where the model offers guarantees (e.g.,
network sizes, maximum traffic aggregates). This conforms to
the standard commercialization process of networking prod-
ucts nowadays.

NETWORK CONTROL AND MANAGEMENT
WITH GRAPH NEURAL NETWORKS

A GNN-based model such as the one described in the
previous section has as many applications as traditional net-
work models. Its main benefit is that it can be applied to use
cases where it is relevant to produce accurate and detailed
performance metrics (e.g., end-to-end delays, jitter, loss, flow
completion time). This makes these models especially useful
for SLA-driven network optimization tasks, where traditional
modeling techniques do not meet the requirements to achieve
accurate estimates with limited cost.

Figure 3 depicts a generic optimization architecture in the
context of SDN-based networks. We opportunistically use this
architecture to better illustrate the operational workflow, while
similar optimization mechanisms could be implemented in
traditional networks with distributed control. This optimization
architecture envisions two main operation modes, depending
on whether there is human intervention (open loop), or not
(closed loop). Based on this, two main paradigmatic applica-
tions can be differentiated:

What-if analysis (open loop)
This operation mode considers the case of a network admin-

istrator and/or engineer that aims to evaluate the network be-
havior under some specific what-if scenarios. For this purpose,

5

GNN-based
Network
Model

Data plane

Control plane

or ?
What-if analysis

(human in the

loop)

Automatic Optimization

(Closed loop)

What-if scenario:
- Network planning
- Troubleshooting
- Performance evaluation
- …

New configuration:
- Routing & Scheduling
- Channel allocation
- VNF placement
- …

Network
Controller

···

Actions to apply Actions to apply

Scenario to

evaluate

Predicted

Performance

Optimization
algorithm

Fig. 3. Optimization architecture with a GNN-based network model.

the network model can be used to predict relevant performance
metrics under certain scenarios (e.g., new configurations, po-
tential failures, network upgrades). This can eventually be
leveraged for a plethora of common networking tasks, such as
planning, troubleshooting, optimization, or building network
recommendations systems.

Automatic optimization (closed loop)

This second operation mode envisions autonomous opti-
mization tasks, with an eye on future self-driving networks.
Automatic network optimization can be achieved by combin-
ing a network model with an optimization algorithm [1]. In
this well-known architecture, the algorithm (e.g., local search,
branch and bound, reinforcement learning) generates candidate
configurations that pursue a particular optimization goal (e.g.,
minimize end-to-end delay). The network model is responsible
for predicting the performance if these configurations were
applied in the network. Thus, through an iterative generate-
evaluate process the optimizer can finally produce a new
configuration that meets the optimization goals.

In these types of applications, it is essential to count
on a network model that can accurately estimate the target
performance metrics (e.g., delay, jitter). Otherwise, there could
be a problematic mismatch between the performance predicted
by the model and the actual result after applying the new
configuration to the network. This makes the use of analytical
network models (e.g., queuing theory) arguably insufficient for
control and management tasks, as these models have limited
capabilities to reproduce the behavior of real networks (e.g.,
real traffic, physical effects, hardware-level impact).

Likewise, from the ML perspective, the network model
must generalize accurately to a broad range of network state
descriptions, either produced by network administrators (what-
if analysis) or by optimization algorithms (automatic optimiza-
tion). In practice, this means we need a ML model that can be
trained offline on a broad collection of network samples (e.g.,
from a controlled testbed), and that can then produce accurate

estimates when deployed in new network scenarios unseen
in advance (e.g., new topologies, configurations, traffic). This
again calls for the use of GNNs, as they are the only ML
models that offer the possibility to generalize over networks,
as discussed in more detail in the previous section.

EXAMPLE USE-CASES

GNNs have already been applied to a wide variety of
networking use cases, such as routing optimization [1], [10],
Multipath TCP [11], network calculus [12], or power con-
trol in wireless networks [13], [14]. Here, we present two
representative examples of custom GNN models respectively
applied to wired and wireless networks: RouteNet [1], and
WCGCN [13]. Both models are natural extensions of the
canonical GNN architecture described earlier in this article.
We implement these models with IGNNITION [15], and make
some experiments focused on showing the capabilities of these
models to generalize over networks.

Performance Evaluation in Wired Networks

RouteNet [1] is a GNN-based model for performance evalu-
ation in wired networks. As illustrated in Figure 4, this model
has a network state description as input, defined by: a network
topology, a traffic matrix, and a routing configuration. As a
result, it produces estimates of key performance indicators at
a flow-level granularity (e.g., delay, jitter, loss). This network
model can be used for what-if analysis — e.g., to test alterna-
tive configurations — as well as for automatic optimization,
by combining the model with an optimization algorithm (see
Fig. 3). As an example, in [1] they leverage this model for
several SLA-driven optimization use cases, such as minimizing
the delay and/or jitter in the network, fast link failure recovery,
or finding the optimal link upgrades.

To showcase the generalization capabilities of this model,
we train RouteNet on 177,500 samples simulated in two
real-world network topologies: NSFNET (14 nodes) and Ger-
many50 (50 nodes). All these samples include a wide variety
of traffic matrices and routing configurations. Then, we eval-
uate the predictions of this GNN model in three test datasets
with 40,000 samples, respectively from NSFNET, Germany50,
and a new network topology: GBN (17 nodes).

Figure 4 shows the mean relative error (MRE) produced
by RouteNet when predicting flow-level delays on samples
from the three test datasets. Here, we define the MRE with
respect to the delay labels produced by an accurate packet-
level network simulator (OMNeT++). Note that all these eval-
uation samples include combinations of routing configurations
and traffic matrices unseen during training. As we can see,
the model can accurately generalize to these new samples,
even for those of the GBN network, which was never seen
during training (MRE<3%). For the sake of comparison, we
repeat the same experiments with a fully-connected NN with
equivalent inputs to RouteNet. In Figure 4, we can observe
that this model produces significantly larger errors, which
increase especially when applied to samples of the new GBN
network unseen during training (MRE≈35%). These results

6

Fig. 4. Mean relative error (%) of the flow-level delay predictions made by
RouteNet [1] and a fully-connected NN. Evaluated over 40,000 samples of the
NSFNET (14 nodes), Germany50 (50 nodes), and GBN (17 nodes) topologies.
Both models were trained only on samples from NSFNET and Germany50.

evidence the unprecedented capability of the GNN-based
model (RouteNet) to accurately generalize over all its input
network parameters (i.e., topology, traffic, routing), which are
internally represented in a graph-structured manner.

Beyond the accurate predictions produced by this GNN
model, one main advantage is its low execution time. This may
be crucial for online network optimization, as it enables testing
a large set of candidate configurations in a limited amount of
time. As a reference, in our experiments RouteNet takes 65
ms on average to evaluate samples of the 50-node network
(Germany50). In contrast, the packet-level network simulator
used to generate the datasets (OMNeT++) takes more than 10
minutes on average to simulate each sample.

Radio Resource Management in Wireless Networks

WCGCN [13] is a GNN-based model for radio resource
management in wireless networks. The original paper [13]
shows how this model can be applied to maximize the sum
rate on networks, which is a classical optimization problem
applicable to many use cases in wireless networks (e.g., power
control, beamforming).

As an example, we apply this GNN model to optimize
power control. The model has a description of the network
state as input, which includes the channel states and the
distances between end nodes. As a result, it produces the
recommended Tx power on each node pair connection (see
Fig. 5). We train this model on 1,000 samples of 50 links (i.e.,
50 connected node pairs) and then evaluate its performance on
different sets with network samples of increasing size (50-400
links).

Figure 5 shows the performance difference with respect to
the classical weighted minimum mean square error (WMMSE)
algorithm. This method represents a close-to-optimal approach
for this problem. As we can observe, even if WCGCN was
only trained on 50-link scenarios, it achieves similar perfor-
mance to the near-optimal WMMSE algorithm in networks up
to 400 links (≈+4%). This shows the unprecedented scalability
and generalization capabilities of this ML model on the target

Fig. 5. Mean sum rates achieved by WCGCN [13], normalized in %
by the performance achieved by the WMMSE optimization algorithm (100
iterations). The WCGCN model was trained on 1,000 samples with 50 links.

optimization problem. Likewise, we observe a significant re-
duction in execution time compared to WMMSE. For example,
in scenarios with 400 links, WCGCN produces results in 16
ms on average, while WMMSE takes more than 10 seconds.

OPPORTUNITIES AND OPEN CHALLENGES

This section outlines some opportunities and open chal-
lenges yet to be explored before achieving production-ready
GNN-based solutions for communication networks.

GNNs can be virtually applied to any network-related
domain, as long as it is formulated as graphs. Indeed, these
models have been recently validated for different network
applications, showing outstanding results in different com-
munication paradigms (wired, wireless, SDN/NFV, IoT) [1],
[10], [11], [12], [13], [14]. In this vein, there is still an ocean
of opportunities to apply these novel methods to different
use cases (e.g., optimization, troubleshooting, planning, what-
if analysis) and expand their horizon towards other types
of communications (e.g., satellite networks). This will not
be a trivial task, as standard GNN models are not directly
applicable to any networking use case. A thorough design
process is often required to come up with a custom GNN
architecture suitable for the target networking problem.

Despite the promising applications of GNNs to networking,
these models are still in an early stage of technology readiness.
We describe below some crucial open challenges that remain
to be addressed:
• Generalization to real networks: To achieve production-

ready solutions, it would be convenient to create GNN
models that can be trained offline in network testbeds
of limited size (e.g., in a networking lab), and that can
then scale accurately to considerably larger real-world
networks (e.g., with hundreds or thousands of nodes).
Beyond the unprecedented generalization capabilities of
GNNs in communication networks, current GNN models
have limited capabilities to scale to large networks (e.g.,
due to over-smoothing in message aggregations). Indeed,
scaling to large networks is a generic open challenge
among ML-based solutions nowadays.

7

• Uncertainty: Like any other ML-based technique, GNNs
are probabilistic models that entail some degree of uncer-
tainty. Given the critical nature of network infrastructures,
this can be a potential limitation for deploying data-driven
solutions in real-world networks. More mature GNN-based
solutions can be achieved by relying on explainability
methods. This would enable producing human-readable
interpretations for the actions selected by GNN models.
Also, some works from the ML community propose to deal
with uncertainty by predicting the posterior probability on
model estimates (e.g., Bayesian NNs). Another possibility
is to design testing procedures that systematically deter-
mine the safe operational ranges of GNN-based products
before deployment (e.g., maximum network size, traffic
loads). These tests could be done in controlled testbeds,
and would allow issuing certifications defining bounded
confidence levels within certain operational ranges.

CONCLUSION

As a final thought, we have already witnessed the revolution
of convolutional NNs applied to computer vision, or recurrent
NNs applied to natural language processing. The main reason
behind these success stories is that they started to use NN
models specifically tailored to understand the underlying data
structure in their respective domains. In this context, GNNs
can be the perfect partner to materialize the revolution of deep
learning in the field of communication networks, as data in
networks is pervasively represented as graphs.

Moreover, from a practical standpoint, GNNs can accurately
generalize to other networks unseen during training. This
represents a crucial aspect for achieving commercial data-
driven solutions, as it allows offline training in controlled
testbeds and creating products that are directly ready for
deployment in production networks. Nevertheless, in this ar-
ticle we have raised some relevant technological challenges
and potential applications that remain to be explored before
achieving widespread adoption of GNN-based solutions for
communication networks.

ACKNOWLEDGMENT

This publication is part of the Spanish I+D+i project
TRAINER-A (ref. PID2020-118011GB-C21), funded by
MCIN/AEI/10.13039/501100011033. This work is also par-
tially funded by the Catalan Institution for Research and
Advanced Studies (ICREA) and the Secretariat for Universities
and Research of the Ministry of Business and Knowledge of
the Government of Catalonia and the European Social Fund.

REFERENCES

[1] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Unveiling the potential of graph neural networks for network
modeling and optimization in sdn,” in Proceedings of the 2019 ACM
Symposium on SDN Research, 2019, pp. 140–151.

[2] N. Vesselinova, R. Steinert, D. F. Perez-Ramirez, and M. Boman,
“Learning combinatorial optimization on graphs: A survey with applica-
tions to networking,” IEEE Access, vol. 8, pp. 120 388–120 416, 2020.

[3] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM, 2018, pp. 1871–1879.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[5] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[6] Barcelona Neural Networking center. Must-read papers on
GNN for communication networks. https://github.com/BNN-
UPC/GNNPapersCommNets.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[8] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, “Graph neural networks: A review of methods and applications,”
AI Open, vol. 1, pp. 57–81, 2020.

[9] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of
the International Conference on Machine Learning (ICML), 2017, pp.
1263–1272.

[10] F. Geyer and G. Carle, “Learning and generating distributed routing
protocols using graph-based deep learning,” in Proceedings of the 2018
Workshop on Big Data Analytics and Machine Learning for Data
Communication Networks, 2018, pp. 40–45.

[11] T. Zhu, X. Chen, L. Chen, W. Wang, and G. Wei, “GCLR: GNN-based
cross layer optimization for multipath TCP by routing,” IEEE Access,
vol. 8, pp. 17 060–17 070, 2020.

[12] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective contention
models for network calculus using graph neural networks,” in IEEE
INFOCOM, 2019, pp. 1009–1017.

[13] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for
scalable radio resource management: Architecture design and theoretical
analysis,” IEEE Journal on Selected Areas in Communications, vol. 39,
no. 1, pp. 101–115, 2020.

[14] M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with
random edge graph neural networks,” IEEE Transactions on Signal
Processing, vol. 68, pp. 2977–2991, 2020.

[15] D. Pujol-Perich, J. Suárez-Varela, M. Ferriol, S. Xiao, B. Wu,
A. Cabellos-Aparicio, and P. Barlet-Ros, “IGNNITION: bridging the gap
between graph neural networks and networking systems,” IEEE Network,
Nov. 2021.

BIOGRAPHIES

José Suárez-Varela is a postdoctoral researcher in the Barcelona Neural Net-
working center, Universitat Politècnica de Catalunya, Spain. His main research
interests are in Machine Learning applied to communication networks. He is
currently working on the application of Graph Neural Networks and Deep
Reinforcement Learning to network control and management.

Paul Almasan received his B.Sc. (2017) and M.Sc. (2019) in Computer
Science from the Universitat Politècnica de Catalunya, Spain. He is currently
pursuing his Ph.D. at the Barcelona Neural Networking Center (BNN-UPC).
His research interests are focused on Graph Neural Networks and Deep
Reinforcement Learning for networking.

Miquel Ferriol-Galmés received his B.Sc. in computer science (2018) and
M.Sc. in data science (2020) from the Universitat Politécnica de Catalunya.
He is currently pursuing a Ph.D. at the Barcelona Neural Networking center
(BNN-UPC). His main research interests are in the application of Graph
Neural Networks to computer networks.

Krzysztof Rusek is an assistant professor at AGH. His main research interests
are performance evaluation of telecommunications systems, machine learning
and data mining. Currently, he is working on the applications of Graph
Neural Networks and probabilistic modeling for performance evaluation of
communications systems.

Fabien Geyer is currently with Technical University of Munich (TUM) and
Airbus Central Research & Technologies in Munich working on methods
for network analytics, network performances and architectures. His research
interests include novel methods for data-driven networking, formal methods
for performance evaluation and modeling of networks.

8

Xiangle Cheng received the Ph.D. degree in Computer Science at the
University of Exeter, UK. He is currently a research fellow at Huawei. His
research interests include 5G, Network AI, Stochastic & Neural Combinatorial
Optimization, Intelligent Wireless Networks and Mobile Computing, and
Information Dynamics.

Xiang Shi received her Bachelor’s degree from the Minzu University of China,
in 2014, and her PhD degree from the Institute of Computing Technology,
Chinese Academy of Sciences in 2020. Currently she works in the Network
Technology Laboratory at Huawei Technologies.

Shihan Xiao received the Ph.D. degree in the Department of Computer
Science and Technology, Tsinghua University, Beijing, China, in 2017. He
is currently a technical expert of Network AI at Huawei Technologies. His
research interests are in the areas of networking and machine learning.

Franco Scarselli is an associate professor at the Department of Information
Engineering and Mathematics, University of Siena, Italy. His research focuses
on machine learning, with special attention to neural networks, machine
learning for graphs and approximation theory. Applied research interests also
include image understanding, information retrieval and bioinformatics.

Albert Cabellos-Aparicio is a full professor at Universitat Politécnica de
Catalunya, where he obtained his Ph.D. in computer science in 2008. He is
director of the Barcelona Neural Networking center (BNN-UPC) and scientific
director of the NaNoNetworking Center in Catalunya.

Pere Barlet-Ros is an associate professor at Universitat Politécnica de
Catalunya and scientific director of the Barcelona Neural Networking center
(BNN-UPC). From 2013 to 2018, he was co-founder and chairman of the
machine learning startup Talaia Networks, which was acquired by Auvik
Networks in 2018.

